251
|
Døving KB, Hansson KA, Backström T, Hamdani EH. Visualizing a set of olfactory sensory neurons responding to a bile salt. ACTA ACUST UNITED AC 2011; 214:80-7. [PMID: 21147971 DOI: 10.1242/jeb.046607] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the present study, we exposed the olfactory epithelia of crucian carp, Carassius carassius, and brown trout, Salmo trutta, to dextran coupled with Alexa dyes together with odorants. Dye uptake was severely reduced after pre-exposure to nocodazole, an inhibitor of microtubule polymerization that impairs endocytosis, supporting the hypothesis that odour-activated olfactory receptor molecules undergo endocytosis. Application of the bile acid taurolithocholate, a potent and specific odorant for fish, resulted in the labelling of a sparse (less than 3%) cell population with the typical morphology of ciliated sensory neurons (CSNs) - long dendrites and cell somata deep in the sensory epithelium. The dye was distributed throughout the sensory neuron, also revealing axons and target glomeruli. Stained axons redistribute at the entrance of the olfactory bulb and terminate in two small target areas, a dorsal and a medial one. These results are consistent with the notion that taurolithocholate is detected specifically by a few ciliated sensory neurons. Application of the olfactory epithelium of brown trout to bile acid stained cells with the appearance of CSNs. Application of an alarm agonist, hypxanthine-3-N-oxide, to crucian carp olfactory organ caused staining of another set of sensory neurons. Furthermore, our results show that odour-induced uptake of a dye can serve to identify the subtype of olfactory sensory neurons responding to a particular odorant, and to pinpoint the target regions of these neurons in the olfactory bulb as a first step to elucidating the neuronal network responding to a particular odour.
Collapse
Affiliation(s)
- Kjell B Døving
- Department of Molecular Biosciences, University of Oslo, PO Box 1041, N-0316 Oslo, Norway.
| | | | | | | |
Collapse
|
252
|
Gibbs-Strauss SL, Nasr KA, Fish KM, Khullar O, Ashitate Y, Siclovan TM, Johnson BF, Barnhardt NE, Hehir CAT, Frangioni JV. Nerve-Highlighting Fluorescent Contrast Agents for Image-Guided Surgery. Mol Imaging 2011. [DOI: 10.2310/7290.2010.00026] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Summer L. Gibbs-Strauss
- From the Division of Hematology/Oncology and Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA; Molecular Imaging and Diagnostic Advanced Technology Program, GE Global Research, Niskayuna, NY; and Division of Thoracic Surgery, Brigham and Women's Hospital, Boston, MA
| | - Khaled A. Nasr
- From the Division of Hematology/Oncology and Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA; Molecular Imaging and Diagnostic Advanced Technology Program, GE Global Research, Niskayuna, NY; and Division of Thoracic Surgery, Brigham and Women's Hospital, Boston, MA
| | - Kenneth M. Fish
- From the Division of Hematology/Oncology and Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA; Molecular Imaging and Diagnostic Advanced Technology Program, GE Global Research, Niskayuna, NY; and Division of Thoracic Surgery, Brigham and Women's Hospital, Boston, MA
| | - Onkar Khullar
- From the Division of Hematology/Oncology and Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA; Molecular Imaging and Diagnostic Advanced Technology Program, GE Global Research, Niskayuna, NY; and Division of Thoracic Surgery, Brigham and Women's Hospital, Boston, MA
| | - Yoshitomo Ashitate
- From the Division of Hematology/Oncology and Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA; Molecular Imaging and Diagnostic Advanced Technology Program, GE Global Research, Niskayuna, NY; and Division of Thoracic Surgery, Brigham and Women's Hospital, Boston, MA
| | - Tiberiu M. Siclovan
- From the Division of Hematology/Oncology and Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA; Molecular Imaging and Diagnostic Advanced Technology Program, GE Global Research, Niskayuna, NY; and Division of Thoracic Surgery, Brigham and Women's Hospital, Boston, MA
| | - Bruce F. Johnson
- From the Division of Hematology/Oncology and Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA; Molecular Imaging and Diagnostic Advanced Technology Program, GE Global Research, Niskayuna, NY; and Division of Thoracic Surgery, Brigham and Women's Hospital, Boston, MA
| | - Nicole E. Barnhardt
- From the Division of Hematology/Oncology and Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA; Molecular Imaging and Diagnostic Advanced Technology Program, GE Global Research, Niskayuna, NY; and Division of Thoracic Surgery, Brigham and Women's Hospital, Boston, MA
| | - Cristina A. Tan Hehir
- From the Division of Hematology/Oncology and Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA; Molecular Imaging and Diagnostic Advanced Technology Program, GE Global Research, Niskayuna, NY; and Division of Thoracic Surgery, Brigham and Women's Hospital, Boston, MA
| | - John V. Frangioni
- From the Division of Hematology/Oncology and Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA; Molecular Imaging and Diagnostic Advanced Technology Program, GE Global Research, Niskayuna, NY; and Division of Thoracic Surgery, Brigham and Women's Hospital, Boston, MA
| |
Collapse
|
253
|
Delmas P, Hao J, Rodat-Despoix L. Molecular mechanisms of mechanotransduction in mammalian sensory neurons. Nat Rev Neurosci 2011; 12:139-53. [PMID: 21304548 DOI: 10.1038/nrn2993] [Citation(s) in RCA: 302] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The somatosensory system mediates fundamental physiological functions, including the senses of touch, pain and proprioception. This variety of functions is matched by a diverse array of mechanosensory neurons that respond to force in a specific fashion. Mechanotransduction begins at the sensory nerve endings, which rapidly transform mechanical forces into electrical signals. Progress has been made in establishing the functional properties of mechanoreceptors, but it has been remarkably difficult to characterize mechanotranducer channels at the molecular level. However, in the past few years, new functional assays have provided insights into the basic properties and molecular identity of mechanotransducer channels in mammalian sensory neurons. The recent identification of novel families of proteins as mechanosensing molecules will undoubtedly accelerate our understanding of mechanotransduction mechanisms in mammalian somatosensation.
Collapse
Affiliation(s)
- Patrick Delmas
- Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille, UMR 6231, Centre National de la Recherche Scientifique, Université de la Méditerranée, CS80011, Boulevard Pierre Dramard, 13344 Marseille Cedex 15, France.
| | | | | |
Collapse
|
254
|
Thermo-TRP channels: biophysics of polymodal receptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 704:469-90. [PMID: 21290312 DOI: 10.1007/978-94-007-0265-3_26] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this chapter we discuss the polymodal activation of thermo-TRP channels using as exemplars two of the best characterized members of this class of channels: TRPM8 and TRPV1. Since channel activation by temperature is the hallmark of thermo-TRP channels, we present a detailed discussion on the thermodynamics involved in the gating processes by temperature, voltage, and agonists. We also review recently published data in an effort to put together all the pieces available of the amazing puzzle of thermo-TRP channel activation. Special emphasis is made in the structural components that allow the channel-forming proteins to integrate such diverse stimuli, and in the coupling between the different sensors and the ion conduction pathway. We conclude that the present data is most economically explained by allosteric models in which temperature, voltage, and agonists act separately to modulate channel activity.
Collapse
|
255
|
Binshtok AM. Mechanisms of nociceptive transduction and transmission: a machinery for pain sensation and tools for selective analgesia. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 97:143-77. [PMID: 21708310 DOI: 10.1016/b978-0-12-385198-7.00006-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Many surgical and dental procedures depend on use of local anesthetics to reversibly eliminate pain. By the blockade of voltage-gated sodium channels, local anesthetics prevent the transmission of nociceptive information. However, since all local anesthetics act non-selectively on all types of axons they also cause a loss of innocuous sensation, motor paralysis and autonomic block. Thus, approaches that produce only a selective blockade of pain fibers are of great potential clinical importance. In this chapter we will review the recent findings describing mechanisms of pain transduction and transmission and introduce novel therapeutic approaches to produce pain-selective analgesia.
Collapse
Affiliation(s)
- Alexander M Binshtok
- Department of Medical Neurobiology, Institute for Medical Research Israel Canada and Center for Research on Pain, The Hebrew University Medical School, Jerusalem, Israel
| |
Collapse
|
256
|
Active wall following by Mexican blind cavefish (Astyanax mexicanus). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2010; 196:853-67. [DOI: 10.1007/s00359-010-0567-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 06/17/2010] [Accepted: 08/05/2010] [Indexed: 11/26/2022]
|
257
|
Ebert J, Fink S, Koitschev A, Walther P, Langer MG, Lehmann-Horn F. Recovery of mechano-electrical transduction in rat cochlear hair bundles after postnatal destruction of the stereociliar cross-links. Proc Biol Sci 2010; 277:2291-9. [PMID: 20356889 PMCID: PMC2894906 DOI: 10.1098/rspb.2010.0219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mechano-electrical transduction (MET) in the stereocilia of outer hair cells (OHCs) was studied in newborn Wistar rats using scanning electron microscopy to investigate the stereociliar cross-links, Nomarski laser differential interferometry to investigate stereociliar stiffness and by testing the functionality of the MET channels by recording the entry of fluorescent dye, FM1-43, into stereocilia. Preparations were taken from rats on their day of birth (P0) or 1–4 days later (P1–P4). Hair bundles developed from the base to the apex and from the inner to outer OHC rows. MET channel responses were detected in apical coil OHCs on P1. To study the possible recovery of MET after disrupting the cross-links, the same investigations were performed after the application of Ca2+ chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA) and allowing the treated samples to recover in culture medium for 0–20 h. We found that the structure and function were abolished by BAPTA. In P0–P1 samples, structural recovery was complete and the open probability of MET channels reached control values. In P3–P4 samples, complete recovery only occurred in OHCs of the outermost row. Although our results demonstrate an enormous recovery potential of OHCs in the postnatal period, the structural component restricts the potential for therapy in patients.
Collapse
Affiliation(s)
- J Ebert
- Institute of Applied Physiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | | | | | | | | | | |
Collapse
|
258
|
Hargreaves KM. Capsicum and local anesthetic cocktails for trigeminal pain. Pain 2010; 150:3. [DOI: 10.1016/j.pain.2010.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 03/09/2010] [Indexed: 11/28/2022]
|
259
|
Wellnitz SA, Lesniak DR, Gerling GJ, Lumpkin EA. The regularity of sustained firing reveals two populations of slowly adapting touch receptors in mouse hairy skin. J Neurophysiol 2010; 103:3378-88. [PMID: 20393068 PMCID: PMC2888253 DOI: 10.1152/jn.00810.2009] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 04/08/2010] [Indexed: 12/24/2022] Open
Abstract
Touch is initiated by diverse somatosensory afferents that innervate the skin. The ability to manipulate and classify receptor subtypes is prerequisite for elucidating sensory mechanisms. Merkel cell-neurite complexes, which distinguish shapes and textures, are experimentally tractable mammalian touch receptors that mediate slowly adapting type I (SAI) responses. The assessment of SAI function in mutant mice has been hindered because previous studies did not distinguish SAI responses from slowly adapting type II (SAII) responses, which are thought to arise from different end organs, such as Ruffini endings. Thus we sought methods to discriminate these afferent types. We developed an epidermis-up ex vivo skin-nerve chamber to record action potentials from afferents while imaging Merkel cells in intact receptive fields. Using model-based cluster analysis, we found that two types of slowly adapting receptors were readily distinguished based on the regularity of touch-evoked firing patterns. We identified these clusters as SAI (coefficient of variation = 0.78 +/- 0.09) and SAII responses (0.21 +/- 0.09). The identity of SAI afferents was confirmed by recording from transgenic mice with green fluorescent protein-expressing Merkel cells. SAI receptive fields always contained fluorescent Merkel cells (n = 10), whereas SAII receptive fields lacked these cells (n = 5). Consistent with reports from other vertebrates, mouse SAI and SAII responses arise from afferents exhibiting similar conduction velocities, receptive field sizes, mechanical thresholds, and firing rates. These results demonstrate that mice, like other vertebrates, have two classes of slowly adapting light-touch receptors, identify a simple method to distinguish these populations, and extend the utility of skin-nerve recordings for genetic dissection of touch receptor mechanisms.
Collapse
Affiliation(s)
- Scott A Wellnitz
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | |
Collapse
|
260
|
Karashima Y, Prenen J, Talavera K, Janssens A, Voets T, Nilius B. Agonist-induced changes in Ca(2+) permeation through the nociceptor cation channel TRPA1. Biophys J 2010; 98:773-83. [PMID: 20197030 DOI: 10.1016/j.bpj.2009.11.007] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 10/16/2009] [Accepted: 11/05/2009] [Indexed: 12/19/2022] Open
Abstract
The Ca(2+)-permeable cation channel TRPA1 acts as an ionotropic receptor for various pungent compounds and as a noxious cold sensor in sensory neurons. It is unclear what proportion of the TRPA1-mediated current is carried by Ca(2+) ions and how the permeation pathway changes during stimulation. Here, based on the relative permeability of the nonstimulated channel to cations of different size, we estimated a pore diameter of approximately 11 A. Combined patch-clamp and Fura-2 fluorescence recordings revealed that with 2 mM extracellular Ca(2+), and at a membrane potential of -80 mV, approximately 17% of the inward TRPA1 current is carried by Ca(2+). Stimulation with mustard oil evoked an apparent dilatation of the pore of 3 A and an increase in divalent cation selectivity and fractional Ca(2+) current. Mutations in the putative pore that reduced the divalent permeability and fractional Ca(2+) current also prevented mustard-oil-induced increases in Ca(2+) permeation. It is interesting that fractional Ca(2+) currents for wild-type and mutant TRPA1 were consistently higher than values predicted based on biionic reversal potentials using the Goldman-Hodgkin-Katz equation, suggesting that binding of Ca(2+) in the pore hinders monovalent cation permeation. We conclude that the pore of TRPA1 is dynamic and supports a surprisingly large Ca(2+) influx.
Collapse
Affiliation(s)
- Yuji Karashima
- Department of Molecular Cell Biology, Katholieke Universiteit Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
261
|
Gibbs-Strauss SL, Vooght C, Fish KM, Nasr KA, Siclovan TM, Barnhardt NE, Hehir CAT, Frangioni JV. Molecular Imaging Agents Specific for the Annulus Fibrosus of the Intervertebral Disk. Mol Imaging 2010. [DOI: 10.2310/7290.2010.00009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Summer L. Gibbs-Strauss
- From the Division of Hematology/Oncology, Department of Medicine, and Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA, and Molecular Imaging and Diagnostics Advanced Technology Program, Biosciences Organization, General Electric Global Research, Niskayuna, NY
| | - Carrie Vooght
- From the Division of Hematology/Oncology, Department of Medicine, and Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA, and Molecular Imaging and Diagnostics Advanced Technology Program, Biosciences Organization, General Electric Global Research, Niskayuna, NY
| | - Kenneth M. Fish
- From the Division of Hematology/Oncology, Department of Medicine, and Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA, and Molecular Imaging and Diagnostics Advanced Technology Program, Biosciences Organization, General Electric Global Research, Niskayuna, NY
| | - Khaled A. Nasr
- From the Division of Hematology/Oncology, Department of Medicine, and Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA, and Molecular Imaging and Diagnostics Advanced Technology Program, Biosciences Organization, General Electric Global Research, Niskayuna, NY
| | - Tiberiu M. Siclovan
- From the Division of Hematology/Oncology, Department of Medicine, and Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA, and Molecular Imaging and Diagnostics Advanced Technology Program, Biosciences Organization, General Electric Global Research, Niskayuna, NY
| | - Nicole E. Barnhardt
- From the Division of Hematology/Oncology, Department of Medicine, and Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA, and Molecular Imaging and Diagnostics Advanced Technology Program, Biosciences Organization, General Electric Global Research, Niskayuna, NY
| | - Cristina A. Tan Hehir
- From the Division of Hematology/Oncology, Department of Medicine, and Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA, and Molecular Imaging and Diagnostics Advanced Technology Program, Biosciences Organization, General Electric Global Research, Niskayuna, NY
| | - John V. Frangioni
- From the Division of Hematology/Oncology, Department of Medicine, and Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA, and Molecular Imaging and Diagnostics Advanced Technology Program, Biosciences Organization, General Electric Global Research, Niskayuna, NY
| |
Collapse
|
262
|
Banke TG, Chaplan SR, Wickenden AD. Dynamic changes in the TRPA1 selectivity filter lead to progressive but reversible pore dilation. Am J Physiol Cell Physiol 2010; 298:C1457-68. [PMID: 20457836 DOI: 10.1152/ajpcell.00489.2009] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
TRPA1 is a nonselective cation channel belonging to the transient receptor potential (TRP) family that is expressed in peripheral sensory neurons and may play important roles in pain perception and inflammation. We found that agonist stimulation of TRPA1, along with other members of the TRP family (TRPV1-4 and TRPM8), can induce the appearance of a large pore permeable to large organic cations such as Yo-Pro (YP) and N-methyl-d-glucamine, in an agonist and divalent cation-dependent manner. YP uptake was not inhibited by a panel of putative gap junction/pannexin blockers, suggesting that gap junction proteins are not required in this process. Our data suggest that changes in the TRP channel selectivity filter itself result in a progressive but reversible pore dilation process, a process that is under strong regulation by external calcium ions. Our data suggest that calcium plays a novel role in setting the amount of time TRPA1 channels spend in a dilated state providing a mechanism that may limit sensory neuron activation by painful or irritating substances.
Collapse
Affiliation(s)
- T G Banke
- Johnson & Johnson PRD, LLC, Pain and Related Disorders, San Diego, CA 92121, USA.
| | | | | |
Collapse
|
263
|
Selectively targeting pain in the trigeminal system. Pain 2010; 150:29-40. [PMID: 20236764 DOI: 10.1016/j.pain.2010.02.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 12/05/2009] [Accepted: 02/09/2010] [Indexed: 12/28/2022]
Abstract
We tested whether it is possible to selectively block pain signals in the orofacial area by delivering the permanently charged lidocaine derivative QX-314 into nociceptors via TPRV1 channels. We examined the effects of co-applied QX-314 and capsaicin on nociceptive, proprioceptive, and motor function in the rat trigeminal system. QX-314 alone failed to block voltage-gated sodium channel currents (I(Na)) and action potentials (APs) in trigeminal ganglion (TG) neurons. However, co-application of QX-314 and capsaicin blocked I(Na) and APs in TRPV1-positive TG and dental nociceptive neurons, but not in TRPV1-negative TG neurons or in small neurons from TRPV1 knock-out mice. Immunohistochemistry revealed that TRPV1 is not expressed by trigeminal motor and trigeminal mesencephalic neurons. Capsaicin had no effect on rat trigeminal motor and proprioceptive mesencephalic neurons and therefore should not allow QX-314 to enter these cells. Co-application of QX-314 and capsaicin inhibited the jaw-opening reflex evoked by noxious electrical stimulation of the tooth pulp when applied to a sensory but not a motor nerve, and produced long-lasting analgesia in the orofacial area. These data show that selective block of pain signals can be achieved by co-application of QX-314 with TRPV1 agonists. This approach has potential utility in the trigeminal system for treating dental and facial pain.
Collapse
|
264
|
Abstract
Drugs inhibiting voltage-gated sodium channels have long been used as analgesics, beginning with the use of local anaesthetics for sensory blockade and then with the discovery that Nav-blocking anticonvulsants also have benefit for pain therapy. These drugs were discovered without knowledge of their molecular target, using traditional pharmacological methods, and their clinical utility is limited by relatively narrow therapeutic windows. Until recently, attempts to develop improved inhibitors using modern molecular-targeted screening approaches have met with limited success. However, in the last few years there has been renewed activity following the discovery of human Nav1.7 mutations that cause striking insensitivity to pain. Together with recent advances in the technologies required to prosecute ion channels as drug targets, this has led to significant progress being made. This article reviews these developments and summarises current findings with these emerging new Nav inhibitors, highlighting some of the unanswered questions and the challenges that remain before they can be developed for clinical use.
Collapse
Affiliation(s)
- Jeffrey J Clare
- Cell-Based Assays Group, Millipore Corporation, St Charles, Missouri 63304, USA.
| |
Collapse
|
265
|
Van Trump WJ, Coombs S, Duncan K, McHenry MJ. Gentamicin is ototoxic to all hair cells in the fish lateral line system. Hear Res 2010; 261:42-50. [DOI: 10.1016/j.heares.2010.01.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 12/21/2009] [Accepted: 01/02/2010] [Indexed: 11/27/2022]
|
266
|
Abstract
Although a unifying characteristic common to all transient receptor potential (TRP) channel functions remains elusive, they could be described as tetramers formed by subunits with six transmembrane domains and containing cation-selective pores, which in several cases show high calcium permeability. TRP channels constitute a large superfamily of ion channels, and can be grouped into seven subfamilies based on their amino acid sequence homology: the canonical or classic TRPs, the vanilloid receptor TRPs, the melastatin or long TRPs, ankyrin (whose only member is the transmembrane protein 1 [TRPA1]), TRPN after the nonmechanoreceptor potential C (nonpC), and the more distant cousins, the polycystins and mucolipins. Because of their role as cellular sensors, polymodal activation and gating properties, many TRP channels are activated by a variety of different stimuli and function as signal integrators. Thus, how TRP channels function and how function relates to given structural determinants contained in the channel-forming protein has attracted the attention of biophysicists as well as molecular and cell biologists. The main purpose of this review is to summarize our present knowledge on the structure of channels of the TRP ion channel family. In the absence of crystal structure information for a complete TRP channel, we will describe important protein domains present in TRP channels, structure-function mutagenesis studies, the few crystal structures available for some TRP channel modules, and the recent determination of some TRP channel structures using electron microscopy.
Collapse
|
267
|
Shang J, Cafaro J, Nehmer R, Stone J. Supporting cell division is not required for regeneration of auditory hair cells after ototoxic injury in vitro. J Assoc Res Otolaryngol 2010; 11:203-22. [PMID: 20165896 DOI: 10.1007/s10162-009-0206-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Accepted: 12/22/2009] [Indexed: 01/16/2023] Open
Abstract
In chickens, nonsensory supporting cells divide and regenerate auditory hair cells after injury. Anatomical evidence suggests that supporting cells can also transdifferentiate into hair cells without dividing. In this study, we characterized an organ culture model to study auditory hair cell regeneration, and we used these cultures to test if direct transdifferentiation alone can lead to significant hair cell regeneration. Control cultures (organs from posthatch chickens maintained without streptomycin) showed complete hair cell loss in the proximal (high-frequency) region by 5 days. In contrast, a 2-day treatment with streptomycin induced loss of hair cells from all regions by 3 days. Hair cell regeneration proceeded in culture, with the time course of supporting cell division and hair cell differentiation generally resembling in vivo patterns. The degree of supporting cell division depended upon the presence of streptomycin, the epithelial region, the type of culture media, and serum concentration. On average, 87% of the regenerated hair cells lacked the cell division marker BrdU despite its continuous presence, suggesting that most hair cells were regenerated via direct transdifferentiation. Addition of the DNA polymerase inhibitor aphidicolin to culture media prevented supporting cell division, but numerous hair cells were regenerated nonetheless. These hair cells showed signs of functional maturation, including stereociliary bundles and rapid uptake of FM1-43. These observations demonstrate that direct transdifferentiation is a significant mechanism of hair cell regeneration in the chicken auditory after streptomycin damage in vitro.
Collapse
Affiliation(s)
- Jialin Shang
- Department of Otolaryngology/Head and Neck Surgery, The Virginia Merrill Bloedel Hearing Research Center, University of Washington School of Medicine, Seattle, WA 98195-7923, USA
| | | | | | | |
Collapse
|
268
|
McDermott BM, Asai Y, Baucom JM, Jani SD, Castellanos Y, Gomez G, McClintock JM, Starr CJ, Hudspeth AJ. Transgenic labeling of hair cells in the zebrafish acousticolateralis system. Gene Expr Patterns 2010; 10:113-8. [PMID: 20085825 DOI: 10.1016/j.gep.2010.01.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 01/07/2010] [Accepted: 01/09/2010] [Indexed: 02/01/2023]
Abstract
The zebrafish provides a useful experimental system for investigations of aural development. To permit the controlled expression of transgenes in developing hair cells, we isolated the genomic control regions of the parvalbumin 3a (pvalb3a) and parvalbumin 3b (pvalb3b) genes. Deletion analysis and somatic-cell transgenesis restricted the cis-acting control regions for hair cells to as little as 484base pairs for pvalb3a and 650base pairs for pvalb3b. Using both meganuclease-mediated and standard methods, we produced transgenic animals that transmit transgenes through their germ lines. These fish express GFP in hair cells in the inner ear and lateral line. Two stable transgenic lines express GFP prior to hair-bundle formation, so the associated promoter constructs are suitable for manipulating gene expression during bundle development. We additionally identified a transgenic line that offers variable labeling of supporting cells.
Collapse
Affiliation(s)
- Brian M McDermott
- Laboratory of Sensory Neuroscience and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue New York, NY 10065, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
269
|
FM dyes enter via a store-operated calcium channel and modify calcium signaling of cultured astrocytes. Proc Natl Acad Sci U S A 2009; 106:21960-5. [PMID: 20007370 DOI: 10.1073/pnas.0909109106] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The amphiphilic fluorescent styryl pyridinium dyes FM1-43 and FM4-64 are used to probe activity-dependent synaptic vesicle cycling in neurons. Cultured astrocytes can internalize FM1-43 and FM4-64 inside vesicles but their uptake is insensitive to the elevation of cytosolic calcium (Ca(2+)) concentration and the underlying mechanism remains unclear. Here we used total internal reflection fluorescence microscopy and pharmacological tools to study the mechanisms of FM4-64 uptake into cultured astrocytes from mouse neocortex. Our data show that: (i) endocytosis is not a major route for FM4-64 uptake into astrocytes; (ii) FM4-64 enters astrocytes through an aqueous pore and strongly affects Ca(2+) homeostasis; (iii) partitioning of FM4-64 into the outer leaflet of the plasma membrane results in a facilitation of store-operated Ca(2+) entry (SOCE) channel gating; (iv) FM4-64 permeates and competes with Ca(2+) for entry through a SOCE channel; (v) intracellular FM4-64 mobilizes Ca(2+) from the endoplasmic reticulum stores, conveying a positive feedback to activate SOCE and to sustain dye uptake into astrocytes. Our study demonstrates that FM dyes are not markers of cycling vesicles in astrocytes and calls for a careful interpretation of FM fluorescence.
Collapse
|
270
|
Pistocchi A, Feijóo CG, Cabrera P, Villablanca EJ, Allende ML, Cotelli F. The zebrafish prospero homolog prox1 is required for mechanosensory hair cell differentiation and functionality in the lateral line. BMC DEVELOPMENTAL BIOLOGY 2009; 9:58. [PMID: 19948062 PMCID: PMC2794270 DOI: 10.1186/1471-213x-9-58] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 11/30/2009] [Indexed: 11/20/2022]
Abstract
Background The lateral line system in zebrafish is composed of a series of organs called neuromasts, which are distributed over the body surface. Neuromasts contain clusters of hair cells, surrounded by accessory cells. Results In this report we describe zebrafish prox1 mRNA expression in the migrating primordium and in the neuromasts of the posterior lateral line. Furthermore, using an antibody against Prox1 we characterize expression of the protein in different cell types within neuromasts, and we show distribution among the supporting cells and hair cells. Conclusion Functional analysis using antisense morpholinos indicates that prox1 activity is crucial for the hair cells to differentiate properly and acquire functionality, while having no role in development of other cell types in neuromasts.
Collapse
Affiliation(s)
- Anna Pistocchi
- Department of Biology, Università degli Studi di Milano, Milan, Italy.
| | | | | | | | | | | |
Collapse
|
271
|
The transmembrane inner ear (Tmie) protein is essential for normal hearing and balance in the zebrafish. Proc Natl Acad Sci U S A 2009; 106:21347-52. [PMID: 19934034 DOI: 10.1073/pnas.0911632106] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Little is known about the proteins that mediate mechanoelectrical transduction, the process by which acoustic and accelerational stimuli are transformed by hair cells of the inner ear into electrical signals. In our search for molecules involved in mechanotransduction, we discovered a line of deaf and uncoordinated zebrafish with defective hair-cell function. The hair cells of mutant larvae fail to incorporate fluorophores that normally traverse the transduction channels and their ears lack microphonic potentials in response to vibratory stimuli. Hair cells in the posterior lateral lines of mutants contain numerous lysosomes and have short, disordered hair bundles. Their stereocilia lack two components of the transduction apparatus, tip links and insertional plaques. Positional cloning revealed an early frameshift mutation in tmie, the zebrafish ortholog of the mammalian gene transmembrane inner ear. The mutant line therefore affords us an opportunity to investigate the role of the corresponding protein in mechanoelectrical transduction.
Collapse
|
272
|
Simon A, Shenton F, Hunter I, Banks RW, Bewick GS. Amiloride-sensitive channels are a major contributor to mechanotransduction in mammalian muscle spindles. J Physiol 2009; 588:171-85. [PMID: 19917568 DOI: 10.1113/jphysiol.2009.182683] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
We investigated whether channels of the epithelial sodium/amiloride-sensitive degenerin (ENaC/DEG) family are a major contributor to mechanosensory transduction in primary mechanosensory afferents, using adult rat muscle spindles as a model system. Stretch-evoked afferent discharge was reduced in a dose-dependent manner by amiloride and three analogues - benzamil, 5-(N-ethyl-N-isopropyl) amiloride (EIPA) and hexamethyleneamiloride (HMA), reaching > or = 85% inhibition at 1 mm. Moreover, firing was slightly but significantly increased by ENaC delta subunit agonists (icilin and capsazepine). HMA's profile of effects was distinct from that of the other drugs. Amiloride, benzamil and EIPA significantly decreased firing (P < 0.01 each) at 1 microm, while 10 microm HMA was required for highly significant inhibition (P < 0.0001). Conversely, amiloride, benzamil and EIPA rarely blocked firing entirely at 1 mm, whereas 1 mm HMA blocked 12 of 16 preparations. This pharmacology suggests low-affinity ENaCs are the important spindle mechanotransducer. In agreement with this, immunoreactivity to ENaC alpha, beta and gamma subunits was detected both by Western blot and immunocytochemistry. Immunofluorescence intensity ratios for ENaC alpha, beta or gamma relative to the vesicle marker synaptophysin in the same spindle all significantly exceeded controls (P < 0.001). Ratios for the related brain sodium channel ASIC2 (BNaC1alpha) were also highly significantly greater (P < 0.005). Analysis of confocal images showed strong colocalisation within the terminal of ENaC/ASIC2 subunits and synaptophysin. This study implicates ENaC and ASIC2 in mammalian mechanotransduction. Moreover, within the terminals they colocalise with synaptophysin, a marker for the synaptic-like vesicles which regulate afferent excitability in these mechanosensitive endings.
Collapse
Affiliation(s)
- Anna Simon
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| | | | | | | | | |
Collapse
|
273
|
Abstract
The lung, like many other organs, is innervated by a variety of sensory nerves and by nerves of the parasympathetic and sympathetic nervous systems that regulate the function of cells within the respiratory tract. Activation of sensory nerves by both mechanical and chemical stimuli elicits a number of defensive reflexes, including cough, altered breathing pattern, and altered autonomic drive, which are important for normal lung homeostasis. However, diseases that afflict the lung are associated with altered reflexes, resulting in a variety of symptoms, including increased cough, dyspnea, airways obstruction, and bronchial hyperresponsiveness. This review summarizes the current knowledge concerning the physiological role of different sensory nerve subtypes that innervate the lung, the factors which lead to their activation, and pharmacological approaches that have been used to interrogate the function of these nerves. This information may potentially facilitate the identification of novel drug targets for the treatment of respiratory disorders such as cough, asthma, and chronic obstructive pulmonary disease.
Collapse
|
274
|
Fettiplace R. Defining features of the hair cell mechanoelectrical transducer channel. Pflugers Arch 2009; 458:1115-23. [PMID: 19475417 PMCID: PMC2745616 DOI: 10.1007/s00424-009-0683-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 05/08/2009] [Accepted: 05/12/2009] [Indexed: 12/22/2022]
Abstract
This review summarizes current knowledge of the hair cell mechanotransducer channel, the ion channel responsible for detecting mechanical stimuli in the inner ear and one of the few channels whose molecular structure is still unknown. Several candidate proteins have been proposed, especially members of the transient receptor potential (TRP) channel family, but all have so far failed in one test or another. Furthermore, none has biophysical properties exactly matching the native channel. The defining features of the native mechanotransducer channel are documented, including ionic permeability, channel structure inferred from blocking agents, diversity in channel conductance, and regulation by Ca(2+), which are compared with a potential candidate, TRP channels of the polycystin family. The strengths and weaknesses of a TRP channel contender are discussed.
Collapse
Affiliation(s)
- Robert Fettiplace
- Department of Physiology, University of Wisconsin Medical School, 185 Medical Sciences Building, 1300 University Avenue, Madison, WI 53706, USA.
| |
Collapse
|
275
|
Abstract
In the retina, adenosine is released in the dark and has been shown to inhibit Ca2+ influx through voltage-gated Ca2+ channels in cones. Therefore, we tested whether adenosine can inhibit exocytosis from isolated cone photoreceptors. Simultaneous measurements of membrane exocytosis and Ca2+ were made from cones using the activity-dependent dye, Synaptored-C2, and the Ca2+ indicator dye, Fluo-4. Adenosine suppressed exocytosis in cones, indicating that transmitter release is also reduced from cone terminals, and further supports an inhibitory mechanism for modulating transmitter release onto second-order neurons. Furthermore, this raises the possibility that adenosine might be neuroprotective for photoreceptors and second-order neurons by suppressing Ca2+ levels in cones and reducing exocytosis of L-glutamate, respectively.
Collapse
Affiliation(s)
- Salvatore L Stella
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California 90095-1763, USA.
| | | | | |
Collapse
|
276
|
Maricich SM, Wellnitz SA, Nelson AM, Lesniak DR, Gerling GJ, Lumpkin EA, Zoghbi HY. Merkel cells are essential for light-touch responses. Science 2009; 324:1580-2. [PMID: 19541997 PMCID: PMC2743005 DOI: 10.1126/science.1172890] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The peripheral nervous system detects different somatosensory stimuli, including pain, temperature, and touch. Merkel cell-neurite complexes are touch receptors composed of sensory afferents and Merkel cells. The role that Merkel cells play in light-touch responses has been the center of controversy for over 100 years. We used Cre-loxP technology to conditionally delete the transcription factor Atoh1 from the body skin and foot pads of mice. Merkel cells are absent from these areas in Atoh1(CKO) animals. Ex vivo skin/nerve preparations from Atoh1(CKO) animals demonstrate complete loss of the characteristic neurophysiologic responses normally mediated by Merkel cell-neurite complexes. Merkel cells are, therefore, required for the proper encoding of Merkel receptor responses, suggesting that these cells form an indispensible part of the somatosensory system.
Collapse
Affiliation(s)
| | - Scott A. Wellnitz
- Department of Neurosciences, Baylor College of Medicine, Houston, Texas
| | - Aislyn M. Nelson
- Department of Neurosciences, Baylor College of Medicine, Houston, Texas
| | - Daine R. Lesniak
- Department of Systems and Information Engineering, University of Virginia, Charlottesville, Virginia
| | - Gregory J. Gerling
- Department of Systems and Information Engineering, University of Virginia, Charlottesville, Virginia
| | - Ellen A. Lumpkin
- Department of Neurosciences, Baylor College of Medicine, Houston, Texas
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine
- Department of Molecular and Human Genetics, Baylor College of Medicine
| | - Huda Y. Zoghbi
- Department of Neurosciences, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Human Genetics, Baylor College of Medicine
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas
- Howard Hughes Medical Institute
| |
Collapse
|
277
|
Vriens J, Appendino G, Nilius B. Pharmacology of vanilloid transient receptor potential cation channels. Mol Pharmacol 2009; 75:1262-79. [PMID: 19297520 DOI: 10.1124/mol.109.055624] [Citation(s) in RCA: 313] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
Depending on their primary structure, the 28 mammalian transient receptor potential (TRP) cation channels identified so far can be sorted into 6 subfamilies: TRPC ("Canonical"), TRPV ("Vanilloid"), TRPM ("Melastatin"), TRPP ("Polycystin"), TRPML ("Mucolipin"), and TRPA ("Ankyrin"). The TRPV subfamily (vanilloid receptors) comprises channels critically involved in nociception and thermosensing (TRPV1, TRPV2, TRPV3, and TRPV4), whereas TRPV5 and TRPV6 are involved in renal Ca(2+) absorption/reabsorption. Apart from TRPV1, the pharmacology of these channels is still insufficiently known. Furthermore, only few small-molecule ligands for non-TRPV1 vanilloid receptors have been identified, and little is known of their endogenous ligands, resulting in a substantial "orphan" state for these channels. In this review, we summarize the pharmacological properties of members of the TRPV subfamily, highlighting the critical issues and challenges facing their "deorphanization" and clinical exploitation.
Collapse
Affiliation(s)
- Joris Vriens
- Department of Molecular Cell Biology, Katholieke Universiteit Leuven, Belgium
| | | | | |
Collapse
|
278
|
Sumiyama K, Tajiri H, Kato F, Imura T, Ono K, Ikeda K, Imazu H, Gostout CJ. Pilot study for in vivo cellular imaging of the muscularis propria and ex vivo molecular imaging of myenteric neurons (with video). Gastrointest Endosc 2009; 69:1129-34. [PMID: 19215917 DOI: 10.1016/j.gie.2008.08.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2008] [Accepted: 08/02/2008] [Indexed: 02/08/2023]
Abstract
BACKGROUND It is challenging to optimally sample the muscularis propria endoscopically for the diagnosis of muscle layer diseases, especially for motility disorders resulting from neuroenteric dysfunction. OBJECTIVES Ultramagnification in vivo imaging of the muscularis mucosa and ex vivo identification of myenteric neuronal elements by confocal microscopy. DESIGN Ex vivo and in vivo porcine animal studies. SETTING Short-term study in an animal laboratory. INTERVENTIONS The muscularis propria in the stomach and esophagus was accessed by resecting the mucosal layer with endoscopic submucosal dissection or cap EMR techniques or by creating a submucosal space by the submucosal endoscopy with mucosal flap technique. The muscularis propria was stained with Nissl stains and 2 types of neuronal molecular stains. The muscular layer was imaged with the endocytoscope in vivo. The muscularis stained with molecular-based stains was also evaluated with a confocal microscope. RESULTS Cellular microstructures resembling spindle-shaped smooth muscle cells were visualized by endocytoscopy in vivo. Confocal endoscopic microscopy demonstrated that in vivo topical application of neuronal molecular stains successfully stained the muscularis and specifically highlighted neuron-like cells. LIMITATION Animal model pilot study. CONCLUSIONS In vivo endoscopic histologic evaluation of the muscularis propria is technically feasible and easy. Minimally invasive advanced endoscopic imaging may be useful for the diagnosis and study of neuroenteric disorders at the level of the muscularis propria, avoiding surgical full-thickness tissue sampling.
Collapse
Affiliation(s)
- Kazuki Sumiyama
- Department of Endoscopy, Jikei University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
279
|
Dib-Hajj SD, Binshtok AM, Cummins TR, Jarvis MF, Samad T, Zimmermann K. Voltage-gated sodium channels in pain states: Role in pathophysiology and targets for treatment. ACTA ACUST UNITED AC 2009; 60:65-83. [DOI: 10.1016/j.brainresrev.2008.12.005] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2008] [Indexed: 12/19/2022]
|
280
|
Lelli A, Asai Y, Forge A, Holt JR, Géléoc GSG. Tonotopic gradient in the developmental acquisition of sensory transduction in outer hair cells of the mouse cochlea. J Neurophysiol 2009; 101:2961-73. [PMID: 19339464 DOI: 10.1152/jn.00136.2009] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inner ear hair cells are exquisite mechanosensors that transduce nanometer scale deflections of their sensory hair bundles into electrical signals. Several essential elements must be precisely assembled during development to confer the unique structure and function of the mechanotransduction apparatus. Here we investigated the functional development of the transduction complex in outer hair cells along the length of mouse cochlea acutely excised between embryonic day 17 (E17) and postnatal day 8 (P8). We charted development of the stereociliary bundle using scanning electron microscopy; FM1-43 uptake, which permeates hair cell transduction channels, mechanotransduction currents evoked by rapid hair bundle deflections, and mRNA expression of possible components of the transduction complex. We demonstrated that uptake of FM1-43 first occurred in the basal portion of the cochlea at P0 and progressed toward the apex over the subsequent week. Electrophysiological recordings obtained from 234 outer hair cells between E17 and P8 from four cochlear regions revealed a correlation between the pattern of FM1-43 uptake and the acquisition of mechanotransduction. We found a spatiotemporal gradient in the properties of transduction including onset, amplitude, operating range, time course, and extent of adaptation. We used quantitative RT-PCR to examine relative mRNA expression of several hair cell myosins and candidate tip-link molecules. We found spatiotemporal expression patterns for mRNA that encodes cadherin 23, protocadherin 15, myosins 3a, 7a, 15a, and PMCA2 that preceded the acquisition of transduction. The spatiotemporal expression patterns of myosin 1c and PMCA2 mRNA were correlated with developmental changes in several properties of mechanotransduction.
Collapse
Affiliation(s)
- Andrea Lelli
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, Virginia 22908-1392, USA
| | | | | | | | | |
Collapse
|
281
|
Wang Q, Steyger PS. Trafficking of systemic fluorescent gentamicin into the cochlea and hair cells. J Assoc Res Otolaryngol 2009; 10:205-19. [PMID: 19255807 DOI: 10.1007/s10162-009-0160-4] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Accepted: 02/05/2009] [Indexed: 01/16/2023] Open
Abstract
Aminoglycosides enter inner ear hair cells across their apical membranes via endocytosis, or through the mechanoelectrical transduction channels in vitro, suggesting that these drugs enter cochlear hair cells from endolymph to exert their cytotoxic effect. We used zebrafish to determine if fluorescently tagged gentamicin (GTTR) also enters hair cells via apically located calcium-sensitive cation channels and the cytotoxicity of GTTR to hair cells. We then examined the serum kinetics of GTTR following systemic injection in mice and which murine cochlear sites preferentially loaded with systemically administered GTTR over time by confocal microscopy. GTTR is taken up by, and is toxic to, wild-type zebrafish neuromast hair cells. Neuromast hair cell uptake of GTTR is attenuated by high concentrations of extracellular calcium or unconjugated gentamicin and is blocked in mariner mutant zebrafish, suggestive of entry via the apical mechanotransduction channel. In murine cochleae, GTTR is preferentially taken up by the stria vascularis compared to the spiral ligament, peaking 3 h after intra-peritoneal injection, following GTTR kinetics in serum. Strial marginal cells display greater intensity of GTTR fluorescence compared to intermediate and basal cells. Immunofluorescent detection of gentamicin in the cochlea also revealed widespread cellular labeling throughout the cochlea, with preferential labeling of marginal cells. Only GTTR fluorescence displayed increasing cytoplasmic intensity with increasing concentration, unlike the cytoplasmic intensity of fluorescence from immunolabeled gentamicin. These data suggest that systemically administered aminoglycosides are trafficked from strial capillaries into marginal cells and clear into endolymph. If so, this will facilitate electrophoretically driven aminoglycoside entry into hair cells from endolymph. Trans-strial trafficking of aminoglycosides from strial capillaries to marginal cells will be dependent on as-yet-unidentified mechanisms that convey these drugs across the intra-strial electrical barrier and into marginal cells.
Collapse
Affiliation(s)
- Qi Wang
- Oregon Hearing Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | | |
Collapse
|
282
|
Chen J, Kim D, Bianchi BR, Cavanaugh EJ, Faltynek CR, Kym PR, Reilly RM. Pore dilation occurs in TRPA1 but not in TRPM8 channels. Mol Pain 2009; 5:3. [PMID: 19159452 PMCID: PMC2633278 DOI: 10.1186/1744-8069-5-3] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Accepted: 01/21/2009] [Indexed: 11/30/2022] Open
Abstract
Abundantly expressed in pain-sensing neurons, TRPV1, TRPA1 and TRPM8 are major cellular sensors of thermal, chemical and mechanical stimuli. The function of these ion channels has been attributed to their selective permeation of small cations (e.g., Ca2+, Na+ and K+), and the ion selectivity has been assumed to be an invariant fingerprint to a given channel. However, for TRPV1, the notion of invariant ion selectivity has been revised recently. When activated, TRPV1 undergoes time and agonist-dependent pore dilation, allowing permeation of large organic cations such as Yo-Pro and NMDG+. The pore dilation is of physiological importance, and has been exploited to specifically silence TRPV1-positive sensory neurons. It is unknown whether TRPA1 and TRPM8 undergo pore dilation. Here we show that TRPA1 activation by reactive or non-reactive agonists induces Yo-Pro uptake, which can be blocked by TRPA1 antagonists. In outside-out patch recordings using NMDG+ as the sole external cation and Na+ as the internal cation, TRPA1 activation results in dynamic changes in permeability to NMDG+. In contrast, TRPM8 activation does not produce either Yo-Pro uptake or significant change in ion selectivity. Hence, pore dilation occurs in TRPA1, but not in TRPM8 channels.
Collapse
Affiliation(s)
- Jun Chen
- Neuroscience, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, IL 60064-6125, USA.
| | | | | | | | | | | | | |
Collapse
|
283
|
Døving KB, Sandvig K, Kasumyan A. Ligand-specific induction of endocytosis in taste receptor cells. J Exp Biol 2009; 212:42-9. [DOI: 10.1242/jeb.025700] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYWe demonstrate a ligand-specific induction of endocytosis in cells of juvenile brown trout taste buds. The process is fast, massive and selective,as only a few cells in each taste buds are stained by exposure of the oral cavity to the taste stimulant l-cysteine together with a dye at 20°C. Low temperature (+2°C) and disruption of microtubules with nocodazole caused a substantial reduction in the number of taste cells stained, indicating endocytic uptake of dye and transport towards the cell soma in vesicles. As endocytosis is evoked by the presence of ligands, it is most likely that the stained cells are the so-called receptor cells, which have taste receptors and the molecular machinery for downstream processing. The number of stained taste cells and taste buds containing stained taste cells increased with the concentration of l-cysteine. Control experiments with different dyes revealed great variability in the ability to induce staining on their own. In particular, Texas Red dextran was efficient and stained many cells within each taste bud. Behavioural experiments demonstrated that Texas Red dextran is a deterrent taste substance for brown trout. In fish first exposed to the stimulant l-cysteine plus a dye and subsequently to a deterrent, either Texas Red, or glycine, the majority of stained cells were found in separate taste receptor cells, indicating that the majority of taste receptors for stimulants and deterrents are expressed in separate taste buds. These results also strengthen the assumption that the stained cells take part in the initiation of taste processes that are related to perception. The functional implication of the induced endocytosis is discussed.
Collapse
Affiliation(s)
- Kjell B. Døving
- Physiology Program, Department of Molecular Bioscience, PO Box 1041,University of Oslo, 0316 Oslo, Norway
| | - Kirsten Sandvig
- Centre for Cancer Biomedicine, University of Oslo and Department of Biochemistry, Institute for Cancer Research, Norwegian Radium Hospital,Rikshospitalet University Hospital, Montebello, 0310 Oslo, Norway
| | - Alexander Kasumyan
- Department of Ichthyology, Faculty of Biology, Moscow State University,119991, Moscow, Russia
| |
Collapse
|
284
|
Patapoutian A, Tate S, Woolf CJ. Transient receptor potential channels: targeting pain at the source. Nat Rev Drug Discov 2009; 8:55-68. [PMID: 19116627 PMCID: PMC2755576 DOI: 10.1038/nrd2757] [Citation(s) in RCA: 486] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pain results from the complex processing of neural signals at different levels of the central nervous system, with each signal potentially offering multiple opportunities for pharmacological intervention. A logical strategy for developing novel analgesics is to target the beginning of the pain pathway, and aim potential treatments directly at the nociceptors--the high-threshold primary sensory neurons that detect noxious stimuli. The largest group of receptors that function as noxious stimuli detectors in nociceptors is the transient receptor potential (TRP) channel family. This Review highlights evidence supporting particular TRP channels as targets for analgesics, indicates the likely efficacy profiles of TRP-channel-acting drugs, and discusses the development pathways needed to test candidates as analgesics in humans.
Collapse
Affiliation(s)
- Ardem Patapoutian
- The Scripps Research Institute, 10550 North Torrey Pines Road, ICND210F, La Jolla, California 92037, USA
| | | | | |
Collapse
|
285
|
Wei D, Levic S, Nie L, Gao WQ, Petit C, Jones EG, Yamoah EN. Cells of adult brain germinal zone have properties akin to hair cells and can be used to replace inner ear sensory cells after damage. Proc Natl Acad Sci U S A 2008; 105:21000-5. [PMID: 19064919 PMCID: PMC2634930 DOI: 10.1073/pnas.0808044105] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Indexed: 01/27/2023] Open
Abstract
Auditory hair cell defect is a major cause of hearing impairment, often leading to spiral ganglia neuron (SGN) degeneration. The cell loss that follows is irreversible in mammals, because inner ear hair cells (HCs) have a limited capacity to regenerate. Here, we report that in the adult brain of both rodents and humans, the ependymal layer of the lateral ventricle contains cells with proliferative potential, which share morphological and functional characteristics with HCs. In addition, putative neural stem cells (NSCs) from the subventricular zone of the lateral ventricle can differentiate into functional SGNs. Also important, the NSCs can incorporate into the sensory epithelia, demonstrating their therapeutic potential. We assert that NSCs and edendymal cells can undergo an epigenetic functional switch to assume functional characteristics of HCs and SGNs. This study suggests that the functional plasticity of renewable cells and conditions that promote functional reprogramming can be used for cell therapy in the auditory setting.
Collapse
Affiliation(s)
- Dongguang Wei
- Department of Anesthesiology and Pain Medicine, Center for Neuroscience, Program in Communication and Sensory Science, University of California, 1544 Newton Court, Davis, CA 95618
| | - Snezana Levic
- Department of Anesthesiology and Pain Medicine, Center for Neuroscience, Program in Communication and Sensory Science, University of California, 1544 Newton Court, Davis, CA 95618
| | - Liping Nie
- Department of Anesthesiology and Pain Medicine, Center for Neuroscience, Program in Communication and Sensory Science, University of California, 1544 Newton Court, Davis, CA 95618
| | - Wei-qiang Gao
- Department of Molecular Biology, Genentech, Inc., South San Francisco, CA 94080; and
| | - Christine Petit
- Unité de Génétique et Physiologie de l'Audition, Unité Mixte de Recherche S587, Institut National de la Santé et de la Recherche Médicale-Université Paris VI, Collège de France, Institut Pasteur, 25 Rue du Dr Roux, 75724 Paris, Cedex 15, France
| | - Edward G. Jones
- Department of Anesthesiology and Pain Medicine, Center for Neuroscience, Program in Communication and Sensory Science, University of California, 1544 Newton Court, Davis, CA 95618
| | - Ebenezer N. Yamoah
- Department of Anesthesiology and Pain Medicine, Center for Neuroscience, Program in Communication and Sensory Science, University of California, 1544 Newton Court, Davis, CA 95618
| |
Collapse
|
286
|
Acute copper exposure induces oxidative stress and cell death in lateral line hair cells of zebrafish larvae. Brain Res 2008; 1244:1-12. [DOI: 10.1016/j.brainres.2008.09.050] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 08/27/2008] [Accepted: 09/11/2008] [Indexed: 01/11/2023]
|
287
|
van Aken AFJ, Atiba-Davies M, Marcotti W, Goodyear RJ, Bryant JE, Richardson GP, Noben-Trauth K, Kros CJ. TRPML3 mutations cause impaired mechano-electrical transduction and depolarization by an inward-rectifier cation current in auditory hair cells of varitint-waddler mice. J Physiol 2008; 586:5403-18. [PMID: 18801844 PMCID: PMC2655368 DOI: 10.1113/jphysiol.2008.156992] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Accepted: 09/16/2008] [Indexed: 11/08/2022] Open
Abstract
TRPML3 (mucolipin-3) belongs to one of the transient-receptor-potential (TRP) ion channel families. Mutations in the Trpml3 gene cause disorganization of the stereociliary hair bundle, structural aberrations in outer and inner hair cells and stria vascularis defects, leading to deafness in the varitint-waddler (Va) mouse. Here we refined the stereociliary localization of TRPML3 and investigated cochlear hair cell function in varitint-waddler (Va(J)) mice carrying the TRPML3 mutations. Using a TRPML3-specific antibody we detected a approximately 68 kDa protein with near-equal expression levels in cochlea and vestibule of wild-type and Va(J) mutants. At postnatal days 3 and 5, we observed abundant localization of TRPML3 at the base of stereocilia near the position of the ankle links. This stereociliary localization domain was absent in Va(J) heterozygotes and homozygotes. Electrophysiological recordings revealed reduced mechano-electrical transducer currents in hair cells from Va(J)/+ and Va(J)/Va(J) mice. Furthermore, FM1-43 uptake and [(3)H]gentamicin accumulation were decreased in hair cells in cultured organs of Corti from Va(J)/+ and Va(J)/Va(J) mice. We propose that TRPML3 plays a critical role at the ankle-link region during hair-bundle growth and that an adverse effect of mutant TRPML3 on bundle development and mechano-electrical transduction is the main cause of hearing loss in Va(J)/+ mutant mice. Outer hair cells of Va(J)/Va(J) mice additionally had depolarized resting potentials due to an inwardly rectifying leak conductance formed by the mutant channels, leading over time to hair-cell degeneration and contributing to their deafness. Our findings argue against TRPML3 being a component of the hair-cell transducer channel.
Collapse
|
288
|
Karasawa T, Wang Q, Fu Y, Cohen DM, Steyger PS. TRPV4 enhances the cellular uptake of aminoglycoside antibiotics. J Cell Sci 2008; 121:2871-9. [PMID: 18682499 PMCID: PMC2736053 DOI: 10.1242/jcs.023705] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The cochlea and kidney are susceptible to aminoglycoside-induced toxicity. The non-selective cation channel TRPV4 is expressed in kidney distal tubule cells, and hair cells and the stria vascularis in the inner ear. To determine whether TRPV4 is involved in aminoglycoside trafficking, we generated a murine proximal-tubule cell line (KPT2) and a distal-tubule cell line (KDT3). TRPV4 expression was confirmed in KDT3 cells but not in KPT2 cells. Removal of extracellular Ca(2+) significantly enhanced gentamicin-Texas-Red (GTTR) uptake by KDT3, indicative of permeation through non-selective cation channels. To determine whether TRPV4 is permeable to GTTR, stable cell lines were generated that express TRPV4 in KPT2 (KPT2-TRPV4). KPT2-TRPV4 cells took up more GTTR than control cell lines (KPT2-pBabe) in the absence of extracellular Ca(2+). TRPV4-dependent GTTR uptake was abolished by a point mutation within the crucial pore region of the channel, suggesting that GTTR permeates the TRPV4 channel. In an endolymph-like extracellular environment, clearance of GTTR was attenuated from KPT2-TRPV4 cells in a TRPV4-dependent fashion. We propose that TRPV4 has a role in aminoglycoside uptake and retention in the cochlea.
Collapse
Affiliation(s)
- Takatoshi Karasawa
- Oregon Hearing Research Center, Oregon Health and Science University, 3181 Sam Jackson Park Road, Portland, OR 97239, USA
| | | | | | | | | |
Collapse
|
289
|
Patch-clamp coordinated spectroscopy shows P2X2 receptor permeability dynamics require cytosolic domain rearrangements but not Panx-1 channels. Proc Natl Acad Sci U S A 2008; 105:12063-8. [PMID: 18689682 DOI: 10.1073/pnas.0803008105] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
ATP-gated P2X receptors display ion permeability increases within seconds of receptor activation as the channels enter the I(2) state, which is permeable to organic cations and dye molecules. The mechanisms underlying this important behavior are not completely understood. In one model, the I(2) state is thought to be due to opening of Pannexin-1 (Panx-1) channels, and, in the second, it is thought to be an intrinsic P2X property. We tested both models by measuring ion and dye permeability and used a patch-clamp coordinated spectroscopy approach to measure conformational changes. Our data show that Panx-1 channels make no detectable contribution to the P2X(2) receptor I(2) state. However, P2X(2) receptors display permeability dynamics, which are correlated with conformational changes in the cytosolic domain remote from the selectivity filter itself. Finally, the data illustrate the utility of a new approach, using tetracysteine tags and biarsenical fluorophores to measure site-specific conformational changes in membrane proteins.
Collapse
|
290
|
|
291
|
Shi X, Han W, Yamamoto H, Omelchenko I, Nuttall A. Nitric oxide and mitochondrial status in noise-induced hearing loss. Free Radic Res 2008; 41:1313-25. [PMID: 17963121 DOI: 10.1080/10715760701687117] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The study investigated the distribution of nitric oxide (NO) within isolated outer hair cells (OHCs) from the cochlea, its relationship to mitochondria and its modulation of mitochondrial function. Using two fluorescent dyes--4,5-diamino-fluorescein diacetate (DAF-2DA), which detects NO, and tetramethyl rhodamine methyl ester (TMRM+), a mitochondrial membrane potential dye--it was found that a relatively greater amount of the DAF fluorescence in OHCs co-localized with mitochondria in comparison to DAF fluorescence in the cytosole. This study also observed reduced mitochondrial membrane potential of OHCs and increased DAF fluorescence following exposure of the cells to noise (120 dB SPL for 4 h) and to an exogenous NO donor, NOC-7 (>350 mm). Antibody label for nitrotyrosine was also increased, indicating NO-related formation of peroxynitrite in both mitochondria and the cytosol. The results suggest that NO may play an important physiological role in regulating OHC energy status and act as a potential agent in OHC pathology.
Collapse
Affiliation(s)
- Xiaorui Shi
- Oregon Hearing Research Center (NRC04), Portland, OR 97239-3098, USA
| | | | | | | | | |
Collapse
|
292
|
Abstract
Merkel cells are rare epidermal cells whose function in the skin is still debated. These cells localize to highly touch-sensitive areas of vertebrate epithelia, including palatine ridges, touch domes and finger tips. In most cases, Merkel cells complex with somatosensory afferents to form slowly adapting touch receptors; it is unclear, however, whether mechanosensory transduction occurs in the Merkel cell, the somatosensory afferent or both. Classic anatomical results suggests that Merkel cells are sensory cells that transduce mechanical stimuli and then communicate with sensory afferents via neurotransmission. This model is supported by recent molecular, immunohistochemical and physiological studies of Merkel cells in vitro and in intact tissues. For example, Merkel cells express essential components of presynaptic machinery, including molecules required for release of the excitatory neurotransmitter glutamate. Moreover, Merkel cells in vitro and in vivo are activated by mechanical stimuli, including hypotonic-induced cell swelling. Although these findings support the hypothesis that Merkel cells are sensory receptor cells, a definitive demonstration that Merkel cells are necessary and sufficient to transduce touch awaits future studies.
Collapse
Affiliation(s)
- Henry Haeberle
- Neuroscience Graduate Program, UCSF, Baylor College of Medicine, Houston TX 77030
| | | |
Collapse
|
293
|
Schalper KA, Palacios-Prado N, Retamal MA, Shoji KF, Martínez AD, Sáez JC. Connexin hemichannel composition determines the FGF-1-induced membrane permeability and free [Ca2+]i responses. Mol Biol Cell 2008; 19:3501-13. [PMID: 18495870 DOI: 10.1091/mbc.e07-12-1240] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Cell surface hemichannels (HCs) composed of different connexin (Cx) types are present in diverse cells and their possible role on FGF-1-induced cellular responses remains unknown. Here, we show that FGF-1 transiently (4-14 h, maximal at 7 h) increases the membrane permeability through HCs in HeLa cells expressing Cx43 or Cx45 under physiological extracellular Ca(2+)/Mg(2+) concentrations. The effect does not occur in HeLa cells expressing HCs constituted of Cx26 or Cx43 with its C-terminus truncated at aa 257, or in parental nontransfected HeLa cells. The increase in membrane permeability is associated with a rise in HC levels at the cell surface and a proportional increase in HC unitary events. The response requires an early intracellular free Ca(2+) concentration increase, activation of a p38 MAP kinase-dependent pathway, and a regulatory site of Cx subunit C-terminus. The FGF-1-induced rise in membrane permeability is also associated with a late increase in intracellular free Ca(2+) concentration, suggesting that responsive HCs allow Ca(2+) influx. The cell density of Cx26 and Cx43 HeLa transfectants cultured in serum-free medium was differentially affected by FGF-1. Thus, the FGF-1-induced cell permeabilization and derived consequences depend on the Cx composition of HCs.
Collapse
Affiliation(s)
- Kurt A Schalper
- Departamento de Ciencias Fisiológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | | | | | | | | | | |
Collapse
|
294
|
Nishikawa S. Histochemistry of nerve fibres double labelled with anti-TRPV2 antibodies and sensory nerve marker AM1-43 in the dental pulp of rat molars. Arch Oral Biol 2008; 53:859-64. [PMID: 18405879 DOI: 10.1016/j.archoralbio.2008.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 02/28/2008] [Accepted: 03/02/2008] [Indexed: 01/08/2023]
Abstract
AM1-43 can label sensory nerve fibres and sensory neurons. Permeation of non-selective cation channels of the nerve cell membrane is suggested to be the mechanism responsible for labelling. To identify these channels, two candidates, TRPV1 and TRPV2 were examined by immunocytochemistry in the dental pulp and trigeminal ganglion of rats injected with AM1-43. A part of AM1-43-labelled nerve fibres was also positive for anti-TRPV2 antibody but negative for anti-TRPV1 antibody in the dental pulp. In the trigeminal ganglion, a part of the neuron showed both bright AM1-43 labelling and anti-TRPV2 immunolabelling, but neurons double labelled with AM1-43 and TRPV1 were rare. These results suggest that TRPV2 channels, but not TRPV1 channels, contribute to the fluorescent labelling of AM1-43 in the dental pulp.
Collapse
Affiliation(s)
- Sumio Nishikawa
- Department of Biology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Yokohama 230-8501, Japan.
| |
Collapse
|
295
|
TRPV1 shows dynamic ionic selectivity during agonist stimulation. Nat Neurosci 2008; 11:555-64. [DOI: 10.1038/nn.2102] [Citation(s) in RCA: 255] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Accepted: 02/19/2008] [Indexed: 11/08/2022]
|
296
|
Taylor RR, Nevill G, Forge A. Rapid hair cell loss: a mouse model for cochlear lesions. J Assoc Res Otolaryngol 2008; 9:44-64. [PMID: 18057986 PMCID: PMC2536801 DOI: 10.1007/s10162-007-0105-8] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Accepted: 10/25/2007] [Indexed: 01/12/2023] Open
Abstract
In comparison to other mammals, mice have proved extremely resistant to aminoglycoside-induced hair cell ablation in vivo. In this paper we examine the pattern and extent of cochlear lesions rapidly induced with a combination of a single dose of aminoglycoside (kanamycin) followed by a loop diuretic (bumetanide). With this protocol, the vestibular system was unaffected, but in the cochlea, there was extensive loss of outer hair cells (OHC) that commenced in the basal coil and progressed apically so that, by 48 h, OHC loss was almost complete. TUNEL-positive nuclei and activated caspase-3 labeling demonstrated that most OHC died via a classical apoptotic pathway. However, scattered debris within the OHC region suggested that many apoptotic cells ruptured prior to completion of apoptosis. Following lesion repair, supporting cells retained characteristics of differentiated cells but positional shift occurred. In comparison to OHC loss, inner hair cell (IHC) death was delayed and only observed in 50% of all cochleae examined even after extensive reorganization of the tissue. The coadmininstration of diuretic with FM1-43, used as a tracer for aminoglycoside uptake, indicated entry into IHC as readily as OHC, suggesting that the differential response to aminoglycoside was not due to differential uptake. Where IHC death was ongoing, there were indications of different modes of cell death: cells with morphological features of autophagy, necrosis, and apoptosis were apparent. In addition to damage to the organ of Corti, there was a significant and progressive decrease in strial thickness beginning as early as 7 days posttreatment. This was due predominantly to degeneration of marginal cells. The strial pathology resembled that reported after noise damage and with aging. This in vivo protocol provides a robust model in which to obtain extensive OHC loss in the mature cochleae of mice and is a means with which to examine different aspects of cochlear pathology in transgenic or mutant strains.
Collapse
Affiliation(s)
- Ruth Rebecca Taylor
- Centre for Auditory Research, UCL Ear Institute, University College London, 332 Gray's Inn Road, London, WC1X 8EE, UK.
| | | | | |
Collapse
|
297
|
Spencer NJ, Cotanche DA, Klapperich CM. Peptide- and collagen-based hydrogel substrates for in vitro culture of chick cochleae. Biomaterials 2008; 29:1028-42. [PMID: 18037163 PMCID: PMC2424202 DOI: 10.1016/j.biomaterials.2007.11.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Accepted: 11/01/2007] [Indexed: 01/05/2023]
Abstract
The overall goal of this work is to improve the culture of the auditory organ of birds for the dual use of developing a hair cell regeneration model and charting a pathway to the eventual replacement of the hearing organ. In doing so, we develop a protocol for removing the auditory organ from its basement membrane in the inner ear, attach the organ to a series of artificial basement membranes, and conduct qualitative and quantitative analysis of how cell morphology, viability and function change with time. Native matrix cultures, where the epithelium was floating in media with the basement membrane and accessory structures attached, were used as a basis of comparison. PuraMatrix, collagen I, collagen I/chondroitin-sulfate and Matrigel were chosen to encompass a diverse range of mechanical properties and macromolecule moieties. Surprisingly, we find that PuraMatrix outperformed the other matrices as a scaffold for sensory organ culture. PuraMatrix a self-assembled peptide hydrogel, is a biochemically specific culture substrate that contains none of the extracellular matrix (ECM) molecules and growth factors contained in the inner ear's basement membrane. Rheological measurements reveal that PuraMatrix may be a closer approximation to the stiffness of the soft tissue supporting the auditory organ. Cell density on the PuraMatrix substrate is comparable to that of the native matrix cultures, despite the absence of the basement membrane and accessory structures. Further studies show that PuraMatrix supports the culture of functional hair cells over a 72 h period, with a significant increase in the number of functional hair cells in comparison to the organ cultured without a matrix. This is the first example of adhesion of the adult auditory epithelium to a biomaterial for an extended period of time. With further optimization, this system will enable the performance of many novel biophysical and pharmacological studies involving hair cells and supporting cells.
Collapse
Affiliation(s)
- Nathaniel J Spencer
- Laboratory for Cellular and Molecular Hearing Research, Department of Otolaryngology, Children's Hospital, Boston, MA 02115, USA.
| | | | | |
Collapse
|
298
|
Owens KN, Santos F, Roberts B, Linbo T, Coffin AB, Knisely AJ, Simon JA, Rubel EW, Raible DW. Identification of genetic and chemical modulators of zebrafish mechanosensory hair cell death. PLoS Genet 2008; 4:e1000020. [PMID: 18454195 PMCID: PMC2265478 DOI: 10.1371/journal.pgen.1000020] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2007] [Accepted: 01/10/2008] [Indexed: 11/18/2022] Open
Abstract
Inner ear sensory hair cell death is observed in the majority of hearing and balance disorders, affecting the health of more than 600 million people worldwide. While normal aging is the single greatest contributor, exposure to environmental toxins and therapeutic drugs such as aminoglycoside antibiotics and antineoplastic agents are significant contributors. Genetic variation contributes markedly to differences in normal disease progression during aging and in susceptibility to ototoxic agents. Using the lateral line system of larval zebrafish, we developed an in vivo drug toxicity interaction screen to uncover genetic modulators of antibiotic-induced hair cell death and to identify compounds that confer protection. We have identified 5 mutations that modulate aminoglycoside susceptibility. Further characterization and identification of one protective mutant, sentinel (snl), revealed a novel conserved vertebrate gene. A similar screen identified a new class of drug-like small molecules, benzothiophene carboxamides, that prevent aminoglycoside-induced hair cell death in zebrafish and in mammals. Testing for interaction with the sentinel mutation suggests that the gene and compounds may operate in different pathways. The combination of chemical screening with traditional genetic approaches is a new strategy for identifying drugs and drug targets to attenuate hearing and balance disorders. Loss of sensory hair cells in the inner ear is observed in the majority of hearing and balance disorders, affecting the health of more than 600 million people worldwide. Exposure to environmental toxins and certain pharmaceutical drugs such as aminoglycoside antibiotics and some cancer chemotherapy agents account for many of these hearing and balance problems. Variation in the genetic makeup between individuals plays a major role in establishing differences in susceptibility to environmental agents that damage the inner ear. Using zebrafish larvae, we developed a screen to uncover genes leading to differences in antibiotic-induced death of hair cells and to identify compounds that protect hair cells from damage. The combination of chemical screening with traditional genetic approaches offers a new strategy for identifying drugs and drug targets to attenuate hearing and balance disorders.
Collapse
MESH Headings
- Aminoglycosides/antagonists & inhibitors
- Aminoglycosides/toxicity
- Animals
- Base Sequence
- Cell Death/drug effects
- Cell Death/genetics
- Cisplatin/toxicity
- Codon, Terminator/genetics
- DNA Primers/genetics
- DNA, Complementary/genetics
- Drug Evaluation, Preclinical
- Epistasis, Genetic
- Hair Cells, Auditory, Inner/cytology
- Hair Cells, Auditory, Inner/drug effects
- Hair Cells, Auditory, Inner/physiology
- Hearing Loss/etiology
- Hearing Loss/genetics
- Hearing Loss/prevention & control
- Humans
- Mice
- Neomycin/antagonists & inhibitors
- Neomycin/toxicity
- Point Mutation
- Saccule and Utricle/drug effects
- Saccule and Utricle/pathology
- Thiophenes/chemistry
- Thiophenes/pharmacology
- Zebrafish/anatomy & histology
- Zebrafish/genetics
- Zebrafish/physiology
Collapse
Affiliation(s)
- Kelly N. Owens
- Department of Biological Structure, University of Washington, Seattle, Washington, United States of America
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Washington, United States of America
- Department of Otolaryngology—Head and Neck Surgery, University of Washington, Seattle, Washington, United States of America
| | - Felipe Santos
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Washington, United States of America
- Department of Otolaryngology—Head and Neck Surgery, University of Washington, Seattle, Washington, United States of America
| | - Brock Roberts
- Department of Biological Structure, University of Washington, Seattle, Washington, United States of America
| | - Tor Linbo
- Department of Biological Structure, University of Washington, Seattle, Washington, United States of America
| | - Allison B. Coffin
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Washington, United States of America
- Department of Otolaryngology—Head and Neck Surgery, University of Washington, Seattle, Washington, United States of America
| | - Anna J. Knisely
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Washington, United States of America
- Department of Otolaryngology—Head and Neck Surgery, University of Washington, Seattle, Washington, United States of America
| | - Julian A. Simon
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Edwin W. Rubel
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Washington, United States of America
- Department of Otolaryngology—Head and Neck Surgery, University of Washington, Seattle, Washington, United States of America
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington, United States of America
| | - David W. Raible
- Department of Biological Structure, University of Washington, Seattle, Washington, United States of America
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
299
|
Ligand-gated Channels. Biophys J 2008. [DOI: 10.1016/s0006-3495(08)79074-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
300
|
Pryazhnikov E, Khiroug L. Sub-micromolar increase in [Ca(2+)](i) triggers delayed exocytosis of ATP in cultured astrocytes. Glia 2008; 56:38-49. [PMID: 17910050 DOI: 10.1002/glia.20590] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Astrocytes release a variety of transmitter molecules, which mediate communication between glial cells in the brain and modulate synaptic transmission. ATP is a major glia-derived transmitter, but the mechanisms and kinetics of ATP release from astrocytes remain largely unknown. Here, we combined epifluorescence and total internal reflection fluorescence microscopy to monitor individual quinacrine-loaded ATP-containing vesicles undergoing exocytosis in cultured astrocytes. In resting cells, vesicles exhibited three-dimensional motility, spontaneous docking and release at low rate. Extracellular ATP application induced a Ca(2+)-dependent increase in the rate of exocytosis, which persisted for several minutes. Using UV flash photolysis of caged Ca(2+), the threshold [Ca(2+)](i) for ATP exocytosis was found to be approximately 350 nM. Subthreshold [Ca(2+)](i) transients predominantly induced vesicle docking at plasma membrane without subsequent release. ATP exocytosis triggered either by purinergic stimulation or by Ca(2+) uncaging occurred after a substantial delay ranging from tens to hundreds of seconds, with only approximately 4% of release occurring during the first 30 s. The time course of the cargo release from vesicles had two peaks centered on <or=10 s and 60 s. These results demonstrate that: (1) [Ca(2+)](i) elevations in cultured astrocytes trigger docking and release of ATP-containing vesicles; (2) vesicle docking and release have different Ca(2+) thresholds; (3) ATP exocytosis is delayed by several minutes and highly asynchronous; (4) two populations of ATP-containing vesicles with distinct (fast and slow) time course of cargo release exist in cultured astrocytes.
Collapse
Affiliation(s)
- Evgeny Pryazhnikov
- Neuroscience Center, University of Helsinki, P.O. Box 56 (Viikinkaari 4), FIN-00014, Helsinki, Finland
| | | |
Collapse
|