251
|
MPSSS impairs the immunosuppressive function of cancer-associated fibroblasts via the TLR4-NF-κB pathway. Biosci Rep 2019; 39:BSR20182171. [PMID: 30992392 PMCID: PMC6509060 DOI: 10.1042/bsr20182171] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 03/29/2019] [Accepted: 04/09/2019] [Indexed: 02/06/2023] Open
Abstract
The polysaccharides MPSSS was extracted from Lentinus edodes and has been reported to effectively inhibit tumor growth and eliminate the function of myeloid-derived immune suppressor cell-mediated T cell inhibition, thus improving the efficacy of cancer therapy. The exploration of how MPSSS affects the functions of cancer-associated fibroblasts (CAFs) will provide a new perspective for understanding the antitumor effects of MPSSS. In the present study, prostate CAFs were selected as target cells to study whether MPSSS affected cell proliferation and function. The results showed that MPSSS did not directly inhibit the growth of prostate CAFs but interfered with CAF-mediated T cell inhibition and affected the immunosuppressive function of prostate CAFs. Mechanistic studies were further performed and showed that MPSSS activated key node proteins in the NF-κB pathway that were dependent on MyD88, and a TLR4 inhibitor blocked the changes in these proteins and the effect of MPSSS. We hypothesize that MPSSS can activate the MyD88-dependent TLR4-NF-κB signaling pathway to change the function of CAFs. In conclusion, these results demonstrate that MPSSS can not only effectively inhibit the growth of prostate cancer as we previously reported but also alter the function of prostate CAFs by activating the TLR4-NF-κB pathway, providing a new strategy for the comprehensive treatment of tumors.
Collapse
|
252
|
Gorchs L, Fernández Moro C, Bankhead P, Kern KP, Sadeak I, Meng Q, Rangelova E, Kaipe H. Human Pancreatic Carcinoma-Associated Fibroblasts Promote Expression of Co-inhibitory Markers on CD4 + and CD8 + T-Cells. Front Immunol 2019. [PMID: 31068935 DOI: 10.3389/fimmu.2019.00847.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Carcinoma-associated pancreatic fibroblasts (CAFs) are the major type of cells in the stroma of pancreatic ductal adenocarcinomas and besides their pathological release of extracellular matrix proteins, they are also perceived as key contributors to immune evasion. Despite the known relevance of tumor infiltrating lymphocytes in cancers, the interactions between T-cells and CAFs remain largely unexplored. Here, we found that CAFs isolated from tumors of pancreatic cancer patients undergoing surgical resection (n = 15) expressed higher levels of the PD-1 ligands PD-L1 and PD-L2 compared to primary skin fibroblasts from healthy donors. CAFs strongly inhibited T-cell proliferation in a contact-independent fashion. Blocking the activity of prostaglandin E2 (PGE2) by indomethacin partially restored the proliferative capacity of both CD4+ and CD8+ T-cells. After stimulation, the proportion of proliferating T-cells expressing HLA-DR and the proportion of memory T-cells were decreased when CAFs were present compared to T-cells proliferating in the absence of CAFs. Interestingly, CAFs promoted the expression of TIM-3, PD-1, CTLA-4 and LAG-3 in proliferating T-cells. Immunohistochemistry stainings further showed that T-cells residing within the desmoplastic stromal compartment express PD-1, indicating a role for CAFs on co-inhibitory marker expression also in vivo. We further found that PGE2 promoted the expression of PD-1 and TIM-3 on T-cells. Functional assays showed that proliferating T-cells expressing immune checkpoints produced less IFN-γ, TNF-α, and CD107a after restimulation when CAFs had been present. Thus, this indicates that CAFs induce expression of immune checkpoints on CD4+ and CD8+ T-cells, which contribute to a diminished immune function.
Collapse
Affiliation(s)
- Laia Gorchs
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Carlos Fernández Moro
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Pathology/Cytology, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Bankhead
- Division of Pathology, Centre for Genomic & Experimental Medicine, Western General Hospital, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Katharina P Kern
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Imrul Sadeak
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Qingda Meng
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Elena Rangelova
- Department of CLINTEC, Karolinska Institutet, Stockholm, Sweden.,Pancreatic Surgery Unit, Center for Digestive Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Helen Kaipe
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
253
|
Fibroblasts as Modulators of Local and Systemic Cancer Metabolism. Cancers (Basel) 2019; 11:cancers11050619. [PMID: 31058816 PMCID: PMC6562905 DOI: 10.3390/cancers11050619] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 04/30/2019] [Accepted: 05/01/2019] [Indexed: 01/05/2023] Open
Abstract
Fibroblast activation is an accompanying feature of solid tumor progression, resembling a conserved host response to tissue damage. Cancer-associated fibroblasts (CAFs) comprise a heterogeneous and plastic population with increasingly appreciated roles in tumor growth, metastatic capacity, and response to therapy. Classical features of fibroblasts in a wound-healing response, including profound extracellular matrix production and cytokine release, are recapitulated in cancer. Emerging evidence suggests that fibroblastic cells in the microenvironments of solid tumors also critically modulate cellular metabolism in the neoplastic compartment through mechanisms including paracrine transfer of metabolites or non-cell-autonomous regulation of metabolic signaling pathways. These metabolic functions may represent common mechanisms by which fibroblasts stimulate growth of the regenerating epithelium during a wound-healing reaction, or may reflect unique co-evolution of cancer cells and surrounding stroma within the tumor microenvironment. Here we review the recent literature supporting an important role for CAFs in regulation of cancer cell metabolism, and relevant pathways that may serve as targets for therapeutic intervention.
Collapse
|
254
|
Liu M, Song W, Huang L. Drug delivery systems targeting tumor-associated fibroblasts for cancer immunotherapy. Cancer Lett 2019; 448:31-39. [PMID: 30731107 PMCID: PMC10859225 DOI: 10.1016/j.canlet.2019.01.032] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/27/2018] [Accepted: 01/24/2019] [Indexed: 01/12/2023]
Abstract
Solid tumors especially desmoplastic tumors are complex organ-like structures. Tumor-associated fibroblasts (TAFs), one type of the stromal cells, support the initiation, progression, and metastasis of carcinomas. TAFs also contribute to immunosuppressive tumor microenvironment (TME) and hinder T lymphocytes in killing tumors. Here, the role of TAFs in TME is discussed. In specific, TAFs form barriers for the penetration of T lymphocytes. TAFs also act as negative regulators for T lymphocytes. These findings suggest that targeting TAFs is a promising strategy for improving cancer immunotherapy. Our previous studies have indicated the ability of therapeutic nanoparticles to distribute into, and deplete or inactivate TAFs. This approach is discussed in the context of developing specific and effective immunotherapies for cancer.
Collapse
Affiliation(s)
- Mengrui Liu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27559, USA; Department of Pharmaceutics, Collage of Pharmacy, Shandong University, Jinan, 250012, PR China
| | - Wantong Song
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27559, USA.
| |
Collapse
|
255
|
Gorchs L, Fernández Moro C, Bankhead P, Kern KP, Sadeak I, Meng Q, Rangelova E, Kaipe H. Human Pancreatic Carcinoma-Associated Fibroblasts Promote Expression of Co-inhibitory Markers on CD4 + and CD8 + T-Cells. Front Immunol 2019; 10:847. [PMID: 31068935 PMCID: PMC6491453 DOI: 10.3389/fimmu.2019.00847] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/01/2019] [Indexed: 12/20/2022] Open
Abstract
Carcinoma-associated pancreatic fibroblasts (CAFs) are the major type of cells in the stroma of pancreatic ductal adenocarcinomas and besides their pathological release of extracellular matrix proteins, they are also perceived as key contributors to immune evasion. Despite the known relevance of tumor infiltrating lymphocytes in cancers, the interactions between T-cells and CAFs remain largely unexplored. Here, we found that CAFs isolated from tumors of pancreatic cancer patients undergoing surgical resection (n = 15) expressed higher levels of the PD-1 ligands PD-L1 and PD-L2 compared to primary skin fibroblasts from healthy donors. CAFs strongly inhibited T-cell proliferation in a contact-independent fashion. Blocking the activity of prostaglandin E2 (PGE2) by indomethacin partially restored the proliferative capacity of both CD4+ and CD8+ T-cells. After stimulation, the proportion of proliferating T-cells expressing HLA-DR and the proportion of memory T-cells were decreased when CAFs were present compared to T-cells proliferating in the absence of CAFs. Interestingly, CAFs promoted the expression of TIM-3, PD-1, CTLA-4 and LAG-3 in proliferating T-cells. Immunohistochemistry stainings further showed that T-cells residing within the desmoplastic stromal compartment express PD-1, indicating a role for CAFs on co-inhibitory marker expression also in vivo. We further found that PGE2 promoted the expression of PD-1 and TIM-3 on T-cells. Functional assays showed that proliferating T-cells expressing immune checkpoints produced less IFN-γ, TNF-α, and CD107a after restimulation when CAFs had been present. Thus, this indicates that CAFs induce expression of immune checkpoints on CD4+ and CD8+ T-cells, which contribute to a diminished immune function.
Collapse
Affiliation(s)
- Laia Gorchs
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Carlos Fernández Moro
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Pathology/Cytology, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Bankhead
- Division of Pathology, Centre for Genomic & Experimental Medicine, Western General Hospital, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Katharina P. Kern
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Imrul Sadeak
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Qingda Meng
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Elena Rangelova
- Department of CLINTEC, Karolinska Institutet, Stockholm, Sweden
- Pancreatic Surgery Unit, Center for Digestive Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Helen Kaipe
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
256
|
Houthuijzen JM, Jonkers J. Cancer-associated fibroblasts as key regulators of the breast cancer tumor microenvironment. Cancer Metastasis Rev 2019; 37:577-597. [PMID: 30465162 DOI: 10.1007/s10555-018-9768-3] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tumor cells exist in close proximity with non-malignant cells. Extensive and multilayered crosstalk between tumor cells and stromal cells tailors the tumor microenvironment (TME) to support survival, growth, and metastasis. Fibroblasts are one of the largest populations of non-malignant host cells that can be found within the TME of breast, pancreatic, and prostate tumors. Substantial scientific evidence has shown that these cancer-associated fibroblasts (CAFs) are not only associated with tumors by proximity but are also actively recruited to developing tumors where they can influence other cells of the TME as well as influencing tumor cell survival and metastasis. This review discusses the impact of CAFs on breast cancer biology and highlights their heterogeneity, origin and their role in tumor progression, ECM remodeling, therapy resistance, metastasis, and the challenges ahead of targeting CAFs to improve therapy response.
Collapse
Affiliation(s)
- J M Houthuijzen
- Department of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - J Jonkers
- Department of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
257
|
Hintz HM, Cowan AE, Shapovalova M, LeBeau AM. Development of a Cross-Reactive Monoclonal Antibody for Detecting the Tumor Stroma. Bioconjug Chem 2019; 30:1466-1476. [PMID: 30966746 DOI: 10.1021/acs.bioconjchem.9b00206] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Here, we document the discovery of a monoclonal antibody that selectively binds to both human and murine fibroblast activation protein alpha (FAP), a serine protease that is overexpressed on cancer-associated fibroblasts (CAFs), making it an attractive therapeutic target for the aiding and abetting tumor microenvironment. The lead antibody, B12, was identified from a naïve murine single-chain variable fragment antibody phage display library screened against recombinant human FAP on magnetic beads. The heavy and light chains of B12 were cloned into full-length human immunoglobulin 1 (IgG) vectors and expressed as a chimeric monoclonal antibody (B12 IgG). We engineered a drug-resistant prostate cancer cell line, CWR-R1-EnzR, to express human FAP for antibody characterization and validation (R1-EnzRFAP). B12 IgG selectively bound to the R1-EnzRFAP cells by flow cytometry and was internalized in vitro by confocal microscopy. B12 IgG was further evaluated as a near-infrared (NIR) optical imaging probe in R1-EnzRFAP and parental xenograft models. High tumor uptake and retention of the NIR probe was observed in the R1-EnzRFAP xenografts, and endogenous expression of murine stromal origin FAP was detected in the parental xenografts. Ex vivo evaluation of these models by immunohistochemistry documented B12 IgG localization to both human and murine FAP-expressing cells.
Collapse
Affiliation(s)
- Hallie M Hintz
- Department of Pharmacology , University of Minnesota Medical School , Minneapolis , Minnesota 55455 , United States
| | - Aidan E Cowan
- Department of Pharmacology , University of Minnesota Medical School , Minneapolis , Minnesota 55455 , United States
| | - Mariya Shapovalova
- Department of Pharmacology , University of Minnesota Medical School , Minneapolis , Minnesota 55455 , United States
| | - Aaron M LeBeau
- Department of Pharmacology , University of Minnesota Medical School , Minneapolis , Minnesota 55455 , United States
| |
Collapse
|
258
|
Natural Killer Cells as Key Players of Tumor Progression and Angiogenesis: Old and Novel Tools to Divert Their Pro-Tumor Activities into Potent Anti-Tumor Effects. Cancers (Basel) 2019; 11:cancers11040461. [PMID: 30939820 PMCID: PMC6521276 DOI: 10.3390/cancers11040461] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023] Open
Abstract
Immune cells, as a consequence of their plasticity, can acquire altered phenotype/functions within the tumor microenvironment (TME). Some of these aberrant functions include attenuation of targeting and killing of tumor cells, tolerogenic/immunosuppressive behavior and acquisition of pro-angiogenic activities. Natural killer (NK) cells are effector lymphocytes involved in tumor immunosurveillance. In solid malignancies, tumor-associated NK cells (TANK cells) in peripheral blood and tumor-infiltrating NK (TINK) cells show altered phenotypes and are characterized by either anergy or reduced cytotoxicity. Here, we aim at discussing how NK cells can support tumor progression and how induction of angiogenesis, due to TME stimuli, can be a relevant part on the NK cell-associated tumor supporting activities. We will review and discuss the contribution of the TME in shaping NK cell response favoring cancer progression. We will focus on TME-derived set of factors such as TGF-β, soluble HLA-G, prostaglandin E2, adenosine, extracellular vesicles, and miRNAs, which can exhibit a dual function. On one hand, these factors can suppress NK cell-mediated activities but, on the other hand, they can induce a pro-angiogenic polarization in NK cells. Also, we will analyze the impact on cancer progression of the interaction of NK cells with several TME-associated cells, including macrophages, neutrophils, mast cells, cancer-associated fibroblasts, and endothelial cells. Then, we will discuss the most relevant therapeutic approaches aimed at potentiating/restoring NK cell activities against tumors. Finally, supported by the literature revision and our new findings on NK cell pro-angiogenic activities, we uphold NK cells to a key host cellular paradigm in controlling tumor progression and angiogenesis; thus, we should bear in mind NK cells like a TME-associated target for anti-tumor therapeutic approaches.
Collapse
|
259
|
Di Modugno F, Colosi C, Trono P, Antonacci G, Ruocco G, Nisticò P. 3D models in the new era of immune oncology: focus on T cells, CAF and ECM. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:117. [PMID: 30898166 PMCID: PMC6429763 DOI: 10.1186/s13046-019-1086-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 02/06/2019] [Indexed: 12/14/2022]
Abstract
Immune checkpoint inhibitor therapy has changed clinical practice for patients with different cancers, since these agents have demonstrated a significant improvement of overall survival and are effective in many patients. However, an intrinsic or acquired resistance frequently occur and biomarkers predictive of responsiveness should help in patient selection and in defining the adequate treatment options. A deep analysis of the complexity of the tumor microenvironment is likely to further advance the field and hopefully identify more effective combined immunotherapeutic strategies. Here we review the current knowledge on tumor microenvironment, focusing on T cells, cancer associated fibroblasts and extracellular matrix. The use of 3D cell culture models to resemble tumor microenvironment landscape and to screen immunomodulatory drugs is also reviewed.
Collapse
Affiliation(s)
- Francesca Di Modugno
- Unit of Tumor Immunology and Immunotherapy, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, IRCCS-Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144, Rome, Italy.
| | - Cristina Colosi
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Paola Trono
- Unit of Tumor Immunology and Immunotherapy, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, IRCCS-Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144, Rome, Italy
| | - Giuseppe Antonacci
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Giancarlo Ruocco
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Paola Nisticò
- Unit of Tumor Immunology and Immunotherapy, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, IRCCS-Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144, Rome, Italy
| |
Collapse
|
260
|
Lau D, Bobe AM, Khan AA. RNA Sequencing of the Tumor Microenvironment in Precision Cancer Immunotherapy. Trends Cancer 2019; 5:149-156. [PMID: 30898262 DOI: 10.1016/j.trecan.2019.02.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 01/01/2023]
Abstract
RNA sequencing (RNA-seq) provides an efficient high-throughput technique to robustly characterize the tumor immune microenvironment (TME). The increasing use of RNA-seq in clinical and basic science settings provides a powerful opportunity to access novel therapeutic biomarkers in the TME. Advanced computational methods are making it possible to resolve the composition of the tumor immune infiltrate, infer the immunological phenotypes of those cells, and assess the immune receptor repertoire in RNA-seq data. These immunological characterizations have increasingly important implications for guiding immunotherapy use. Here, we highlight recent studies that demonstrate the potential utility of RNA-seq in clinical settings, review key computational methods used for characterizing the TME for precision cancer immunotherapy, and discuss important considerations in data interpretation and current technological limitations.
Collapse
Affiliation(s)
| | | | - Aly A Khan
- Tempus Labs, Chicago, IL 60654, USA; Toyota Technological Institute at Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
261
|
Menon H, Ramapriyan R, Cushman TR, Verma V, Kim HH, Schoenhals JE, Atalar C, Selek U, Chun SG, Chang JY, Barsoumian HB, Nguyen QN, Altan M, Cortez MA, Hahn SM, Welsh JW. Role of Radiation Therapy in Modulation of the Tumor Stroma and Microenvironment. Front Immunol 2019; 10:193. [PMID: 30828330 PMCID: PMC6384252 DOI: 10.3389/fimmu.2019.00193] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/23/2019] [Indexed: 12/22/2022] Open
Abstract
In recent decades, there has been substantial growth in our understanding of the immune system and its role in tumor growth and overall survival. A central finding has been the cross-talk between tumor cells and the surrounding environment or stroma. This tumor stroma, comprised of various cells, and extracellular matrix (ECM), has been shown to aid in suppressing host immune responses against tumor cells. Through immunosuppressive cytokine secretion, metabolic alterations, and other mechanisms, the tumor stroma provides a complex network of safeguards for tumor proliferation. With recent advances in more effective, localized treatment, radiation therapy (XRT) has allowed for strategies that can effectively alter and ablate tumor stromal tissue. This includes promoting immunogenic cell death through tumor antigen release to increasing immune cell trafficking, XRT has a unique advantage against the tumoral immune evasion mechanisms that are orchestrated by stromal cells. Current studies are underway to elucidate pathways within the tumor stroma as potential targets for immunotherapy and chemoradiation. This review summarizes the effects of tumor stroma in tumor immune evasion, explains how XRT may help overcome these effects, with potential combinatorial approaches for future treatment modalities.
Collapse
Affiliation(s)
- Hari Menon
- Departments of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Rishab Ramapriyan
- Departments of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Taylor R. Cushman
- Departments of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Vivek Verma
- Department of Radiation Oncology, Allegheny General Hospital, Pittsburgh, PA, United States
| | - Hans H. Kim
- Department of Radiation Medicine, School of Medicine, Oregon Health and Sciences University, Portland, OR, United States
| | | | - Cemre Atalar
- Departments of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ugur Selek
- Department of Radiation Oncology, School of Medicine, Koç University, Istanbul, Turkey
| | - Stephen G. Chun
- Departments of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Joe Y. Chang
- Departments of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hampartsoum B. Barsoumian
- Departments of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Quynh-Nhu Nguyen
- Departments of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Mehmet Altan
- Thoracic/Head and Neck Medical Oncology, Houston, TX, United States
| | - Maria A. Cortez
- Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Stephen M. Hahn
- Departments of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - James W. Welsh
- Departments of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
262
|
Ma J, Xu Y, Zheng Q, Wang Y, Hu M, Ma F, Long H, Qin Z, Tao N. Ligustilide inhibits the activation of cancer-associated fibroblasts. Life Sci 2019; 218:58-64. [DOI: 10.1016/j.lfs.2018.12.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/16/2018] [Accepted: 12/18/2018] [Indexed: 11/27/2022]
|
263
|
Comito G, Iscaro A, Bacci M, Morandi A, Ippolito L, Parri M, Montagnani I, Raspollini MR, Serni S, Simeoni L, Giannoni E, Chiarugi P. Lactate modulates CD4 + T-cell polarization and induces an immunosuppressive environment, which sustains prostate carcinoma progression via TLR8/miR21 axis. Oncogene 2019; 38:3681-3695. [PMID: 30664688 DOI: 10.1038/s41388-019-0688-7] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/07/2018] [Accepted: 12/25/2018] [Indexed: 01/01/2023]
Abstract
Leukocyte infiltration plays an active role in controlling tumor development. In the early stages of carcinogenesis, T cells counteract tumor growth. However, in advanced stages, cancer cells and infiltrating stromal components interfere with the immune control and instruct immune cells to support, rather than counteract, tumor malignancy, via cell-cell contact or soluble mediators. In particular, metabolites are emerging as active players in driving immunosuppression. Here we demonstrate that in a prostate cancer model lactate released by glycolytic cancer-associated fibroblasts (CAFs) acts on CD4+ T cells, shaping T-cell polarization. In particular, CAFs exposure (i) reduces the percentage of the antitumoral Th1 subset, inducing a lactate-dependent, SIRT1-mediated deacetylation/degradation of T-bet transcription factor; (ii) increases Treg cells, driving naive T cells polarization, through a lactate-based NF-kB activation and FoxP3 expression. In turn, this metabolic-based CAF-immunomodulated environment exerts a pro-invasive effect on prostate cancer cells, by activating a previously unexplored miR21/TLR8 axis that sustains cancer malignancy.
Collapse
Affiliation(s)
- G Comito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy
| | - A Iscaro
- Department of Oncology and Metabolism, University of Sheffield, Medical School, Beech Hill Road, Sheffield, UK
| | - M Bacci
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy
| | - A Morandi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy
| | - L Ippolito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy
| | - M Parri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy
| | - I Montagnani
- Histopathology and Molecular Diagnostics, University Hospital Careggi, Largo Brambilla, 3, 50134, Florence, Italy
| | - M R Raspollini
- Histopathology and Molecular Diagnostics, University Hospital Careggi, Largo Brambilla, 3, 50134, Florence, Italy
| | - S Serni
- Department of Urological Robotic Surgery and Renal Transplantation, University of Florence, Careggi Hospital, Florence, 50134, Italy
| | - L Simeoni
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Leipziger Str. 44, D-39120, Magdeburg, Germany
| | - E Giannoni
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy.
| | - P Chiarugi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy.,Tuscany Tumor Institute (ITT) and Excellence Centre for Research, Transfer and High Education DenoTHE, Florence, 50134, Italy
| |
Collapse
|
264
|
Osswald A, Hedrich V, Sommergruber W. 3D-3 Tumor Models in Drug Discovery for Analysis of Immune Cell Infiltration. Methods Mol Biol 2019; 1953:151-162. [PMID: 30912021 DOI: 10.1007/978-1-4939-9145-7_10] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The cross talk between tumor cells and other cells present in the tumor microenvironment such as stromal and immune cells highly influences the behavior and progression of disease. Understanding the underlying mechanisms of interaction is a prerequisite to develop new treatment strategies and to prevent or at least reduce therapy failure in the future. Specific reactivation of the patient's immune system is one of the major goals today. However, standard two-dimensional (2D) cell culture techniques lack the necessary complexity to address related questions. Novel three-dimensional (3D) in vitro models-embedded in a matrix or encapsulated in alginate-recapitulate the in vivo situation much better. Cross talk between different cell types can be studied starting from co-cultures. As cancer immune modulation is becoming a major research topic, 3D in vitro models represent an important tool to address immune regulatory/modulatory questions for T, NK, and other cells of the immune system. The 3D systems consisting of tumor cells, fibroblasts, and immune cells (3D-3) already proved as a reliable tool for us. For instance, we made use of those models to study the molecular mechanisms of the cross talk of non-small cell lung cancer (NSCLC) and fibroblasts, to unveil macrophage plasticity in the tumor microenvironment and to mirror drug responses in vivo. Generation of those 3D models and how to use them to study immune cell infiltration and activation will be described in the present book chapter.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Bioreactors
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/immunology
- Carcinoma, Non-Small-Cell Lung/pathology
- Cells, Immobilized/drug effects
- Cells, Immobilized/immunology
- Cells, Immobilized/pathology
- Coculture Techniques/methods
- Drug Discovery/methods
- Drug Screening Assays, Antitumor/methods
- Fibroblasts/drug effects
- Fibroblasts/immunology
- Fibroblasts/pathology
- Humans
- Immunity, Cellular/drug effects
- Lung Neoplasms/drug therapy
- Lung Neoplasms/immunology
- Lung Neoplasms/pathology
- Spheroids, Cellular/drug effects
- Spheroids, Cellular/immunology
- Spheroids, Cellular/pathology
- Tumor Cells, Cultured
- Tumor Microenvironment/drug effects
Collapse
Affiliation(s)
| | - Viola Hedrich
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | | |
Collapse
|
265
|
Role of protein phosphatases in the cancer microenvironment. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:144-152. [DOI: 10.1016/j.bbamcr.2018.07.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/29/2018] [Accepted: 07/11/2018] [Indexed: 12/15/2022]
|
266
|
Alekseenko IV, Monastyrskaya GS, Sverdlov ED. Emerging Potential of Cancer Therapy—Binary Direct Interactions of Cancer and Stromal Cells. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418120025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
267
|
Taddei ML, Cavallini L, Ramazzotti M, Comito G, Pietrovito L, Morandi A, Giannoni E, Raugei G, Chiarugi P. Stromal-induced downregulation of miR-1247 promotes prostate cancer malignancy. J Cell Physiol 2018; 234:8274-8285. [PMID: 30378132 DOI: 10.1002/jcp.27679] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/08/2018] [Indexed: 12/21/2022]
Abstract
Cancer progression is strictly dependent on the relationship between tumor cells and the surrounding stroma, which supports cancer malignancy promoting several crucial steps of tumor progression, including the execution of the epithelial to mesenchymal transition (EMT) associated with enhancement in cell invasion, resistance to both anoikis and chemotherapeutic treatments. Recently it has been highlighted the central role of microRNAs (miRNAs) as regulators of tumor progression. Notably, in several tumors a strong deregulation of miRNAs is observed, supporting proliferation, invasion, and metabolic reprogramming of tumor cells. Here we demonstrated that cancer-associated fibroblasts induce a downregulation of miR-1247 in prostate cancer (PCa) cells. We proved that miR-1247 repression is functional for the achievement of EMT and increased cell invasion as well as stemness traits. These phenomena contribute to promote the metastatic potential of PCa cells as demonstrated by increased lung colonization in in vivo experiments. Moreover, as a consequence of miR-1247 downregulation, we observed a correlated increased expression level of neuropilin-1, a miR-1247 target involved as a coreceptor in the epidermal growth factor receptor signaling. Taken together, our data highlight miR-1247 as a potential target for molecular therapies aimed to block the progression and diffusion of PCa.
Collapse
Affiliation(s)
- Maria Letizia Taddei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Lorenzo Cavallini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Matteo Ramazzotti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Giuseppina Comito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Laura Pietrovito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Andrea Morandi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Elisa Giannoni
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Giovanni Raugei
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Paola Chiarugi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy.,Tuscany Tumor Institute and "Center for Research, Transfer and High Education DenoTHE", Florence, Italy
| |
Collapse
|
268
|
Finotello F, Eduati F. Multi-Omics Profiling of the Tumor Microenvironment: Paving the Way to Precision Immuno-Oncology. Front Oncol 2018; 8:430. [PMID: 30345255 PMCID: PMC6182075 DOI: 10.3389/fonc.2018.00430] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/13/2018] [Indexed: 12/20/2022] Open
Abstract
The tumor microenvironment (TME) is a multifaceted ecosystem characterized by profound cellular heterogeneity, dynamicity, and complex intercellular cross-talk. The striking responses obtained with immune checkpoint blockers, i.e., antibodies targeting immune-cell regulators to boost antitumor immunity, have demonstrated the enormous potential of anticancer treatments that target TME components other than tumor cells. However, as checkpoint blockade is currently beneficial only to a limited fraction of patients, there is an urgent need to understand the mechanisms orchestrating the immune response in the TME to guide the rational design of more effective anticancer therapies. In this Mini Review, we give an overview of the methodologies that allow studying the heterogeneity of the TME from multi-omics data generated from bulk samples, single cells, or images of tumor-tissue slides. These include approaches for the characterization of the different cell phenotypes and for the reconstruction of their spatial organization and inter-cellular cross-talk. We discuss how this broader vision of the cellular heterogeneity and plasticity of tumors, which is emerging thanks to these methodologies, offers the opportunity to rationally design precision immuno-oncology treatments. These developments are fundamental to overcome the current limitations of targeted agents and checkpoint blockers and to bring long-term clinical benefits to a larger fraction of cancer patients.
Collapse
Affiliation(s)
- Francesca Finotello
- Biocenter, Division for Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Federica Eduati
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
269
|
Sverdlov E. Missed Druggable Cancer Hallmark: Cancer-Stroma Symbiotic Crosstalk as Paradigm and Hypothesis for Cancer Therapy. Bioessays 2018; 40:e1800079. [DOI: 10.1002/bies.201800079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/15/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Eugene Sverdlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences; Ulitsa Miklukho-Maklaya, 16/10 117997 Moscow Russia
| |
Collapse
|
270
|
Shibata M, Ham K, Hoque MO. A time for YAP1: Tumorigenesis, immunosuppression and targeted therapy. Int J Cancer 2018; 143:2133-2144. [PMID: 29696628 DOI: 10.1002/ijc.31561] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 04/23/2018] [Indexed: 12/14/2022]
Abstract
YAP1 is one of the most important effectors of the Hippo pathway and has crosstalk with other cancer promoting pathways. YAP1 contributes to cancer development in various ways that include promoting malignant phenotypes, expansion of cancer stem cells and drug resistance of cancer cells. Because pharmacologic or genetic inhibition of YAP1 suppresses tumor progression and increases the drug sensitivity, targeting YAP1 may open a fertile avenue for a novel therapeutic approach in relevant cancers. Recent enormous studies have established the efficacy of immunotherapy, and several immune checkpoint blockades are in clinical use or in the phase of development to treat various cancer types. Immunosuppression in the tumor microenvironment (TME) induced by cancer cells, immune cells and associated stromal cells promotes tumor progression and causes drug resistance. Accumulated evidences of scientific efforts from the last few years suggest that YAP1 influences macrophages, myeloid-derived suppressor cells and regulatory T-cells to facilitate immunosuppressive TME. Although the underlying mechanisms is not clearly discerned, it is evident that YAP1 activating pathways in different cellular components induce immunosuppressive TME. In this review, we summarize the evidences involved in the dual roles of YAP1 in cancer development and immunosuppression in the TME. We also discuss the possibility of YAP1 as a novel therapeutic target.
Collapse
Affiliation(s)
- Masahiro Shibata
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Kendall Ham
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Mohammad Obaidul Hoque
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
271
|
Metabolic Reprogramming of Cancer Associated Fibroblasts: The Slavery of Stromal Fibroblasts. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6075403. [PMID: 29967776 PMCID: PMC6008683 DOI: 10.1155/2018/6075403] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/02/2018] [Indexed: 12/18/2022]
Abstract
Cancer associated fibroblasts (CAFs) are the main stromal cell type of solid tumour microenvironment and undergo an activation process associated with secretion of growth factors, cytokines, and paracrine interactions. One of the important features of solid tumours is the metabolic reprogramming that leads to changes of bioenergetics and biosynthesis in both tumour cells and CAFs. In particular, CAFs follow the evolution of tumour disease and acquire a catabolic phenotype: in tumour tissues, cancer cells and tumour microenvironment form a network where the crosstalk between cancer cells and CAFs is associated with cell metabolic reprogramming that contributes to CAFs activation, cancer growth, and progression and evasion from cancer therapies. In this regard, the study of CAFs metabolic reprogramming could contribute to better understand their activation process, the interaction between stroma, and cancer cells and could offer innovative tools for the development of new therapeutic strategies able to eradicate the protumorigenic activity of CAFs. Therefore, this review focuses on CAFs metabolic reprogramming associated with both differentiation process and cancer and stromal cells crosstalk. Finally, therapeutic responses and potential anticancer strategies targeting CAFs metabolic reprogramming are reviewed.
Collapse
|
272
|
Alkasalias T, Moyano-Galceran L, Arsenian-Henriksson M, Lehti K. Fibroblasts in the Tumor Microenvironment: Shield or Spear? Int J Mol Sci 2018; 19:ijms19051532. [PMID: 29883428 PMCID: PMC5983719 DOI: 10.3390/ijms19051532] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 12/11/2022] Open
Abstract
Tumorigenesis is a complex process involving dynamic interactions between malignant cells and their surrounding stroma, including both the cellular and acellular components. Within the stroma, fibroblasts represent not only a predominant cell type, but also a major source of the acellular tissue microenvironment comprising the extracellular matrix (ECM) and soluble factors. Normal fibroblasts can exert diverse suppressive functions against cancer initiating and metastatic cells via direct cell-cell contact, paracrine signaling by soluble factors, and ECM integrity. The loss of such suppressive functions is an inherent step in tumor progression. A tumor cell-induced switch of normal fibroblasts into cancer-associated fibroblasts (CAFs), in turn, triggers a range of pro-tumorigenic signals accompanied by distraction of the normal tissue architecture, thus creating an optimal niche for cancer cells to grow extensively. To further support tumor progression and metastasis, CAFs secrete factors such as ECM remodeling enzymes that further modify the tumor microenvironment in combination with the altered adhesive forces and cell-cell interactions. These paradoxical tumor suppressive and promoting actions of fibroblasts are the focus of this review, highlighting the heterogenic molecular properties of both normal and cancer-associated fibroblasts, as well as their main mechanisms of action, including the emerging impact on immunomodulation and different therapy responses.
Collapse
Affiliation(s)
- Twana Alkasalias
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Biomedicum, Solnavägen 9, SE-17177 Stockholm, Sweden.
- Department of Biology, College of Science, Salahaddin University, Irbil 44002, Kurdistan-Iraq.
| | - Lidia Moyano-Galceran
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Biomedicum, Solnavägen 9, SE-17177 Stockholm, Sweden.
| | - Marie Arsenian-Henriksson
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Biomedicum, Solnavägen 9, SE-17177 Stockholm, Sweden.
| | - Kaisa Lehti
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Biomedicum, Solnavägen 9, SE-17177 Stockholm, Sweden.
- Research Programs Unit, Genome-Scale Biology and Medicum, University of Helsinki, and Helsinki University Hospital, P.O. Box 63, FI-00014 Helsinki, Finland.
| |
Collapse
|