251
|
Zhang X, Jin J, Tang Y, Speer D, Sujkowska D, Markovic-Plese S. IFN-beta1a inhibits the secretion of Th17-polarizing cytokines in human dendritic cells via TLR7 up-regulation. THE JOURNAL OF IMMUNOLOGY 2009; 182:3928-36. [PMID: 19265172 DOI: 10.4049/jimmunol.0802226] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
IFN-beta, an effective therapy against relapsing-remitting multiple sclerosis, is naturally secreted during the innate immune response against viral pathogens. The objective of this study was to characterize the immunomodulatory mechanisms of IFN-beta targeting innate immune response and their effects on dendritic cell (DC)-mediated regulation of T cell differentiation. We found that IFN-beta1a in vitro treatment of human monocyte-derived DCs induced the expression of TLR7 and the members of its downstream signaling pathway, including MyD88, IL-1R-associated kinase 4, and TNF receptor-associated factor 6, while it inhibited the expression of IL-1R. Using small interfering RNA TLR7 gene silencing, we confirmed that IFN-beta1a-induced changes in MyD88, IL-1R-associated kinase 4, and IL-1R expression were dependent on TLR7. TLR7 expression was also necessary for the IFN-beta1a-induced inhibition of IL-1beta and IL-23 and the induction of IL-27 secretion by DCs. Supernatant transfer experiments confirmed that IFN-beta1a-induced changes in DC cytokine secretion inhibit Th17 cell differentiation as evidenced by the inhibition of retinoic acid-related orphan nuclear hormone receptor C and IL-17A gene expression and IL-17A secretion. Our study has identified a novel therapeutic mechanism of IFN-beta1a that selectively targets the autoimmune response in multiple sclerosis.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
252
|
Lopez Kostka S, Dinges S, Griewank K, Iwakura Y, Udey MC, von Stebut E. IL-17 promotes progression of cutaneous leishmaniasis in susceptible mice. THE JOURNAL OF IMMUNOLOGY 2009; 182:3039-46. [PMID: 19234200 DOI: 10.4049/jimmunol.0713598] [Citation(s) in RCA: 180] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Resistance to leishmaniasis in C57BL/6 mice depends on Th1/Tc1 cells. BALB/c mice preferentially develop Th2 immunity and succumb to infection. We now assessed the role of IL-17 in cutaneous leishmaniasis. During the course of Leishmania major infection, BALB/c CD4 cells and neutrophils produced increased amounts of IL-17 as compared with cells from C57BL/6 mice. This increase was associated with significantly increased IL-23 release from L. major-infected BALB/c dendritic cells (DC), whereas IL-6 and TGF-beta1 production by BALB/c and C57BL/6 DC were comparable. Interestingly, lesion sizes in infected IL-17-deficient BALB/c mice were dramatically smaller and failed to progress as compared with those in control mice. Similar amounts of IL-4, IL-10, and IFN-gamma were produced by T cells from IL-17-deficient mice and control mice consistent with development of Th2-predominant immunity in all animals. Improved disease outcome was associated with decreased CXCL2-accumulation in lesion sites and decreased neutrophil immigration into lesions of infected IL-17-deficient mice confirming prior observations that enhanced neutrophil recruitment contributes to disease susceptibility in BALB/c mice. This study excludes an important facilitating role for IL-17 in Th1/Th2 development in L. major-infected BALB/c mice, and suggests that IL-23 production by L. major-infected DC maintains IL-17(+) cells that influence disease progression via regulation of neutrophil recruitment.
Collapse
|
253
|
Ouyang W, Filvaroff E, Hu Y, Grogan J. Novel therapeutic targets along the Th17 pathway. Eur J Immunol 2009; 39:670-5. [PMID: 19283720 DOI: 10.1002/eji.200839105] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The recent discovery of IL-17-producing CD4(+) Th subset significantly revised the Th1/Th2 dichotomy model proposed by Mosmann and Coffman almost two decades ago. Th17 cells are involved in the pathogenesis of many human autoimmune diseases. Th17 cells, their developmental pathways and their effector functions, therefore, provide novel therapeutic targets.
Collapse
Affiliation(s)
- Wenjun Ouyang
- Department of Immunology, Genentech, South San Francisco, CA 94080, USA.
| | | | | | | |
Collapse
|
254
|
Abstract
CD4+ T cells, upon activation and expansion, develop into different T helper cell subsets with different cytokine profiles and distinct effector functions. Until recently, T cells were divided into Th1 or Th2 cells, depending on the cytokines they produce. A third subset of IL-17-producing effector T helper cells, called Th17 cells, has now been discovered and characterized. Here, we summarize the current information on the differentiation and effector functions of the Th17 lineage. Th17 cells produce IL-17, IL-17F, and IL-22, thereby inducing a massive tissue reaction owing to the broad distribution of the IL-17 and IL-22 receptors. Th17 cells also secrete IL-21 to communicate with the cells of the immune system. The differentiation factors (TGF-β plus IL-6 or IL-21), the growth and stabilization factor (IL-23), and the transcription factors (STAT3, RORγt, and RORα) involved in the development of Th17 cells have just been identified. The participation of TGF-β in the differentiation of Th17 cells places the Th17 lineage in close relationship with CD4+CD25+Foxp3+ regulatory T cells (Tregs), as TGF-β also induces differentiation of naive T cells into Foxp3+ Tregs in the peripheral immune compartment. The investigation of the differentiation, effector function, and regulation of Th17 cells has opened up a new framework for understanding T cell differentiation. Furthermore, we now appreciate the importance of Th17 cells in clearing pathogens during host defense reactions and in inducing tissue inflammation in autoimmune disease.
Collapse
Affiliation(s)
- Thomas Korn
- Technical University Munich, Department of Neurology, 81675 Munich, Germany
| | - Estelle Bettelli
- Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115;,
| | - Mohamed Oukka
- Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139
| | - Vijay K. Kuchroo
- Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115;,
| |
Collapse
|
255
|
Abstract
Abnormal production of inflammatory mediators is believed to play an important role in the pathogenesis of psoriasis. Emerging data, both in mice and in humans, put the spotlight on a new subset of T helper (Th) cells, in part characterized by their production of IL-17 and accordingly named Th17 cells. Here, we review the development, characterization, and function of human Th17 cells as well as the crucial role of IL-23 in the context of Th17-cell-dependent chronic inflammation in psoriasis. We further discuss recent clinical trials targeting the IL-23/Th17 axis in psoriasis.
Collapse
|
256
|
Abstract
Th17 cells were identified as an independent lineage of CD4(+) T cells that secrete a distinctive set of immunoregulatory cytokines, including IL-17A, IL-17F, IL-22, and IL-21. These cytokines collectively play roles in inflammation and autoimmunity and in response to extracellular pathogens. The expression of the lineage-specific transcription factor RORgammat leads to Th17 lineage commitment; however, it has become increasingly clear that the population of cells designated as Th17 cells is not homogeneous. Although these cells collectively produce characteristic Th17 cytokines, not all are produced by each individual cell in the population. The cytokines produced by individual cells are presumably affected in part by the specific local cytokine milieu. In this review, we discuss the current understanding of the specific functional characteristics and regulation of Th17 cytokines and clarify how they mediate the actions of Th17 cells.
Collapse
Affiliation(s)
- Rosanne Spolski
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethsda, MD, USA
| | | |
Collapse
|
257
|
Zhang Z, Zhong W, Spencer D, Chen H, Lu H, Kawaguchi T, Rosenbaum JT. Interleukin-17 causes neutrophil mediated inflammation in ovalbumin-induced uveitis in DO11.10 mice. Cytokine 2009; 46:79-91. [PMID: 19254849 DOI: 10.1016/j.cyto.2008.12.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 11/05/2008] [Accepted: 12/29/2008] [Indexed: 10/21/2022]
Abstract
T cell-mediated uveitis is strongly associated with many systemic inflammatory disorders. Th17 cells are a novel T cell subset characterized by production of interleukin (IL)-17. In this study, we used DO11.10 mice to investigate the role of IL-17 in the pathogenesis of uveitis. CD4(+) T cells in DO11.10 mice are genetically engineered to react with ovalbumin (OVA). IL-17 expression was determined by real-time PCR and ELISPOT. Uveitis was induced by intravitreal injection of OVA, and ocular inflammation was evaluated by intravital microscopy. OVA challenge significantly induced IL-17 production by DO11.10 splenocytes in vitro. Next, we examined whether OVA challenge could elicit local inflammation and induce IL-17 in vivo. OVA elicited marked neutrophil-predominant inflammatory cell infiltration in the eyes. This leukocyte influx was mediated by CD4(+) lymphocytes as evidenced by significant inhibition of the ocular inflammation by CD4+ depleting antibody. Compared to control mice, OVA treatment induced IL-17 expression. Moreover, anti-IL-17 antibody markedly reduced OVA-mediated ocular inflammation. Finally, the neutralization of IL-17 attenuated ocular expression of CXCL2 and CXCL5, two cytokines which are chemotactic for neutrophils. Our study suggests that IL-17 is implicated in the pathogenesis of this T cell-mediated model of uveitis in part through neutrophil chemotaxis as a downstream effect of IL-17.
Collapse
Affiliation(s)
- Zili Zhang
- Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | | | | | | | | | |
Collapse
|
258
|
Saenz SA, Taylor BC, Artis D. Welcome to the neighborhood: epithelial cell-derived cytokines license innate and adaptive immune responses at mucosal sites. Immunol Rev 2009; 226:172-90. [PMID: 19161424 DOI: 10.1111/j.1600-065x.2008.00713.x] [Citation(s) in RCA: 370] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
There is compelling evidence that epithelial cells (ECs) at mucosal surfaces, beyond their role in creating a physical barrier, are integral components of innate and adaptive immunity. The capacity of these cells to license the functions of specific immune cell populations in the airway and gastrointestinal tract offers the prospect of novel therapeutic strategies to target multiple inflammatory diseases in which barrier immunity is dysregulated. In this review, we discuss the critical functions of EC-derived thymic stromal lymphopoietin (TSLP), interleukin-25 (IL-25), and IL-33 in the development and regulation of T-helper 2 (Th2) cytokine-dependent immune responses. We first highlight recent data that have provided new insights into the factors that control expression of this triad of cytokines and their receptors. In addition, we review their proinflammatory and immunoregulatory functions in models of mucosal infection and inflammation. Lastly, we discuss new findings indicating that despite their diverse structural features and differential expression of their receptors, TSLP, IL-25, and IL-33 cross-regulate one another and share overlapping properties that influence Th2 cytokine-dependent responses at mucosal sites.
Collapse
Affiliation(s)
- Steven A Saenz
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104-4539, USA
| | | | | |
Collapse
|
259
|
Iwakura Y, Nakae S, Saijo S, Ishigame H. The roles of IL-17A in inflammatory immune responses and host defense against pathogens. Immunol Rev 2009; 226:57-79. [PMID: 19161416 DOI: 10.1111/j.1600-065x.2008.00699.x] [Citation(s) in RCA: 376] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
T-helper 17 (Th17) cells are a newly discovered CD4(+) helper T-cell subset that produces interleukin-17A (IL-17A) and IL-17F. IL-17A plays important roles in allergic responses such as delayed-type hypersensitivity, contact hypersensitivity, and allergic airway inflammation. IL-17A promotes inflammation by inducing various proinflammatory cytokines and chemokines, recruiting neutrophils, enhancing antibody production, and activating T cells. IL-17A expression is also augmented in autoimmune diseases such as multiple sclerosis and rheumatoid arthritis. Using mouse models of these diseases, we found that IL-17A plays a central role in their development. IL-6 is required for the development of Th17 cells and tumor necrosis factor functions downstream of IL-17A during the effector phase. IL-1 is important both for developing Th17 cells and eliciting inflammation. Th17 cells, like Th1 and Th2 cells, are involved in host defense against infections, but the contribution of these Th subsets to defense mechanisms differs among pathogens. The roles of IL-17F remain largely unknown. In this review, we introduce how IL-17A/IL-17F are involved in inflammatory immune responses and host defense mechanisms and discuss their relationship with other cytokines in the development of inflammatory and infectious diseases.
Collapse
Affiliation(s)
- Yoichiro Iwakura
- Center for Experimental Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| | | | | | | |
Collapse
|
260
|
Chang SH, Dong C. IL-17F: regulation, signaling and function in inflammation. Cytokine 2009; 46:7-11. [PMID: 19233684 DOI: 10.1016/j.cyto.2008.12.024] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 12/12/2008] [Accepted: 12/29/2008] [Indexed: 01/08/2023]
Abstract
The IL-17 cytokine family is composed of six members. IL-17F, discovered in 2001, recently has drawn increasing attention due to its greatest similarity to IL-17, a widely recognized inflammatory cytokine. The genes encoding IL-17 and IL-17F are localized in the same chromosomal region and are co-expressed by CD4+ and gammadelta T cells. IL-17F can be secreted as homodimers or heterodimers with IL-17. Similar to IL-17, IL-17F utilizes IL-17RA and IL-17RC as its receptor and employs Act1 and TRAF6 as its signal transducers to induce the expression of pro-inflammatory cytokines and chemokines in many different cell types. However, mice lacking either IL-17 or IL-17F exhibit distinct defects in experimental models of asthma and colitis. These results have laid the basis to understand the role of IL-17F in the pathogenesis of human diseases.
Collapse
Affiliation(s)
- Seon Hee Chang
- Department of Immunology, MD Anderson Cancer Center, Houston, TX 77030, USA.
| | | |
Collapse
|
261
|
Zrioual S, Ecochard R, Tournadre A, Lenief V, Cazalis MA, Miossec P. Genome-Wide Comparison between IL-17A- and IL-17F-Induced Effects in Human Rheumatoid Arthritis Synoviocytes. THE JOURNAL OF IMMUNOLOGY 2009; 182:3112-20. [DOI: 10.4049/jimmunol.0801967] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
262
|
Late developmental plasticity in the T helper 17 lineage. Immunity 2009; 30:92-107. [PMID: 19119024 DOI: 10.1016/j.immuni.2008.11.005] [Citation(s) in RCA: 824] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 10/23/2008] [Accepted: 11/12/2008] [Indexed: 11/22/2022]
Abstract
Development of T helper (Th) 17 cells requires transforming growth factor (TGF)-beta and interleukin (IL)-6 and is independent of the Th1 pathway. Although T cells that produce interferon (IFN)-gamma are a recognized feature of Th17 cell responses, mice deficient for STAT4 and T-bet-two prototypical Th1 transcription factors-are protected from autoimmunity associated with Th17 pathogenesis. To examine the fate and pathogenic potential of Th17 cells and origin of IFN-gamma-producing T cells that emerge during Th17 immunity, we developed IL-17F reporter mice that identify cells committed to expression of IL-17F and IL-17A. Th17 cells required TGF-beta for sustained expression of IL-17F and IL-17A. In the absence of TGF-beta, both IL-23 and IL-12 acted to suppress IL-17 and enhance IFN-gamma production in a STAT4- and T-bet-dependent manner, albeit with distinct efficiencies. These results support a model of late Th17 developmental plasticity with implications for autoimmunity and host defense.
Collapse
|
263
|
Kappel LW, Goldberg GL, King CG, Suh DY, Smith OM, Ligh C, Holland AM, Grubin J, Mark NM, Liu C, Iwakura Y, Heller G, van den Brink MRM. IL-17 contributes to CD4-mediated graft-versus-host disease. Blood 2009; 113:945-52. [PMID: 18931341 PMCID: PMC2630280 DOI: 10.1182/blood-2008-08-172155] [Citation(s) in RCA: 220] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Accepted: 09/25/2008] [Indexed: 01/10/2023] Open
Abstract
CD4(+) interleukin-17 (IL-17)(+) T cells (Th17 cells) have been implicated in allograft rejection of solid organs and several autoimmune diseases. However, the functional role of Th17 cells in the development of acute graft-versus-host disease (GVHD) has not been well-characterized. We detected significant numbers of alloreactive CD4(+) donor T cells expressing IL-17, IL-17F, or IL-22 in the lymphoid organs of recipients of an allogeneic bone marrow transplant. We found no differences in GVHD mortality or graft-versus-tumor (GVT) activity between wild type (WT) and IL-17(-/-) T-cell recipients. However, upon transfer of murine IL-17(-/-) CD4(+) T cells in an allogeneic BMT model, GVHD development was significantly delayed behind recipients of WT CD4(+) T cells, yet overall GVHD mortality was unaffected. Moreover, recipients of IL-17(-/-) CD4(+) T cells had significantly fewer Th1 cells during the early stages of GVHD. Furthermore, we observed a decrease in the number of IFN-gamma-secreting macrophages and granulocytes and decreased production of proinflammatory cytokines (interferon [IFN]-gamma, IL-4, and IL-6) in recipients of IL-17(-/-) CD4(+) T cells. We conclude that IL-17 is dispensable for GVHD and GVT activity by whole T cells, but contributes to the early development of CD4-mediated GVHD by promoting production of proinflammatory cytokines.
Collapse
Affiliation(s)
- Lucy W Kappel
- Department of Medicine and Immunology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
264
|
Ivanov S, Lindén A. Interleukin-17 as a drug target in human disease. Trends Pharmacol Sci 2009; 30:95-103. [PMID: 19162337 DOI: 10.1016/j.tips.2008.11.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Revised: 11/04/2008] [Accepted: 11/10/2008] [Indexed: 12/20/2022]
Abstract
Interleukin (IL)-17 (now synonymous with IL-17A) is an archetype molecule for an entire family of IL-17 cytokines. Currently believed to be produced mainly by a specific subset of CD4 cells, named Th-17 cells, IL-17 is functionally located at the interface of innate and acquired immunity. Specifically, it induces the release of chemokines and growth factors from mesenchymal cells and is now emerging as an important local orchestrator of neutrophil accumulation in several mammalian organs. Furthermore, there is growing evidence that targeting IL-17 signaling might prove useful in a variety of diseases including asthma, Crohn's disease, multiple sclerosis, psoriatric disease and rheumatoid arthritis. Here, we summarize the key aspects of the biology of IL-17 in mammals and scrutinize the potential pharmacological use of targeting IL-17 in humans.
Collapse
|
265
|
González-García C, Martín-Saavedra FM, Ballester A, Ballester S. The Th17 lineage: Answers to some immunological questions. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/s0213-9626(09)70025-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
266
|
Abstract
CD4+ T cells, upon activation and expansion, develop into different T helper cell subsets with different cytokine profiles and distinct effector functions. Until recently, T cells were divided into Th1 or Th2 cells, depending on the cytokines they produce. A third subset of IL-17-producing effector T helper cells, called Th17 cells, has now been discovered and characterized. Here, we summarize the current information on the differentiation and effector functions of the Th17 lineage. Th17 cells produce IL-17, IL-17F, and IL-22, thereby inducing a massive tissue reaction owing to the broad distribution of the IL-17 and IL-22 receptors. Th17 cells also secrete IL-21 to communicate with the cells of the immune system. The differentiation factors (TGF-beta plus IL-6 or IL-21), the growth and stabilization factor (IL-23), and the transcription factors (STAT3, RORgammat, and RORalpha) involved in the development of Th17 cells have just been identified. The participation of TGF-beta in the differentiation of Th17 cells places the Th17 lineage in close relationship with CD4+CD25+Foxp3+ regulatory T cells (Tregs), as TGF-beta also induces differentiation of naive T cells into Foxp3+ Tregs in the peripheral immune compartment. The investigation of the differentiation, effector function, and regulation of Th17 cells has opened up a new framework for understanding T cell differentiation. Furthermore, we now appreciate the importance of Th17 cells in clearing pathogens during host defense reactions and in inducing tissue inflammation in autoimmune disease.
Collapse
Affiliation(s)
- Thomas Korn
- Technical University Munich, Department of Neurology, 81675 Munich, Germany.
| | | | | | | |
Collapse
|
267
|
Fouser LA, Wright JF, Dunussi-Joannopoulos K, Collins M. Th17 cytokines and their emerging roles in inflammation and autoimmunity. Immunol Rev 2008; 226:87-102. [PMID: 19161418 DOI: 10.1111/j.1600-065x.2008.00712.x] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
T-helper 17 (Th17) cells are a new lineage of CD4(+) T cells that are characterized by their production of interleukin-17A (IL-17A). Recent studies show that these cells can also express IL-17F, IL-22, and IL-21. IL-17A and IL-17F can form a heterodimeric cytokine, which mediates biological activities, at least in part, through shared receptors with IL-17A and IL-17F homodimers. The cytokines made by Th17 cells represent three distinct gene families, highlighting the unique biology of these cells. Accumulating data support a role for Th17 cells and these cytokines in inflammatory processes and in animal models of autoimmunity or inflammation. Emerging data in clinical trials support our understanding of the importance of Th17 cells in inflammatory disease. Future clinical studies will allow us to evaluate the role of each cytokine independently in contributing to human diseases with immune-mediated pathologies and to design optimal cytokine-targeted therapies for these diseases.
Collapse
|
268
|
Abstract
The T-helper 17 (Th17) lineage is a recently described subset of memory T cells that is characterized by its CD4(+) status and its ability to make a constellation of cytokines including interleukin-17A (IL-17A), IL-17F, IL-22, and, in humans, IL-26. Although most extensively described in the autoimmunity literature, there is growing evidence that the Th17 lineage plays a significant role in mediating host mucosal immunity to a number of pulmonary pathogens. This review highlights our current understanding of the role of the Th17 lineage and Th17 cytokines in mediating mucosal immunity to both pulmonary and gastrointestinal pathogens. While we have the strongest evidence that the Th17 lineage is centrally involved in mediating the host response to Gram-negative extracellular pulmonary pathogens, this literature is rapidly evolving and demonstrates a central role for Th17 cytokines both in primary infection and in recall responses seen in vaccine studies. In this review, we summarize the current state of this literature and present possible applications of Th17-targeted immunotherapy in the treatment and prevention of infection.
Collapse
Affiliation(s)
- Patricia J Dubin
- Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
269
|
Yuan X, Paez-Cortez J, Schmitt-Knosalla I, D'Addio F, Mfarrej B, Donnarumma M, Habicht A, Clarkson MR, Iacomini J, Glimcher LH, Sayegh MH, Ansari MJ. A novel role of CD4 Th17 cells in mediating cardiac allograft rejection and vasculopathy. ACTA ACUST UNITED AC 2008; 205:3133-44. [PMID: 19047438 PMCID: PMC2605226 DOI: 10.1084/jem.20081937] [Citation(s) in RCA: 249] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
T-bet plays a crucial role in Th1 development. We investigated the role of T-bet in the development of allograft rejection in an established MHC class II–mismatched (bm12 into B6) model of chronic allograft vasculopathy (CAV). Intriguingly, and in contrast to IFN-γ−/− mice that are protected from CAV, T-bet−/− recipients develop markedly accelerated allograft rejection accompanied by early severe vascular inflammation and vasculopathy, and infiltration by predominantly IL-17–producing CD4 T cells. Concurrently, T-bet−/− mice exhibit a T helper type 1 (Th1)–deficient environment characterized by profound IFN-γ deficiency, a Th2 switch characterized by increased production of interleukin (IL) 4, IL-5, IL-10, and IL-13 cytokines, as well as increased production of the proinflammatory cytokines IL-6, IL-12p40, and IL-17. Neutralization of IL-17 inhibits accelerated allograft rejection and vasculopathy in T-bet−/− mice. Interestingly, CD4 but not CD8 T cell deficiency in T-bet−/− mice affords dramatic protection from vasculopathy and facilitates long-term graft acceptance. This is the first study establishing that in the absence of Th1-mediated alloimmune responses, CD4 Th17 cells mediate an aggressive proinflammatory response culminating in severe accelerated allograft rejection and vasculopathy. These results have important implications for the development of novel therapies to target this intractable problem in clinical solid organ transplantation.
Collapse
Affiliation(s)
- Xueli Yuan
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital and Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
270
|
McKinley L, Alcorn JF, Peterson A, Dupont RB, Kapadia S, Logar A, Henry A, Irvin CG, Piganelli JD, Ray A, Kolls JK. TH17 cells mediate steroid-resistant airway inflammation and airway hyperresponsiveness in mice. THE JOURNAL OF IMMUNOLOGY 2008; 181:4089-97. [PMID: 18768865 DOI: 10.4049/jimmunol.181.6.4089] [Citation(s) in RCA: 598] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Steroid-resistant asthma comprises an important source of morbidity in patient populations. T(H)17 cells represent a distinct population of CD4(+) Th cells that mediate neutrophilic inflammation and are characterized by the production of IL-17, IL-22, and IL-6. To investigate the function of T(H)17 cells in the context of Ag-induced airway inflammation, we polarized naive CD4(+) T cells from DO11.10 OVA-specific TCR-transgenic mice to a T(H)2 or T(H)17 phenotype by culturing in conditioned medium. In addition, we also tested the steroid responsiveness of T(H)2 and T(H)17 cells. In vitro, T(H)17 cytokine responses were not sensitive to dexamethasone (DEX) treatment despite immunocytochemistry confirming glucocorticoid receptor translocation to the nucleus following treatment. Transfer of T(H)2 cells to mice challenged with OVA protein resulted in lymphocyte and eosinophil emigration into the lung that was markedly reduced by DEX treatment, whereas T(H)17 transfer resulted in increased CXC chemokine secretion and neutrophil influx that was not attenuated by DEX. Transfer of T(H)17 or T(H)2 cells was sufficient to induce airway hyperresponsiveness (AHR) to methacholine. Interestingly, AHR was not attenuated by DEX in the T(H)17 group. These data demonstrate that polarized Ag-specific T cells result in specific lung pathologies. Both T(H)2 and T(H)17 cells are able to induce AHR, whereas T(H)17 cell-mediated airway inflammation and AHR are steroid resistant, indicating a potential role for T(H)17 cells in steroid-resistant asthma.
Collapse
Affiliation(s)
- Laura McKinley
- Department of Pediatrics, Lung Immunology and Host Defense Laboratory, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
271
|
Nagata T, Mckinley L, Peschon JJ, Alcorn JF, Aujla SJ, Kolls JK. Requirement of IL-17RA in Con A Induced Hepatitis and Negative Regulation of IL-17 Production in Mouse T Cells. THE JOURNAL OF IMMUNOLOGY 2008; 181:7473-9. [DOI: 10.4049/jimmunol.181.11.7473] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
272
|
Rickel EA, Siegel LA, Yoon BRP, Rottman JB, Kugler DG, Swart DA, Anders PM, Tocker JE, Comeau MR, Budelsky AL. Identification of functional roles for both IL-17RB and IL-17RA in mediating IL-25-induced activities. THE JOURNAL OF IMMUNOLOGY 2008; 181:4299-310. [PMID: 18768888 DOI: 10.4049/jimmunol.181.6.4299] [Citation(s) in RCA: 255] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-25 (IL-17E) is a unique IL-17 family ligand that promotes Th2-skewed inflammatory responses. Intranasal administration of IL-25 into naive mice induces pulmonary inflammation similar to that seen in patients with allergic asthma, including increases in bronchoalveolar lavage fluid eosinophils, bronchoalveolar lavage fluid IL-5 and IL-13 concentrations, goblet cell hyperplasia, and increased airway hyperresponsiveness. IL-25 has been reported to bind and signal through IL-17RB (IL-17BR, IL-17Rh1). It has been demonstrated recently that IL-17A signals through a heteromeric receptor composed of IL-17RA and IL-17RC. We sought to determine whether other IL-17 family ligands also utilize heteromeric receptor complexes. The required receptor subunits for IL-25 biological activities were investigated in vitro and in vivo using a combination of knockout (KO) mice and antagonistic Abs. Unlike wild-type mice, cultured splenocytes from either IL-17RB KO or IL-17RA KO mice did not produce IL-5 or IL-13 in response to IL-25 stimulation, and both IL-17RB KO and IL-17RA KO mice did not respond to intranasal administration of IL-25. Furthermore, treatment with antagonistic mAbs to either IL-17RB or IL-17RA completely blocked IL-25-induced pulmonary inflammation and airway hyperresponsiveness in naive BALB/c mice, similar to the effects of an antagonistic Ab to IL-25. Finally, a blocking Ab to human IL-17RA prevented IL-25 activity in a primary human cell-based assay. These data demonstrate for the first time that IL-25-mediated activities require both IL-17RB and IL-17RA and provide another example of an IL-17 family ligand that utilizes a heteromeric receptor complex.
Collapse
Affiliation(s)
- Erika A Rickel
- Department of Inflammation Research, Amgen, Seattle, WA 98119, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
273
|
Gaffen SL, Hajishengallis G. A new inflammatory cytokine on the block: re-thinking periodontal disease and the Th1/Th2 paradigm in the context of Th17 cells and IL-17. J Dent Res 2008; 87:817-28. [PMID: 18719207 PMCID: PMC2692983 DOI: 10.1177/154405910808700908] [Citation(s) in RCA: 245] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
For almost two decades, the Th1/Th2 paradigm has offered a productive conceptual framework for investigating the pathogenesis of periodontitis. However, as with many other inflammatory diseases, the observed role of T-cell-mediated immunity in periodontitis did not readily fit this model. A new subset of CD4+ T-cells was recently discovered that explains many of the discrepancies in the classic Th1/Th2 model, and has been termed "Th17" based on its secretion of the novel pro-inflammatory cytokine IL-17. The identification of Th17 cells as a novel effector T-cell population compels re-examination of periodontitis in the context of the new subset and its signature cytokines. This review aims to offer a clarifying insight into periodontal pathogenesis under the extended Th1/Th2/Th17 paradigm, and is predicated on the principle that periodontal disease activity is determined by a complex interplay between the immune system and periodontal pathogens. The re-examination of existing periodontal literature and further studies in the light of these new discoveries may help explain how the inflammatory response results in damage to the periodontium while generally failing to control the pathogens. This knowledge is essential for the development of immunomodulatory intervention strategies for fine-tuning the host response to maximize the protective and minimize the destructive aspects of the periodontal host response. Moreover, with the advent of anti-cytokine biologic drugs that target the Th1 and Th17 pathways in autoimmunity, the potential consequences to periodontal disease susceptibility in humans need to be understood.
Collapse
Affiliation(s)
- S L Gaffen
- Department of Oral Biology, School of Dental Medicine, 36 Foster Hall, 3435 Main St., State University of New York, Buffalo, NY 14214, USA.
| | | |
Collapse
|
274
|
Abstract
The discovery of the Th1/Th2 paradigm of CD4(+) T-cell subsets redefined our understanding of immunity by highlighting the essential roles of cytokine networks in the induction and regulation of immune responses. Most recently, the identification of an additional subset, known as Th17 cells, has further illustrated the complexity and diversity of effector CD4(+) T cells. Th17 responses have been closely associated with the cytokine interleukin (IL)-23 and, although originally pinpointed as having a deleterious role in autoimmune tissue pathology, the IL-23/Th17 axis has also been associated with protective immunity at mucosal surfaces. Recent progress has highlighted the heterogeneous nature of Th17 responses, has demonstrated diverse cellular sources for Th17-associated cytokines, and has begun to dissect the individual roles of these cytokines in different disease processes. Here, we will review the evidence linking the IL-23/Th17 axis to chronic intestinal inflammation and also will discuss its beneficial roles in intestinal protection and homeostasis.
Collapse
Affiliation(s)
- K J Maloy
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| | | |
Collapse
|
275
|
Tan W, Huang W, Gu X, Zhong Q, Liu B, Schwarzenberger P. IL-17F/IL-17R interaction stimulates granulopoiesis in mice. Exp Hematol 2008; 36:1417-27. [PMID: 18723265 DOI: 10.1016/j.exphem.2008.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 05/27/2008] [Accepted: 06/04/2008] [Indexed: 10/21/2022]
Abstract
OBJECTIVE IL-17F, a member of the interleukin (IL)-17 cytokine family, most closely resembles IL-17A structurally. IL-17A is a potent stimulator of granulopoiesis; its expression is induced in response to microbial challenge. Although IL-17F is considered to be a weak IL-17A analog that is also mediating its effect via IL-17R, its exact role and in vivo functions are unknown. Our goal was to determine the in vivo activity of IL-17F on granulopoiesis as well as on release of granulopoiesis-stimulating downstream cytokines in mice and directly compare its effect to IL-17A. MATERIALS AND METHODS Murine IL-17A (mIL-17A) or IL-17F (mIL-17F) was expressed in vivo in C57BL6 mice using adenoviral gene transfer technology. Peripheral cell counts were assessed as well as hematopoietic precursors using colony-forming assays at set time points. Downstream cytokines were measured using enzyme-linked immunosorbent assay and reverse transcriptase polymerase chain reaction. RESULTS We found mIL-17F to have similar expression kinetics as mIL-17A in splenocytes in vitro and in vivo, following challenge with microbial agents. Overexpression of mIL-17F in vivo resulted in similar neutrophilia and only in slightly reduced myeloid progenitor expansion when compared to mIL-17A. In vivo, there was no difference in releases for granulocyte-macrophage colony-stimulating factor; regulated on activation, normal T expressed and secreted; interferon-inducible protein-10; IL-6; and monocyte chemotactic protein-1 between either cytokine. IL-1A, macrophage inflammatory protein -2 (MIP), KC, and granulocyte colony-stimulating factor expression was approximately half of that seen with mIL-17A. CONCLUSION Both IL-17A and IL-17F are induced by similar stimuli, have similar expression kinetics and despite only minimal in vitro activity for IL-17F, surprisingly they exert similar in vivo bioactivity. IL-17F bioactivity appears to be augmented in vivo through mechanisms that require further investigation.
Collapse
Affiliation(s)
- Weihong Tan
- Department of Gynecology, The People's Hospital of Guangxi Province, P. R. of China
| | | | | | | | | | | |
Collapse
|
276
|
Airway infiltration of CD4+ CCR6+ Th17 type cells associated with chronic cigarette smoke induced airspace enlargement. Immunol Lett 2008; 121:13-21. [PMID: 18706444 DOI: 10.1016/j.imlet.2008.07.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2008] [Revised: 07/17/2008] [Accepted: 07/18/2008] [Indexed: 12/23/2022]
Abstract
Recently, patients with tobacco smoke induced emphysema have been shown to exhibit classical signs of T cell mediated autoimmunity characterized by autoantibody production and Th1 type responses. As the recently described Th17 type subset has been found to play a role in the pathogenesis of a number of autoimmune diseases previously considered to be Th1 driven, we sought to examine whether a Th17 type response was associated with airspace enlargement in a murine model of emphysema. Six to eight months exposure of mice to inhalation of mainstream cigarette smoke led to progressive airspace enlargement as defined by morphometric analysis. Flow cytometric analysis of the bronchoalveolar lavage (BAL) from these mice demonstrated a significant increase in the overall number of both CD4+ and CD8+ T cells present. These cells were subsequently examined for skewing towards a Th1, Th2 or Th17 phenotype by intracellular cytokine analysis. Distinct populations of BAL CD4+ T cells were found to express IFN-gamma or IL-17 demonstrating the presence of both a Th1 and Th17 type response. No expression of the Th2 associated cytokine IL-4 was detected. Further analysis of this Th17 subset demonstrated that the majority of cells with this effector phenotype express the chemokine receptor CCR6. Together these data identify a novel T cell subset associated with pulmonary inflammation as a result of cigarette smoke exposure. Given the reported roles of CCR6 and IL-17 in promoting pulmonary inflammation, this subset may play an important role in the pathogenesis of cigarette smoke induced autoimmunity.
Collapse
|
277
|
Smith E, Stark MA, Zarbock A, Burcin TL, Bruce AC, Vaswani D, Foley P, Ley K. IL-17A inhibits the expansion of IL-17A-producing T cells in mice through "short-loop" inhibition via IL-17 receptor. THE JOURNAL OF IMMUNOLOGY 2008; 181:1357-64. [PMID: 18606690 DOI: 10.4049/jimmunol.181.2.1357] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
IL-23 and IL-17A regulate granulopoiesis through G-CSF, the main granulopoietic cytokine. IL-23 is secreted by activated macrophages and dendritic cells and promotes the expansion of three subsets of IL-17A-expressing neutrophil-regulatory T (Tn) cells; CD4(-)CD8(-)alphabeta(low), CD4(+)CD8(-)alphabeta(+) (Th17), and gammadelta(+) T cells. In this study, we investigate the effects of IL-17A on circulating neutrophil levels using IL-17R-deficient (Il17ra(-/-)) mice and Il17ra(-/-)Itgb2(-/-) mice that lack both IL-17R and all four beta(2) integrins. IL-17R deficiency conferred a reduction in neutrophil numbers and G-CSF levels, as did Ab blockade against IL-17A in wild-type mice. Bone marrow transplantation revealed that IL-17R expression on nonhemopoietic cells had the greatest effects on regulating blood neutrophil counts. Although circulating neutrophil numbers were reduced, IL-17A expression, secretion, and the number of IL-17A-producing Tn cells were elevated in Il17ra(-/-) and Il17ra(-/-)Itgb2(-/-) mice, suggesting a negative feedback effect through IL-17R. The negative regulation of IL-17A-producing T cells and IL-17A and IL-17F gene expression through the interactions of IL-17A or IL-17F with IL-17R was confirmed in splenocyte cultures in vitro. We conclude that IL-17A regulates blood neutrophil counts by inducing G-CSF production mainly in nonhemopoietic cells. IL-17A controls the expansion of IL-17A-producing Tn cell populations through IL-17R.
Collapse
Affiliation(s)
- Emily Smith
- Robert M Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | |
Collapse
|
278
|
Wright JF, Bennett F, Li B, Brooks J, Luxenberg DP, Whitters MJ, Tomkinson KN, Fitz LJ, Wolfman NM, Collins M, Dunussi-Joannopoulos K, Chatterjee-Kishore M, Carreno BM. The Human IL-17F/IL-17A Heterodimeric Cytokine Signals through the IL-17RA/IL-17RC Receptor Complex. THE JOURNAL OF IMMUNOLOGY 2008; 181:2799-805. [DOI: 10.4049/jimmunol.181.4.2799] [Citation(s) in RCA: 221] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
279
|
Bettelli E, Korn T, Oukka M, Kuchroo VK. Induction and effector functions of T(H)17 cells. Nature 2008; 453:1051-7. [PMID: 18563156 DOI: 10.1038/nature07036] [Citation(s) in RCA: 955] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
T helper (T(H)) cells constitute an important arm of the adaptive immune system because they coordinate defence against specific pathogens, and their unique cytokines and effector functions mediate different types of tissue inflammation. The recently discovered T(H)17 cells, the third subset of effector T helper cells, have been the subject of intense research aimed at understanding their role in immunity and disease. Here we review emerging data suggesting that T(H)17 cells have an important role in host defence against specific pathogens and are potent inducers of autoimmunity and tissue inflammation. In addition, the differentiation factors responsible for their generation have revealed an interesting reciprocal relationship with regulatory T (T(reg)) cells, which prevent tissue inflammation and mediate self-tolerance.
Collapse
Affiliation(s)
- Estelle Bettelli
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
280
|
Abstract
The identification of novel helper T (Th) cell subsets, i.e., IL-17-producing Th cells (Th17 cells) and regulatory T cells (Treg cells), provided new insight into our understanding of the molecular mechanisms involved in the development of infectious and autoimmune diseases as well as immune responses, and thus led to revision of the classic Th1/Th2 paradigm. Several current lines of evidence from gene-deficient mice indicate that IL-17 and Th17 cells, but not IFN-gamma and Th1 cells, are responsible for the development of autoimmune diseases such as murine arthritis and encephalomyelitis, which have classically been considered to be Th1-mediated disorders. Th17 cells may also contribute to the pathogenesis of classically recognized Th2-mediated allergic disorders. In this review, we summarize the current knowledge regarding IL-17 and Th17 cells and discuss their potential roles in the pathogenesis of allergic disorders.
Collapse
Affiliation(s)
- Keisuke Oboki
- Department of Allergy and Immunology, National Research Institute for Child Health and Development, Toyko, Japan
| | | | | | | |
Collapse
|
281
|
Roark CL, Simonian PL, Fontenot AP, Born WK, O'Brien RL. gammadelta T cells: an important source of IL-17. Curr Opin Immunol 2008; 20:353-7. [PMID: 18439808 DOI: 10.1016/j.coi.2008.03.006] [Citation(s) in RCA: 269] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 03/10/2008] [Accepted: 03/11/2008] [Indexed: 12/23/2022]
Abstract
IL-17 is a cytokine that plays an important role in orchestrating innate immune function. In addition, IL-17 has been shown to exacerbate autoimmune diseases. CD4(+) alphabeta T cells, gammadelta T cells, and NK cells all produce IL-17. Th17 cells are a newly defined alphabeta(+) T cell lineage characterized by IL-17 production. However, gammadelta T cells are often the major source of this cytokine. Their response can be very rapid during bacterial infections and has been shown to be protective, but IL-17-producing gammadelta T cells have also been found to exacerbate collagen-induced arthritis. Interestingly, some gammadelta T cells produce IL-17 in response to IL-23 alone, even in naïve animals, suggesting they are already differentiated and may develop differently than CD4(+) alphabeta Th17 cells.
Collapse
Affiliation(s)
- Christina L Roark
- Integrated Department of Immunology, National Jewish Medical and Research Center, Denver, CO 80206, USA.
| | | | | | | | | |
Collapse
|
282
|
Abstract
T helper 17 (Th17) cells belong to a recently identified T helper subset, in addition to the traditional Th1 and Th2 subsets. These cells are characterized as preferential producers of interleukin-17A (IL-17A), IL-17F, IL-21, and IL-22. Th17 cells and their effector cytokines mediate host defensive mechanisms to various infections, especially extracellular bacteria infections, and are involved in the pathogenesis of many autoimmune diseases. The receptors for IL-17 and IL-22 are broadly expressed on various epithelial tissues. The effector cytokines of Th17 cells, therefore, mediate the crucial crosstalk between immune system and tissues, and play indispensable roles in tissue immunity.
Collapse
Affiliation(s)
- Wenjun Ouyang
- Department of Immunology, Genentech, 1 DNA Way, South San Francisco, California 94080, USA
| | - Jay K. Kolls
- Division of Pulmonary Medicine, Allergy, and Immunology, Department of Pediatrics, Children’s Hospital of Pittsburgh and The University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yan Zheng
- Inflammation Pathways Group, Pfizer Global Research and Development, St. Louis Laboratories, 700 Chesterfield Parkway West, Chesterfield, Missouri 63017, USA
| |
Collapse
|
283
|
Influencing the fates of CD4 T cells on the path to memory: lessons from influenza. Immunol Cell Biol 2008; 86:343-52. [PMID: 18362946 DOI: 10.1038/icb.2008.13] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the face of emerging infectious diseases caused by rapidly evolving and highly virulent pathogens, such as influenza, we are challenged to develop innovative vaccine strategies that can induce lasting protection. Since CD4 T cells are needed to generate and maintain protective B-cell and CD8 T-cell immunity, and can also mediate additional protective mechanisms, vaccines should ideally elicit efficient CD4 T cell, in addition to CD8 T and B-cell responses. We outline here the process of CD4 T-cell differentiation from naïve to effector and from effector to memory with an emphasis on how exposure to microbial products and variables in antigen presentation can impact the functional quality and heterogeneity of activation-based CD4 T-cell subsets in vitro and in vivo. We discuss the impact of different phases of antigen recognition, the inflammatory milieu, acute versus chronic antigen presentation, and the contribution of residual antigen depots on CD4 T-cell effector differentiation and the formation and maintenance of CD4 T-cell memory. We propose that novel vaccine strategies, which incorporate both microbial products and antigen targeting, may provide a flexible and long-lived memory CD4 T-cell pool.
Collapse
|
284
|
Abstract
Recently, a paradigm shift has emerged in T-cell-mediated adaptive immunity. On the heels of the discovery of T cells with immunosuppressive function, so-called regulatory T cells (Tregs), the diversity of effector cells has expanded to include a third helper T cell, termed Th17. The appreciation that Th17 cells are products of a distinct effector pathway depended critically on observations made during investigations of mouse models of autoimmunity, advanced by discovery of the cytokines IL-17 and IL-23. These studies understandably led investigators to highlight the role played by Th17 cells in autoimmunity. Yet while the dysfunctional behavior of this phenotype as a contributor to inflammatory disease remains a central issue, this pathway evolved to meet a need for host protection against potential pathogens. It has become apparent that the Th17 pathway promotes host defense against certain extracellular bacteria and fungi, but more recent studies also implicate a role in protection against some protozoa and viruses. Here we review the experimental history that ultimately uncovered the existence and nature of Th17 cells, and then turn the reader's attention to what is currently known about Th17 cells as a bulwark against pathogens.
Collapse
|