251
|
Novoa Díaz MB, Carriere P, Gentili C. How the interplay among the tumor microenvironment and the gut microbiota influences the stemness of colorectal cancer cells. World J Stem Cells 2023; 15:281-301. [PMID: 37342226 PMCID: PMC10277969 DOI: 10.4252/wjsc.v15.i5.281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/06/2023] [Accepted: 04/17/2023] [Indexed: 05/26/2023] Open
Abstract
Colorectal cancer (CRC) remains the third most prevalent cancer disease and involves a multi-step process in which intestinal cells acquire malignant characteristics. It is well established that the appearance of distal metastasis in CRC patients is the cause of a poor prognosis and treatment failure. Nevertheless, in the last decades, CRC aggressiveness and progression have been attributed to a specific cell population called CRC stem cells (CCSC) with features like tumor initiation capacity, self-renewal capacity, and acquired multidrug resistance. Emerging data highlight the concept of this cell subtype as a plastic entity that has a dynamic status and can be originated from different types of cells through genetic and epigenetic changes. These alterations are modulated by complex and dynamic crosstalk with environmental factors by paracrine signaling. It is known that in the tumor niche, different cell types, structures, and biomolecules coexist and interact with cancer cells favoring cancer growth and development. Together, these components constitute the tumor microenvironment (TME). Most recently, researchers have also deepened the influence of the complex variety of microorganisms that inhabit the intestinal mucosa, collectively known as gut microbiota, on CRC. Both TME and microorganisms participate in inflammatory processes that can drive the initiation and evolution of CRC. Since in the last decade, crucial advances have been made concerning to the synergistic interaction among the TME and gut microorganisms that condition the identity of CCSC, the data exposed in this review could provide valuable insights into the biology of CRC and the development of new targeted therapies.
Collapse
Affiliation(s)
- María Belén Novoa Díaz
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca 8000, Buenos Aires, Argentina
- Instituto de Ciencias Biológicas y Biomédicas del Sur, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Universidad Nacional del Sur (UNS), Bahía Blanca 8000, Buenos Aires, Argentina
| | - Pedro Carriere
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca 8000, Buenos Aires, Argentina
- Instituto de Ciencias Biológicas y Biomédicas del Sur, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Universidad Nacional del Sur (UNS), Bahía Blanca 8000, Buenos Aires, Argentina
| | - Claudia Gentili
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca 8000, Buenos Aires, Argentina
- Instituto de Ciencias Biológicas y Biomédicas del Sur, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Universidad Nacional del Sur (UNS), Bahía Blanca 8000, Buenos Aires, Argentina
| |
Collapse
|
252
|
Martínez-García J, Fernández B, Álvarez-Barrios A, Álvarez L, González-Iglesias H, Pereiro R. Determination of endogenous trace elements in extracellular vesicles secreted by an in vitro model of human retinal pigment epithelium under oxidative stress conditions using ICP-MS. Talanta 2023; 263:124693. [PMID: 37267885 DOI: 10.1016/j.talanta.2023.124693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 06/04/2023]
Abstract
The determination of endogenous Fe, Cu and Zn in exosomes (<200 nm extracellular vesicles) secreted by an in vitro model of the human retinal pigment epithelium (HRPEsv cell line) was carried out by inductively coupled plasma - mass spectrometry (ICP-MS). Results for cells treated with 2,2'-azobis (2-methylpropionamidine) dihydrochloride (AAPH) inducing oxidative stress (OS) conditions were compared with non-treated (control) cells in order to evaluate possible differences in the metal composition between both groups. Three sample introduction systems were tested for ICP-MS analysis: a micronebulizer and two single cell nebulization systems (as total consumption set-ups), being found one of the single cell systems (operating in bulk mode) as the most suitable. Two protocols for the isolation of exosomes from cell culture media were investigated based on differential centrifugation and precipitation with a polymer-based reagent. Transmission electron microscopy measurements showed smaller and more homogeneous sizes (15-50 nm versus 20-180 nm size range) together with a higher particle concentration for exosomes purified by precipitation compared to differential centrifugation. However, it was observed that the contribution of polymer-based protocol to the Fe, Cu and Zn blank was significant as compared to the differential centrifugation protocol. Therefore, considering the low concentrations of the evaluated endogenous elements in exosomes from the HRPEsv cell line, the polymer-based precipitation method was discarded. When comparing metal levels in samples from control versus OS-treated HRPEsv cells, results for Fe and Cu were statistically similar. However, upregulation of Zn was found during OS conditions (11 versus 34 μg L-1 in control and OS-treatment, respectively), showing Zn depletion through secretory activity induced by OS, underlying the antioxidant ability of RPE cells.
Collapse
Affiliation(s)
- Jaime Martínez-García
- Department of Physical and Analytical Chemistry, University of Oviedo, Julian Clavería 8, 33006, Oviedo, Spain
| | - Beatriz Fernández
- Department of Physical and Analytical Chemistry, University of Oviedo, Julian Clavería 8, 33006, Oviedo, Spain.
| | - Ana Álvarez-Barrios
- Department of Physical and Analytical Chemistry, University of Oviedo, Julian Clavería 8, 33006, Oviedo, Spain; Fundación de Investigación Oftalmológica, Avda, Dres, Fernández-Vega, 34, 33012, Oviedo, Spain
| | - Lydia Álvarez
- Fundación de Investigación Oftalmológica, Avda, Dres, Fernández-Vega, 34, 33012, Oviedo, Spain
| | - Héctor González-Iglesias
- Dairy Research Institute of Asturias, Spanish National Research Council (IPLA-CSIC), Villaviciosa, Spain.
| | - Rosario Pereiro
- Department of Physical and Analytical Chemistry, University of Oviedo, Julian Clavería 8, 33006, Oviedo, Spain
| |
Collapse
|
253
|
Wang H, Li X, Wang W, Xu J, Ai W, Huang H, Wang X. Immunotoxicity induced by triclocarban exposure in zebrafish triggering the risk of pancreatic cancer. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 325:121458. [PMID: 36934961 DOI: 10.1016/j.envpol.2023.121458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/30/2022] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
Owing to frequent application as a broad-spectrum bactericide, triclocarban (TCC) exposure has raised great concern for aquatic organisms and human health. Herein, based on transcriptome sequencing data analysis of zebrafish, we confirmed that TCC induced oxidative stress and dysimmunity through transcriptional regulation of the related genes. With aid of the Cancer Genome Atlas (TCGA) assembler database, 52 common differentially expressed genes, whose functions were related to immunity, were screened out by virtue of the meta-analysis of pancreatic cancer sample data and differential transcription profiles from TCC-exposed larvae. Acute TCC exposure affected formation of the innate immune cells, delayed mature thymic T-cell development, reduced immunoglobulin M (IgM) levels and promoted excessive release of the pro-inflammatory factors (IL-6, IL-1β and tnfα). Under TCC exposure, the expressions of the genes associated with immune cell abundance in pancreatic cancer were significantly down-regulated, while the levels of ROS were prominently increased in concomitant with suppressed antioxidant activity. Moreover, a series of marker genes (pi3k, nrf2, keap1, ho-1 and nqo1) in the PI3K/Nrf2 antioxidant-stress pathway were abnormally expressed under TCC exposure. Interestingly, vitamin C decreased the malformation and increased the survival rate of 120-hpf larvae and effectively alleviated TCC-induced oxidative stress and immune responses. Overall, TCC exposure induced immunotoxicity and increased the risk of pancreatic cancer by inhibiting the antioxidant capacity of the PI3K/Nrf2 signal pathway. These observations enrich our in-depth understanding of the effects of TCC on early embryonic-larval development and immune damage in zebrafish.
Collapse
Affiliation(s)
- Huili Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China; School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xin Li
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Weiwei Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jiaqi Xu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Weiming Ai
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Haishan Huang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Xuedong Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| |
Collapse
|
254
|
Caserta S, Genovese C, Cicero N, Gangemi S, Allegra A. The Anti-Cancer Effect of Cinnamon Aqueous Extract: A Focus on Hematological Malignancies. Life (Basel) 2023; 13:life13051176. [PMID: 37240821 DOI: 10.3390/life13051176] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/10/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Cinnamon is an evergreen and tropical plant of the family Lauraceae, growing particularly in Sri Lanka, whose aqueous extract has been tested in different studies to evaluate its possible use as an anti-cancer compound. Both in vitro and in vivo experiments seem to confirm that it acts on various cellular pathways, contributing to down-regulating the activity of molecules that stimulate the proliferation and survival of cells such as the transcription factors NF-KB and AP-1, COX-2, dihydrofolate reductase and pro-angiogenic substances such as VEGF, while up-regulating the function of immune cells against tumors, such as cytotoxic CD8+ T cells. In hematological malignancies, aqueous cinnamon extract has been studied in order to understand if it is possible to count on its help, alone or in combination with traditional drugs such as doxorubicin, to treat patients. The aim of our work is to investigate results from in vitro and in vivo studies about the possible anti-cancer effect of aqueous cinnamon extract in hematological malignancies and the different pathways involved in its action. The possibility of using cinnamon extract in clinical practice is discussed; even if its use could appear very interesting, more studies are necessary to clear the real potentiality of this substance in cancer.
Collapse
Affiliation(s)
- Santino Caserta
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Claudia Genovese
- National Research Council, Institute for Agricultural and Forest Systems in the Mediterranean, Via Empedocle 58, 95128 Catania, Italy
| | - Nicola Cicero
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| |
Collapse
|
255
|
Pinho SA, Anjo SI, Cunha-Oliveira T. Metabolic Priming as a Tool in Redox and Mitochondrial Theragnostics. Antioxidants (Basel) 2023; 12:1072. [PMID: 37237939 PMCID: PMC10215850 DOI: 10.3390/antiox12051072] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Theragnostics is a promising approach that integrates diagnostics and therapeutics into a single personalized strategy. To conduct effective theragnostic studies, it is essential to create an in vitro environment that accurately reflects the in vivo conditions. In this review, we discuss the importance of redox homeostasis and mitochondrial function in the context of personalized theragnostic approaches. Cells have several ways to respond to metabolic stress, including changes in protein localization, density, and degradation, which can promote cell survival. However, disruption of redox homeostasis can lead to oxidative stress and cellular damage, which are implicated in various diseases. Models of oxidative stress and mitochondrial dysfunction should be developed in metabolically conditioned cells to explore the underlying mechanisms of diseases and develop new therapies. By choosing an appropriate cellular model, adjusting cell culture conditions and validating the cellular model, it is possible to identify the most promising therapeutic options and tailor treatments to individual patients. Overall, we highlight the importance of precise and individualized approaches in theragnostics and the need to develop accurate in vitro models that reflect the in vivo conditions.
Collapse
Affiliation(s)
- Sónia A. Pinho
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3060-197 Cantanhede, Portugal; (S.A.P.); (S.I.A.)
- PDBEB—PhD Programme in Experimental Biology and Biomedicine, Institute of Interdisciplinary Research (IIIUC), University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Sandra I. Anjo
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3060-197 Cantanhede, Portugal; (S.A.P.); (S.I.A.)
- IIIUC, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Teresa Cunha-Oliveira
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3060-197 Cantanhede, Portugal; (S.A.P.); (S.I.A.)
- IIIUC, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
256
|
Islam A, Shaukat Z, Newman DL, Hussain R, Ricos MG, Dibbens L, Gregory SL. Chromosomal Instability Causes Sensitivity to Polyamines and One-Carbon Metabolism. Metabolites 2023; 13:metabo13050642. [PMID: 37233683 DOI: 10.3390/metabo13050642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023] Open
Abstract
Aneuploidy, or having a disrupted genome, is an aberration commonly found in tumours but rare in normal tissues. It gives rise to proteotoxic stress as well as a stereotypical oxidative shift, which makes these cells sensitive to internal and environmental stresses. Using Drosophila as a model, we investigated the changes in transcription in response to ongoing changes to ploidy (chromosomal instability, CIN). We noticed changes in genes affecting one-carbon metabolism, specifically those affecting the production and use of s-adenosyl methionine (SAM). The depletion of several of these genes has led to cell death by apoptosis in CIN cells but not in normal proliferating cells. We found that CIN cells are particularly sensitive to SAM metabolism at least partly because of its role in generating polyamines. Feeding animals spermine was seen to rescue the cell death caused by the loss of SAM synthase in CIN tissues. The loss of polyamines led to decreased rates of autophagy and sensitivity to reactive oxygen species (ROS), which we have shown to contribute significantly to cell death in CIN cells. These findings suggest that a well-tolerated metabolic intervention such as polyamine inhibition has the potential to target CIN tumours via a relatively well-characterised mechanism.
Collapse
Affiliation(s)
- Anowarul Islam
- College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia 2 Clinical and Health Sciences, University of South Australia, Adelaide 5001, Australia 3 School of Biological Sciences, University of Adelaide, Adelaide 5006, Australia
- Clinical and Health Sciences, University of South Australia, Adelaide 5001, Australia
| | - Zeeshan Shaukat
- Clinical and Health Sciences, University of South Australia, Adelaide 5001, Australia
| | - David L Newman
- School of Biological Sciences, University of Adelaide, Adelaide 5006, Australia
| | - Rashid Hussain
- Clinical and Health Sciences, University of South Australia, Adelaide 5001, Australia
| | - Michael G Ricos
- Clinical and Health Sciences, University of South Australia, Adelaide 5001, Australia
| | - Leanne Dibbens
- Clinical and Health Sciences, University of South Australia, Adelaide 5001, Australia
| | - Stephen L Gregory
- College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia 2 Clinical and Health Sciences, University of South Australia, Adelaide 5001, Australia 3 School of Biological Sciences, University of Adelaide, Adelaide 5006, Australia
| |
Collapse
|
257
|
Veltman CHJ, Pennings JLA, van de Water B, Luijten M. An Adverse Outcome Pathway Network for Chemically Induced Oxidative Stress Leading to (Non)genotoxic Carcinogenesis. Chem Res Toxicol 2023. [PMID: 37156502 DOI: 10.1021/acs.chemrestox.2c00396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Nongenotoxic (NGTX) carcinogens induce cancer via other mechanisms than direct DNA damage. A recognized mode of action for NGTX carcinogens is induction of oxidative stress, a state in which the amount of oxidants in a cell exceeds its antioxidant capacity, leading to regenerative proliferation. Currently, carcinogenicity assessment of environmental chemicals primarily relies on genetic toxicity end points. Since NGTX carcinogens lack genotoxic potential, these chemicals may remain undetected in such evaluations. To enhance the predictivity of test strategies for carcinogenicity assessment, a shift toward mechanism-based approaches is required. Here, we present an adverse outcome pathway (AOP) network for chemically induced oxidative stress leading to (NGTX) carcinogenesis. To develop this AOP network, we first investigated the role of oxidative stress in the various cancer hallmarks. Next, possible mechanisms for chemical induction of oxidative stress and the biological effects of oxidative damage to macromolecules were considered. This resulted in an AOP network, of which associated uncertainties were explored. Ultimately, development of AOP networks relevant for carcinogenesis in humans will aid the transition to a mechanism-based, human relevant carcinogenicity assessment that involves a substantially lower number of laboratory animals.
Collapse
Affiliation(s)
- Christina H J Veltman
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven, The Netherlands
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, 2333 CC Leiden, The Netherlands
| | - Jeroen L A Pennings
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven, The Netherlands
| | - Bob van de Water
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, 2333 CC Leiden, The Netherlands
| | - Mirjam Luijten
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven, The Netherlands
| |
Collapse
|
258
|
Zani CP, Zani AP, Thomazini CM, Retamiro KM, de Oliveira AR, Gonçalves DL, Sarragiotto MH, Garcia FP, de Oliveira Silva S, Nakamura CV, Ueda-Nakamura T. β-Carboline-α-aminophosphonate Derivative: A Promising Antitumor Agent for Breast Cancer Treatment. Molecules 2023; 28:molecules28093949. [PMID: 37175359 PMCID: PMC10179861 DOI: 10.3390/molecules28093949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Breast cancer is the most common type of cancer and the leading cause of cancer mortality among women worldwide. Considering the limitations of the current treatments available, we analyzed the in vitro cytotoxic potential of ((4-Fluoro-phenyl)-{2-[(1-phenyl-9H-β-carboline-3-carbonyl)-amino]-ethylamino}-methyl)-phosphonic acid dibutyl ester (BCP-1) in breast cancer cells (MCF-7 and MDA-MB-231) and in a non-tumor breast cell line (MCF-10A). BCP-1 has an α-aminophosphonate unit linked to the β-carboline nucleus, and the literature indicates that compounds of these classes have high biological potential. In the present study, the mechanism of action of BCP-1 was investigated through methods of spectrofluorimetry, flow cytometry, and protein expression analysis. It was found that BCP-1 inhibited the proliferation of both cancer cell lines. Furthermore, it induced oxidative stress and cell cycle arrest in G2/M. Upregulation of apoptosis-related proteins such as Bax, cytochrome C, and caspases, as well as a decrease in the anti-apoptotic protein Bcl-2, indicated potential induction of apoptosis in the MDA-MB-231 cells. While in MCF-7 cells, BCP-1 activated the autophagic death pathway, which was demonstrated by an increase in autophagic vacuoles and acidic organelles, in addition to increased expression of LC3I/LC3II and reduced SQSTM1/p62 expression. Further, BCP-1 demonstrated antimetastatic potential by reducing MMP-9 expression and cell migration in both breast cancer cell lines. In conclusion, BCP-1 is a promising candidate for breast cancer chemotherapy.
Collapse
Affiliation(s)
- Caroline Pinto Zani
- Laboratory of Technological Innovation in the Development of Pharmaceuticals and Cosmetics, State University of Maringá, Maringá CEP 87020-900, Paraná, Brazil
| | - Aline Pinto Zani
- Laboratory of Technological Innovation in the Development of Pharmaceuticals and Cosmetics, State University of Maringá, Maringá CEP 87020-900, Paraná, Brazil
| | - Cristiane Melissa Thomazini
- Laboratory of Technological Innovation in the Development of Pharmaceuticals and Cosmetics, State University of Maringá, Maringá CEP 87020-900, Paraná, Brazil
| | - Karina Miyuki Retamiro
- Laboratory of Technological Innovation in the Development of Pharmaceuticals and Cosmetics, State University of Maringá, Maringá CEP 87020-900, Paraná, Brazil
| | | | - Débora Laís Gonçalves
- Department of Chemistry, State University of Maringá, Maringá CEP 87020-900, Paraná, Brazil
| | | | - Francielle Pelegrin Garcia
- Laboratory of Technological Innovation in the Development of Pharmaceuticals and Cosmetics, State University of Maringá, Maringá CEP 87020-900, Paraná, Brazil
| | - Sueli de Oliveira Silva
- Laboratory of Technological Innovation in the Development of Pharmaceuticals and Cosmetics, State University of Maringá, Maringá CEP 87020-900, Paraná, Brazil
| | - Celso Vataru Nakamura
- Laboratory of Technological Innovation in the Development of Pharmaceuticals and Cosmetics, State University of Maringá, Maringá CEP 87020-900, Paraná, Brazil
| | - Tania Ueda-Nakamura
- Laboratory of Technological Innovation in the Development of Pharmaceuticals and Cosmetics, State University of Maringá, Maringá CEP 87020-900, Paraná, Brazil
| |
Collapse
|
259
|
Huang Z, Tan Y. The Potential of Cylindromatosis (CYLD) as a Therapeutic Target in Oxidative Stress-Associated Pathologies: A Comprehensive Evaluation. Int J Mol Sci 2023; 24:8368. [PMID: 37176077 PMCID: PMC10179184 DOI: 10.3390/ijms24098368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Oxidative stress (OS) arises as a consequence of an imbalance between the formation of reactive oxygen species (ROS) and the capacity of antioxidant defense mechanisms to neutralize them. Excessive ROS production can lead to the damage of critical biomolecules, such as lipids, proteins, and DNA, ultimately contributing to the onset and progression of a multitude of diseases, including atherosclerosis, chronic obstructive pulmonary disease, Alzheimer's disease, and cancer. Cylindromatosis (CYLD), initially identified as a gene linked to familial cylindromatosis, has a well-established and increasingly well-characterized function in tumor inhibition and anti-inflammatory processes. Nevertheless, burgeoning evidence suggests that CYLD, as a conserved deubiquitination enzyme, also plays a pivotal role in various key signaling pathways and is implicated in the pathogenesis of numerous diseases driven by oxidative stress. In this review, we systematically examine the current research on the function and pathogenesis of CYLD in diseases instigated by oxidative stress. Therapeutic interventions targeting CYLD may hold significant promise for the treatment and management of oxidative stress-induced human diseases.
Collapse
Affiliation(s)
| | - Yanjie Tan
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250358, China;
| |
Collapse
|
260
|
Wang D, Tian Z, Zhang P, Zhen L, Meng Q, Sun B, Xu X, Jia T, Li S. The molecular mechanisms of cuproptosis and its relevance to cardiovascular disease. Biomed Pharmacother 2023; 163:114830. [PMID: 37150036 DOI: 10.1016/j.biopha.2023.114830] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 04/11/2023] [Accepted: 04/30/2023] [Indexed: 05/09/2023] Open
Abstract
Recently, cuproptosis has been demonstrated to be a new non-apototic cell death mode that is characterized by copper dependence and the regulation of mitochondrial respiration. Cuproptosis is distinct from known cell death modes such as apoptosis, necrosis, pyroptosis, or ferroptosis. Excessive copper induces cuproptosis by promoting protein toxic stress reactions via copper-dependent anomalous oligomerization of lipoylation proteins in the tricarboxylic acid (TCA) cycle and reducing iron-sulfur cluster protein levels. Ferredoxin1 (FDX1) promotes dihydrolipoyl transacetylase (DLAT) lipoacylation and abates iron-sulfur cluster proteins by reducing Cu2+ to Cu+, inducing cell death. Copper homeostasis depends on the copper transporter, and disturbances to this homeostasis cause cuproptosis. Recent evidence has shown that cuproptosis plays a significant role in the occurrence and development of many cardiovascular diseases, such as myocardial ischemia/reperfusion (I/R) injury, heart failure, atherosclerosis, and arrhythmias. Copper chelators, such as ammonium tetrathiomolybdate(VI) and DL-Penicillamine, may ease the above cardiovascular diseases by inhibiting the cuproptosis pathway. Oxidative phosphorylation inhibitors may inhibit cuproptosis by inhibiting protein stress response. In conclusion, cuproptosis plays an essential role in cardiovascular disease pathogenesis. Inhibition of cardiovascular cuproptosis is expected to become a potential treatment. Here, we will thoroughly review the molecular mechanisms involved in cuproptosis and its significance in cardiovascular disease.
Collapse
Affiliation(s)
- Di Wang
- Department of Anesthesiology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhenyu Tian
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health. Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational. Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Peng Zhang
- Department of Urology, Zibo Hospital of Integrated Traditional Chinese and Western Medicine, Zibo, China
| | - Lv Zhen
- Department of Cardiology, Zibo First Hospital, Zibo, China
| | - Qingju Meng
- Department of Internal Medicine, Zoucheng Xiangcheng Town Health Center, Jining, China
| | - Benteng Sun
- Department of Primary and Secondary education, Qufu Mingde School, Jining, China
| | - Xingli Xu
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Tong Jia
- Department of Geratology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, China
| | - Shengqiang Li
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, China.
| |
Collapse
|
261
|
Kour R, Sharma N, Showkat S, Sharma S, Nagaiah K, Kumar S, Kaur S. Methanolic fraction of Cassia fistula L. bark exhibits potential to combat oxidative stress and possess antiproliferative activity. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:296-312. [PMID: 36919564 DOI: 10.1080/15287394.2023.2189435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Cassia fistula L. is well known for its traditional medicinal properties as an anti-inflammatory, hepatoprotective, antifungal, antibacterial, antimutagenic, and wound healing agent. The aim of the present study was to determine antioxidant, genoprotective, and cytotoxic potential of different fractions of C. fistula bark including hexane (CaMH), chloroform (CaMC), ethyl acetate (CaME), and methanol (CaMM). Among all the fractions studied, CaMM exhibited maximal radical scavenging activity in antioxidant DPPH assay, Superoxide anion radical scavenging assay and nitric oxide radical scavenging assay displayed an IC50 value of 18.95, 29.41, and 13.38 µg/ml, respectively. CaMM fraction possessed the highest phenolic (130.37 mg gallic acid equivalent/g dry weight of extract) and flavonoid (36.96 mg rutin equivalent/g dry weight of fraction) content. Data demonstrated significant positive correlation between polyphenol levels and radical scavenging activity. Single cell gel electrophoresis (Comet assay) exhibited genoprotective potential of C. fistula bark fractions against DNA damage induced by hydrogen peroxide (H2O2) in human lymphocytes. CaMM fraction displayed highest protective ability against H2O2 induced-toxicity as evidenced by significant decrease in % tail DNA content from 30 to 7% at highest concentration (200 µg/ml). CaMM was found to be rich in catechin, gallic acid, chlorogenic acid, and kaempferol. The phenolic content and antioxidant ability of the fractions was markedly negatively correlated with H2O2- induced DNA damage in human lymphocytes. Cytotoxic potential was evaluated against dermal epidermoid carcinoma (A431), pancreatic (MIA PaCa-2) and brain glioblastoma (LN-18) cancer cell lines using MTT assay. Results showed that C. fistula bark fractions possessed highest toxicity against the skin carcinoma cells. CaMM fraction reduced over 50% cell growth at the concentration of 76.72 µg/ml in A431 cells. These findings suggest that fractions of C. fistula bark exhibit potential to be considered as therapeutic agents in various carcinomas.
Collapse
Affiliation(s)
- Rasdeep Kour
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Neha Sharma
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Sheikh Showkat
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Sunil Sharma
- Aquatic toxicology lab, Department of Zoology, Guru Nanak Dev University, Amritsar, India
| | - Kommu Nagaiah
- Centre for natural products and Traditional knowledge, CSIR- Indian Institute of Chemical Technology, Hyderabad, India
| | - Subodh Kumar
- Department of Chemistry, Centre for Advanced Studies, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Satwinderjeet Kaur
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
262
|
Zhang X, Yu S, Li X, Wen X, Liu S, Zu R, Ren H, Li T, Yang C, Luo H. Research progress on the interaction between oxidative stress and platelets: Another avenue for cancer? Pharmacol Res 2023; 191:106777. [PMID: 37080257 DOI: 10.1016/j.phrs.2023.106777] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/06/2023] [Accepted: 04/18/2023] [Indexed: 04/22/2023]
Abstract
Oxidative stress (OS) is a chemical imbalance between an oxidant and an antioxidant, causing damage to redox signaling and control or causing molecular damage. Unbalanced oxidative metabolism can produce excessive reactive oxygen species (ROS). These excess ROS can cause drastic changes in platelet metabolism and further affect platelet function. It will also lead to an increase in platelet procoagulant phenotype and cell apoptosis, which will increase the risk of thrombosis. The creation of ROS and subsequent platelet activation, adhesion, and recruitment are then further encouraged in an auto-amplifying loop by ROS produced from platelets. Meanwhile, cancer cells produce a higher concentration of ROS due to their fast metabolism and high proliferation rate. However, excessive ROS can result in damage to and modification of cellular macromolecules. The formation of cancer and its progression is strongly associated with oxidative stress and the resulting oxidative damage. In addition, platelets are an important part of the tumor microenvironment, and there is a significant cross-communication between platelets and cancer cells. Cancer cells alter the activation status of platelets, their RNA spectrum, proteome, and other properties. The "cloaking" of cancer cells by platelets providing physical protection,avoiding destruction from shear stress and the attack of immune cells, promoting tumor cell invasion.We explored the vicious circle interaction between ROS, platelets, and cancer in this review, and we believe that ROS can play a stimulative role in tumor growth and metastasis through platelets.
Collapse
Affiliation(s)
- Xingmei Zhang
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041 China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610042, China
| | - Sisi Yu
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041 China
| | - Xiaobo Li
- Molecular Diagnostic Laboratory of Department of Microbiology and Immunology, 3201 Hospital Affiliated to Medical College of Xi'an Jiaotong University, Hanzhong 723099, China
| | - Xiaoxia Wen
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610042, China
| | - Shan Liu
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610042, China
| | - Ruiling Zu
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041 China
| | - Hanxiao Ren
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610042, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Chaoguo Yang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610042, China.
| | - Huaichao Luo
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041 China.
| |
Collapse
|
263
|
Xi Y, Chi Z, Tao X, Zhai X, Zhao Z, Ren J, Yang S, Dong D. Naringin against doxorubicin-induced hepatotoxicity in mice through reducing oxidative stress, inflammation, and apoptosis via the up-regulation of SIRT1. ENVIRONMENTAL TOXICOLOGY 2023; 38:1153-1161. [PMID: 36811345 DOI: 10.1002/tox.23755] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 01/18/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Clinical application of doxorubicin is limited because of its potential side effects. The present study examined whether naringin had protective actions on doxorubicin-induced liver injury. Male BALB/c mice and alpha mouse liver 12 (AML-12) cells were used in this paper. The results showed that AML-12 cells treated with naringin significantly reduced cell injury, reactive oxygen species release and apoptosis level; Moreover, naringin notably alleviated liver injury by decreasing aspartate transaminase, alanine transaminase and malondialdehyde, and increasing superoxide dismutase, glutathione and catalase levels. Mechanism researches indicated that naringin increased the expression levels of sirtuin 1 (SIRT1), and inhibited the downstream inflammatory, apoptotic and oxidative stress signaling pathways. Further validation was obtained by knocking down SIRT1 in vitro, which proved the effects of naringin on doxorubicin-induced liver injury. Therefore, naringin is a valuable lead compound for preventing doxorubicin-induced liver damage by reducing oxidative stress, inflammation, and apoptosis via up-regulation of SIRT1.
Collapse
Affiliation(s)
- Yan Xi
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhongchao Chi
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Department of Pharmacy, Third People's Hospital of Dalian, Dalian, China
| | - Xufeng Tao
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaohan Zhai
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zirui Zhao
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jiaqi Ren
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shilei Yang
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Deshi Dong
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
264
|
Liang L, Yang Y, Liu H, Yuan F, Yuan Y, Li W, Huang C, Chen J, Liu Y. Synthesis, characterization, anticancer efficacy evaluation of ruthenium(II) and iridium(III) polypyridyl complexes toward A549 cells. J Biol Inorg Chem 2023; 28:421-437. [PMID: 37097484 DOI: 10.1007/s00775-023-01997-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 03/14/2023] [Indexed: 04/26/2023]
Abstract
A new ligand DFIP (2-(dibenzo[b,d]furan-3-yl)-1H-imidazo[4,5-f][1,10]phenanthroline) and its two complexes iridium(III) [Ir(ppy)2(DFIP)](PF6) (ppy = 2-phenylpyridine, Ir1) and ruthenium(II) [Ru(bpy)2(DFIP)](PF6)2 (bpy = 2,2'-bipyridine, Ru1) were synthesized and characterized. The anticancer effects of the two complexes on A549, BEL-7402, HepG2, SGC-7901, HCT116 and normal LO2 cells were tested by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. Complex Ir1 shows high cytotoxic activity on A549, BEL-7402, SGC-7901 and HepG2, Ru1 exhibits moderate anticancer activity toward A549, BEL-7402 and SGC-7901 cells. The IC50 values of Ir1 and Ru1 toward A549 are 7.2 ± 0.1 and 22.6 ± 1.4 μM, respectively. The localization of complexes Ir1 and Ru1 in the mitochondrial, intracellular accumulation of reactive oxygen species (ROS) levels, and the changes of mitochondrial membrane potential (MMP) and cytochrome c (cyto-c) were investigated. Apoptosis and cell cycle were detected by flow cytometry. Immunogenic cell death (ICD) was used to detect the effects of Ir1 and Ru1 on the A549 using a confocal laser scanning microscope. The expression of apoptosis-related proteins was detected by western blotting. Ir1 and Ru1 can increase the intracellular ROS levels and release cyto-c, reduce the MMP, leading to the apoptosis of A549 cells and blocking the A549 cells at the G0/G1 phase. Additionally, the complexes caused a decrease of the expression of polyADP-ribose polymerase (PARP), caspase 3, Bcl-2 (B-cell lymphoma-2), PI3K (phosphoinositide-3 kinase) and upregulated the expression of Bax. All these findings indicated that the complexes exert anticancer efficacy to induce cell death through immunogenic cell death, apoptosis, and autophagy.
Collapse
Affiliation(s)
- Lijuan Liang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Yan Yang
- Department of Pharmacy, Guangdong Second Provincial General Hospital, Guangzhou, 510317, People's Republic of China.
| | - Haimei Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Fang Yuan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Yuhan Yuan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Wenlong Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Chunxia Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Jing Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Yunjun Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China.
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
265
|
Wei X, Zeng Y, Meng F, Wang T, Wang H, Yuan Y, Li D, Zhao Y. Calycosin-7-glucoside promotes mitochondria-mediated apoptosis in hepatocellular carcinoma by targeting thioredoxin 1 to regulate oxidative stress. Chem Biol Interact 2023; 374:110411. [PMID: 36812960 DOI: 10.1016/j.cbi.2023.110411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/05/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
Thioredoxin1 (TRX1) is a key protein that regulates redox and is considered to be a key target for cancer therapy. Flavonoids have been proven to have good antioxidant and anticancer activities. This study aimed to investigate whether the flavonoid calycosin-7-glucoside (CG) exerts an anti-hepatocellular carcinoma (HCC) role by targeting TRX1. Different doses of CG were used to treat HCC cell lines Huh-7 and HepG2 to calculate the IC50. On this basis, the effects of low, medium and high doses of CG on cell viability, apoptosis, oxidative stress and TRX1 expression of HCC cells were investigated in vitro. Also, HepG2 xenograft mice were used to evaluate the role of CG on HCC growth in vivo. The binding mode of CG and TRX1 was explored by molecular docking. Then si-TRX1 was used to further discover the effects of TRX1 on CG inhibition of HCC. Results found that CG dose-dependent decreased the proliferation activity of Huh-7 and HepG2 cells, induced apoptosis, significantly activated oxidative stress and inhibited TRX1 expression. In vivo experiments also showed that CG dose-dependent regulated oxidative stress and TRX1 expression, and promoted the expression of apoptotic proteins to inhibit HCC growth. Molecular docking confirmed that CG had a good binding effect with TRX1. Intervention with TRX1 significantly inhibited the proliferation of HCC cells, promoted apoptosis, and further promoted the effect of CG on the activity of HCC cells. In addition, CG significantly increased ROS production, reduced mitochondrial membrane potential, regulated the expression of Bax, Bcl-2 and cleaved-caspase-3, and activated mitochondria-mediated apoptosis. And si-TRX1 enhanced the effects of CG on mitochondrial function and apoptosis of HCC, suggesting that TRX1 participated in the inhibitory effect of CG on mitochondria-mediated apoptosis of HCC. In conclusion, CG exerts anti-HCC activity by targeting TRX1 to regulate oxidative stress and promote mitochondria-mediated apoptosis.
Collapse
Affiliation(s)
- Xiaodong Wei
- College of Bioengineering and Biotechnology, Tianshui Normal University, Tianshui, 741001, China.
| | - Yanping Zeng
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, 400715, China
| | - Fancheng Meng
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, 400715, China
| | - Tingpu Wang
- College of Bioengineering and Biotechnology, Tianshui Normal University, Tianshui, 741001, China
| | - Hebin Wang
- College of Chemical Engineering and Technology, Tianshui Normal University, Tianshui, 741001, China
| | - Yijun Yuan
- College of Bioengineering and Biotechnology, Tianshui Normal University, Tianshui, 741001, China
| | - Dongmei Li
- College of Bioengineering and Biotechnology, Tianshui Normal University, Tianshui, 741001, China
| | - Yue Zhao
- College of Bioengineering and Biotechnology, Tianshui Normal University, Tianshui, 741001, China
| |
Collapse
|
266
|
Vázquez-Meza H, Vilchis-Landeros MM, Vázquez-Carrada M, Uribe-Ramírez D, Matuz-Mares D. Cellular Compartmentalization, Glutathione Transport and Its Relevance in Some Pathologies. Antioxidants (Basel) 2023; 12:antiox12040834. [PMID: 37107209 PMCID: PMC10135322 DOI: 10.3390/antiox12040834] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Reduced glutathione (GSH) is the most abundant non-protein endogenous thiol. It is a ubiquitous molecule produced in most organs, but its synthesis is predominantly in the liver, the tissue in charge of storing and distributing it. GSH is involved in the detoxification of free radicals, peroxides and xenobiotics (drugs, pollutants, carcinogens, etc.), protects biological membranes from lipid peroxidation, and is an important regulator of cell homeostasis, since it participates in signaling redox, regulation of the synthesis and degradation of proteins (S-glutathionylation), signal transduction, various apoptotic processes, gene expression, cell proliferation, DNA and RNA synthesis, etc. GSH transport is a vital step in cellular homeostasis supported by the liver through providing extrahepatic organs (such as the kidney, lung, intestine, and brain, among others) with the said antioxidant. The wide range of functions within the cell in which glutathione is involved shows that glutathione’s role in cellular homeostasis goes beyond being a simple antioxidant agent; therefore, the importance of this tripeptide needs to be reassessed from a broader metabolic perspective.
Collapse
|
267
|
Bi M, Li D, Zhang J. Role of curcumin in ischemia and reperfusion injury. Front Pharmacol 2023; 14:1057144. [PMID: 37021057 PMCID: PMC10067738 DOI: 10.3389/fphar.2023.1057144] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/23/2023] [Indexed: 03/22/2023] Open
Abstract
Ischemia-reperfusion injury (IRI) is an inevitable pathological process after organic transplantations. Although traditional treatments restore the blood supply of ischemic organs, the damage caused by IRI is always ignored. Therefore, the ideal and effective therapeutic strategy to mitigate IRI is warrented. Curcumin is a type of polyphenols, processing such properties as anti-oxidative stress, anti-inflammation and anti-apoptosis. However, although many researches have been confirmed that curcumin can exert great effects on the mitigation of IRI, there are still some controversies about its underlying mechanisms among these researches. Thus, this review is to summarize the protective role of curcumin against IRI as well as the controversies of current researches, so as to clarify its underlying mechanisms clearly and provide clinicians a novel idea of the therapy for IRI.
Collapse
Affiliation(s)
- Minglei Bi
- Department of Plastic Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Danyi Li
- Department of Ophthalmology, Jiading District Central Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Jin Zhang
- Department of Plastic Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- *Correspondence: Jin Zhang,
| |
Collapse
|
268
|
Ji X, Tang Z, Zhang F, Zhou F, Wu Y, Wu D. Dietary taurine supplementation counteracts deoxynivalenol-induced liver injury via alleviating oxidative stress, mitochondrial dysfunction, apoptosis, and inflammation in piglets. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114705. [PMID: 36863159 DOI: 10.1016/j.ecoenv.2023.114705] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/16/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Deoxynivalenol (DON), as a widespread Fusarium mycotoxin in cereals, food products, and animal feed, is detrimental to both human and animal health. The liver is not only the primary organ responsible for DON metabolism but also the principal organ affected by DON toxicity. Taurine is well known to display various physiological and pharmacological functions due to its antioxidant and anti-inflammatory properties. However, the information regarding taurine supplementation counteracting DON-induced liver injury in piglets is still unclear. In our work, twenty-four weaned piglets were subjected to four groups for a 24-day period, including the BD group (a basal diet), the DON group (3 mg/kg DON-contaminated diet), the DON+LT group (3 mg/kg DON-contaminated diet + 0.3% taurine), and the DON+HT group (3 mg/kg DON-contaminated diet + 0.6% taurine). Our findings indicated that taurine supplementation improved growth performance and alleviated DON-induced liver injury, as evidenced by the reduced pathological and serum biochemical changes (ALT, AST, ALP, and LDH), especially in the group with the 0.3% taurine. Taurine could counteract hepatic oxidative stress in piglets exposed to DON, as it reduced ROS, 8-OHdG, and MDA concentrations and improved the activity of antioxidant enzymes. Concurrently, taurine was observed to upregulate the expression of key factors involved in mitochondrial function and the Nrf2 signaling pathway. Furthermore, taurine treatment effectively attenuated DON-induced hepatocyte apoptosis, as verified through the decreased proportion of TUNEL-positive cells and regulation of the mitochondria-mediated apoptosis pathway. Finally, the administration of taurine was able to reduce liver inflammation due to DON, by inactivating the NF-κB signaling pathway and declining the production of pro-inflammatory cytokines. In summary, our results implied that taurine effectively improved DON-induced liver injury. The underlying mechanism should be that taurine restored mitochondrial normal function and antagonized oxidative stress, thereby reducing apoptosis and inflammatory responses in the liver of weaned piglets.
Collapse
Affiliation(s)
- Xu Ji
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230001, China; Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Chuzhou 233100, China
| | - Zhongqi Tang
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China
| | - Feng Zhang
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China; Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Chuzhou 233100, China; Fengyang Xiaogang Minyi Land Shares Cooperatives, Chuzhou 233100, China
| | - Fen Zhou
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230001, China
| | - Yijing Wu
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230001, China
| | - Dong Wu
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230001, China.
| |
Collapse
|
269
|
Chen R, Wei JM. Integrated analysis identifies oxidative stress-related lncRNAs associated with progression and prognosis in colorectal cancer. BMC Bioinformatics 2023; 24:76. [PMID: 36869292 PMCID: PMC9985255 DOI: 10.1186/s12859-023-05203-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common cancers in the world. Oxidative stress reactions have been reportedly associated with oncogenesis and tumor progression. By analyzing mRNA expression data and clinical information from The Cancer Genome Atlas (TCGA), we aimed to construct an oxidative stress-related long noncoding RNA (lncRNA) risk model and identify oxidative stress-related biomarkers to improve the prognosis and treatment of CRC. RESULTS Differentially expressed oxidative stress-related genes (DEOSGs) and oxidative stress-related lncRNAs were identified by using bioinformatics tools. An oxidative stress-related lncRNA risk model was constructed based on 9 lncRNAs (AC034213.1, AC008124.1, LINC01836, USP30-AS1, AP003555.1, AC083906.3, AC008494.3, AC009549.1, and AP006621.3) by least absolute shrinkage and selection operator (LASSO) analysis. The patients were then divided into high- and low-risk groups based on the median risk score. The high-risk group had a significantly worse overall survival (OS) (p < 0.001). Receiver operating characteristic (ROC) and calibration curves displayed the favorable predictive performance of the risk model. The nomogram successfully quantified the contribution of each metric to survival, and the concordance index and calibration plots demonstrated its excellent predictive capacity. Notably, different risk subgroups showed significant differences in terms of their metabolic activity, mutation landscape, immune microenvironment and drug sensitivity. Specifically, differences in the immune microenvironment implied that CRC patients in certain subgroups might be more responsive to immune checkpoint inhibitors. CONCLUSIONS Oxidative stress-related lncRNAs can predict the prognosis of CRC patients, which provides new insight for future immunotherapies based on potential oxidative stress targets.
Collapse
Affiliation(s)
- Rui Chen
- Department of Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jun-Min Wei
- Department of Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
270
|
Jin J, Chen F, He W, Zhao L, Lin B, Zheng D, Chen L, He H, He Q. YAP-Activated SATB2 Is a Coactivator of NRF2 That Amplifies Antioxidative Capacity and Promotes Tumor Progression in Renal Cell Carcinoma. Cancer Res 2023; 83:786-803. [PMID: 36598364 DOI: 10.1158/0008-5472.can-22-1693] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 11/04/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023]
Abstract
Aberrant epigenetic reprogramming contributes to the progression of renal cell carcinoma (RCC). Elucidation of key regulators of epigenetic reprogramming in RCC could help identify therapeutic vulnerabilities to improve treatment. Here, we report upregulation of the nuclear matrix-associated protein, special AT-rich binding protein-2 (SATB2), in RCC samples, which correlated with poor prognosis. SATB2 inhibition suppressed RCC growth and self-renewal capacities. YAP/TEAD4 activated SATB2 expression and depended on SATB2 to enhance cell proliferation. Transcriptome analysis implicated that SATB2 regulates NRF2 downstream targets to suppress oxidative stress without altering NRF2 levels. Integrated chromatin immunoprecipitation sequencing and assay for transposase-accessible chromatin using sequencing analyses demonstrated that SATB2 coordinated with NRF2 to drive enhancer-promoter interactions, amplifying transcriptional activity. SATB2 recruited SWI/SNF complex subunits, including BRD7 or BRG1, to sustain DNA accessibility. Increased SATB2 triggered chromatin remodeling into configurations that rendered RCC more sensitive to SATB2 deficiency. Moreover, SATB2 ablation promoted the sensitivity of RCC to chemotherapy-induced apoptosis. Finally, targeting SATB2 or BRD7 effectively restricted the proliferation of YAP-high tumors in patient-derived xenografts and patient-derived organoids. Together, SATB2 is an oncogenic chromatin organizer in RCC, and targeting SATB2 is an effective strategy to suppress the YAP-high RCC. SIGNIFICANCE A YAP-SATB2-NRF2 regulatory axis amplifies antioxidative stress signaling and provides potential therapeutic targets to enhance response to chemotherapy in renal cell carcinoma.
Collapse
Affiliation(s)
- Juan Jin
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| | - Fen Chen
- Department of Ultrasound, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| | - Wenfang He
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| | - Li Zhao
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Bo Lin
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| | - Danna Zheng
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| | - Li Chen
- Department of Pharmacy, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China
| | - Hongchao He
- Department of Urology, Shanghai Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qiang He
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| |
Collapse
|
271
|
Naringenin and Hesperidin as Promising Alternatives for Prevention and Co-Adjuvant Therapy for Breast Cancer. Antioxidants (Basel) 2023; 12:antiox12030586. [PMID: 36978836 PMCID: PMC10045673 DOI: 10.3390/antiox12030586] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Citrus (genus Citrus L.) fruits are essential sources of bioactive compounds with antioxidant properties, such as flavonoids. These polyphenolic compounds are divided into subclasses, in which flavanones are the most prominent. Among them, naringenin and hesperidin are emerging compounds with anticancer potential, especially for breast cancer (BC). Several mechanisms have been proposed, including the modulation of epigenetics, estrogen signaling, induction of cell death via regulation of apoptotic signaling pathways, and inhibition of tumor invasion and metastasis. However, this information is sparse in the literature and needs to be brought together to provide an overview of how naringenin and hesperidin can serve as therapeutic tools for drug development and as a successful co-adjuvant strategy against BC. This review detailed such mechanisms in this context and highlighted how naringenin and hesperidin could interfere in BC carcinogenesis and be helpful as potential alternative therapeutic sources for breast cancer treatment.
Collapse
|
272
|
Wu Y, Huang J, Chen H, Tao H, He Y, Yang G, Zha Q, Lash GE, Li P. Tumor-Derived Oxidative Stress Triggers Ovarian Follicle Loss in Breast Cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:608-623. [PMID: 36804378 DOI: 10.1016/j.ajpath.2023.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/30/2022] [Accepted: 01/06/2023] [Indexed: 02/19/2023]
Abstract
Breast cancer is a common indication for ovarian cryopreservation. However, whether the grafting ovarian tissue meets functional requirements, as well as the need for additional interventions, remains unclear. The current study demonstrates abnormal serum hormones in breast cancer in humans and breast cancer cell line-derived tumor-bearing mice, and for the first time shows tumor-induced loss of primordial and growing follicles and the number of follicles being lost to either growth or atresia. A gene signature of tumor-bearing mice demonstrates the disturbed regulatory network of steroidogenesis, which links to mitochondria dysfunction in oocytes and granulosa cells via the phosphatidylinositol 3-kinase signaling pathway. Notably, increased reactive oxygen species are identified in serum and ovarian tissues in tumor-bearing mice. Furthermore, supplementation with vitamin C promotes follicular quiescence, repairing tumor-induced follicle loss via inactivation of the phosphatidylinositol 3-kinase-Akt-mammalian target of rapamycin pathway, indicating that antioxidants should be a potential fertility therapy to achieve more numbers of healthy follicles ready for ovarian cryopreservation.
Collapse
Affiliation(s)
- Yongqi Wu
- Department of Pathology, Jinan University School of Medicine, Guangzhou, China
| | - Jieqiong Huang
- Department of Pathology, Jinan University School of Medicine, Guangzhou, China
| | - Hui Chen
- Department of Pathology, Jinan University School of Medicine, Guangzhou, China
| | - Huan Tao
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yunbiao He
- Department of Medical Statistics, Jinan University School of Medicine, Guangzhou, China
| | - Guang Yang
- Department of Pathology, Jinan University School of Medicine, Guangzhou, China
| | - Qingbing Zha
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Gendie E Lash
- Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, China.
| | - Ping Li
- Department of Pathology, Jinan University School of Medicine, Guangzhou, China; Department of Gynecology and Obstetrics, The Fifth Affiliated Hospital of Jinan University, Heyuan, China.
| |
Collapse
|
273
|
Tossetta G, Marzioni D. Targeting the NRF2/KEAP1 pathway in cervical and endometrial cancers. Eur J Pharmacol 2023; 941:175503. [PMID: 36641100 DOI: 10.1016/j.ejphar.2023.175503] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/22/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Cervical and endometrial cancers are among the most dangerous gynaecological malignancies, with high fatality and recurrence rates due to frequent diagnosis at an advanced stage and chemoresistance onset. The NRF2/KEAP1 signalling pathway plays an important role in protecting cells against oxidative damage due to increased reactive oxygen species (ROS) levels. NRF2, activated by ROS, induces the expression of antioxidant enzymes such as heme oxygenase, catalase, glutathione peroxidase and superoxide dismutase which neutralize ROS, protecting cells against oxidative stress damage. However, activation of NRF2/KEAP1 signalling in cancer cells results in chemoresistance, inactivating drug-mediated oxidative stress and protecting cancer cells from drug-induced cell death. We review the literature on the role of the NRF2/KEAP1 pathway in cervical and endometrial cancers, with a focus on the expression of its components and downstream genes. We also examine the role of the NRF2/KEAP1 pathway in chemotherapy resistance and how this pathway can be modulated by natural and synthetic modulators.
Collapse
Affiliation(s)
- Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126, Ancona, Italy; Clinic of Obstetrics and Gynaecology, Department of Clinical Sciences, Università Politecnica delle Marche, Salesi Hospital, Azienda Ospedaliero Universitaria, 60126, Ancona, Italy.
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126, Ancona, Italy
| |
Collapse
|
274
|
Liu W, Gao Y, Li H, Wang X, Jin M, Shen Z, Yang D, Zhang X, Wei Z, Chen Z, Li J. Association between oxidative stress, mitochondrial function of peripheral blood mononuclear cells and gastrointestinal cancers. J Transl Med 2023; 21:107. [PMID: 36765353 PMCID: PMC9921196 DOI: 10.1186/s12967-023-03952-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/01/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND The incidence and mortality rate of gastrointestinal cancers are high worldwide. Increasing studies have illustrated that the occurrence, progression, metastasis and prognosis of cancers are intimately linked to the immune system. Mitochondria, as the main source of cellular energy, play an important role in maintaining the physiological function of immune cells. However, the relationship between mitochondrial function of immune cells and tumorigenesis has not yet been systematically investigated. METHODS A total of 150 cases, including 60 healthy donors and 90 primary gastrointestinal cancer patients without anti-tumor treatments (30 with gastric cancer, 30 with liver cancer and 30 with colorectal cancer) were involved in our study. The oxidant/antioxidant and cytokine levels in plasma, the ROS level, mitochondrial function and apoptosis ratio of peripheral blood mononuclear cells (PBMCs) were evaluated. RESULTS The imbalance between oxidant and antioxidant in plasma was discovered in the primary gastrointestinal cancer patients. The levels of cell reactive oxygen species (ROS) and mitochondrial ROS in PBMCs of primary gastrointestinal cancers were significantly increased compared with that in healthy donors. Meanwhile, the ATP content, the mtDNA copy number and the mitochondrial membrane potential (MMP) in PBMCs of patients with primary gastrointestinal cancers were lower than those in control group. The decreased MMP also occurred in immune cells of gastrointestinal cancers, including T cell, B cell, NK cell and monocyte. Furthermore, the PBMCs apoptosis ratio of primary gastrointestinal cancer patients was significantly higher than that of control group. Importantly, an increase of IL-2 and IL-6 and a decrease of IgG in plasma were found in the patients with primary gastrointestinal cancers. These changes of mitochondrial function in immune cells were consistent among primary gastrointestinal cancers without anti-tumor treatments, such as liver cancer, gastric cancer and colorectal cancer. CONCLUSION Our study demonstrated that the imbalance of oxidation/antioxidation in primary gastrointestinal cancer patients without anti-tumor treatments results in excessive ROS. The oxidative stress was associated to the mitochondrial dysfunction, the apoptosis of immune cells and eventually the abnormal immune function in primary gastrointestinal cancers. The application of immune cell mitochondrial dysfunction into clinical evaluation is anticipated.
Collapse
Affiliation(s)
- Weili Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China.
| | - Yuan Gao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- Maternity & Child Care Center of Dezhou, Dezhou, Shandong, China
| | - Hua Li
- Department of Endoscopy, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xinxing Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Min Jin
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Zhiqiang Shen
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Dong Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xuelian Zhang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Zilin Wei
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Zhaoli Chen
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China.
| | - Junwen Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China.
| |
Collapse
|
275
|
Ma S, Ge Y, Xiong Z, Wang Y, Li L, Chao Z, Li B, Zhang J, Ma S, Xiao J, Liu B, Wang Z. A novel gene signature related to oxidative stress predicts the prognosis in clear cell renal cell carcinoma. PeerJ 2023; 11:e14784. [PMID: 36785707 PMCID: PMC9921988 DOI: 10.7717/peerj.14784] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/03/2023] [Indexed: 02/10/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is considered to be related to the worse prognosis, which might in part be attributed to the early recurrence and metastasis, compared with other type of kidney cancer. Oxidative stress refers to an imbalance between production of oxidants and antioxidant defense. Accumulative studies have indicated that oxidative stress genes contribute to the tumor invasion, metastasis and drug sensitivity. However, the biological functions of oxidative stress genes in ccRCC remain largely unknown. In this study, we identified 1,399 oxidative stress genes from GeneCards with a relevance score ≥7. Data for analysis were accessed from The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) database, and were utilized as training set and validation set respectively. Univariate Cox analysis, least absolute shrinkage and selection operator (LASSO) Cox regression and multivariate Cox were employed to construct a prognostic signature in ccRCC. Finally, a prognostic signature including four different oxidative stress genes was constructed from 1,399 genes, and its predictive performance was verified through Kaplan-Meier survival analysis and the receiver operating characteristic (ROC) curve. Interestingly, we found that there was significant correlation between the expression of oxidative stress genes and the immune infiltration and the sensitivity of tumor cells to chemotherapeutics. Moreover, the highest hazard ratio gene urocortin (UCN) was chosen for further study; some necessary vitro experiments proved that the UCN could promote the ability of ccRCC proliferation and migration and contribute to the degree of oxidative stress. In conclusion, it was promising to predict the prognosis of ccRCC through the four oxidative stress genes signature. UCN played oncogenic roles in ccRCC by influencing proliferation and oxidative stress pathway, which was expected to be the novel therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Sheng Ma
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yue Ge
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zezhong Xiong
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yanan Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Le Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zheng Chao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Beining Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Junbiao Zhang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Siquan Ma
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jun Xiao
- Department of Thyroid and Breast Surgery, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhihua Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
276
|
Liu Y, Wang J, Hu X, Pan Z, Xu T, Xu J, Jiang L, Huang P, Zhang Y, Ge M. Radioiodine therapy in advanced differentiated thyroid cancer: Resistance and overcoming strategy. Drug Resist Updat 2023; 68:100939. [PMID: 36806005 DOI: 10.1016/j.drup.2023.100939] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/16/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023]
Abstract
Thyroid cancer is the most prevalent endocrine tumor and its incidence is fast-growing worldwide in recent years. Differentiated thyroid cancer (DTC) is the most common pathological subtype which is typically curable with surgery and Radioactive iodine (RAI) therapy (approximately 85%). Radioactive iodine is the first-line treatment for patients with metastatic Papillary Thyroid Cancer (PTC). However, 60% of patients with aggressive metastasis DTC developed resistance to RAI treatment and had a poor overall prognosis. The molecular mechanisms of RAI resistance include gene mutation and fusion, failure to transport RAI into the DTC cells, and interference with the tumor microenvironment (TME). However, it is unclear whether the above are the main drivers of the inability of patients with DTC to benefit from iodine therapy. With the development of new biological technologies, strategies that bolster RAI function include TKI-targeted therapy, DTC cell redifferentiation, and improved drug delivery via extracellular vesicles (EVs) have emerged. Despite some promising data and early success, overall survival was not prolonged in the majority of patients, and the disease continued to progress. It is still necessary to understand the genetic landscape and signaling pathways leading to iodine resistance and enhance the effectiveness and safety of the RAI sensitization approach. This review will summarize the mechanisms of RAI resistance, predictive biomarkers of RAI resistance, and the current RAI sensitization strategies.
Collapse
Affiliation(s)
- Yujia Liu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jiafeng Wang
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, China
| | - Xiaoping Hu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zongfu Pan
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, China
| | - Tong Xu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jiajie Xu
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, China; Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Liehao Jiang
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, China; Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, China
| | - Yiwen Zhang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, China.
| | - Minghua Ge
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, China; Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
277
|
Peng H, Li X, Luan Y, Wang C, Wang W. A novel prognostic model related to oxidative stress for treatment prediction in lung adenocarcinoma. Front Oncol 2023; 13:1078697. [PMID: 36798829 PMCID: PMC9927401 DOI: 10.3389/fonc.2023.1078697] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/05/2023] [Indexed: 02/01/2023] Open
Abstract
Background The prognostic model based on oxidative stress for lung adenocarcinoma (LUAD) remains unclear. Methods The information of LUAD patients were acquired from TCGA dataset. We also collected two external datasets from GEO for verification. Oxidative stress-related genes (ORGs) were extracted from Genecards. We performed machine learning algorithms, including Univariate Cox regression, Random Survival Forest, and Least Absolute Shrinkage and Selection Operator (Lasso) analyses on the ORGs to build the OS-score and OS-signature. We drew the Kaplan-Meier and time-dependent receiver operating characteristic curve (ROC) to evaluate the efficacy of the OS-signature in predicting the prognosis of LUAD. We used GISTIC 2.0 and maftool algorithms to explore Genomic mutation of OS-signature. To analyze characteristic of tumor infiltrating immune cells, ESTIMATE, TIMER2.0, MCPcounter and ssGSEA algorithms were applied, thus evaluating the immunotherapeutic strategies. Chemotherapeutics sensitivity analysis was based on pRRophetic package. Finally, PCR assays was also used to detect the expression values of related genes in the OS-signature in cell lines. Results Ten ORGs with prognostic value and the OS-signature containing three prognostic ORGs were identified. The significantly better prognosis of LUAD patients was observed in LUAD patients. The efficiency and accuracy of OS-signature in predicting prognosis for LUAD patients was confirmed by survival ROC curves and two external validation data sets. It was clearly observed that patients with high OS-scores had lower immunomodulators levels (with a few exceptions), stromal score, immune score, ESTIMATE score and infiltrating immune cell populations. On the contrary, patients with higher OS-scores were more likely to have higher tumor purity. PCR assays showed that, MRPL44 and CYCS were significantly higher expressed in LUAD cell lines, while CAT was significantly lower expressed. Conclusion The novel oxidative stress-related model we identified could be used for prognosis and treatment prediction in lung adenocarcinoma.
Collapse
Affiliation(s)
| | | | | | | | - Wei Wang
- Department of Thoracic Surgery, Hebei Chest Hospital, Hebei Provincial Key Laboratory of Lung Disease, Shijiazhuang, Hebei, China
| |
Collapse
|
278
|
A Novel Prognostic Pyroptosis-Related Gene Signature Correlates to Oxidative Stress and Immune-Related Features in Gliomas. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:4256116. [PMID: 36778205 PMCID: PMC9909087 DOI: 10.1155/2023/4256116] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/24/2022] [Accepted: 11/24/2022] [Indexed: 02/04/2023]
Abstract
Gliomas are highly invasive and aggressive tumors having the highest incidence rate of brain cancer. Identifying effective prognostic and potential therapeutic targets is necessitated. The relationship of pyroptosis, a form of programmed cellular death, with gliomas remains elusive. We constructed and validated a prognostic model for gliomas using pyroptosis-related genes. Differentially expressed pyroptosis-related genes were screened using the "limma" package. Based on LASSO-Cox regression, nine significant genes including CASP1, CASP3, CASP6, IL32, MKI67, MYD88, PRTN3, NOS1, and VIM were employed to construct a prognostic model in the TCGA cohort; the results were validated in the CGGA cohort. According to the median risk score, the patients were classified into two risk groups, namely, high- and low-risk groups. Patients at high risk had worse prognoses relative to those at low risk evidenced by the Kaplan-Meier curve analysis. The two groups exhibited differences in immune cell infiltration and TMB scores, with high immune checkpoint levels, TMB scores, and immune cell infiltration levels in the high-risk group. KEGG and GO analyses suggested enrichment in immune-related pathways. Furthermore, we found that the genes in our signature strongly correlated with oxidative stress-related pathways and the subgroups exhibited different ssGSEA scores. Some small molecules targeted the genes in the model, and we verified their drug sensitivities between the risk groups. The scRNA-seq dataset, GSE138794, was processed using the "Seurat" package to assess the level of risk gene expression in specific cell types. Finally, the MYD88 level was lowered in the U87 glioma cell line using si-RNA constructs. Cellular proliferation was impaired, and fewer pyroptosis-related cytokines were released upon exposure to LPS. In summary, we built a pyroptosis-related gene model that accurately classified glioma patients into high- and low-risk groups. The findings suggest that the signature may be an effective prognostic predictive tool for gliomas.
Collapse
|
279
|
Li H, Hu P, Zou Y, Yuan L, Xu Y, Zhang X, Luo X, Zhang Z. Tanshinone IIA and hepatocellular carcinoma: A potential therapeutic drug. Front Oncol 2023; 13:1071415. [PMID: 36798821 PMCID: PMC9928209 DOI: 10.3389/fonc.2023.1071415] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/04/2023] [Indexed: 02/04/2023] Open
Abstract
Because of its high prevalence and poor long-term clinical treatment effect, liver disease is regarded as a major public health problem around the world. Among them, viral hepatitis, fatty liver, cirrhosis, non-alcoholic fatty liver disease (NAFLD), and autoimmune liver disease are common causes and inducements of liver injury, and play an important role in the occurrence and development of hepatocellular carcinoma (HCC). Tanshinone IIA (TsIIA) is a fat soluble polyphenol of Salvia miltiorrhiza that is extracted from Salvia miltiorrhiza. Because of its strong biological activity (anti-inflammatory, antioxidant), it is widely used in Asia to treat cardiovascular and liver diseases. In addition, TsIIA has shown significant anti-HCC activity in previous studies. It not only has significant anti proliferation and pro apoptotic properties. It can also play an anti-cancer role by mediating a variety of signal pathways, including phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/rapamycin (mTOR), mitogen-activated protein kinase (MAPK), and nuclear factor kappa-B (NF-κB). This review not only reviews the existing evidence and molecular mechanism of TsIIA's anti-HCC effect but also reviews the liver-protective effect of TsIIA and its impact on liver fibrosis, NAFLD, and other risk factors for liver cancer. In addition, we also conducted network pharmacological analysis on TsIIA and HCC to further screen and explore the possible targets of TsIIA against hepatocellular carcinoma. It is expected to provide a theoretical basis for the development of anti-HCC-related drugs based on TsIIA.
Collapse
Affiliation(s)
- Hu Li
- Emergency Department, Affiliated Hospital of Binzhou Medical College, Binzhou, China
| | - Pengbo Hu
- Emergency Department, Affiliated Hospital of Binzhou Medical College, Binzhou, China,Institute of Medical Science of Binzhou Medical University, Yantai, China
| | - Yajun Zou
- Emergency Department, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lijuan Yuan
- Emergency Department, Affiliated Hospital of Binzhou Medical College, Binzhou, China
| | - Yucheng Xu
- Emergency Department, Affiliated Hospital of Binzhou Medical College, Binzhou, China
| | - Xiaohui Zhang
- Emergency Department, Affiliated Hospital of Binzhou Medical College, Binzhou, China
| | - Xiaoyan Luo
- Emergency Department, Affiliated Hospital of Binzhou Medical College, Binzhou, China
| | - Zhiqiang Zhang
- Emergency Department, Affiliated Hospital of Binzhou Medical College, Binzhou, China,Institute of Medical Science of Binzhou Medical University, Yantai, China,*Correspondence: Zhiqiang Zhang,
| |
Collapse
|
280
|
Clemente-Suárez VJ, Martín-Rodríguez A, Redondo-Flórez L, Ruisoto P, Navarro-Jiménez E, Ramos-Campo DJ, Tornero-Aguilera JF. Metabolic Health, Mitochondrial Fitness, Physical Activity, and Cancer. Cancers (Basel) 2023; 15:814. [PMID: 36765772 PMCID: PMC9913323 DOI: 10.3390/cancers15030814] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Cancer continues to be a significant global health issue. Traditional genetic-based approaches to understanding and treating cancer have had limited success. Researchers are increasingly exploring the impact of the environment, specifically inflammation and metabolism, on cancer development. Examining the role of mitochondria in this context is crucial for understanding the connections between metabolic health, physical activity, and cancer. This study aimed to review the literature on this topic through a comprehensive narrative review of various databases including MedLine (PubMed), Cochrane (Wiley), Embase, PsychINFO, and CinAhl. The review highlighted the importance of mitochondrial function in overall health and in regulating key events in cancer development, such as apoptosis. The concept of "mitochondrial fitness" emphasizes the crucial role of mitochondria in cell metabolism, particularly their oxidative functions, and how proper function can prevent replication errors and regulate apoptosis. Engaging in high-energy-demanding movement, such as exercise, is a powerful intervention for improving mitochondrial function and increasing resistance to environmental stressors. These findings support the significance of considering the role of the environment, specifically inflammation and metabolism, in cancer development and treatment. Further research is required to fully understand the mechanisms by which physical activity improves mitochondrial function and potentially reduces the risk of cancer.
Collapse
Affiliation(s)
| | | | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, C/Tajo s/n Villaviciosa de Odón, 28670 Madrid, Spain
| | - Pablo Ruisoto
- Department of Health Sciences, Public University of Navarre, 31006 Navarre, Spain
| | | | | | | |
Collapse
|
281
|
De Rasmo D, Cormio A, Cormio G, Signorile A. Ovarian Cancer: A Landscape of Mitochondria with Emphasis on Mitochondrial Dynamics. Int J Mol Sci 2023; 24:ijms24021224. [PMID: 36674740 PMCID: PMC9865899 DOI: 10.3390/ijms24021224] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Ovarian cancer (OC) represents the main cause of death from gynecological malignancies in western countries. Altered cellular and mitochondrial metabolism are considered hallmarks in cancer disease. Several mitochondrial aspects have been found altered in OC, such as the oxidative phosphorylation system, oxidative stress and mitochondrial dynamics. Mitochondrial dynamics includes cristae remodeling, fusion, and fission processes forming a dynamic mitochondrial network. Alteration of mitochondrial dynamics is associated with metabolic change in tumour development and, in particular, the mitochondrial shaping proteins appear also to be responsible for the chemosensitivity and/or chemoresistance in OC. In this review a focus on the mitochondrial dynamics in OC cells is presented.
Collapse
Affiliation(s)
- Domenico De Rasmo
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), National Research Council (CNR), 70124 Bari, Italy
| | - Antonella Cormio
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Gennaro Cormio
- IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Anna Signorile
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124 Bari, Italy
- Correspondence:
| |
Collapse
|
282
|
Anticancer Effect of Pomegranate Peel Polyphenols against Cervical Cancer. Antioxidants (Basel) 2023; 12:antiox12010127. [PMID: 36670990 PMCID: PMC9854619 DOI: 10.3390/antiox12010127] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Polyphenols are a broad group of bioactive phytochemicals with powerful antioxidant, anti-inflammatory, immunomodulatory, and antiviral activities. Numerous studies have demonstrated that polyphenol extracts obtained from natural sources can be used for the prevention and treatment of cancer. Pomegranate peel extract is an excellent source of polyphenols, such as punicalagin, punicalin, ellagic acid, and caffeic acid, among others. These phenolic compounds have antineoplastic activity in in vitro models of cervical cancer through the regulation of cellular redox balance, induction of apoptosis, cell cycle arrest, and modulation of different signaling pathways. The current review summarizes recent data from scientific reports that address the anticancer activity of the predominant polyphenol compounds present in PPE and their different mechanisms of action in cervical cancer models.
Collapse
|
283
|
Liu Y, Shi Y, Han R, Liu C, Qin X, Li P, Gu R. Signaling pathways of oxidative stress response: the potential therapeutic targets in gastric cancer. Front Immunol 2023; 14:1139589. [PMID: 37143652 PMCID: PMC10151477 DOI: 10.3389/fimmu.2023.1139589] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/20/2023] [Indexed: 05/06/2023] Open
Abstract
Gastric cancer is one of the top causes of cancer-related death globally. Although novel treatment strategies have been developed, attempts to eradicate gastric cancer have been proven insufficient. Oxidative stress is continually produced and continually present in the human body. Increasing evidences show that oxidative stress contributes significantly to the development of gastric cancer, either through initiation, promotion, and progression of cancer cells or causing cell death. As a result, the purpose of this article is to review the role of oxidative stress response and the subsequent signaling pathways as well as potential oxidative stress-related therapeutic targets in gastric cancer. Understanding the pathophysiology of gastric cancer and developing new therapies for gastric cancer depends on more researches focusing on the potential contributors to oxidative stress and gastric carcinogenesis.
Collapse
Affiliation(s)
- Yingying Liu
- School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Yu Shi
- Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ruiqin Han
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chaoge Liu
- Department of Oromaxillofacial - Head and Neck Surgery, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China
| | - Xiaogang Qin
- Traditional Chinese Medicine Hospital of Tongzhou District, Nantong, Jiangsu, China
- *Correspondence: Renjun Gu, ; Pengfei Li, ; Xiaogang Qin,
| | - Pengfei Li
- Department of Clinical Laboratory, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Renjun Gu, ; Pengfei Li, ; Xiaogang Qin,
| | - Renjun Gu
- School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Renjun Gu, ; Pengfei Li, ; Xiaogang Qin,
| |
Collapse
|
284
|
Tuli HS, Kaur J, Vashishth K, Sak K, Sharma U, Choudhary R, Behl T, Singh T, Sharma S, Saini AK, Dhama K, Varol M, Sethi G. Molecular mechanisms behind ROS regulation in cancer: A balancing act between augmented tumorigenesis and cell apoptosis. Arch Toxicol 2023; 97:103-120. [PMID: 36443493 DOI: 10.1007/s00204-022-03421-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/14/2022] [Indexed: 11/29/2022]
Abstract
ROS include hydroxyl radicals (HO.), superoxide (O2..), and hydrogen peroxide (H2O2). ROS are typically produced under physiological conditions and play crucial roles in living organisms. It is known that ROS, which are created spontaneously by cells through aerobic metabolism in mitochondria, can have either a beneficial or detrimental influence on biological systems. Moderate levels of ROS can cause oxidative damage to proteins, DNA and lipids, which can aid in the pathogenesis of many disorders, including cancer. However, excessive concentrations of ROS can initiate programmed cell death in cancer. Presently, a variety of chemotherapeutic drugs and herbal agents are being investigated to induce ROS-mediated cell death in cancer. Therefore, preserving ROS homeostasis is essential for ensuring normal cell development and survival. On account of a significant association of ROS levels at various concentrations with carcinogenesis in a number of malignancies, further studies are needed to determine the underlying molecular mechanisms and develop the possibilities for intervening in these processes.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Jagjit Kaur
- Graduate School of Biomedical Engineering, Faculty of Engineering, The University of New South Wales, Sydney, 2052, Australia
| | - Kanupriya Vashishth
- Advance Cardiac Centre Department of Cardiology, PGIMER, Chandigarh, 160012, India
| | | | - Ujjawal Sharma
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Renuka Choudhary
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Tapan Behl
- Department of Pharmacology, School of Health Sciences & Technology (SoHST), University of Petroleum and Energy Studies, Bidholi, Dehradun, Uttarakhand, 248007, India
| | - Tejveer Singh
- Translanatal Oncology Laboratory, Department of Zoology, Hansraj College, Delhi University, New Delhi, 110007, India
| | - Sheetu Sharma
- Department of Pharmacovigilace and Clinical Research, Chitkara University, Rajpura, 140401, India
| | - Adesh K Saini
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Mugla, 48000, Turkey
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| |
Collapse
|
285
|
Wang J, Chen S, Xiang W, Zhu Q, Ren N. NRF1 Alleviated Oxidative Stress of Glioblastoma Cells by Regulating NOR1. Folia Biol (Praha) 2023; 69:13-21. [PMID: 37962027 DOI: 10.14712/fb2023069010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Oxidored-nitro domain-containing protein 1 (NOR1) is a critical tumour suppressor gene, though its regulatory mechanism in oxidative stress of glioblastoma (GBM) remains unclear. Hence, further study is needed to unravel the function of NOR1 in the progression of oxidative stress in GBM. In this study, we evaluated the expression of NOR1 and nuclear respiratory factor 1 (NRF1) in GBM tissue and normal brain tissue (NBT) using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot (WB), and investigated their relationship. We then induced oxidative stress in U251 cells through H2O2 treatment and conducted Cell Count-ing Kit-8, Transwell and wound healing assays to analyse cell proliferation, invasion and migration. Cell apoptosis was assessed by flow cytometry and TUNEL staining. We also measured the activities of superoxide dismutase and catalase, as well as the level of reactive oxygen species (ROS) using biochemical techniques. Via qRT-PCR and WB, the mRNA and protein expression levels of NOR1 and NRF1 were determined. Chromatin immunoprecipitation (ChIP) assays were applied to validate NRF1's interaction with NOR1. Our results showed that the expression of NOR1 and NRF1 was low in GBM, and their expression levels were positively correlated. H2O2-induced oxidative stress reduced NRF1 and NOR1 expression levels and increased the ROS level. The ChIP assay confirmed the binding of NRF1 to NOR1. Over-expression of NRF1 attenuated the inhibitory effect of oxidative stress on the proliferation, migration and invasion of U251 cells, which was reversed by knockdown of NOR1.
Collapse
Affiliation(s)
- Jiali Wang
- Department of Colon and Rectal Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Shuai Chen
- Department of Neurosurgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Wang Xiang
- Radiologic Diagnosis Center, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Qing Zhu
- Department of Pharmacy, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China.
| | - Nianjun Ren
- Department of Neurosurgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China.
| |
Collapse
|
286
|
Zhang L, Zhang J, Fan S, Zhong Y, Li J, Zhao Y, Ni S, Liu J, Wu Y. A case-control study of urinary concentrations of bisphenol A, bisphenol F, and bisphenol S and the risk of papillary thyroid cancer. CHEMOSPHERE 2023; 312:137162. [PMID: 36347349 DOI: 10.1016/j.chemosphere.2022.137162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
The incidence of thyroid cancer (TC), especially papillary thyroid cancer (PTC), has dramatically increased globally. Whereas some endocrine disruptors have been linked to neoplastic processes, the associations between human exposure to bisphenol analogs and the risk of TC remain unclear. This present case-control study examined the associations between the urinary concentrations of bisphenol A (BPA) and other bisphenols, namely bisphenol F (BPF) and bisphenol S (BPS), and the risk of PTC. After adjusting for confounders and creatinine standardization, significantly positive associations were observed for BPF (odds ratio [OR] = 1.80, 95% confidence interval [CI] = 1.27-2.54), but negative associations observed for BPA (OR = 0.38, 95% CI = 0.19-0.77) and BPS (OR = 0.63, 95% CI = 0.43-0.93), in the total population. However, after stratification by age and smoking, statistical significance was retained only in non-smoking women, suggesting the adverse effects of BPF exposure on PTC risk, especially in women. These findings require replication and confirmation in further research.
Collapse
Affiliation(s)
- Lei Zhang
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014); NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100022, China
| | - Jiahuai Zhang
- Center for Clinical Laboratory, Capital Medical University, Beijing 100069, China
| | - Sai Fan
- Beijing Center for Disease Prevention and Control, Beijing Research Center for Preventive Medicine, Beijing 100013, China
| | - Yuxin Zhong
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jingguang Li
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014); NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100022, China
| | - Yunfeng Zhao
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014); NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100022, China
| | - Song Ni
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100021, China; Department of Head and Neck Surgery, Hebei Cancer Hospital, Chinese Academy of Medical Sciences, Langfang 065001, China.
| | - Jiaying Liu
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China.
| | - Yongning Wu
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014); NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100022, China
| |
Collapse
|
287
|
Masuda M, Horinaka M, Yasuda S, Morita M, Nishimoto E, Ishikawa H, Mutoh M, Sakai T. Discovery of cancer-preventive juices reactivating RB functions. Environ Health Prev Med 2023; 28:54. [PMID: 37743524 PMCID: PMC10519803 DOI: 10.1265/ehpm.23-00160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/20/2023] [Indexed: 09/26/2023] Open
Abstract
BACKGROUND Recent advances have been achieved in the genetic diagnosis and therapies against malignancies due to a better understanding of the molecular mechanisms underlying carcinogenesis. Since active preventive methods are currently insufficient, the further development of appropriate preventive strategies is desired. METHODS We searched for drinks that reactivate the functions of tumor-suppressor retinoblastoma gene (RB) products and exert anti-inflammatory and antioxidant effects. We also examined whether lactic acid bacteria increased the production of the cancer-specific anti-tumor cytokine, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), in human, and examined whether the RB-reactivating drinks with lactic acid bacteria decreased azoxymethane-induced rat colon aberrant crypt foci (ACF) and aberrant crypts (ACs) in vivo. RESULTS Kakadu plum juice and pomegranate juice reactivated RB functions, which inhibited the growth of human colon cancer LIM1215 cells by G1 phase arrest. These juices also exerted anti-inflammatory and antioxidant effects. Lactiplantibacillus (L.) pentosus S-PT84 was administered to human volunteers and increased the production of TRAIL. In an in vivo study, Kakadu plum juice with or without pomegranate juice and S-PT84 significantly decreased azoxymethane-induced rat colon ACF and ACs. CONCLUSIONS RB is one of the most important molecules suppressing carcinogenesis, and to the best of our knowledge, this is the first study to demonstrate that natural drinks reactivated the functions of RB. As expected, Kakadu plum juice and pomegranate juice suppressed the growth of LIM1215 cells by reactivating the functions of RB, and Kakadu plum juice with or without pomegranate juice and S-PT84 inhibited rat colon ACF and ACs. Therefore, this mixed juice has potential as a novel candidate for cancer prevention.
Collapse
Affiliation(s)
- Mitsuharu Masuda
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine
| | - Mano Horinaka
- Department of Drug Discovery Medicine, Kyoto Prefectural University of Medicine
| | - Shusuke Yasuda
- Department of Drug Discovery Medicine, Kyoto Prefectural University of Medicine
| | - Mie Morita
- Department of Drug Discovery Medicine, Kyoto Prefectural University of Medicine
| | - Emi Nishimoto
- Department of Drug Discovery Medicine, Kyoto Prefectural University of Medicine
| | - Hideki Ishikawa
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine
| | - Michihiro Mutoh
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine
| | - Toshiyuki Sakai
- Department of Drug Discovery Medicine, Kyoto Prefectural University of Medicine
| |
Collapse
|
288
|
Jin GW, Rejinold NS, Choy JH. Polyphosphazene-Based Biomaterials for Biomedical Applications. Int J Mol Sci 2022; 23:15993. [PMID: 36555633 PMCID: PMC9781794 DOI: 10.3390/ijms232415993] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/28/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Recently, synthetic polymers have attracted great interest in the field of biomedical science. Among these, polyphosphazenes (PPZs) are regarded as one of the most promising materials, due to their structural flexibility and biodegradability compared to other materials. PPZs have been developed through numerous studies. In particular, multi-functionalized PPZs have been proven to be potential biomaterials in various forms, such as nanoparticles (NPs) and hydrogels, through the introduction of various functional groups. Thus, PPZs have been applied for the delivery of therapeutic molecules (low molecular weight drugs, genes and proteins), bioimaging, phototherapy, bone regeneration, dental liners, modifiers and medical devices. The main goal of the present review is to highlight the recent and the most notable existing PPZ-based biomaterials for aforementioned applications, with future perspectives in mind.
Collapse
Affiliation(s)
- Geun-Woo Jin
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea
- R&D Center, CnPharm Co., Ltd., Seoul 03759, Republic of Korea
| | - N. Sanoj Rejinold
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea
| | - Jin-Ho Choy
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea
- Department of Pre-Medical Course, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
- International Research Frontier Initiative (IRFI), Tokyo Institute of Technology, Yokohama 226-8503, Japan
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| |
Collapse
|
289
|
Effects of Dietary Supplementation with Vitamin A on Antioxidant and Intestinal Barrier Function of Broilers Co-Infected with Coccidia and Clostridium perfringens. Animals (Basel) 2022; 12:ani12233431. [PMID: 36496951 PMCID: PMC9740507 DOI: 10.3390/ani12233431] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/24/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Necrotic enteritis (NE) impairs poultry production and causes great economic loss. The nutritional regulation of diets has the potential to alleviate NE. The present study was conducted to investigate the effects of dietary supplementation with vitamin A (VA) on the antioxidant and intestinal barrier function of broilers co-infected with coccidia and C. perfringens (CCP). In a 2 × 2 factorial arrangement, 336 one-day-old Ross 308 broilers were divided into four treatments with two levels of VA (0 or 12,000 IU/kg) and challenged with or without CCP. The animal trial lasted for 42 days. The results showed that dietary supplemental VA improved body weight gain (BWG) and the feed intake (FI), and the FI was negatively affected by CCP. Additionally, the levels of catalase (CAT) in the serum, total superoxide dismutase (T-SOD), and CAT in the jejunum and glutathione peroxidase (GSH-Px) in the liver decreased with the CCP challenge (p < 0.05). The mRNA levels of SOD, CAT, GSH-Px1, and GSH-Px3 in the liver and jejunum were upregulated by the CCP challenge (p < 0.05). In addition, the level of serum diamine oxidase (DAO), and the mRNA level of ZO-1 were also upregulated with the CCP challenge. Dietary supplementation with VA contributed to the intestinal villi height and the mRNA level of Mucin-2 in the jejunum (p < 0.05). Additionally, dietary VA had the ability to alleviate the upregulation of SOD in the liver and SOD, CAT, GSH-Px1, GSH-Px3, ZO-1, and claudin-1 in the jejunum with the CCP challenge (p < 0.05). However, the mRNA level of GSH-Px3 and the levels of SOD in the liver and jejunum were downregulated with the VA supplementation in the diet. In conclusion, dietary VA improved the growth performance and the intestinal barrier function; nonetheless, it failed to alleviate the negative effects of CCP on the antioxidant function in broilers.
Collapse
|
290
|
Wei Y, Yi JK, Chen J, Huang H, Wu L, Yin X, Wang J. Boron attenuated diethylnitrosamine induced hepatocellular carcinoma in C3H/HeN mice via alteration of oxidative stress and apoptotic pathway. J Trace Elem Med Biol 2022; 74:127052. [PMID: 35952449 DOI: 10.1016/j.jtemb.2022.127052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/02/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Reactive oxygen species (ROS) regulate various cellular signaling pathways and play an important role in the occurrence and development of hepatocellular carcinoma (HCC). Excessive accumulation of ROS can promote HCC. Trace element boron has a wide range of biological effects, including anti-oxidation, anti-tumor, immune regulation and so on. METHODS In this study, we investigated the anticancer effects of Sodium tetraborate decahydrate (NaB) in improving oxidative stress and regulating apoptosis in mouse HCC. HCC was induced by intraperitoneal injection of diethylnitrosamine (DEN) 25 mg/kg once at the age of 2 weeks and 100 mg/kg again at the age of 6 weeks in healthy C3H/HeN male mice. At 8 weeks of age, different concentrations of NaB were given intragastric treatment once a day for 20 weeks. Oxidative stress markers, antioxidant status and liver enzyme analysis were detected to evaluate the effectiveness of NaB in inhibiting cancer induction. The anticancer properties of NaB were confirmed by observing the liver index and morphology, and analyzing the expression of apoptotic genes and proteins. Our results showed that boron significantly reduced the production of ROS, and down-regulated the expression of the anti-apoptotic protein Bcl2 and up-regulated the expression of the pro-apoptotic proteins P53, Bax, and caspase 3. CONCLUSION Boron has great potential to reduce the effects of oxidative stress, which may help it inhibit the progression of HCC.
Collapse
Affiliation(s)
- Ying Wei
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei 442008, China
| | - Jin-Ke Yi
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Rehabilitation department, Shiyan, Hubei 442008, China
| | - Jun Chen
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei 442008, China
| | - Huimin Huang
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei 442008, China
| | - Lun Wu
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei 442008, China
| | - Xufeng Yin
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Children's Medical Center, Shiyan, Hubei 442008, China.
| | - Jinjin Wang
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei 442008, China.
| |
Collapse
|
291
|
Yan H, Cai X, Fu S, Zhang X, Zhang J. PRDX3 promotes resistance to cisplatin in gastric cancer cells. J Cancer Res Ther 2022; 18:1994-2000. [PMID: 36647961 DOI: 10.4103/jcrt.jcrt_970_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Objective This study aims to investigate peroxiredoxin 3 (PRDX3) expression in gastric cancer tissue and its effects on cisplatin resistance in gastric cancer cells and its possible mechanism. Methods PRDX3 expression in human gastric cancer tissue microarrays was detected via immunohistochemistry. The PRDX3 small interfering RNA (siPRDX3 group) and the negative control siNC (siNC group) were transfected into AGS and MKN-74 cell lines, respectively, whereas a blank control group was set up. Each group was treated with different cisplatin concentrations (0, 5, 10, 15, 20, 25, and 30 μg/ml), and the half-inhibitory concentration (IC50) of each group of the two cell lines was calculated using the CCK8 assay. The corresponding IC50 concentration of the siPRDX3 group in the two cell lines was used to treat cells of each group. Flow cytometry was used to detect cell apoptosis, and Western blotting was used to detect the expression levels of cleaved caspase-3 and Bax in each group. Results PRDX3 was overexpressed in gastric adenocarcinoma tissue compared with adjacent noncancer tissue (P = 0.0053). After cisplatin treatment, the IC50 in the siPRDX3 group of AGS cells (5.91 ± 0.18 μg/ml) and the siPRDX3 group of MKN-74 cells (3.48 ± 0.30 μg/ml) was significantly lower than in the corresponding siNC groups (10.01 ± 0.99 and 6.39 ± 0.70 μg/ml; P = 0.0022 and 0.0027, respectively). AGS cells (38.81% ± 1.69%) and MKN-74 cells (25.03% ± 2.80%) in the siPRDX3 group showed significantly higher apoptosis rates than in the corresponding siNC groups (23.17% ± 1.43% and 16.7% ± 1.39%; P = 0.0003 and 0.0099, respectively). The expression levels of cleaved caspase-3 and Bax were significantly higher in the siPRDX3 group of both cell lines than in the siNC group (P < 0.0001). Conclusion PRDX3 increases the gastric cancer cell resistance to cisplatin by reducing apoptosis and thus may serve as a target to overcome cisplatin resistance.
Collapse
Affiliation(s)
- Hao Yan
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital; Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Xinyu Cai
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital; Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Shanshan Fu
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong Province, China
| | - Xiubin Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong Province, China
| | - Jianna Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong Province, China
| |
Collapse
|
292
|
Wang W, Zhu J, Cao Q, Zhang C, Dong Z, Feng D, Ye H, Zuo J. Dietary Catalase Supplementation Alleviates Deoxynivalenol-Induced Oxidative Stress and Gut Microbiota Dysbiosis in Broiler Chickens. Toxins (Basel) 2022; 14:toxins14120830. [PMID: 36548727 PMCID: PMC9784562 DOI: 10.3390/toxins14120830] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/17/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022] Open
Abstract
Catalase (CAT) can eliminate oxygen radicals, but it is unclear whether exogenous CAT can protect chickens against deoxynivalenol (DON)-induced oxidative stress. This study aimed to investigate the effects of supplemental CAT on antioxidant property and gut microbiota in DON-exposed broilers. A total of 144 one-day-old Lingnan yellow-feathered male broilers were randomly divided into three groups (six replicates/group): control, DON group, and DON + CAT (DONC) group. The control and DON group received a diet without and with DON contamination, respectively, while the DONC group received a DON-contaminated diet with 200 U/kg CAT added. Parameter analysis was performed on d 21. The results showed that DON-induced liver enlargement (p < 0.05) was blocked by CAT addition, which also normalized the increases (p < 0.05) in hepatic oxidative metabolites contents and caspase-9 expression. Additionally, CAT addition increased (p < 0.05) the jejunal CAT and GSH-Px activities coupled with T-AOC in DON-exposed broilers, as well as the normalized DON-induced reductions (p < 0.05) of jejunal villus height (VH) and its ratio for crypt depth. There was a difference (p < 0.05) in gut microbiota among groups. The DON group was enriched (p < 0.05) with some harmful bacteria (e.g., Proteobacteria, Gammaproteobacteria, Enterobacteriales, Enterobacteriaceae, and Escherichia/Shigella) that elicited negative correlations (p < 0.05) with jejunal CAT activity, and VH. DONC group was differentially enriched (p < 0.05) with certain beneficial bacteria (e.g., Acidobacteriota, Anaerofustis, and Anaerotruncus) that could benefit intestinal antioxidation and morphology. In conclusion, supplemental CAT alleviates DON-induced oxidative stress and intestinal damage in broilers, which can be associated with its ability to improve gut microbiota, aside from its direct oxygen radical-scavenging activity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hui Ye
- Correspondence: (H.Y.); (J.Z.)
| | | |
Collapse
|
293
|
Janion K, Strzelczyk JK, Walkiewicz KW, Biernacki K, Copija A, Szczepańska E, Nowakowska-Zajdel E. Evaluation of Malondialdehyde Level, Total Oxidant/Antioxidant Status and Oxidative Stress Index in Colorectal Cancer Patients. Metabolites 2022; 12:1118. [PMID: 36422258 PMCID: PMC9695970 DOI: 10.3390/metabo12111118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/21/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022] Open
Abstract
Oxidative stress may play an important role in colorectal cancer (CRC). The present study included 94 adult patients with CRC (52 men and 42 women) and 26 hospitalized patients (12 men and 14 women) in whom CRC was excluded (control group). During hospitalization, blood serum samples were collected from both groups. Apart from that, anthropometric measurements were taken and other clinical data were analyzed. Serum malondialdehyde (MDA) level, total oxidant status (TOS), total antioxidant status (TAS) and oxidative stress index (OSI) were assayed. Subsequently, the relationship between the analyzed oxidative stress markers and selected clinical characteristics was investigated in both groups. The evaluation of oxidative stress marker values demonstrated that MDA and TAS levels were significantly higher in the control group than the CRC group (p < 0.001 and p = 0.019, respectively), while TOS levels were significantly higher in the CRC group than the control group (p = 0.005). Significantly lower OSI levels were found in the control group than in the CRC group (p < 0.001). Similar results can be observed when performing ROC analysis (receiver operating characteristic curve). Preliminary statistical analysis demonstrated that MDA levels in the study group depend on the location of the primary tumour (p = 0.035). Based on the post hoc Tukey test, a relationship was demonstrated between the MDA level and the left and right side of the colon (p = 0.040). The results may be evidence for a higher level of oxidative stress, including a compromised antioxidative defence system, in patients with CRC.
Collapse
Affiliation(s)
- Karolina Janion
- Department of Nutrition-Related Disease Prevention, Department of Metabolic Disease Prevention, Faculty of Health Sciences in Bytom, Medical University of Silesia in Katowice, 41-902 Bytom, Poland
| | - Joanna Katarzyna Strzelczyk
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 41-808 Zabrze, Poland
| | | | - Krzysztof Biernacki
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 41-808 Zabrze, Poland
| | - Angelika Copija
- Department of Nutrition-Related Disease Prevention, Department of Metabolic Disease Prevention, Faculty of Health Sciences in Bytom, Medical University of Silesia in Katowice, 41-902 Bytom, Poland
- Department of Clinical Oncology, No. 4 Provincial Specialist Hospital in Bytom, 41-902 Bytom, Poland
| | - Elżbieta Szczepańska
- Department of Human Nutrition, Faculty of Health Sciences in Bytom, Medical University of Silesia in Katowice, 41-808 Zabrze, Poland
| | - Ewa Nowakowska-Zajdel
- Department of Nutrition-Related Disease Prevention, Department of Metabolic Disease Prevention, Faculty of Health Sciences in Bytom, Medical University of Silesia in Katowice, 41-902 Bytom, Poland
- Department of Clinical Oncology, No. 4 Provincial Specialist Hospital in Bytom, 41-902 Bytom, Poland
| |
Collapse
|
294
|
Construction of Oxidative Stress-Related Genes Risk Model Predicts the Prognosis of Uterine Corpus Endometrial Cancer Patients. Cancers (Basel) 2022; 14:cancers14225572. [PMID: 36428665 PMCID: PMC9688652 DOI: 10.3390/cancers14225572] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Oxidative stress contributes significantly to cancer development. Recent studies have demonstrated that oxidative stress could alter the epigenome and, in particular, DNA methylation. This study aimed to explore the potential link between oxidative stress and uterine corpus endometrial carcinoma (UCEC). An analysis of RNA-seq data and relevant clinical information was conducted with data from The Cancer Genome Atlas (TCGA), and oxidative stress genes were obtained from Gene Set Enrichment Analysis (GSEA). Differentially expressed genes (DEGs) in normal and tumor groups of UCEC were analyzed using GO and KEGG enrichment analysis. As a result of survival analysis, Lasso regression analysis of DEGs, a risk score model of oxidative stress-related genes (OSRGs) was constructed. Moreover, this study demonstrated that OSRGs are associated with immune cell infiltration in UCEC, suggesting oxidative stress may play a role in UCEC development by activating immune cells. We discovered 136 oxidative stress-related DEGs in UCEC, from which we screened 25 prognostic genes significantly related to the overall survival of UCEC patients. BCL2A1, CASP6, GPX2, HIC1, IL19, MSX1, RNF183, SFN, TRPM2 and HIST1H3C are associated with a good prognosis while CDKN2A, CHAC1, E2F1, GSDME, HMGA1, ITGA7, MCM4, MYBL2, PPIF, S100A1, S100A9, STK26 and TRIB3 are involved in a poor prognosis in UCEC. A 7-OSRGs-based risk score (H3C1, CDKN2A, STK26, TRPM2, E2F1, CHAC1, MSX1) was generated by Lasso regression. Further, an association was found between H3C1, CDKN2A, STK26, TRPM2, E2F1, CHAC1 and MSX1 expression levels and the immune infiltrating cells, including CD8 T cells, NK cells, and mast cells in UCEC. NFYA and RFX5 were speculated as common transcription factors of CDKN2A, TRPM2, E2F1, CHAC1, and MSX1 in UCEC.
Collapse
|
295
|
dos Santos CF, Braz MG, de Arruda NM, Caram L, Nogueira DL, Tanni SE, de Godoy I, Ferrari R. DNA damage and antioxidant capacity in COPD patients with and without lung cancer. PLoS One 2022; 17:e0275873. [PMID: 36327269 PMCID: PMC9632772 DOI: 10.1371/journal.pone.0275873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 09/23/2022] [Indexed: 11/06/2022] Open
Abstract
Background and objective Chronic obstructive pulmonary disease (COPD) is characterized by chronic inflammation of the lower airways, and COPD patients show two to five times higher risk of lung cancer than smokers with normal lung function. COPD is associated with increased oxidative stress, which may cause DNA damage and lung carcinogenesis. Our aim was to evaluate DNA damage and oxidative stress (lipid peroxidation and antioxidant status) and their relationship in patients with COPD with and without lung cancer. Methods We evaluated 18 patients with COPD, 18 with COPD with lung cancer, and 18 controls (former or current smokers). DNA damage was evaluated in peripheral blood lymphocytes using a comet assay; the concentration of malondialdehyde (MDA) and hydrophilic antioxidant performance (HAP) were measured in the plasma. Results DNA damage was higher in patients with COPD with cancer than in the controls (p = 0.003). HAP was significantly lower in patients with COPD with cancer than in those without cancer and controls. The presence of lung cancer and COPD showed a positive association with DNA strand breaks and the concentration of MDA. Conclusion COPD with lung cancer was associated with elevated DNA damage in peripheral lymphocytes, and cancer and COPD showed a positive correlation with DNA damage. The antioxidant capacity showed a negative association with the interaction COPD and cancer and presence of COPD. The mechanisms underlying the increased incidence of lung cancer in COPD are unknown; DNA damage may be involved. Further research may provide insights into their development and treatment.
Collapse
Affiliation(s)
| | - Mariana Gobbo Braz
- Botucatu Medical School, GENOTOX Laboratory, São Paulo State University—UNESP, São Paulo, Brazil
| | | | - Laura Caram
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University—UNESP, São Paulo, Brazil
| | - Duelene Ludimila Nogueira
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University—UNESP, São Paulo, Brazil
| | - Suzana Erico Tanni
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University—UNESP, São Paulo, Brazil
| | - Irma de Godoy
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University—UNESP, São Paulo, Brazil
| | - Renata Ferrari
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University—UNESP, São Paulo, Brazil
| |
Collapse
|
296
|
LINC00958 Inhibits Autophagy of Bladder Cancer Cells via Sponge Adsorption of miR-625-5p to Promote Tumor Angiogenesis and Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2435114. [PMID: 36262285 PMCID: PMC9576423 DOI: 10.1155/2022/2435114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/26/2022] [Accepted: 09/08/2022] [Indexed: 11/29/2022]
Abstract
Objective This study further explored LINC00958's role in promoting tumor angiogenesis (AG) and oxidative stress (OS) development by inhibiting BC cell autophagy through sponge adsorption of miR-625-5p. Methods BC patients and healthy controls who visited our hospital between June 2017 and February 2019 were selected as the research group (RG) and the control group (CG), respectively, with a total of 133 study subjects. Peripheral blood LINC00958 and miR-625-5p in both cohorts of participants were detected. Additionally, human bladder transitional cell carcinoma cells (T24 and J82) and human normal urothelial cells (SV-HUC-1) were purchased. Alterations in cell biological behavior were observed after transfecting miR-625-5p-mimics, miR-625-5p-inhibition, and miR-625-5p-NC sequences into these cells, respectively. Besides, ELISA was performed to quantify inflammatory factors (IFs), AG indicators, and OS indexes in cells. Subsequently, a double luciferase reporter (DLR) assay was performed to verify the targeting relationship between LINC00958 and miR-625-5p. Finally, BALB/c-nu nude mice were purchased, and T24 cells transfected with silenced LINC00958 and miR-625-5p expression sequences were used to establish subcutaneous tumors to observe tumor growth and pathological changes. Results RG exhibited higher LINC00958 and lower miR-625-5p than CG. LINC00958 and miR-625-5p were strongly linked to myometrial invasion (MI), lymph node metastasis (LNM), distant metastasis (DM), and histology in BC patients, and the increase of LINC00958 and the decrease of miR-625-5p predicted an increased risk of prognostic death in such patients. After miR-625-5p inhibition, the capacity of BC cells to proliferate, invade, and migrate enhanced and the AG, inflammatory response, and OS injury increased, while the apoptosis rate and autophagy ability decreased. The DLR assay revealed inhibited LINC00958WT fluorescence activity by miR-625-5p-mimics, while the biological behavior of BC cells cotransfected with sh-LINC00958 and miR-625-5p-inhibition had no difference with the functions of sh-control and miR-625-5p-NC cotransfected cells. Finally, the nude mouse tumorigenesis experiment showed that the tumor mass, volume, and histopathological features of the sh-LINC00958 group were decreased compared with the sh-control group, while those of the miR-625-5p-inhibition group were increased versus miR-625-5p-NC. Conclusions In BC, LINC00958 is highly expressed while miR-625-5p is underexpressed. LINC00958 can inhibit cell autophagy to enhance cell activity; promote OS, inflammation, and AG; and regulate tumor immunity by targeting miR-625-5p, thus participating in the development of BC.
Collapse
|
297
|
Oxidative Stress and DNA Damage Markers in Colorectal Cancer. Int J Mol Sci 2022; 23:ijms231911664. [PMID: 36232966 PMCID: PMC9569897 DOI: 10.3390/ijms231911664] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022] Open
Abstract
Oxidative stress (OS) and inflammation are known to play an important role in chronic diseases, including cancer, and specifically colorectal cancer (CRC). The main objective of this study was to explore the diagnostic potential of OS markers in patients with CRC, which may translate into an early diagnosis of the disease. To do this, we compared results with those in a group of healthy controls and assessed whether there were significant differences. In addition, we explored possible correlations with the presence of tumors and tumor stage, with anemia and with inflammatory markers used in clinical practice. The study included 80 patients with CRC and 60 healthy controls. The following OS markers were analyzed: catalase (CAT), reduced glutathione (GSH) and oxidized glutathione (GSSG) in serum; and 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) and F2-isoprotanes in urine (F2-IsoPs). Tumor markers (CEA and CA 19.9), anemia markers (hemoglobin, hematocrit and medium corpuscular volume) and inflammatory markers (leukocytes, neutrophils, N/L index, platelets, fibrinogen, C-reactive protein, CRP and IL-6) were also determined. Comparison of means between patients and controls revealed highly significant differences for all OS markers, with an increase in the prooxidant markers GSSG, GSSG/GSH ratio, 8-oxodG and F2-IsoPs, and a decrease in the antioxidant markers CAT and GSH. Tumor and inflammatory markers (except CRP) correlated positively with GSSG, GSSG/GSH ratio, 8-oxodG and F2-IsoPs, and negatively with CAT and GSH. In view of the results obtained, OS markers may constitute a useful tool for the early diagnosis of CRC patients.
Collapse
|
298
|
Chen L, Wu D, Zhou L, Ye Y. Platelet-rich plasma promotes diabetic ulcer repair through inhibition of ferroptosis. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1121. [PMID: 36388823 PMCID: PMC9652541 DOI: 10.21037/atm-22-4654] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/14/2022] [Indexed: 09/05/2023]
Abstract
BACKGROUND Ferroptosis, a newly discovered form of cell death, can accumulation activates lipid peroxidation and excessive oxidative stress in a high glucose environment. These phenomena suggest there may be ferroptosis pathways in the pathological processes associated with diabetic ulcer (DU). Platelet-rich plasma (PRP) promotes the healing of DU wounds, which may be achieved by the regulation of ferroptosis pathways. Hence, the present study aimed to investigate this association and uncover the potential underlying mechanisms. METHODS Cell injury models induced by high glucose were constructed using EA.HY926 (vascular endothelial cells), HSF (fibroblasts), and rat DU models. The MDA, total ROS, total SOD content, the gene and protein expression of GPX4, SLC7A11, and ACSL4, and the expression levels of inflammatory cytokines IL-1β, IL-10, and NLRP3 was subsequently used to evaluate the important role of ferroptosis in the pathological process of DU, and elucidating the molecular mechanism of PRP in ulcer repair. RESULTS The results show that compared with the DU control group, the healing rate of the dorsal ulcer wound in the PRP intervention group was accelerated, and the expression levels of inflammatory cytokines IL-1β, IL-10, and NLRP3 in the granulation tissue of ulcer wounds was lower. Further, the expression levels of CD31 and VEGF were higher, the gene and protein expression levels of GPX4 and SLC7A11 were increased, the expression levels of ACSL4 were less, the SOD content was higher, and the MDA content was lower. CONCLUSIONS In this study, ferroptosis was preliminarily verified in DUs at the cellular and animal levels, while PRP could inhibit ferroptosis and significantly improve the migration and regeneration ability of fibroblasts and vascular endothelial cells induced by high glucose.
Collapse
Affiliation(s)
- Li Chen
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Department of Blood Transfusion, The First Affiliated Hospital Bengbu Medical College, Bengbu, China
| | - Daoai Wu
- Department of Endocrinology, The First Affiliated Hospital Bengbu Medical College, Bengbu, China
| | - Lili Zhou
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Department of Hematology, The First Affiliated Hospital Bengbu Medical College, Bengbu, China
| | - Yan Ye
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
299
|
Liu W, Yang HS, Zheng SY, Luo HH, Feng YF, Lei YY. Oxidative stress genes in patients with esophageal squamous cell carcinoma: construction of a novel prognostic signature and characterization of tumor microenvironment infiltration. BMC Bioinformatics 2022; 23:406. [PMID: 36180848 PMCID: PMC9523924 DOI: 10.1186/s12859-022-04956-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 09/21/2022] [Indexed: 11/22/2022] Open
Abstract
Background Oxidative stress plays an important role in the progression of various types of tumors. However, its role in esophageal squamous cell carcinoma (ESCC) has seldom been explored. This study aimed to discover prognostic markers associated with oxidative stress in ESCC to improve the prediction of prognosis and help in the selection of effective immunotherapy for patients. Results A consensus cluster was constructed using 14 prognostic differentially expressed oxidative stress-related genes (DEOSGs) that were remarkably related to the prognosis of patients with ESCC. The infiltration levels of neutrophils, plasma cells, and activated mast cells, along with immune score, stromal score, and estimated score, were higher in cluster 1 than in cluster 2. A prognostic signature based on 10 prognostic DEOSGs was devised that could evaluate the prognosis of patients with ESCC. Calculated risk score proved to be an independent clinical prognostic factor in the training, testing, and entire sets. P53 signaling pathway was highly enriched in the high-risk group. The calculated risk score was positively related to the infiltration levels of resting mast cells, memory B cells, and activated natural killer (NK) cells and negatively associated with the infiltration levels of M1 and M2 macrophages. The relationship between clinical characteristics and risk score has not been certified. The half-maximal inhibitory concentration (IC50) values for sorafenib and gefitinib were lower for patients in the low-risk group. Conclusion Our prognostic signature based on 10 prognostic DEOSGs could predict the disease outcomes of patients with ESCC and had strong clinical value. Our study improves the understanding of oxidative stress in tumor immune microenvironment (TIME) and provides insights for developing improved and efficient immunotherapy strategies. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-04956-9.
Collapse
Affiliation(s)
- Wei Liu
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Hao-Shuai Yang
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Shao-Yi Zheng
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Hong-He Luo
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Yan-Fen Feng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, China. .,Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, China.
| | - Yi-Yan Lei
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
300
|
Alpha-Ketoglutarate or 5-HMF: Single Compounds Effectively Eliminate Leukemia Cells via Caspase-3 Apoptosis and Antioxidative Pathways. Int J Mol Sci 2022; 23:ijms23169034. [PMID: 36012295 PMCID: PMC9409265 DOI: 10.3390/ijms23169034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022] Open
Abstract
Background: We recently showed that a combined solution containing alpha-ketoglutarate (aKG) and 5-hydroxymethyl-furfural (5-HMF) has a solid antitumoral effect on the Jurkat cell line due to the fact of its antioxidative, caspase-3 and apoptosis activities, but no negative effect on human fibroblasts was obtained. The question arises how the single compounds, aKG and 5-HMF, affect peroxynitrite (ONOO−) and nitration of tyrosine residues, Jurkat cell proliferation and caspase-activated apoptosis. Methods: The ONOO− luminol-induced chemiluminescence reaction was used to measure the ONOO− scavenging function of aKG or 5-HMF, and their protection against nitration of tyrosine residues on bovine serum albumin was estimated with the ELISA technique. The Jurkat cell line was cultivated in the absence or presence of aKG or 5-HMF solutions between 0 and 3.5 µM aKG or 0 and 4 µM 5-HMF. Jurkat cells were tested for cell proliferation, mitochondrial activity and caspase-activated apoptosis. Results: aKG showed a concentration-dependent reduction in ONOO−, resulting in a 90% elimination of ONOO− using 200 mM aKG. In addition, 20 and 200 mM 5-HMF were able to reduce ONOO− only by 20%, while lower concentrations of 5-HMF remained stable in the presence of ONOO−. Nitration of tyrosine residues was inhibited 4 fold more effectively with 5-HMF compared to aKG measuring the IC50%. Both substances, aKG and 5-HMF, were shown to cause a reduction in Jurkat cell growth that was dependent on the dose and incubation time. The aKG effectively reduced Jurkat cell growth down to 50% after 48 and 72 h of incubation using the highest concentration of 3.5 µM, and 1, 1.6, 2, 3 and 4 µM 5-HMF inhibited any cell growth within (i) 24 h; 1.6, 2, 3 and 4 µM 5-HMF within 48 h (ii); 2, 3 and 4 µM 5-HMF within 72 h (iii). Furthermore, 4 µM was able to eliminate the starting cell number of 20,000 cells after 48 and 72 h down to 11,233 cells. The mitochondrial activity measurements supported the data on aKG or 5-HMF regarding cell growth in Jurkat cells, in both a dose- and incubation-time-dependent manner: the highest concentration of 3.5 µM aKG reduced the mitochondrial activity over 24 h (67.7%), 48 h (57.9%) and 72 h (46.8%) of incubation with Jurkat cells compared to the control incubation without aKG (100%). 5-HMF was more effective compared to aKG; the mitochondrial activity in the presence of 4 µM 5-HMF decreased after 24 h down to 68.4%, after 48 h to 42.9% and after 72 h to 32.0%. Moreover, 1.7 and 3.4 µM aKG had no effect on caspase-3-activated apoptosis (0.58% and 0.56%) in the Jurkat cell line. However, 2 and 4 µM 5-HMF increased the caspase-3-activated apoptosis up to 22.1% and 42.5% compared to the control (2.9%). A combined solution of 1.7 µM aKG + 0.7 µM 5-HMF showed a higher caspase-3-activated apoptosis (15.7%) compared to 1.7 µM aKG or 2 µM 5-HMF alone. In addition, 3.5 µM µg/mL aKG + 1.7 µM 5-HMF induced caspase-activated apoptosis up to 55.6% compared to 4.5% or 35.6% caspase-3 activity using 3.5 µM aKG or 4 µM 5-HMF. Conclusion: Both substances showed high antioxidative potential in eliminating either peroxynitrite or nitration of tyrosine residues, which results in a better inhibition of cell growth and mitochondrial activity of 5-HMF compared to aKG. However, caspase-3-activated apoptosis measurements revealed that the combination of both substances synergistically is the most effective compared to single compounds.
Collapse
|