251
|
Rasekhian M, Roohvand F, Teimoori-Toolabi L, Amini S, Azadmanesh K. Application of the 3'-noncoding region of poliovirus RNA for cell-based regulation of mRNA stability: implication for biotechnological applications. Biotechnol Appl Biochem 2014; 61:699-706. [PMID: 24612228 DOI: 10.1002/bab.1218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Accepted: 02/12/2014] [Indexed: 11/08/2022]
Abstract
Enrichment of production yield of therapeutic proteins in mammalian cell cultures by modulation of the mRNA stability of the target protein to increase its in vivo half-life is a new strategy in biotechnological applications. The present article describes one of the most novel approaches to modulate mRNA stability by application of 3'-noncoding region (3'NCR) from RNA viral genome in the expression constructs. Our data indicated that although utilizing the 3'NCR sequence form poliovirus (PV-3'NCR) downstream of the target gene might generally stabilize the secondary structure of RNA, it influenced the mRNA stability (and thereby the amount of protein production) in a cell type and time-dependent manner, thus indicating a central role of mRNA-stabilizing binding sites/cellular factors in this process. Our data might be of interest to the biotechnology community to improve recombinant protein production in mammalian cell cultures and RNA-based therapy/vaccination approaches.
Collapse
Affiliation(s)
- Mahsa Rasekhian
- Virology Department, Pasteur Institute of Iran, Tehran, Iran
| | | | | | | | | |
Collapse
|
252
|
Liu MT, Nagre NN, Ryan K. Structurally diverse low molecular weight activators of the mammalian pre-mRNA 3' cleavage reaction. Bioorg Med Chem 2014; 22:834-41. [PMID: 24373842 PMCID: PMC4018835 DOI: 10.1016/j.bmc.2013.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 11/23/2013] [Accepted: 12/03/2013] [Indexed: 11/15/2022]
Abstract
The 3' end formation of mammalian pre-mRNA contributes to gene expression regulation by setting the downstream boundary of the 3' untranslated region, which in many genes carries regulatory sequences. A large number of protein cleavage factors participate in this pre-mRNA processing step, but chemical tools to manipulate this process are lacking. Guided by a hypothesis that a PPM1 family phosphatase negatively regulates the 3' cleavage reaction, we have found a variety of new small molecule activators of the in vitro reconstituted pre-mRNA 3' cleavage reaction. New activators include a cyclic peptide PPM1D inhibitor, a dipeptide with modifications common to histone tails, abscisic acid and an improved l-arginine β-naphthylamide analog. The minimal concentration required for in vitro cleavage has been improved from 200μM to the 200nM-100μM range. These compounds provide unexpected leads in the search for small molecule tools able to affect pre-mRNA 3' end formation.
Collapse
Affiliation(s)
- Min Ting Liu
- Department of Chemistry, The City College of New York, The City University of New York, New York, NY 10031, USA
| | - Nagaraja N Nagre
- Department of Chemistry, The City College of New York, The City University of New York, New York, NY 10031, USA
| | - Kevin Ryan
- Department of Chemistry, The City College of New York, The City University of New York, New York, NY 10031, USA.
| |
Collapse
|
253
|
Ruiz de los Mozos I, Vergara-Irigaray M, Segura V, Villanueva M, Bitarte N, Saramago M, Domingues S, Arraiano CM, Fechter P, Romby P, Valle J, Solano C, Lasa I, Toledo-Arana A. Base pairing interaction between 5'- and 3'-UTRs controls icaR mRNA translation in Staphylococcus aureus. PLoS Genet 2013; 9:e1004001. [PMID: 24367275 PMCID: PMC3868564 DOI: 10.1371/journal.pgen.1004001] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 10/20/2013] [Indexed: 11/18/2022] Open
Abstract
The presence of regulatory sequences in the 3′ untranslated region (3′-UTR) of eukaryotic mRNAs controlling RNA stability and translation efficiency is widely recognized. In contrast, the relevance of 3′-UTRs in bacterial mRNA functionality has been disregarded. Here, we report evidences showing that around one-third of the mapped mRNAs of the major human pathogen Staphylococcus aureus carry 3′-UTRs longer than 100-nt and thus, potential regulatory functions. We selected the long 3′-UTR of icaR, which codes for the repressor of the main exopolysaccharidic compound of the S. aureus biofilm matrix, to evaluate the role that 3′-UTRs may play in controlling mRNA expression. We showed that base pairing between the 3′-UTR and the Shine-Dalgarno (SD) region of icaR mRNA interferes with the translation initiation complex and generates a double-stranded substrate for RNase III. Deletion or substitution of the motif (UCCCCUG) within icaR 3′-UTR was sufficient to abolish this interaction and resulted in the accumulation of IcaR repressor and inhibition of biofilm development. Our findings provide a singular example of a new potential post-transcriptional regulatory mechanism to modulate bacterial gene expression through the interaction of a 3′-UTR with the 5′-UTR of the same mRNA. At both sides of the protein-coding region, the mRNA molecule contains sequences that are not translated to protein. In eukaryotes, the untranslated 3′ region (3′-UTR), which comprises from the last codon used in translation to the 3′ end of the mRNA, controls mRNA stability, location and translation efficiency. In contrast, knowledge about the functions of 3′-UTRs in bacterial physiology is scarce. Here, we demonstrate that bacterial 3′-UTRs might play regulatory functions that might resemble those already described in eukaryotes. Transcriptome analysis of the human pathogen Staphylococcus aureus revealed that at least 30% of mRNAs contain long 3′-UTRs. Using the 3′-UTR of the mRNA encoding the main biofilm repressor IcaR as a model, we show that the 3′-UTR interferes with the translation initiation complex and promotes mRNA decay through base pairing with the ribosome binding site. This event contributes to adjusting IcaR level and modulating exopolysaccharide production and biofilm development in S. aureus. Our data illustrate that bacterial 3′-UTRs can provide strategies for fine-tuning control of gene expression.
Collapse
Affiliation(s)
- Igor Ruiz de los Mozos
- Laboratory of Microbial Biofilms. Instituto de Agrobiotecnología (IDAB). Universidad Pública de Navarra-CSIC-Gobierno de Navarra. Campus de Arrosadía. Pamplona, Spain
| | - Marta Vergara-Irigaray
- Laboratory of Microbial Biofilms. Instituto de Agrobiotecnología (IDAB). Universidad Pública de Navarra-CSIC-Gobierno de Navarra. Campus de Arrosadía. Pamplona, Spain
| | - Victor Segura
- Genomics, Proteomics and Bioinformatics Unit. Center for Applied Medical Research. University of Navarra. Pamplona, Spain
| | - Maite Villanueva
- Laboratory of Microbial Biofilms. Instituto de Agrobiotecnología (IDAB). Universidad Pública de Navarra-CSIC-Gobierno de Navarra. Campus de Arrosadía. Pamplona, Spain
| | - Nerea Bitarte
- Laboratory of Microbial Biofilms. Instituto de Agrobiotecnología (IDAB). Universidad Pública de Navarra-CSIC-Gobierno de Navarra. Campus de Arrosadía. Pamplona, Spain
| | - Margarida Saramago
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa. Oeiras, Portugal
| | - Susana Domingues
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa. Oeiras, Portugal
| | - Cecilia M. Arraiano
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa. Oeiras, Portugal
| | - Pierre Fechter
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC. Strasbourg, France
| | - Pascale Romby
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC. Strasbourg, France
| | - Jaione Valle
- Laboratory of Microbial Biofilms. Instituto de Agrobiotecnología (IDAB). Universidad Pública de Navarra-CSIC-Gobierno de Navarra. Campus de Arrosadía. Pamplona, Spain
| | - Cristina Solano
- Laboratory of Microbial Biofilms. Instituto de Agrobiotecnología (IDAB). Universidad Pública de Navarra-CSIC-Gobierno de Navarra. Campus de Arrosadía. Pamplona, Spain
| | - Iñigo Lasa
- Laboratory of Microbial Biofilms. Instituto de Agrobiotecnología (IDAB). Universidad Pública de Navarra-CSIC-Gobierno de Navarra. Campus de Arrosadía. Pamplona, Spain
- * E-mail: (IL); (ATA)
| | - Alejandro Toledo-Arana
- Laboratory of Microbial Biofilms. Instituto de Agrobiotecnología (IDAB). Universidad Pública de Navarra-CSIC-Gobierno de Navarra. Campus de Arrosadía. Pamplona, Spain
- * E-mail: (IL); (ATA)
| |
Collapse
|
254
|
Grewer C, Gameiro A, Rauen T. SLC1 glutamate transporters. Pflugers Arch 2013; 466:3-24. [PMID: 24240778 DOI: 10.1007/s00424-013-1397-7] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 10/21/2013] [Accepted: 10/22/2013] [Indexed: 12/13/2022]
Abstract
The plasma membrane transporters for the neurotransmitter glutamate belong to the solute carrier 1 family. They are secondary active transporters, taking up glutamate into the cell against a substantial concentration gradient. The driving force for concentrative uptake is provided by the cotransport of Na(+) ions and the countertransport of one K(+) in a step independent of the glutamate translocation step. Due to eletrogenicity of transport, the transmembrane potential can also act as a driving force. Glutamate transporters are expressed in many tissues, but are of particular importance in the brain, where they contribute to the termination of excitatory neurotransmission. Glutamate transporters can also run in reverse, resulting in glutamate release from cells. Due to these important physiological functions, glutamate transporter expression and, therefore, the transport rate, are tightly regulated. This review summarizes recent literature on the functional and biophysical properties, structure-function relationships, regulation, physiological significance, and pharmacology of glutamate transporters. Particular emphasis is on the insight from rapid kinetic and electrophysiological studies, transcriptional regulation of transporter expression, and reverse transport and its importance for pathophysiological glutamate release under ischemic conditions.
Collapse
Affiliation(s)
- Christof Grewer
- Department of Chemistry, Binghamton University, PO Box 6000, Binghamton, 13902-6000, NY, USA,
| | | | | |
Collapse
|
255
|
Jagu B, Charpentier F, Toumaniantz G. Identifying potential functional impact of mutations and polymorphisms: linking heart failure, increased risk of arrhythmias and sudden cardiac death. Front Physiol 2013; 4:254. [PMID: 24065925 PMCID: PMC3778269 DOI: 10.3389/fphys.2013.00254] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 08/29/2013] [Indexed: 01/22/2023] Open
Abstract
Researchers and clinicians have discovered several important concepts regarding the mechanisms responsible for increased risk of arrhythmias, heart failure, and sudden cardiac death. One major step in defining the molecular basis of normal and abnormal cardiac electrical behavior has been the identification of single mutations that greatly increase the risk for arrhythmias and sudden cardiac death by changing channel-gating characteristics. Indeed, mutations in several genes encoding ion channels, such as SCN5A, which encodes the major cardiac Na+ channel, have emerged as the basis for a variety of inherited cardiac arrhythmias such as long QT syndrome, Brugada syndrome, progressive cardiac conduction disorder, sinus node dysfunction, or sudden infant death syndrome. In addition, genes encoding ion channel accessory proteins, like anchoring or chaperone proteins, which modify the expression, the regulation of endocytosis, and the degradation of ion channel a-subunits have also been reported as susceptibility genes for arrhythmic syndromes. The regulation of ion channel protein expression also depends on a fine-tuned balance among different other mechanisms, such as gene transcription, RNA processing, post-transcriptional control of gene expression by miRNA, protein synthesis, assembly and post-translational modification and trafficking. The aim of this review is to inventory, through the description of few representative examples, the role of these different biogenic mechanisms in arrhythmogenesis, HF and SCD in order to help the researcher to identify all the processes that could lead to arrhythmias. Identification of novel targets for drug intervention should result from further understanding of these fundamental mechanisms.
Collapse
Affiliation(s)
- Benoît Jagu
- INSERM, UMR1087, l'institut du thorax, IRS-UN Nantes, France ; CNRS, UMR6291 Nantes, France ; Faculté de Médecine, Université de Nantes Nantes, France
| | | | | |
Collapse
|
256
|
Michalova E, Vojtesek B, Hrstka R. Impaired pre-mRNA processing and altered architecture of 3' untranslated regions contribute to the development of human disorders. Int J Mol Sci 2013; 14:15681-94. [PMID: 23896598 PMCID: PMC3759880 DOI: 10.3390/ijms140815681] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 06/21/2013] [Accepted: 06/24/2013] [Indexed: 11/16/2022] Open
Abstract
The biological fate of each mRNA and consequently, the protein to be synthesised, is highly dependent on the nature of the 3' untranslated region. Despite its non-coding character, the 3' UTR may affect the final mRNA stability, the localisation, the export from the nucleus and the translation efficiency. The conserved regulatory sequences within 3' UTRs and the specific elements binding to them enable gene expression control at the posttranscriptional level and all these processes reflect the actual state of the cell including proliferation, differentiation, cellular stress or tumourigenesis. Through this article, we briefly outline how the alterations in the establishment and final architecture of 3' UTRs may contribute to the development of various disorders in humans.
Collapse
Affiliation(s)
- Eva Michalova
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, Brno 656 53, Czech Republic; E-Mails: (E.M.); (B.V.)
| | - Borivoj Vojtesek
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, Brno 656 53, Czech Republic; E-Mails: (E.M.); (B.V.)
| | - Roman Hrstka
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, Brno 656 53, Czech Republic; E-Mails: (E.M.); (B.V.)
| |
Collapse
|
257
|
Deng GF, Liu SJ, Sun XS, Sun WW, Zhao QH, Liao WP, Yi YH, Long YS. A conserved region in the 3' untranslated region of the human LIMK1 gene is critical for proper expression of LIMK1 at the post-transcriptional level. Neurosci Bull 2013; 29:348-54. [PMID: 23700283 DOI: 10.1007/s12264-013-1341-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 10/02/2012] [Indexed: 11/30/2022] Open
Abstract
LIM kinase 1 (LIMK1), a cytosolic serine/threonine kinase, regulates actin filament dynamics and reorganization and is involved in neuronal development and brain function. Abnormal expression of LIMK1 is associated with several neurological disorders. In this study, we performed a conservation analysis using Vector NTI (8.0) software. The dualluciferase reporter assay and real-time quantitative RT-PCR were used to assess the protein and mRNA levels of the reporter gene, respectively. We found that a region ranging from nt +884 to +966 in the human LIMK1 3' untranslated region (UTR) was highly conserved in the mouse Limk1 3' UTR and formed a structure containing several loops and stems. Luciferase assay showed that the relative luciferase activity of the mutated construct with the conserved region deleted, pGL4-hLIMK1-3U-M, in SH-SY5Y and HEK-293 cells was only ~60% of that of the wild-type construct pGL4-hLIMK1-3U, indicating that the conserved region is critical for the reporter gene expression. Real-time quantitative RT-PCR analysis demonstrated that the relative Luc2 mRNA levels in SH-SY5Y and HEK293 cells transfected with pGL4-hLIMK1-3U-M decreased to ~50% of that in cells transfected with pGL4-hLIMK1-3U, suggesting an important role of the conserved region in maintaining Luc2 mRNA stability. Our study suggests that the conserved region in the LIMK1 3' UTR is involved in regulating LIMK1 expression at the post-transcriptional level, which may help reveal the mechanism underlying the regulation of LIMK1 expression in the central nervous system and explore the relationship between the 3'-UTR mutant and neurological disorders.
Collapse
Affiliation(s)
- Guang-Fei Deng
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience, Guangzhou, 510260, China
| | | | | | | | | | | | | | | |
Collapse
|
258
|
Ciafrè SA, Galardi S. microRNAs and RNA-binding proteins: a complex network of interactions and reciprocal regulations in cancer. RNA Biol 2013; 10:935-42. [PMID: 23696003 PMCID: PMC4111733 DOI: 10.4161/rna.24641] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In the last decade, an ever-growing number of connections between microRNAs (miRNAs) and RNA-binding proteins (RBPs) have uncovered a new level of complexity of gene expression regulation in cancer. In this review, we examine several aspects of the functional interactions between miRNAs and RBPs in cancer models. We will provide examples of reciprocal regulation: miRNAs regulating the expression of RBPs, or the converse, where an RNA-binding protein specifically regulates the expression of a specific miRNA, or when an RBP can exert a widespread effect on miRNAs via the modulation of a key protein for miRNA production or function. Moreover, we will focus on the ever-growing number of functional interactions that have been discovered in the last few years: RBPs that were shown to cooperate with microRNAs in the downregulation of shared target mRNAs or, on the contrary, that inhibit microRNA action, thus resulting in a protection of the specific target mRNAs. We surely need to obtain a deeper comprehension of such intricate networks to have a chance of understanding and, thus, fighting cancer.
Collapse
Affiliation(s)
- Silvia Anna Ciafrè
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier, Roma, Italy.
| | | |
Collapse
|
259
|
Amirouche A, Tadesse H, Lunde JA, Bélanger G, Côté J, Jasmin BJ. Activation of p38 signaling increases utrophin A expression in skeletal muscle via the RNA-binding protein KSRP and inhibition of AU-rich element-mediated mRNA decay: implications for novel DMD therapeutics. Hum Mol Genet 2013; 22:3093-111. [PMID: 23575223 DOI: 10.1093/hmg/ddt165] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Several therapeutic approaches are currently being developed for Duchenne muscular dystrophy (DMD) including upregulating the levels of endogenous utrophin A in dystrophic fibers. Here, we examined the role of post-transcriptional mechanisms in controlling utrophin A expression in skeletal muscle. We show that activation of p38 leads to an increase in utrophin A independently of a transcriptional induction. Rather, p38 controls the levels of utrophin A mRNA by extending the half-life of transcripts via AU-rich elements (AREs). This mechanism critically depends on a decrease in the functional availability of KSRP, an RNA-binding protein known to promote decay of ARE-containing transcripts. In vitro and in vivo binding studies revealed that KSRP interacts with specific AREs located within the utrophin A 3' UTR. Electroporation experiments to knockdown KSRP led to an increase in utrophin A in wild-type and mdx mouse muscles. In pre-clinical studies, treatment of mdx mice with heparin, an activator of p38, causes a pronounced increase in utrophin A in diaphragm muscle fibers. Together, these studies identify a pathway that culminates in the post-transcriptional regulation of utrophin A through increases in mRNA stability. Furthermore, our results constitute proof-of-principle showing that pharmacological activation of p38 may prove beneficial as a novel therapeutic approach for DMD.
Collapse
Affiliation(s)
- Adel Amirouche
- Faculty of Medicine, Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, University of Ottawa, ON, Canada K1H 8M5
| | | | | | | | | | | |
Collapse
|
260
|
Induction mechanism of lipocalin-2 expression by co-stimulation with interleukin-1β and interferon-γ in RINm5F beta-cells. Biochem Biophys Res Commun 2013; 434:577-83. [PMID: 23583381 DOI: 10.1016/j.bbrc.2013.03.117] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 03/27/2013] [Indexed: 11/20/2022]
Abstract
Lipocalin-2 (LCN-2) was known to play a role in obesity and insulin resistance, however, little is known about the expression of LCN-2 in pancreatic islet β-cells. We examined the molecular mechanisms by which proinflammatory cytokines interleukin-1β (IL-1β) and interferon-γ (IFN-γ) induce LCN-2 expression in RINm5F β-cells. IL-1β significantly induced LCN-2 expression while IFN-γ alone did not induce it. IFN-γ significantly potentiated IL-1β-induced LCN-2 protein and mRNA expression. However, promoter study and EMSA showed that IFN-γ failed to potentiate IL-1β-induced LCN-2 promoter activity and binding activity of transcription factors on LCN-2 promoter. Furthermore, LCN-2 mRNA stability and transcription factors NF-κB and STAT-1 were not involved in the stimulatory effect of IFN-γ on IL-1β-induced LCN-2 expression. Meanwhile, Western Blot and promoter analyses showed that NF-κB was a key factor in IL-1β-induced LCN-2 expression. Collectively, IL-1β induces LCN-2 expression via NF-κB activation in RINm5F β-cells. IFN-γ potentiates IL-1β-induced LCN-2 expression at mRNA and protein levels, but not at promoter level and the stimulatory effect of IFN-γ is independent of NF-κB and STAT-1 activation. These data suggest that LCN-2 may play a role in β-cell function under an inflammatory condition.
Collapse
|