301
|
Arezoomandan R, Moradi M, Attarzadeh-Yazdi G, Tomaz C, Haghparast A. Administration of activated glial condition medium in the nucleus accumbens extended extinction and intensified reinstatement of methamphetamine-induced conditioned place preference. Brain Res Bull 2016; 125:106-16. [PMID: 27346277 DOI: 10.1016/j.brainresbull.2016.06.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/17/2016] [Accepted: 06/21/2016] [Indexed: 02/08/2023]
Abstract
Methamphetamine (METH) is a psychostimulant drug with significant abuse potential and neurotoxic effects. A high percentage of users relapse to use after detoxification and no effective medication has been developed for treatment of METH addiction. Developing evidences indicated the role of glial cells in drugs abused related phenomena. However, little is known about the role of these cells in the maintenance and reinstatement of METH-seeking behaviors. Therefore, the current study was conducted to clarify the role of glial cells in the maintenance and reinstatement of METH-induced conditioned place preference (CPP) in rats. Astrocyte condition medium (ACM) and neuroglia conditioned medium (NCM) are liquid mediums prepared from primary astrocyte and neuroglia cells. These mediums seem to contain many factors that release by glia cells. CPP was induced by systemic administration of METH (1mg/kg for 5days, s.c.). Following the establishment of CPP, the rats were given daily bilateral injections (0.5μl/side) of either vehicle, ACM or NCM into the nucleus accumbens (NAc) and then were tested for the maintenance and reinstatement. Intra-NAc administration of ACM treated with METH, could extend the extinction period and also, intensified the magnitude of METH reinstatement. Furthermore, intra-accumbal administration of NCM treated with METH notably delayed the extinction period by four days and significantly increased the magnitude of CPP score in the reinstatement phase compared to the post-test phase. Collectively, these findings suggested that activation of glial cells may be involved in the maintenance and reinstatement of METH-seeking behaviors. It provides new evidence that glia cells might be considered as a potential target for the treatment of METH addiction.
Collapse
Affiliation(s)
- Reza Arezoomandan
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Addiction Department, Center of Excellence in Psychiatry and Clinical Psychology, School of Behavioral Sciences and Mental Health (Institute of Tehran Psychiatry), Iran University of Medical Sciences, Tehran, Iran
| | - Marzieh Moradi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghassem Attarzadeh-Yazdi
- Molecular Medicine Research Centre, Hormozgan University of Medical Sciences, Bandar Abbas, Iran; Iran National Science Foundation, Tehran, Iran
| | - Carlos Tomaz
- Department of Physiological Sciences, University of Brasilia, Brasilia, Brazil
| | - Abbas Haghparast
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Iran National Science Foundation, Tehran, Iran.
| |
Collapse
|
302
|
Ballerini P, Di Iorio P, Ciccarelli R, Caciagli F, Poli A, Beraudi A, Buccella S, D'Alimonte I, D'Auro M, Nargi E, Patricelli P, Visini D, Traversa U. P2Y1 and Cysteinyl Leukotriene Receptors Mediate Purine and Cysteinyl Leukotriene Co-Release in Primary Cultures of Rat Microglia. Int J Immunopathol Pharmacol 2016; 18:255-68. [PMID: 15888248 DOI: 10.1177/039463200501800208] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Inflammation is widely recognized as contributing to the pathology of acute and chronic neurodegenerative conditions. Microglial cells are pathologic sensors in the brain and activated microglia have been viewed as detrimental. Leukotriene, including cysteinyl leukotrienes (CysLTs) are suggested to be involved in brain inflammation and neurological diseases and ATP, by its receptors is a candidate for microglia activation. A23187 (10μM) stimulated microglia to co-release CysLTs and [3H]adenine based purines ([3H]ABPs), mainly ATP. The biosynthetic production of CysLTs was abolished by 10μM MK-886, an inhibitor of 5-lipoxygenase-activating protein activity. RT-PCR analysis showed that microglia expressed both CysLT1 / CysLT2 receptors, P2Y1 ATP-receptors and several members of the ATP binding cassette (ABC) transporters including MRP1, MRP4 and Pgp. The increase in [Ca2+]i elicited by LTD4 (0.1 μM) and 2MeSATP (100μM), agonists for CysLT- and P2Y1-receptors, was abolished by the respective antagonists, BAYu9773 (0.5 μM) and suramin (50 μM). The stimulation of both receptor subtypes, induced a concomitant increase in the release of both [3H]ABPs and CysLTs that was blocked by the antagonists and significantly reduced by a cocktail of ABC transporter inhibitors, BAPTA/AM (intracellular Ca2+ chelator) and staurosporine (0.1 μM, PKC blocker). P2Y antagonist was unable to antagonise the effects of LTD4 and BAYu9773 did not reduce the effects of 2MeSATP. These data suggest that: i) the efflux of purines and cysteinyl-leukotrienes is specifically and independently controlled by the two receptor types, ii) calcium, PKC and the ABC transporter system can reasonably be considered common mechanisms underlying the release of ABPs and CysLTs from microglia. The blockade of P2Y1 or CysLT1/CysLT2 receptors by specific antagonists that abolished the raise in [Ca2+]i and drastically reduced the concomitant efflux of both compounds, as well as the effects of BAPTA and staurosporine support this hypothesis. In conclusion, the data of the present study suggest a cross talk between the purine and leukotriene systems in a possible autocrine/paracrine control of the microglia-mediated initiation and progression of an inflammatory response.
Collapse
Affiliation(s)
- P Ballerini
- Department of Biomedical Sciences, G. D'Annunzio University of Chieti, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
303
|
McArdle S, Mikulski Z, Ley K. Live cell imaging to understand monocyte, macrophage, and dendritic cell function in atherosclerosis. J Exp Med 2016; 213:1117-31. [PMID: 27270892 PMCID: PMC4925021 DOI: 10.1084/jem.20151885] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/28/2016] [Indexed: 02/06/2023] Open
Abstract
Ley et al. provide a review of the technology and accomplishments of dynamic imaging of myeloid cells in atherosclerosis. Intravital imaging is an invaluable tool for understanding the function of cells in healthy and diseased tissues. It provides a window into dynamic processes that cannot be studied by other techniques. This review will cover the benefits and limitations of various techniques for labeling and imaging myeloid cells, with a special focus on imaging cells in atherosclerotic arteries. Although intravital imaging is a powerful tool for understanding cell function, it alone does not provide a complete picture of the cell. Other techniques, such as flow cytometry and transcriptomics, must be combined with intravital imaging to fully understand a cell's phenotype, lineage, and function.
Collapse
Affiliation(s)
- Sara McArdle
- Division of Inflammation Biology and Microscopy Core, La Jolla Institute of Allergy and Immunology, La Jolla, CA 92037
| | - Zbigniew Mikulski
- Division of Inflammation Biology and Microscopy Core, La Jolla Institute of Allergy and Immunology, La Jolla, CA 92037
| | - Klaus Ley
- Division of Inflammation Biology and Microscopy Core, La Jolla Institute of Allergy and Immunology, La Jolla, CA 92037
| |
Collapse
|
304
|
Deguchi T, Adachi R, Kamioka H, Kim DG, Fields HW, Takano-Yamamoto T, Ichikawa H, Yamashiro T. Effect of minocycline on induced glial activation by experimental tooth movement. Am J Orthod Dentofacial Orthop 2016; 149:881-8. [DOI: 10.1016/j.ajodo.2015.11.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 11/01/2015] [Accepted: 11/01/2015] [Indexed: 10/21/2022]
|
305
|
Retinal Macroglial Responses in Health and Disease. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2954721. [PMID: 27294114 PMCID: PMC4887628 DOI: 10.1155/2016/2954721] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 04/14/2016] [Indexed: 12/20/2022]
Abstract
Due to their permanent and close proximity to neurons, glial cells perform essential tasks for the normal physiology of the retina. Astrocytes and Müller cells (retinal macroglia) provide physical support to neurons and supplement them with several metabolites and growth factors. Macroglia are involved in maintaining the homeostasis of extracellular ions and neurotransmitters, are essential for information processing in neural circuits, participate in retinal glucose metabolism and in removing metabolic waste products, regulate local blood flow, induce the blood-retinal barrier (BRB), play fundamental roles in local immune response, and protect neurons from oxidative damage. In response to polyetiological insults, glia cells react with a process called reactive gliosis, seeking to maintain retinal homeostasis. When malfunctioning, macroglial cells can become primary pathogenic elements. A reactive gliosis has been described in different retinal pathologies, including age-related macular degeneration (AMD), diabetes, glaucoma, retinal detachment, or retinitis pigmentosa. A better understanding of the dual, neuroprotective, or cytotoxic effect of macroglial involvement in retinal pathologies would help in treating the physiopathology of these diseases. The extensive participation of the macroglia in retinal diseases points to these cells as innovative targets for new drug therapies.
Collapse
|
306
|
Xiang Y, Zhao H, Wang J, Zhang L, Liu A, Chen Y. Inflammatory mechanisms involved in brain injury following cardiac arrest and cardiopulmonary resuscitation. Biomed Rep 2016; 5:11-17. [PMID: 27330748 DOI: 10.3892/br.2016.677] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/25/2016] [Indexed: 12/24/2022] Open
Abstract
Cardiac arrest (CA) is a leading cause of fatality and long-term disability worldwide. Recent advances in cardiopulmonary resuscitation (CPR) have improved survival rates; however, the survivors are prone to severe neurological injury subsequent to successful CPR following CA. Effective therapeutic options to protect the brain from CA remain limited, due to the complexities of the injury cascades caused by global cerebral ischemia/reperfusion (I/R). Although the precise mechanisms of neurological impairment following CA-initiated I/R injury require further clarification, evidence supports that one of the key cellular pathways of cerebral injury is inflammation. The inflammatory response is orchestrated by activated glial cells in response to I/R injury. Increased release of danger-associated molecular pattern molecules and cellular dysfunction in activated microglia and astrocytes contribute to ischemia-induced cytotoxic and pro-inflammatory cytokines generation, and ultimately to delayed death of neurons. Furthermore, cytokines and adhesion molecules generated within activated microglia, as well as astrocytes, are involved in the innate immune response; modulate influx of peripheral immune and inflammatory cells into the brain, resulting in neurological injury. The present review discusses the molecular aspects of immune and inflammatory mechanisms in global cerebral I/R injury following CA and CPR, and the potential therapeutic strategies that target neuroinflammation and the innate immune system.
Collapse
Affiliation(s)
- Yanxiao Xiang
- Department of Clinical Pharmacy, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China; Department of Emergency, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Hua Zhao
- Department of Orthopedics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jiali Wang
- Chest Pain Center, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China; Institute of Emergency and Critical Care Medicine, Shandong University, Jinan, Shandong 250012, P.R. China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Luetao Zhang
- Chest Pain Center, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China; Institute of Emergency and Critical Care Medicine, Shandong University, Jinan, Shandong 250012, P.R. China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Anchang Liu
- Department of Clinical Pharmacy, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yuguo Chen
- Department of Emergency, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China; Chest Pain Center, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China; Institute of Emergency and Critical Care Medicine, Shandong University, Jinan, Shandong 250012, P.R. China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
307
|
|
308
|
Hu J, Al-Waili D, Hassan A, Fan GC, Xin M, Hao J. Inhibition of cerebral vascular inflammation by brain endothelium-targeted oligodeoxynucleotide complex. Neuroscience 2016; 329:30-42. [PMID: 27132231 DOI: 10.1016/j.neuroscience.2016.04.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 11/24/2022]
Abstract
The present study generated a novel DNA complex to specifically target endothelial NF-κB to inhibit cerebral vascular inflammation. This DNA complex (GS24-NFκB) contains a DNA decoy which inhibits NF-κB activity, and a DNA aptamer (GS-24), a ligand of transferrin receptor (TfR), which allows for targeted delivery of the DNA decoy into cells. The results indicate that GS24-NFκB was successfully delivered into a murine brain-derived endothelial cell line, bEND5, and inhibited inflammatory responses induced by tumor necrosis factor α (TNF-α) or oxygen-glucose deprivation/re-oxygenation (OGD/R) via down-regulation of the nuclear NF-κB subunit, p65, as well as its downstream inflammatory cytokines, inter-cellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule (VCAM-1). The inhibitory effect of the GS24-NFκB was demonstrated by a significant reduction in TNF-α or OGD/R induced monocyte adhesion to the bEND5 cells after GS24-NFκB treatment. Intravenous (i.v.) injection of GS24-'NFκB (15mg/kg) was able to inhibit the levels of phoseph-p65 and VCAM-1 in brain endothelial cells in a mouse lipopolysaccharide (LPS)-induced inflammatory model in vivo. In conclusion, our approach using DNA nanotechnology for DNA decoy delivery could potentially be utilized for inhibition of inflammation in ischemic stroke and other neuro-inflammatory diseases affecting cerebral vasculature.
Collapse
Affiliation(s)
- Jing Hu
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Daniah Al-Waili
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Aishlin Hassan
- Department of Pediatrics, University of Cincinnati & Cincinnati Children's Hospital Medical Center, USA
| | - Guo-Chang Fan
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Mei Xin
- Department of Pediatrics, University of Cincinnati & Cincinnati Children's Hospital Medical Center, USA
| | - Jiukuan Hao
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA.
| |
Collapse
|
309
|
MicroRNA-19b-3p Modulates Japanese Encephalitis Virus-Mediated Inflammation via Targeting RNF11. J Virol 2016; 90:4780-4795. [PMID: 26937036 PMCID: PMC4836334 DOI: 10.1128/jvi.02586-15] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/18/2016] [Indexed: 01/16/2023] Open
Abstract
UNLABELLED Japanese encephalitis virus (JEV) can invade the central nervous system and consequently induce neuroinflammation, which is characterized by profound neuronal cell damage accompanied by astrogliosis and microgliosis. Albeit microRNAs (miRNAs) have emerged as major regulatory noncoding RNAs with profound effects on inflammatory response, it is unknown how astrocytic miRNAs regulate JEV-induced inflammation. Here, we found the involvement of miR-19b-3p in regulating the JEV-induced inflammatory responsein vitroandin vivo The data demonstrated that miR-19b-3p is upregulated in cultured cells and mouse brain tissues during JEV infection. Overexpression of miR-19b-3p led to increased production of inflammatory cytokines, including tumor necrosis factor alpha, interleukin-6, interleukin-1β, and chemokine (C-C motif) ligand 5, after JEV infection, whereas knockdown of miR-19b-3p had completely opposite effects. Mechanistically, miR-19b-3p modulated the JEV-induced inflammatory response via targeting ring finger protein 11, a negative regulator of nuclear factor kappa B signaling. We also found that inhibition of ring finger protein 11 by miR-19b-3p resulted in accumulation of nuclear factor kappa B in the nucleus, which in turn led to higher production of inflammatory cytokines.In vivosilencing of miR-19b-3p by a specific antagomir reinvigorates the expression level of RNF11, which in turn reduces the production of inflammatory cytokines, abrogates gliosis and neuronal cell death, and eventually improves the survival rate in the mouse model. Collectively, our results demonstrate that miR-19b-3p positively regulates the JEV-induced inflammatory response. Thus, miR-19b-3p targeting may constitute a thought-provoking approach to rein in JEV-induced inflammation. IMPORTANCE Japanese encephalitis virus (JEV) is one of the major causes of acute encephalitis in humans worldwide. The pathological features of JEV-induced encephalitis are inflammatory reactions and neurological diseases resulting from glia activation. MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression posttranscriptionally. Accumulating data indicate that miRNAs regulate a variety of cellular processes, including the host inflammatory response under pathological conditions. Recently, a few studies demonstrated the role of miRNAs in a JEV-induced inflammatory response in microglia; however, their role in an astrocyte-derived inflammatory response is largely unknown. The present study reveals that miR-19b-3p targets ring finger protein 11 in glia and promotes inflammatory cytokine production by enhancing nuclear factor kappa B activity in these cells. Moreover, administration of an miR-19b-3p-specific antagomir in JEV-infected mice reduces neuroinflammation and lethality. These findings suggest a new insight into the molecular mechanism of the JEV-induced inflammatory response and provide a possible therapeutic entry point for treating viral encephalitis.
Collapse
|
310
|
A Common Language: How Neuroimmunological Cross Talk Regulates Adult Hippocampal Neurogenesis. Stem Cells Int 2016; 2016:1681590. [PMID: 27143977 PMCID: PMC4842066 DOI: 10.1155/2016/1681590] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/17/2016] [Indexed: 12/31/2022] Open
Abstract
Immune regulation of the brain is generally studied in the context of injury or disease. Less is known about how the immune system regulates the brain during normal brain function. Recent work has redefined the field of neuroimmunology and, as long as their recruitment and activation are well regulated, immune cells are now known to have protective properties within the central nervous system in maintaining brain health. Adult neurogenesis, the process of new neuron generation in the adult brain, is highly plastic and regulated by diverse extrinsic and intrinsic cues. Emerging research has shown that immune cells and their secreted factors can influence adult neurogenesis, both under baseline conditions and during conditions known to change neurogenesis levels, such as aging and learning in an enriched environment. This review will discuss how, under nonpathological conditions, the immune system can interact with the neural stem cells to regulate adult neurogenesis with particular focus on the hippocampus—a region crucial for learning and memory.
Collapse
|
311
|
Zhao T, Ding Q, Hu J, He S, Shi F, Ma L. GPER expressed on microglia mediates the anti-inflammatory effect of estradiol in ischemic stroke. Brain Behav 2016; 6:e00449. [PMID: 27127723 PMCID: PMC4840664 DOI: 10.1002/brb3.449] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/25/2016] [Accepted: 01/28/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Stroke could lead to serious morbidity, of which ischemic stroke counts for majority of the cases. Inflammation plays an important role in the pathogenesis of ischemic stroke, thus drugs targeting inflammation could be potentially neuroprotective. Estradiol was shown to be neuroprotective as well as anti-inflammatory in animal models of ischemic stroke with unclear mechanism. We hypothesize that the anti-inflammatory and neuroprotective effect of estradiol is mediated by the estradiol receptor G protein-coupled estrogen receptor 1 (GPER) expressed on microglia. METHODS We have generated the rat global cerebral ischemic model and the primary microglia culture to study the neuroprotective and anti-inflammatory effect of estradiol. We have further used pharmacological methods and siRNA knockdown approach to study the underlying mechanism. RESULTS We found that estradiol reduced the level of proinflammatory cytokines including IL-1β and TNF-α, both in vivo and in vitro. We also found that the specific GPER agonist G1 could reduce the level of IL-1β (P = 0 P = 0.0017, one-way ANOVA and post hoc test) and TNF-α (P < 0.0001) in the primary microglia culture. Moreover, the specific GPER antagonist G15 was able to abolish the anti-inflammatory effect of estradiol. Estradiol failed to reduce the level of IL-1β (P = 0.4973, unpaired Student's t-test) and TNF-α (P = 0.1627) when GPER was knocked down. CONCLUSIONS Our studies have suggested that GPER expressed on microglia mediated the anti-inflammatory effect of estradiol after ischemic stroke. Our studies could potentially help to develop more specific drugs to manage inflammation postischemic stroke.
Collapse
Affiliation(s)
- Tian‐Zhi Zhao
- Department of NeurosurgeryWuhan General Hospital of Guangzhou Military Command of Chinese PLAWuhan430070Hubei ProvinceChina
- Department of NeurosurgeryTangdu HospitalFourth Military Medical UniversityNo. 569 Xinsi RoadBaqiao DistrictXi'an710038Shanxi ProvinceChina
| | - Qian Ding
- Department of AnesthesiologyTangdu HospitalFourth Military Medical UniversityNo. 569 Xinsi RoadBaqiao DistrictXi'an710038Shanxi ProvinceChina
| | - Jun Hu
- Department of NeurologyChinese PLA No. 451 HospitalXi'an710054Shanxi ProvinceChina
| | - Shi‐Ming He
- Department of NeurosurgeryTangdu HospitalFourth Military Medical UniversityNo. 569 Xinsi RoadBaqiao DistrictXi'an710038Shanxi ProvinceChina
| | - Fei Shi
- Department of Aerospace BiodynamicsFourth Military Medical UniversityXi'an710032Shanxi ProvinceChina
| | - Lian‐Ting Ma
- Department of NeurosurgeryWuhan General Hospital of Guangzhou Military Command of Chinese PLAWuhan430070Hubei ProvinceChina
| |
Collapse
|
312
|
Iglesias J, Morales L, Barreto GE. Metabolic and Inflammatory Adaptation of Reactive Astrocytes: Role of PPARs. Mol Neurobiol 2016; 54:2518-2538. [PMID: 26984740 DOI: 10.1007/s12035-016-9833-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/04/2016] [Indexed: 01/10/2023]
Abstract
Astrocyte-mediated inflammation is associated with degenerative pathologies such as Alzheimer's and Parkinson's diseases and multiple sclerosis. The acute inflammation and morphological and metabolic changes that astrocytes develop after the insult are known as reactive astroglia or astrogliosis that is an important response to protect and repair the lesion. Astrocytes optimize their metabolism to produce lactate, glutamate, and ketone bodies in order to provide energy to the neurons that are deprived of nutrients upon insult. Firstly, we review the basis of inflammation and morphological changes of the different cell population implicated in reactive gliosis. Next, we discuss the more active metabolic pathways in healthy astrocytes and explain the metabolic response of astrocytes to the insult in different pathologies and which metabolic alterations generate complications in these diseases. We emphasize the role of peroxisome proliferator-activated receptors isotypes in the inflammatory and metabolic adaptation of astrogliosis developed in ischemia or neurodegenerative diseases. Based on results reported in astrocytes and other cells, we resume and hypothesize the effect of peroxisome proliferator-activated receptor (PPAR) activation with ligands on different metabolic pathways in order to supply energy to the neurons. The activation of selective PPAR isotype activity may serve as an input to better understand the role played by these receptors on the metabolic and inflammatory compensation of astrogliosis and might represent an opportunity to develop new therapeutic strategies against traumatic brain injuries and neurodegenerative diseases.
Collapse
Affiliation(s)
- José Iglesias
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia.
| | - Ludis Morales
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
- Universidad Científica del Sur, Lima, Peru
| |
Collapse
|
313
|
Xian W, Wu Y, Xiong W, Li L, Li T, Pan S, Song L, Hu L, Pei L, Yao S, Shang Y. The pro-resolving lipid mediator Maresin 1 protects against cerebral ischemia/reperfusion injury by attenuating the pro-inflammatory response. Biochem Biophys Res Commun 2016; 472:175-81. [PMID: 26915798 DOI: 10.1016/j.bbrc.2016.02.090] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 02/22/2016] [Indexed: 12/31/2022]
Abstract
Inflammation plays a crucial role in acute ischemic stroke pathogenesis. Macrophage-derived Maresin 1 (MaR1) is a newly uncovered mediator with potent anti-inflammatory abilities. Here, we investigated the effect of MaR1 on acute inflammation and neuroprotection in a mouse brain ischemia reperfusion (I/R) model. Male C57 mice were subjected to 1-h middle cerebral artery occlusion (MCAO) and reperfusion. By the methods of 2,3,5-triphenyltetrazolium chloride, haematoxylin and eosin or Fluoro-Jade B staining, neurological deficits scoring, ELISA detection, immunofluorescence assay and western blot analysis, we found that intracerebroventricular injection of MaR1 significantly reduced the infarct volume and neurological defects, essentially protected the brain tissue and neurons from injury, alleviated pro-inflammatory reactions and NF-κB p65 activation and nuclear translocation. Taken together, our results suggest that MaR1 significantly protects against I/R injury probably by inhibiting pro-inflammatory reactions.
Collapse
Affiliation(s)
- Wenjing Xian
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Xiong
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Longyan Li
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tong Li
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shangwen Pan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Limin Song
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lisha Hu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Pei
- Department of Neurobiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shanglong Yao
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
314
|
Resende FFB, Bai X, Del Bel EA, Kirchhoff F, Scheller A, Titze-de-Almeida R. Evaluation of TgH(CX3CR1-EGFP) mice implanted with mCherry-GL261 cells as an in vivo model for morphometrical analysis of glioma-microglia interaction. BMC Cancer 2016; 16:72. [PMID: 26856327 PMCID: PMC4746826 DOI: 10.1186/s12885-016-2118-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 02/03/2016] [Indexed: 11/21/2022] Open
Abstract
Background Glioblastoma multiforme is the most aggressive brain tumor. Microglia are prominent cells within glioma tissue and play important roles in tumor biology. This work presents an animal model designed for the study of microglial cell morphology in situ during gliomagenesis. It also allows a quantitative morphometrical analysis of microglial cells during their activation by glioma cells. Methods The animal model associates the following cell types: 1- mCherry red fluorescent GL261 glioma cells and; 2- EGFP fluorescent microglia, present in the TgH(CX3CR1-EGFP) mouse line. First, mCherry-GL261 glioma cells were implanted in the brain cortex of TgH(CX3CR1-EGFP) mice. Epifluorescence − and confocal laser-scanning microscopy were employed for analysis of fixed tissue sections, whereas two-photon laser-scanning microscopy (2P-LSM) was used to track tumor cells and microglia in the brain of living animals. Results Implanted mCherry-GL261 cells successfully developed brain tumors. They mimic the aggressive behavior found in human disease, with a rapid increase in size and the presence of secondary tumors apart from the injection site. As tumor grows, mCherry-GL261 cells progressively lost their original shape, adopting a heterogeneous and diffuse morphology at 14–18 d. Soma size increased from 10–52 μm. At this point, we focused on the kinetics of microglial access to glioma tissues. 2P-LSM revealed an intense microgliosis in brain areas already shortly after tumor implantation, i.e. at 30 min. By confocal microscopy, we found clusters of microglial cells around the tumor mass in the first 3 days. Then cells infiltrated the tumor area, where they remained during all the time points studied, from 6–18 days. Microglia in contact with glioma cells also present changes in cell morphology, from a ramified to an amoeboid shape. Cell bodies enlarged from 366 ± 0.0 μm2, in quiescent microglia, to 1310 ± 146.0 μm2, and the cell processes became shortened. Conclusions The GL261/CX3CR1 mouse model reported here is a valuable tool for imaging of microglial cells during glioma growth, either in fixed tissue sections or living animals. Remarkable advantages are the use of immunocompetent animals and the simplified imaging method without the need of immunohistochemical procedures.
Collapse
Affiliation(s)
- Fernando F B Resende
- Laboratório de Tecnologias para Terapia Gênica, ASS 128, ICC Sul, Universidade de Brasília-UnB, Campus Darcy Ribeiro, FAV., Brasília, DF, Brasil, 70910-970. .,Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany.
| | - Xianshu Bai
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany.
| | - Elaine Aparecida Del Bel
- Laboratório de Neurofisiologia e Biologia Molecular, Department Morfologia Fisiologia e Patologia Básica, FORP, Universidade de São Paulo - USP, Ribeirão Preto, SP, Brasil, 14040-904.
| | - Frank Kirchhoff
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany.
| | - Anja Scheller
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany.
| | - Ricardo Titze-de-Almeida
- Laboratório de Tecnologias para Terapia Gênica, ASS 128, ICC Sul, Universidade de Brasília-UnB, Campus Darcy Ribeiro, FAV., Brasília, DF, Brasil, 70910-970.
| |
Collapse
|
315
|
Su F, Bai F, Zhou H, Zhang Z. Microglial toll-like receptors and Alzheimer's disease. Brain Behav Immun 2016; 52:187-198. [PMID: 26526648 DOI: 10.1016/j.bbi.2015.10.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 10/09/2015] [Accepted: 10/15/2015] [Indexed: 02/08/2023] Open
Abstract
Microglial activation represents an important pathological hallmark of Alzheimer's disease (AD), and emerging data highlight the involvement of microglial toll-like receptors (TLRs) in the course of AD. TLRs have been observed to exert both beneficial and detrimental effects on AD-related pathologies, and transgenic animal models have provided direct and credible evidence for an association between TLRs and AD. Moreover, analyses of genetic polymorphisms have suggested interactions between genetic polymorphisms in TLRs and AD risk, further supporting the hypothesis that TLRs are involved in AD. In this review, we summarize the key evidence in this field. Future studies should focus on exploring the mechanisms underlying the potential roles of TLRs in AD.
Collapse
Affiliation(s)
- Fan Su
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China.
| | - Feng Bai
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China.
| | - Hong Zhou
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China.
| | - Zhijun Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
316
|
Öhrfelt A, Axelsson M, Malmeström C, Novakova L, Heslegrave A, Blennow K, Lycke J, Zetterberg H. Soluble TREM-2 in cerebrospinal fluid from patients with multiple sclerosis treated with natalizumab or mitoxantrone. Mult Scler 2016; 22:1587-1595. [PMID: 26754805 DOI: 10.1177/1352458515624558] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 12/06/2015] [Indexed: 01/04/2023]
Abstract
BACKGROUND Microglia-mediated proteolysis of the triggering receptor expressed on myeloid cells-2 (TREM-2) produces soluble TREM-2 (sTREM-2) that can be measured in cerebrospinal fluid (CSF) samples. Loss-of-function mutations in TREM2 or in the gene encoding its adaptor protein cause the rare Nasu-Hakola disease (NHD). Multiple sclerosis (MS) is an autoimmune disease that in common with NHD is characterized by demyelination and microglial activation. OBJECTIVE To investigate the potential utility of sTREM-2 as a biomarker for MS and to follow treatment effects. METHODS sTREM-2 was analyzed in CSF samples from subjects with MS (N = 59); relapsing-remitting MS (RRMS) (N = 36), secondary progressive MS (SPMS) (N = 20) and primary progressive MS (PPMS) (N = 3), and controls (N = 27). CSF levels of sTREM-2 were also assessed before and after treatment of patients with natalizumab or mitoxantrone. RESULTS CSF levels of sTREM-2 were significantly increased in patients with RRMS, SPMS, and PPMS compared with controls. After natalizumab treatment, the levels of sTREM-2 were normalized to control levels. The levels of sTREM-2 were also reduced after mitoxantrone treatment. CONCLUSION Increased CSF levels of sTREM-2, a new marker of microglial activation, in MS and normalization upon treatment with either natalizumab or mitoxantrone support a role for microglial activation in active MS.
Collapse
Affiliation(s)
- Annika Öhrfelt
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Markus Axelsson
- Department of Neurology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Clas Malmeström
- Department of Neurology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lenka Novakova
- Department of Neurology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Amanda Heslegrave
- UCL Institute of Neurology, University College London (UCL), London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jan Lycke
- Department of Neurology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden/UCL Institute of Neurology, University College London (UCL), London, UK
| |
Collapse
|
317
|
Sil S, Ghosh T. Cox-2 Plays a Vital Role in the Impaired Anxiety Like Behavior in Colchicine Induced Rat Model of Alzheimer Disease. Behav Neurol 2016; 2016:1501527. [PMID: 26880859 PMCID: PMC4736908 DOI: 10.1155/2016/1501527] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 12/18/2015] [Accepted: 12/20/2015] [Indexed: 11/18/2022] Open
Abstract
The anxiety status is changed along with memory impairments in intracerebroventricular colchicine injected rat model of Alzheimer Disease (cAD) due to neurodegeneration, which has been indicated to be mediated by inflammation. Inducible cox-2, involved in inflammation, may have important role in the colchicine induced alteration of anxiety status. Therefore, the present study was designed to investigate the role of cox-2 on the anxiety behavior (response to novelty in an elevated open field space) of cAD by inhibiting it with three different doses (10, 20, and 30 mg) of etoricoxib (a cox-2 blocker) in two time points (14 and 21 days). The results showed anxiolytic behavior in cAD along with lower serum corticosterone level, both of which were recovered at all the doses of etoricoxib on day 21. On day 14 all of the anxiety parameters showed similar results to that of day 21 at high doses but not at 10 mg/kg body weight. Results indicate that the parameters of anxiety were dependent on neuronal circuitries that were probably sensitive to etoricoxib induced blocking of neurodegeneration. The present study showed that anxiolytic behavior in cADr is predominantly due to cox-2 mediated neuroinflammation induced neurodegeneration in the brain.
Collapse
Affiliation(s)
- Susmita Sil
- Neurophysiology Laboratory, Department of Physiology, University College of Science and Technology, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata, West Bengal 700 009, India
| | - Tusharkanti Ghosh
- Neurophysiology Laboratory, Department of Physiology, University College of Science and Technology, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata, West Bengal 700 009, India
| |
Collapse
|
318
|
Stress and neuroinflammation: a systematic review of the effects of stress on microglia and the implications for mental illness. Psychopharmacology (Berl) 2016; 233:1637-50. [PMID: 26847047 PMCID: PMC4828495 DOI: 10.1007/s00213-016-4218-9] [Citation(s) in RCA: 457] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 01/18/2016] [Indexed: 01/19/2023]
Abstract
RATIONALE Psychosocial stressors are a well-documented risk factor for mental illness. Neuroinflammation, in particular elevated microglial activity, has been proposed to mediate this association. A number of preclinical studies have investigated the effect of stress on microglial activity. However, these have not been systematically reviewed before. OBJECTIVES This study aims to systematically review the effects of stress on microglia, as indexed by the histological microglial marker ionised calcium binding adaptor molecule 1 (Iba-1), and consider the implications of these for the role of stress in the development of mental disorders. METHODS A systematic review was undertaken using pre-defined search criteria on PubMed and EMBASE. Inclusion and data extraction was agreed by two independent researchers after review of abstracts and full text. RESULTS Eighteen studies met the inclusion criteria. These used seven different psychosocial stressors, including chronic restraint, social isolation and repeated social defeat in gerbils, mice and/or rats. The hippocampus (11/18 studies) and prefrontal cortex (13/18 studies) were the most frequently studied areas. Within the hippocampus, increased Iba-1 levels of between 20 and 200 % were reported by all 11 studies; however, one study found this to be a duration-dependent effect. Of those examining the prefrontal cortex, ∼75 % found psychosocial stress resulted in elevated Iba-1 activity. Elevations were also consistently seen in the nucleus accumbens, and under some stress conditions in the amygdala and paraventricular nucleus. CONCLUSIONS There is consistent evidence that a range of psychosocial stressors lead to elevated microglial activity in the hippocampus and good evidence that this is also the case in other brain regions. These effects were seen with early-life/prenatal stress, as well as stressors in adulthood. We consider these findings in terms of the two-hit hypothesis, which proposes that early-life stress primes microglia, leading to a potentiated response to subsequent stress. The implications for understanding the pathoaetiology of mental disorders and the development of new treatments are also considered.
Collapse
|
319
|
Su W, Kang J, Sopher B, Gillespie J, Aloi MS, Odom GL, Hopkins S, Case A, Wang DB, Chamberlain JS, Garden GA. Recombinant adeno-associated viral (rAAV) vectors mediate efficient gene transduction in cultured neonatal and adult microglia. J Neurochem 2016; 136 Suppl 1:49-62. [PMID: 25708596 PMCID: PMC4547919 DOI: 10.1111/jnc.13081] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/13/2015] [Accepted: 02/18/2015] [Indexed: 12/20/2022]
Abstract
Microglia are a specialized population of myeloid cells that mediate CNS innate immune responses. Efforts to identify the cellular and molecular mechanisms that regulate microglia behaviors have been hampered by the lack of effective tools for manipulating gene expression. Cultured microglia are refractory to most chemical and electrical transfection methods, yielding little or no gene delivery and causing toxicity and/or inflammatory activation. Recombinant adeno-associated viral (rAAVs) vectors are non-enveloped, single-stranded DNA vectors commonly used to transduce many primary cell types and tissues. In this study, we evaluated the feasibility and efficiency of utilizing rAAV serotype 2 (rAAV2) to modulate gene expression in cultured microglia. rAAV2 yields high transduction and causes minimal toxicity or inflammatory response in both neonatal and adult microglia. To demonstrate that rAAV transduction can induce functional protein expression, we used rAAV2 expressing Cre recombinase to successfully excise a LoxP-flanked miR155 gene in cultured microglia. We further evaluated rAAV serotypes 5, 6, 8, and 9, and observed that all efficiently transduced cultured microglia to varying degrees of success and caused little or no alteration in inflammatory gene expression. These results provide strong encouragement for the application of rAAV-mediated gene expression in microglia for mechanistic and therapeutic purposes. Neonatal microglia are functionally distinct from adult microglia, although the majority of in vitro studies utilize rodent neonatal microglia cultures because of difficulties of culturing adult cells. In addition, cultured microglia are refractory to most methods for modifying gene expression. Here, we developed a novel protocol for culturing adult microglia and evaluated the feasibility and efficiency of utilizing Recombinant Adeno-Associated Virus (rAAV) to modulate gene expression in cultured microglia.
Collapse
Affiliation(s)
- Wei Su
- Department of Neurology, University of Washington, Seattle, Washington, USA
| | - John Kang
- Department of Neurology, University of Washington, Seattle, Washington, USA
| | - Bryce Sopher
- Department of Neurology, University of Washington, Seattle, Washington, USA
| | - James Gillespie
- Department of Neurology, University of Washington, Seattle, Washington, USA
| | - Macarena S. Aloi
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Guy L. Odom
- Department of Neurology, University of Washington, Seattle, Washington, USA
| | - Stephanie Hopkins
- Department of Neurology, University of Washington, Seattle, Washington, USA
| | - Amanda Case
- Department of Neurology, University of Washington, Seattle, Washington, USA
| | - David B. Wang
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA
| | | | - Gwenn A. Garden
- Department of Neurology, University of Washington, Seattle, Washington, USA
- Department of Pathology, University of Washington, Seattle, Washington, USA
- Center on Human Development and Disability
| |
Collapse
|
320
|
del Zoppo GJ, Moskowitz M, Nedergaard M. The Neurovascular Unit and Responses to Ischemia. Stroke 2016. [DOI: 10.1016/b978-0-323-29544-4.00007-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
321
|
Barakat R, Redzic Z. The Role of Activated Microglia and Resident Macrophages in the Neurovascular Unit during Cerebral Ischemia: Is the Jury Still Out? Med Princ Pract 2016; 25 Suppl 1:3-14. [PMID: 26303836 PMCID: PMC5588523 DOI: 10.1159/000435858] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 06/10/2015] [Indexed: 12/13/2022] Open
Abstract
Paracrine signaling in the neurovascular unit (NVU) is aimed to adjust the supply of oxygen and nutrients to metabolic demands of the brain in a feed-forward manner. Cerebral ischemia (CI) severely disrupts this homeostatic mechanism and also causes activation of microglia and resident macrophages in the brain. Contradictory data exist on the time pattern of microglial activation and polarization during CI, on molecular mechanisms that trigger them and on effects of microglia-derived cytokines on brain cells. It appears that conditions that occur during transient ischemia or in the penumbra of focal ischemia in vivo or equivalent conditions in vitro trigger polarization of resting microglia/macrophages into the M2 phenotype, which mainly exerts anti-inflammatory and protective effects in the brain, while prolonged ischemia with abundant necrosis promotes microglial polarization into the M1 phenotype. During the later stages of recovery, microglia that polarized initially into the M2 phenotype can shift into the M1 phenotype. Thus, it appears that cells with both phenotypes are present in the affected area, but their relative amount changes in time and probably depends on the proximity to the ischemic core. It was assumed that cells with the M1 phenotype exert detrimental effects on neurons and contribute to the blood-brain barrier opening. Several M1 phenotype-specific cytokines exert protective effects on astrocytes, which could be important for reactive gliosis occurring after ischemia. Thus, whether or not suppression of microglial activity after CI is beneficial for neurological outcome still remains unclear and current evidence suggests that no simple answer could be given to this question.
Collapse
Affiliation(s)
| | - Zoran Redzic
- *Dr. Zoran Redzic, Department of Physiology, Faculty of Medicine, Kuwait University, PO Box 24923, Safat 13110 (Kuwait), E-Mail
| |
Collapse
|
322
|
Abstract
Gliomas are the most common primary brain tumors of the central nervous system, and carry a grim prognosis. Novel approaches utilizing the immune system as adjuvant therapy are quickly emerging as viable and effective options. Immunotherapeutic strategies being investigated to treat glioblastoma include: vaccination therapy targeted against either specific tumor antigens or whole tumor lysate, adoptive cellular therapy with cytotoxic T lymphocytes, chimeric antigen receptors and bi-specific T-cell engaging antibodies allowing circumvention of major histocompatibility complex restriction, aptamer therapy with aims for more efficient target delivery, and checkpoint blockade in order to release the tumor-mediated inhibition of the immune system. Given the heterogeneity of glioblastoma and its ability to gain mutations throughout the disease course, multifaceted treatment strategies utilizing multiple forms of immunotherapy in combination with conventional therapy will be most likely to succeed moving forward.
Collapse
Affiliation(s)
- Brandon D Liebelt
- Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Houston Methodist Neurological Institute, Houston, TX, USA
| | - Gaetano Finocchiaro
- Department of Neuro-oncology, IRCCS Istituto Neurologico Besta, Milan, Italy
| | - Amy B Heimberger
- Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
323
|
Frank MG, Weber MD, Watkins LR, Maier SF. Stress-induced neuroinflammatory priming: A liability factor in the etiology of psychiatric disorders. Neurobiol Stress 2015; 4:62-70. [PMID: 27981190 PMCID: PMC5146200 DOI: 10.1016/j.ynstr.2015.12.004] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/23/2015] [Indexed: 12/09/2022] Open
Abstract
Stress and glucocorticoids (GCs) have universally been considered to be anti-inflammatory, however in recent years, stress and GCs have been found to exert permissive effects (immunological priming) on neuroinflammatory processes. This phenomenon of priming is characterized by prior stress or GC exposure potentiating the neuroinflammatory response to a subsequent immune challenge. A considerable body of evidence is discussed here that supports this permissive effect of stress and GCs. In light of this evidence, a mechanism of neuroinflammatory priming is proposed involving a signal cascade in the brain involving danger-associated molecular patterns (HMGB-1) and inflammasomes (NLRP3), which results in an exaggerated or amplified neuroinflammatory response and subsequently, the amplification of the physiological and behavioral sequelae of this response (i.e. sickness). Finally, we explore the notion that stressor-induced sensitization of the neuroimmune microenvironment may predispose individuals to psychiatric disorders, in which exaggerated innate immune/inflammatory responses in the brain are now thought to play a key role.
Collapse
Affiliation(s)
- Matthew G Frank
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO, USA
| | - Michael D Weber
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| | - Linda R Watkins
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO, USA
| | - Steven F Maier
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO, USA
| |
Collapse
|
324
|
Yang J, Cui C. The pharmacological research of Tek-1 relevance to anti-neuroinflammation, a candidate compound based on Telmisartan. Open Med (Wars) 2015; 10:445-451. [PMID: 28352734 PMCID: PMC5368865 DOI: 10.1515/med-2015-0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 10/14/2015] [Indexed: 11/15/2022] Open
Abstract
In this paper, BV-2 mouse small glial cell inflammation model induced by LPS is established. The experiment used 0.1–10 μM of telmisartan and Tek-1 to incubate with small glial cell and used telmisartan and Tek-1 to incubate with PPAR gamma special heterosexual antagonistic anti-agent GW9662. The article used ELISA method to dectect TNF-a effect on small glial cell for telmisartan and Tek-1. The article used real-time quantitative PCR method to dectect mRNA level expression effect of CD11b, CD16 and iNOS on small glial cell for telmisartan and Tek-1 and used Western Blot method to dectect MAPKs signal pathway and NF-κb signal turned guide pathway effect on small glial cell for telmisartan and Tek-1. Results show that Tek-1 had high affinity with AT1 receptor and inhibited intracellular calcium ion activation which can be for the AT1 receptor antagonists. Meanwhile, Tek-1 can partially activate PPAR gamma compared with full agonists of rosiglitazone.
Collapse
Affiliation(s)
- Jianbo Yang
- Department of Neurology, Xian Jiao Tong University, Postal code 710061, China
| | - Changcong Cui
- Department of Vasculocardiology, Xian Jiao Tong University, Postal code 710061, China
| |
Collapse
|
325
|
Sil S, Ghosh T. Role of cox-2 mediated neuroinflammation on the neurodegeneration and cognitive impairments in colchicine induced rat model of Alzheimer's Disease. J Neuroimmunol 2015; 291:115-24. [PMID: 26857505 DOI: 10.1016/j.jneuroim.2015.12.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/30/2015] [Accepted: 12/09/2015] [Indexed: 11/15/2022]
Abstract
The neurodegeneration in colchicine induced AD (cAD) rats is linked with neuroinflammation. The inducible cox-2 present in the brain may participate in the neuroinflammatory process related to progressive neurodegeneration in cAD rats. The aim of this study is to investigate the role of cox-2 in the neurodegeneration and cognitive impairments in cAD rats. The parameters of memory (working and reference memory), inflammatory markers [IL-1β, TNF-α, prostaglandin E2 (PGE2), cox-2 level] and histopathology of hippocampus were measured after 21-day of i.c.v. colchicine injection in rats and compared with that of control and sham operated rats. These parameters were also measured in these 3 different groups of rats after p.o. administration of 3 different doses of etoricoxib, a cox 2 inhibitor. The impairments of working and reference memory were associated with neuroinflammation and neurodegeneration in the hippocampus and increased cox-2 and PGE2 levels in hippocampus in cAD. Administration of etoricoxib in cAD rats resulted in recovery of memory impairments, neurodegeneration and neuroinflammation in hippocampus and inhibition of cox-2 and PGE2 levels in hippocampus. It appears from the results that activation of cox-2 in cAD is related to neuroinflammation involved in neurodegeneration. Colchicine induced initial neurodegeneration may trigger cascade of events for a progressive neurodegeneration where cox-2 activation plays a critical role. Moreover, this cox-2 mediated neurodegeneration is related to impairments of memory parameters. Thus, the present study showed that the impairments of memory and neurodegeneration in the hippocampus of cAD in 21-day study are mediated by cox-2 induced neuroinflammation.
Collapse
Affiliation(s)
- Susmita Sil
- Neurophysiology laboratory, Department of Physiology, University College of Science and Technology, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata 700 009, West Bengal, India.
| | - Tusharkanti Ghosh
- Neurophysiology laboratory, Department of Physiology, University College of Science and Technology, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata 700 009, West Bengal, India.
| |
Collapse
|
326
|
Scholz R, Sobotka M, Caramoy A, Stempfl T, Moehle C, Langmann T. Minocycline counter-regulates pro-inflammatory microglia responses in the retina and protects from degeneration. J Neuroinflammation 2015; 12:209. [PMID: 26576678 PMCID: PMC4650866 DOI: 10.1186/s12974-015-0431-4] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/12/2015] [Indexed: 12/20/2022] Open
Abstract
Background Microglia reactivity is a hallmark of retinal degenerations and overwhelming microglial responses contribute to photoreceptor death. Minocycline, a semi-synthetic tetracycline analog, has potent anti-inflammatory and neuroprotective effects. Here, we investigated how minocycline affects microglia in vitro and studied its immuno-modulatory properties in a mouse model of acute retinal degeneration using bright white light exposure. Methods LPS-treated BV-2 microglia were stimulated with 50 μg/ml minocycline for 6 or 24 h, respectively. Pro-inflammatory gene transcription was determined by real-time RT-PCR and nitric oxide (NO) secretion was assessed using the Griess reagent. Caspase 3/7 levels were determined in 661W photoreceptors cultured with microglia-conditioned medium in the absence or presence of minocycline supplementation. BALB/cJ mice received daily intraperitoneal injections of 45 mg/kg minocycline, starting 1 day before exposure to 15.000 lux white light for 1 hour. The effect of minocycline treatment on microglial reactivity was analyzed by immunohistochemical stainings of retinal sections and flat-mounts, and messenger RNA (mRNA) expression of microglia markers was determined using real-time RT-PCR and RNA-sequencing. Optical coherence tomography (OCT) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) stainings were used to measure the extent of retinal degeneration and photoreceptor apoptosis. Results Stimulation of LPS-activated BV-2 microglia with minocycline significantly diminished the transcription of the pro-inflammatory markers CCL2, IL6, and inducible nitric oxide synthase (iNOS). Minocycline also reduced the production of NO and dampened microglial neurotoxicity on 661W photoreceptors. Furthermore, minocycline had direct protective effects on 661W photoreceptors by decreasing caspase 3/7 activity. In mice challenged with white light, injections of minocycline strongly decreased the number of amoeboid alerted microglia in the outer retina and down-regulated the expression of the microglial activation marker translocator protein (18 kDa) (TSPO), CD68, and activated microglia/macrophage whey acidic protein (AMWAP) already 1 day after light exposure. Furthermore, RNA-seq analyses revealed the potential of minocycline to globally counter-regulate pro-inflammatory gene transcription in the light-damaged retina. The severe thinning of the outer retina and the strong induction of photoreceptor apoptosis induced by light challenge were nearly completely prevented by minocycline treatment as indicated by a preserved retinal structure and a low number of apoptotic cells. Conclusions Minocycline potently counter-regulates microgliosis and light-induced retinal damage, indicating a promising concept for the treatment of retinal pathologies. Electronic supplementary material The online version of this article (doi:10.1186/s12974-015-0431-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rebecca Scholz
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, 50931, Cologne, Germany.
| | - Markus Sobotka
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, 50931, Cologne, Germany.
| | - Albert Caramoy
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, 50931, Cologne, Germany.
| | - Thomas Stempfl
- Center of Excellence for Fluorescent Bioanalytics, University of Regensburg, 93053, Regensburg, Germany.
| | - Christoph Moehle
- Center of Excellence for Fluorescent Bioanalytics, University of Regensburg, 93053, Regensburg, Germany.
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, 50931, Cologne, Germany.
| |
Collapse
|
327
|
Almolda B, González B, Castellano B. Are Microglial Cells the Regulators of Lymphocyte Responses in the CNS? Front Cell Neurosci 2015; 9:440. [PMID: 26635525 PMCID: PMC4644801 DOI: 10.3389/fncel.2015.00440] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/23/2015] [Indexed: 12/24/2022] Open
Abstract
The infiltration of immune cells in the central nervous system is a common hallmark in different neuroinflammatory conditions. Accumulating evidence indicates that resident glial cells can establish a cross-talk with infiltrated immune cells, including T-cells, regulating their recruitment, activation and function within the CNS. Although the healthy CNS has been thought to be devoid of professional dendritic cells (DCs), numerous studies have reported the presence of a population of DCs in specific locations such as the meninges, choroid plexuses and the perivascular space. Moreover, the infiltration of DC precursors during neuroinflammatory situations has been proposed, suggesting a putative role of these cells in the regulation of lymphocyte activity within the CNS. On the other hand, under specific circumstances, microglial cells are able to acquire a phenotype of DC expressing a wide range of molecules that equip these cells with all the necessary machinery for communication with T-cells. In this review, we summarize the current knowledge on the expression of molecules involved in the cross-talk with T-cells in both microglial cells and DCs and discuss the potential contribution of each of these cell populations on the control of lymphocyte function within the CNS.
Collapse
Affiliation(s)
- Beatriz Almolda
- Department of Cell Biology, Physiology and Immunology, Facultat de Medicina, Institute of Neurosciences, Universitat Autònoma de Barcelona Bellaterra, Spain
| | - Berta González
- Department of Cell Biology, Physiology and Immunology, Facultat de Medicina, Institute of Neurosciences, Universitat Autònoma de Barcelona Bellaterra, Spain
| | - Bernardo Castellano
- Department of Cell Biology, Physiology and Immunology, Facultat de Medicina, Institute of Neurosciences, Universitat Autònoma de Barcelona Bellaterra, Spain
| |
Collapse
|
328
|
Zhu J, Wang Z, Zhang N, Ma J, Xu SL, Wang Y, Shen Y, Li YH. Protein Interacting C-Kinase 1 Modulates Surface Expression of P2Y6 Purinoreceptor, Actin Polymerization and Phagocytosis in Microglia. Neurochem Res 2015; 41:795-803. [DOI: 10.1007/s11064-015-1754-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 10/16/2015] [Accepted: 10/29/2015] [Indexed: 02/05/2023]
|
329
|
Schütze S, Ribes S, Kaufmann A, Manig A, Scheffel J, Redlich S, Bunkowski S, Hanisch UK, Brück W, Nau R. Higher mortality and impaired elimination of bacteria in aged mice after intracerebral infection with E. coli are associated with an age-related decline of microglia and macrophage functions. Oncotarget 2015; 5:12573-92. [PMID: 25528768 PMCID: PMC4350342 DOI: 10.18632/oncotarget.2709] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 11/10/2014] [Indexed: 01/05/2023] Open
Abstract
Incidence and mortality of bacterial meningitis are strongly increased in aged compared to younger adults demanding new strategies to improve prevention and therapy of bacterial central nervous system (CNS) infections the elderly. Here, we established a geriatric mouse model for an intracerebral E. coli infection which reflects the clinical situation in aged patients: After intracerebral challenge with E. coli K1, aged mice showed a higher mortality, a faster development of clinical symptoms, and a more pronounced weight loss. Elimination of bacteria and systemic inflammatory response were impaired in aged mice, however, the number of infiltrating leukocytes and microglial cells in the CNS of aged and young mice did not differ substantially. In vitro, primary microglial cells and peritoneal macrophages from aged mice phagocytosed less E. coli and released less NO and cyto-/chemokines compared to cells from young mice both without activation and after stimulation by agonists of TLR 2, 4, and 9. Our results suggest that the age-related decline of microglia and macrophage functions plays an essential role for the higher susceptibility of aged mice to intracerebral infections. Strategies to improve the phagocytic potential of aged microglial cells and macrophages appear promising for prevention and treatment of CNS infections in elderly patients.
Collapse
Affiliation(s)
- Sandra Schütze
- Institute of Neuropathology, University Medical Center Göttingen, 37075 Göttingen, Germany. Department of Geriatrics, Agaplesion Diakonissen Krankenhaus, 60322 Frankfurt am Main, Germany
| | - Sandra Ribes
- Institute of Neuropathology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Annika Kaufmann
- Institute of Neuropathology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Anja Manig
- Institute of Neuropathology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Jörg Scheffel
- Institute of Neuropathology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Sandra Redlich
- Institute of Neuropathology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Stephanie Bunkowski
- Institute of Neuropathology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Uwe-Karsten Hanisch
- Institute of Neuropathology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Wolfgang Brück
- Institute of Neuropathology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Roland Nau
- Institute of Neuropathology, University Medical Center Göttingen, 37075 Göttingen, Germany. Department of Geriatrics, Evangelisches Krankenhaus Göttingen-Weende, 37075 Göttingen, Germany
| |
Collapse
|
330
|
|
331
|
Hazeldine J, Lord JM, Belli A. Traumatic Brain Injury and Peripheral Immune Suppression: Primer and Prospectus. Front Neurol 2015; 6:235. [PMID: 26594196 PMCID: PMC4633482 DOI: 10.3389/fneur.2015.00235] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 10/23/2015] [Indexed: 12/16/2022] Open
Abstract
Nosocomial infections are a common occurrence in patients following traumatic brain injury (TBI) and are associated with an increased risk of mortality, longer length of hospital stay, and poor neurological outcome. Systemic immune suppression arising as a direct result of injury to the central nervous system (CNS) is considered to be primarily responsible for this increased incidence of infection, a view strengthened by recent studies that have reported novel changes in the composition and function of the innate and adaptive arms of the immune system post-TBI. However, our knowledge of the mechanisms that underlie TBI-induced immune suppression is equivocal at best. Here, after summarizing our current understanding of the impact of TBI on peripheral immunity and discussing CNS-mediated regulation of immune function, we propose roles for a series of novel mechanisms in driving the immune suppression that is observed post-TBI. These mechanisms, which have never been considered before in the context of TBI-induced immune paresis, include the CNS-driven emergence into the circulation of myeloid-derived suppressor cells and suppressive neutrophil subsets, and the release from injured tissue of nuclear and mitochondria-derived damage associated molecular patterns. Moreover, in an effort to further our understanding of the mechanisms that underlie TBI-induced changes in immunity, we pose throughout the review a series of questions, which if answered would address a number of key issues, such as establishing whether manipulating peripheral immune function has potential as a future therapeutic strategy by which to treat and/or prevent infections in the hospitalized TBI patient.
Collapse
Affiliation(s)
- Jon Hazeldine
- NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham , Birmingham , UK ; Institute of Inflammation and Ageing, University of Birmingham , Birmingham , UK
| | - Janet M Lord
- NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham , Birmingham , UK ; Institute of Inflammation and Ageing, University of Birmingham , Birmingham , UK
| | - Antonio Belli
- NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham , Birmingham , UK ; Institute of Inflammation and Ageing, University of Birmingham , Birmingham , UK
| |
Collapse
|
332
|
Shaked I, Hanna RN, Shaked H, Chodaczek G, Nowyhed HN, Tweet G, Tacke R, Basat AB, Mikulski Z, Togher S, Miller J, Blatchley A, Salek-Ardakani S, Darvas M, Kaikkonen MU, Thomas GD, Lai-Wing-Sun S, Rezk A, Bar-Or A, Glass CK, Bandukwala H, Hedrick CC. Transcription factor Nr4a1 couples sympathetic and inflammatory cues in CNS-recruited macrophages to limit neuroinflammation. Nat Immunol 2015; 16:1228-34. [PMID: 26523867 DOI: 10.1038/ni.3321] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/13/2015] [Indexed: 12/11/2022]
Abstract
The molecular mechanisms that link the sympathetic stress response and inflammation remain obscure. Here we found that the transcription factor Nr4a1 regulated the production of norepinephrine (NE) in macrophages and thereby limited experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis. Lack of Nr4a1 in myeloid cells led to enhanced NE production, accelerated infiltration of leukocytes into the central nervous system (CNS) and disease exacerbation in vivo. In contrast, myeloid-specific deletion of tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine biosynthesis, protected mice against EAE. Furthermore, we found that Nr4a1 repressed autocrine NE production in macrophages by recruiting the corepressor CoREST to the Th promoter. Our data reveal a new role for macrophages in neuroinflammation and identify Nr4a1 as a key regulator of catecholamine production by macrophages.
Collapse
Affiliation(s)
- Iftach Shaked
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Richard N Hanna
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Helena Shaked
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Grzegorz Chodaczek
- Microscopy Core, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Heba N Nowyhed
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - George Tweet
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Robert Tacke
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Alp Bugra Basat
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Zbigniew Mikulski
- Microscopy Core, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Susan Togher
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Jacqueline Miller
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Amy Blatchley
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Shahram Salek-Ardakani
- Department of Pathology, Immunology &Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Martin Darvas
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Minna U Kaikkonen
- Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio, Finland
| | - Graham D Thomas
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | | | - Ayman Rezk
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Amit Bar-Or
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Christopher K Glass
- Department of Cellular &Molecular Medicine, University of California San Diego, San Diego, California, USA
| | - Hozefa Bandukwala
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Catherine C Hedrick
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| |
Collapse
|
333
|
Scholz R, Caramoy A, Bhuckory MB, Rashid K, Chen M, Xu H, Grimm C, Langmann T. Targeting translocator protein (18 kDa) (TSPO) dampens pro-inflammatory microglia reactivity in the retina and protects from degeneration. J Neuroinflammation 2015; 12:201. [PMID: 26527153 PMCID: PMC4630900 DOI: 10.1186/s12974-015-0422-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 10/26/2015] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Reactive microglia are commonly seen in retinal degenerative diseases, and neurotoxic microglia responses can contribute to photoreceptor cell death. We and others have previously shown that translocator protein (18 kDa) (TSPO) is highly induced in retinal degenerations and that the selective TSPO ligand XBD173 (AC-5216, emapunil) exerts strong anti-inflammatory effects on microglia in vitro and ex vivo. Here, we investigated whether targeting TSPO with XBD173 has immuno-modulatory and neuroprotective functions in two mouse models of acute retinal degeneration using bright white light exposure. METHODS BALB/cJ and Cx3cr1(GFP/+) mice received intraperitoneal injections of 10 mg/kg XBD173 or vehicle for five consecutive days, starting 1 day prior to exposure to either 15,000 lux white light for 1 h or 50,000 lux focal light for 10 min, respectively. The effects of XBD173 treatment on microglia and Müller cell reactivity were analyzed by immuno-stainings of retinal sections and flat mounts, fluorescence-activated cell sorting (FACS) analysis, and mRNA expression of microglia markers using quantitative real-time PCR (qRT-PCR). Optical coherence tomography (OCT), terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) stainings, and morphometric analyses were used to quantify the extent of retinal degeneration and photoreceptor apoptosis. RESULTS Four days after the mice were challenged with bright white light, a large number of amoeboid-shaped alerted microglia appeared in the degenerating outer retina, which was nearly completely prevented by treatment with XBD173. This treatment also down-regulated the expression of TSPO protein in microglia but did not change the TSPO levels in the retinal pigment epithelium (RPE). RT-PCR analysis showed that the microglia/macrophage markers Cd68 and activated microglia/macrophage whey acidic protein (Amwap) as well as the pro-inflammatory genes Ccl2 and Il6 were reduced after XBD173 treatment. Light-induced degeneration of the outer retina was nearly fully blocked by XBD173 treatment. We further confirmed these findings in an independent mouse model of focal light damage. Retinas of animals receiving XBD173 therapy displayed significantly more ramified non-reactive microglia and more viable arrestin-positive cone photoreceptors than vehicle controls. CONCLUSIONS Targeting TSPO with XBD173 effectively counter-regulates microgliosis and ameliorates light-induced retinal damage, highlighting a new pharmacological concept for the treatment of retinal degenerations.
Collapse
Affiliation(s)
- Rebecca Scholz
- Department of Ophthalmology, Laboratory for Experimental Immunology of the Eye, University of Cologne, 50931, Cologne, Germany.
| | - Albert Caramoy
- Department of Ophthalmology, Laboratory for Experimental Immunology of the Eye, University of Cologne, 50931, Cologne, Germany.
| | - Mohajeet B Bhuckory
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, BT12 6BA, UK.
| | - Khalid Rashid
- Department of Ophthalmology, Laboratory for Experimental Immunology of the Eye, University of Cologne, 50931, Cologne, Germany.
| | - Mei Chen
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, BT12 6BA, UK.
| | - Heping Xu
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, BT12 6BA, UK.
| | - Christian Grimm
- Department of Ophthalmology, Lab for Retinal Cell Biology, University of Zürich, 8057, Zürich, Switzerland.
| | - Thomas Langmann
- Department of Ophthalmology, Laboratory for Experimental Immunology of the Eye, University of Cologne, 50931, Cologne, Germany.
| |
Collapse
|
334
|
Ottum PA, Arellano G, Reyes LI, Iruretagoyena M, Naves R. Opposing Roles of Interferon-Gamma on Cells of the Central Nervous System in Autoimmune Neuroinflammation. Front Immunol 2015; 6:539. [PMID: 26579119 PMCID: PMC4626643 DOI: 10.3389/fimmu.2015.00539] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/08/2015] [Indexed: 12/13/2022] Open
Abstract
Multiple sclerosis (MS) is the principal cause of autoimmune neuroinflammation in humans, and its animal model, experimental autoimmune encephalomyelitis (EAE), is widely used to gain insight about their immunopathological mechanisms for and the development of novel therapies for MS. Most studies on the role of interferon (IFN)-γ in the pathogenesis and progression of EAE have focused on peripheral immune cells, while its action on central nervous system (CNS)-resident cells has been less explored. In addition to the well-known proinflammatory and damaging effects of IFN-γ in the CNS, evidence has also endowed this cytokine both a protective and regulatory role in autoimmune neuroinflammation. Recent investigations performed in this research field have exposed the complex role of IFN-γ in the CNS uncovering unexpected mechanisms of action that underlie these opposing activities on different CNS-resident cell types. The mechanisms behind these two-faced effects of IFN-γ depend on dose, disease phase, and cell development stage. Here, we will review and discuss the dual role of IFN-γ on CNS-resident cells in EAE highlighting its protective functions and the mechanisms proposed.
Collapse
Affiliation(s)
- Payton A Ottum
- Immunology Program, Biomedical Sciences Institute, School of Medicine, Universidad de Chile , Santiago , Chile
| | - Gabriel Arellano
- Immunology Program, Biomedical Sciences Institute, School of Medicine, Universidad de Chile , Santiago , Chile
| | - Lilian I Reyes
- Faculty of Science, Universidad San Sebastián , Santiago , Chile
| | - Mirentxu Iruretagoyena
- Department of Clinical Immunology and Rheumatology, School of Medicine, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Rodrigo Naves
- Immunology Program, Biomedical Sciences Institute, School of Medicine, Universidad de Chile , Santiago , Chile
| |
Collapse
|
335
|
Cardona SM, Mendiola AS, Yang YC, Adkins SL, Torres V, Cardona AE. Disruption of Fractalkine Signaling Leads to Microglial Activation and Neuronal Damage in the Diabetic Retina. ASN Neuro 2015; 7:7/5/1759091415608204. [PMID: 26514658 PMCID: PMC4641555 DOI: 10.1177/1759091415608204] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Fractalkine (CX3CL1 or FKN) is a membrane-bound chemokine expressed on neuronal membranes and is proteolytically cleaved to shed a soluble chemoattractant domain. FKN signals via its unique receptor CX3CR1 expressed on microglia and other peripheral leukocytes. The aim of this study is to determine the role of CX3CR1 in inflammatory-mediated damage to retinal neurons using a model of diabetic retinopathy. For this, we compared neuronal, microglial, and astroglial densities and inflammatory response in nondiabetic and diabetic (Ins2Akita) CX3CR1-wild-type and CX3CR1-deficient mice at 10 and 20 weeks of age. Our results show that Ins2Akita CX3CR1-knockout mice exhibited (a) decreased neuronal cell counts in the retinal ganglion cell layer, (b) increased microglial cell numbers, and (c) decreased astrocyte responses comparable with Ins2Akita CX3CR1-Wild-type mice at 20 weeks of age. Analyses of the inflammatory response using PCR arrays showed several inflammatory genes differentially regulated in diabetic tissues. From those, the response in Ins2Akita CX3CR1-deficient mice at 10 weeks of age revealed a significant upregulation of IL-1β at the transcript level that was confirmed by enzyme-linked immunosorbent assay in soluble retinal extracts. Overall, IL-1β, VEGF, and nitrite levels as a read out of nitric oxide production were abundant in Ins2Akita CX3CR1-deficient retina. Notably, double immunofluorescence staining shows that astrocytes act as a source of IL-1β in the Ins2Akita retina, and CX3CR1-deficient microglia potentiate the inflammatory response via IL-1β release. Collectively, these data demonstrate that dysregulated microglial responses in absence of CX3CR1 contribute to inflammatory-mediated damage of neurons in the diabetic retina.
Collapse
Affiliation(s)
- Sandra M Cardona
- Department of Biology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, TX, USA
| | - Andrew S Mendiola
- Department of Biology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, TX, USA
| | - Ya-Chin Yang
- Department of Biology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, TX, USA
| | - Sarina L Adkins
- Department of Biology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, TX, USA
| | - Vanessa Torres
- Department of Biology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, TX, USA
| | - Astrid E Cardona
- Department of Biology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, TX, USA
| |
Collapse
|
336
|
Moratalla R, Khairnar A, Simola N, Granado N, García-Montes JR, Porceddu PF, Tizabi Y, Costa G, Morelli M. Amphetamine-related drugs neurotoxicity in humans and in experimental animals: Main mechanisms. Prog Neurobiol 2015; 155:149-170. [PMID: 26455459 DOI: 10.1016/j.pneurobio.2015.09.011] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 09/04/2015] [Accepted: 09/15/2015] [Indexed: 12/13/2022]
Abstract
Amphetamine-related drugs, such as 3,4-methylenedioxymethamphetamine (MDMA) and methamphetamine (METH), are popular recreational psychostimulants. Several preclinical studies have demonstrated that, besides having the potential for abuse, amphetamine-related drugs may also elicit neurotoxic and neuroinflammatory effects. The neurotoxic potentials of MDMA and METH to dopaminergic and serotonergic neurons have been clearly demonstrated in both rodents and non-human primates. This review summarizes the species-specific cellular and molecular mechanisms involved in MDMA and METH-mediated neurotoxic and neuroinflammatory effects, along with the most important behavioral changes elicited by these substances in experimental animals and humans. Emphasis is placed on the neuropsychological and neurological consequences associated with the neuronal damage. Moreover, we point out the gap in our knowledge and the need for developing appropriate therapeutic strategies to manage the neurological problems associated with amphetamine-related drug abuse.
Collapse
Affiliation(s)
- Rosario Moratalla
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, CSIC, Madrid, Spain; CIBERNED, ISCIII, Madrid, Spain.
| | - Amit Khairnar
- Applied Neuroscience Research Group, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Nicola Simola
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Noelia Granado
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, CSIC, Madrid, Spain; CIBERNED, ISCIII, Madrid, Spain
| | - Jose Ruben García-Montes
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, CSIC, Madrid, Spain; CIBERNED, ISCIII, Madrid, Spain
| | - Pier Francesca Porceddu
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA
| | - Giulia Costa
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Micaela Morelli
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy; Centre of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy; National Research Council (CNR), Institute of Neuroscience, Cagliari, Italy
| |
Collapse
|
337
|
Male rats develop more severe experimental autoimmune encephalomyelitis than female rats: sexual dimorphism and diergism at the spinal cord level. Brain Behav Immun 2015; 49:101-18. [PMID: 25944279 DOI: 10.1016/j.bbi.2015.04.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 03/26/2015] [Accepted: 04/26/2015] [Indexed: 02/06/2023] Open
Abstract
Compared with females, male Dark Agouti (DA) rats immunized for experimental autoimmune encephalomyelitis (EAE) with rat spinal cord homogenate in complete Freund's adjuvant (CFA) exhibited lower incidence of the disease, but the maximal neurological deficit was greater in the animals that developed the disease. Consistently, at the peak of the disease greater number of reactivated CD4+CD134+CD45RC- T lymphocytes was retrieved from male rat spinal cord. Their microglia/macrophages were more activated and produced greater amount of prototypic proinflammatory cytokines in vitro. Additionally, oppositely to the expression of mRNAs for IL-12/p35, IL-10 and IL-27/p28, the expression of mRNA for IL-23/p19 was upregulated in male rat spinal cord mononuclear cells. Consequently, the IL-17+:IFN-γ+ cell ratio within T lymphocytes from their spinal cord was skewed towards IL-17+ cells. Within this subpopulation, the IL-17+IFN-γ+:IL-17+IL-10+ cell ratio was shifted towards IL-17+IFN-γ+ cells, which have prominent tissue damaging capacity. This was associated with an upregulated expression of mRNAs for IL-1β and IL-6, but downregulated TGF-β mRNA expression in male rat spinal cord mononuclear cells. The enhanced GM-CSF mRNA expression in these cells supported the greater pathogenicity of IL-17+ T lymphocytes infiltrating male spinal cord. In the inductive phase of the disease, contrary to the draining lymph node, in the spinal cord the frequency of CD134+ cells among CD4+ T lymphocytes and the frequency of IL-17+ cells among T lymphocytes were greater in male than in female rats. This most likely reflected an enhanced transmigration of mononuclear cells into the spinal cord (judging by the lesser spinal cord CXCL12 mRNA expression), the greater frequency of activated microglia/macrophages and the increased expression of mRNAs for Th17 polarizing cytokines in male rat spinal cord mononuclear cells. Collectively, the results showed cellular and molecular mechanisms underlying the target organ specific sexual dimorphism in the T lymphocyte-dependent immune/inflammatory response, and suggested a substantial role for the target organ in shaping the sexually dimorphic clinical outcome of EAE.
Collapse
|
338
|
Chen HT, Wu HY, Shih CH, Jan TR. A DIFFERENTIAL EFFECT OF GRAPHENE OXIDE ON THE PRODUCTION OF PROINFLAMMATORY CYTOKINES BY MURINE MICROGLIA. ACTA ACUST UNITED AC 2015. [DOI: 10.1142/s1682648515500110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Graphene oxide (GO) is a promising nanomaterial for application in a variety of biomedical fields, including neuro-oncology, neuroimaging, neuroregeneration and drug delivery. Microglia are the central macrophage-like cells critically involved in neuroimmunity. However, the interaction between GO and microglia remained mostly unknown. The present study investigated the influence of GO on the production of proinflammatory cytokines by microglia. Primary murine microglial cells were treated with GO (1–25 μg/mL) followed by stimulation with lipopolysaccharide (LPS) for 24 h. The cell viability was measured by spectrophotometry using AlamarBlueⓇ. The levels of interleukin (IL)-1β and tumor necrosis factor (TNF)-α in the supernatants were measured by enzyme-linked immunosorbent assay (ELISA). The IL-1β converting enzyme (ICE) activity was measured using a specific fluorescent substrate. The activity of cathepsin B and the lysosomal permeability and alkalinity were determined by flow cytometry. Treatment with GO did not affect cell viability, but significantly suppressed the production of IL-1β. In contrast, the production of TNF-α was unaltered. In addition, the lysosomal permeability and alkalinity in microglia treated with GO were increased, whereas the activity of cathepsin B and ICE was decreased. Collectively, these results demonstrated that exposure to GO differentially affected the production of proinflammatory cytokines, which is associated with the modulation of the lysosomal pathway of cytokines processing.
Collapse
Affiliation(s)
- Hui-Ting Chen
- Department and Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan, ROC
| | - Hsin-Ying Wu
- Department and Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan, ROC
| | - Chih-Hua Shih
- Department and Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan, ROC
| | - Tong-Rong Jan
- Department and Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan, ROC
| |
Collapse
|
339
|
Imaging robust microglial activation after lipopolysaccharide administration in humans with PET. Proc Natl Acad Sci U S A 2015; 112:12468-73. [PMID: 26385967 DOI: 10.1073/pnas.1511003112] [Citation(s) in RCA: 259] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Neuroinflammation is associated with a broad spectrum of neurodegenerative and psychiatric diseases. The core process in neuroinflammation is activation of microglia, the innate immune cells of the brain. We measured the neuroinflammatory response produced by a systemic administration of the Escherichia coli lipopolysaccharide (LPS; also called endotoxin) in humans with the positron emission tomography (PET) radiotracer [11C]PBR28, which binds to translocator protein, a molecular marker that is up-regulated by microglial activation. In addition, inflammatory cytokines in serum and sickness behavior profiles were measured before and after LPS administration to relate brain microglial activation with systemic inflammation and behavior. Eight healthy male subjects each had two 120-min [11C]PBR28 PET scans in 1 d, before and after an LPS challenge. LPS (1.0 ng/kg, i.v.) was administered 180 min before the second [11C]PBR28 scan. LPS administration significantly increased [11C]PBR28 binding 30-60%, demonstrating microglial activation throughout the brain. This increase was accompanied by an increase in blood levels of inflammatory cytokines, vital sign changes, and sickness symptoms, well-established consequences of LPS administration. To our knowledge, this is the first demonstration in humans that a systemic LPS challenge induces robust increases in microglial activation in the brain. This imaging paradigm to measure brain microglial activation with [11C]PBR28 PET provides an approach to test new medications in humans for their putative antiinflammatory effects.
Collapse
|
340
|
Neuroprotective effect of phytoceramide against transient focal ischemia-induced brain damage in rats. Arch Pharm Res 2015; 38:2241-50. [DOI: 10.1007/s12272-015-0647-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 08/08/2015] [Indexed: 12/20/2022]
|
341
|
Wu W, Shao J, Lu H, Xu J, Zhu A, Fang W, Hui G. Guard of delinquency? A role of microglia in inflammatory neurodegenerative diseases of the CNS. Cell Biochem Biophys 2015; 70:1-8. [PMID: 24633457 DOI: 10.1007/s12013-014-9872-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Activation of microglia and inflammation-mediated neurotoxicity are believed to play an important role in the pathogenesis of several neurodegenerative disorders, including multiple sclerosis. Studies demonstrate complex functions of activated microglia that can lead to either beneficial or detrimental outcomes, depending on the form and the timing of activation. Combined with genetic and environmental factors, overactivation and dysregulation of microglia cause progressive neurotoxic consequences which involve a vicious cycle of neuron injury and unregulated neuroinflammation. Thus, modulation of microglial activation appears to be a promising new therapeutic target. While current therapies do attempt to block activation of microglia, they indiscriminately inhibit inflammation thus also curbing beneficial effects of inflammation and delaying recovery. Multiple signaling cascades, often cross-talking, are involved in every step of microglial activation. One of the key challenges is to understand the molecular mechanisms controlling cytokine expression and phagocytic activity, as well as cell-specific consequences of dysregulated cytokine expression. Further, a better understanding of how the integration of multiple cytokine signals influences the function or activity of individual microglia remains an important research objective to identify potential therapeutic targets for clinical intervention to promote repair.
Collapse
Affiliation(s)
- Weijiang Wu
- Department of Neurosurgery, Wuxi Third People's Hospital, Wuxi, Jiangsu, China
| | | | | | | | | | | | | |
Collapse
|
342
|
Jose S, Tan SW, Tong CK, Vidyadaran S. Isolation and characterization of primary microglia from post-natal murine brain tissues: a comparison of two methods. Cell Biol Int 2015. [PMID: 26194799 DOI: 10.1002/cbin.10516] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Microglia are resident macrophages of the central nervous system (CNS). Apart from playing vital roles as sentinel cells, they are crucial in physiological processes such as synaptic pruning during brain development. CNS disorders require an understanding of the contribution of each cellular compartment to the pathogenesis. Elucidating the role of microglia in disease development and progression in the intricate CNS environment is technically challenging and requires the establishment of reliable, reproducible techniques to isolate and culture microglia. A number of different protocols have been developed for isolation of neonatal microglia and here we compare two widely used methods, namely, mild trypsinization and EasySep® magnetic separation. EasySep® magnetic separation provided higher microglia yield, and flow cytometric evaluation of CD11b and F4/80 markers revealed that EasySep® separation method also produced significantly higher purity compared to mild trypsinization. Microglia isolated using EasySep® separation method were functional, as demonstrated by the generation of nitric oxide, IL-6, TNF-α, and MCP-1 in response to lipopolysaccharide stimulation. In summary, this study has revealed that magnetic separation is superior to mild trypsinization in terms of yield and purity of microglia.
Collapse
Affiliation(s)
- Shinsmon Jose
- Department of Pathology, Neuroinflammation Group, Immunology Laboratory, Faculty of Medicine Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Shi Wei Tan
- Department of Pathology, Neuroinflammation Group, Immunology Laboratory, Faculty of Medicine Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Chih Kong Tong
- Department of Pathology, Neuroinflammation Group, Immunology Laboratory, Faculty of Medicine Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Sharmili Vidyadaran
- Department of Pathology, Neuroinflammation Group, Immunology Laboratory, Faculty of Medicine Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Malaysia.,Genetic Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
343
|
Bussy C, Al-Jamal KT, Boczkowski J, Lanone S, Prato M, Bianco A, Kostarelos K. Microglia Determine Brain Region-Specific Neurotoxic Responses to Chemically Functionalized Carbon Nanotubes. ACS NANO 2015; 9:7815-7830. [PMID: 26043308 DOI: 10.1021/acsnano.5b02358] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Surface tunability and their ability to translocate plasma membranes make chemically functionalized carbon nanotubes (f-CNTs) promising intracellular delivery systems for therapeutic or diagnostic purposes in the central nervous system (CNS). The present study aimed to determine the biological impact of different types of multiwalled CNTs (MWNTs) on primary neuronal and glial cell populations isolated from fetal rat frontal cortex (FCO) and striatum (ST). Neurons from both brain regions were generally not affected by exposure to MWNTs as determined by a modified LDH assay. In contrast, the viability of mixed glia was reduced in ST-derived mixed glial cultures, but not in FCO-derived ones. Cytotoxicity was independent of MWNT type or dose, suggesting an inherent sensitivity to CNTs. Characterization of the cell populations in mixed glial cultures prior to nanotube exposure showed higher number of CD11b/c positive cells in the ST-derived mixed glial cultures. After exposure to MWNTs, CNT were uptaken more effectively by CD11b/c positive cells (microglia), compared to GFAP positive cells (astrocytes). When exposed to conditioned media from microglia enriched cultures exposed to MWNTs, ST-derived glial cultures secreted more NO than FCO-derived cells. These results suggested that the more significant cytotoxic response obtained from ST-derived mixed glia cultures was related to the higher number of microglial cells in this brain region. Our findings emphasize the role that resident macrophages of the CNS play in response to nanomaterials and the need to thoroughly investigate the brain region-specific effects toward designing implantable devices or delivery systems to the CNS.
Collapse
Affiliation(s)
- Cyrill Bussy
- Nanomedicine Lab, Faculty of Medical & Human Sciences & National Graphene Institute, University of Manchester , AV Hill Building, Manchester M13 9PT, United Kingdom
- Faculty of Life Sciences, University College London , Brunswick Square, London WC1N 1AX, United Kingdom
| | - Khuloud T Al-Jamal
- Faculty of Life Sciences, University College London , Brunswick Square, London WC1N 1AX, United Kingdom
| | - Jorge Boczkowski
- INSERM U955, Institut Mondor de Recherche Biomédicale , Créteil F-94010 , France
- Université Paris Est Val de Marne (UPEC) , Créteil F-94010, France
- AP-HP, Hôpital Henri Mondor, Service de Physiologie Explorations Fonctionnelles , Créteil F-94010, France
| | - Sophie Lanone
- INSERM U955, Institut Mondor de Recherche Biomédicale , Créteil F-94010 , France
- Université Paris Est Val de Marne (UPEC) , Créteil F-94010, France
- Hôpital Intercommunal de Créteil , Service de Pneumologie et Pathologie Professionnelle, Créteil F-94000, France
| | - Maurizio Prato
- Center of Excellence for Nanostructured Materials, Department of Pharmaceutical Sciences, University of Trieste , Trieste 34127, Italy
| | - Alberto Bianco
- CNRS, Institut de Biologie Moléculaire et Cellulaire , UPR 3572, Immunopathologie et Chimie Thérapeutiques, 67000 Strasbourg, France
| | - Kostas Kostarelos
- Nanomedicine Lab, Faculty of Medical & Human Sciences & National Graphene Institute, University of Manchester , AV Hill Building, Manchester M13 9PT, United Kingdom
- Faculty of Life Sciences, University College London , Brunswick Square, London WC1N 1AX, United Kingdom
| |
Collapse
|
344
|
Parajuli B, Horiuchi H, Mizuno T, Takeuchi H, Suzumura A. CCL11 enhances excitotoxic neuronal death by producing reactive oxygen species in microglia. Glia 2015; 63:2274-84. [PMID: 26184677 DOI: 10.1002/glia.22892] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 06/05/2015] [Accepted: 06/30/2015] [Indexed: 12/28/2022]
Abstract
The chemokine CCL11 (also known as eotaxin-1) is a potent eosinophil chemoattractant that mediates allergic diseases such as asthma, atopic dermatitis, and inflammatory bowel diseases. Previous studies demonstrated that concentrations of CCL11 are elevated in the sera and cerebrospinal fluids (CSF) of patients with neuroinflammatory disorders, including multiple sclerosis. Moreover, the levels of CCL11 in plasma and CSF increase with age, and CCL11 suppresses adult neurogenesis in the central nervous system (CNS), resulting in memory impairment. However, the precise source and function of CCL11 in the CNS are not fully understood. In this study, we found that activated astrocytes release CCL11, whereas microglia predominantly express the CCL11 receptor. CCL11 significantly promoted the migration of microglia, and induced microglial production of reactive oxygen species by upregulating nicotinamide adenine dinucleotide phosphate-oxidase 1 (NOX1), thereby promoting excitotoxic neuronal death. These effects were reversed by inhibition of NOX1. Our findings suggest that CCL11 released from activated astrocytes triggers oxidative stress via microglial NOX1 activation and potentiates glutamate-mediated neurotoxicity, which may be involved in the pathogenesis of various neurological disorders.
Collapse
Affiliation(s)
- Bijay Parajuli
- Department of Neuroimmunology, Research Institute of Environmental Medicine, Nagoya University, Chikusa-Ku, Nagoya, Japan
| | - Hiroshi Horiuchi
- Department of Neuroimmunology, Research Institute of Environmental Medicine, Nagoya University, Chikusa-Ku, Nagoya, Japan
| | - Tetsuya Mizuno
- Department of Neuroimmunology, Research Institute of Environmental Medicine, Nagoya University, Chikusa-Ku, Nagoya, Japan
| | - Hideyuki Takeuchi
- Department of Neuroimmunology, Research Institute of Environmental Medicine, Nagoya University, Chikusa-Ku, Nagoya, Japan
| | - Akio Suzumura
- Department of Neuroimmunology, Research Institute of Environmental Medicine, Nagoya University, Chikusa-Ku, Nagoya, Japan
| |
Collapse
|
345
|
Das A, Sinha M, Datta S, Abas M, Chaffee S, Sen CK, Roy S. Monocyte and macrophage plasticity in tissue repair and regeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:2596-606. [PMID: 26118749 DOI: 10.1016/j.ajpath.2015.06.001] [Citation(s) in RCA: 584] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 05/27/2015] [Accepted: 06/11/2015] [Indexed: 10/23/2022]
Abstract
Heterogeneity and high versatility are the characteristic features of the cells of monocyte-macrophage lineage. The mononuclear phagocyte system, derived from the bone marrow progenitor cells, is primarily composed of monocytes, macrophages, and dendritic cells. In regenerative tissues, a central role of monocyte-derived macrophages and paracrine factors secreted by these cells is indisputable. Macrophages are highly plastic cells. On the basis of environmental cues and molecular mediators, these cells differentiate to proinflammatory type I macrophage (M1) or anti-inflammatory or proreparative type II macrophage (M2) phenotypes and transdifferentiate into other cell types. Given a central role in tissue repair and regeneration, the review focuses on the heterogeneity of monocytes and macrophages with current known mechanisms of differentiation and plasticity, including microenvironmental cues and molecular mediators, such as noncoding RNAs.
Collapse
Affiliation(s)
- Amitava Das
- Department of Surgery, Davis Heart and Lung Research Institute, Center for Regenerative Medicine and Cell Based Therapies and Comprehensive Wound Center, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Mithun Sinha
- Department of Surgery, Davis Heart and Lung Research Institute, Center for Regenerative Medicine and Cell Based Therapies and Comprehensive Wound Center, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Soma Datta
- Department of Surgery, Davis Heart and Lung Research Institute, Center for Regenerative Medicine and Cell Based Therapies and Comprehensive Wound Center, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Motaz Abas
- Department of Surgery, Davis Heart and Lung Research Institute, Center for Regenerative Medicine and Cell Based Therapies and Comprehensive Wound Center, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Scott Chaffee
- Department of Surgery, Davis Heart and Lung Research Institute, Center for Regenerative Medicine and Cell Based Therapies and Comprehensive Wound Center, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Chandan K Sen
- Department of Surgery, Davis Heart and Lung Research Institute, Center for Regenerative Medicine and Cell Based Therapies and Comprehensive Wound Center, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Sashwati Roy
- Department of Surgery, Davis Heart and Lung Research Institute, Center for Regenerative Medicine and Cell Based Therapies and Comprehensive Wound Center, The Ohio State University Wexner Medical Center, Columbus, Ohio.
| |
Collapse
|
346
|
Xiao F, Xu JM, Jiang XH. CX3 chemokine receptor 1 deficiency leads to reduced dendritic complexity and delayed maturation of newborn neurons in the adult mouse hippocampus. Neural Regen Res 2015; 10:772-7. [PMID: 26109952 PMCID: PMC4468769 DOI: 10.4103/1673-5374.156979] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2015] [Indexed: 12/27/2022] Open
Abstract
Previous studies have shown that microglia impact the proliferation and differentiation of neurons during hippocampal neurogenesis via the fractalkine/CX3 chemokine receptor 1 (CX3CR1) signaling pathway. However, whether microglia can influence the maturation and dendritic growth of newborn neurons during hippocampal neurogenesis remains unclear. In the present study, we found that the number of doublecortin-positive cells in the hippocampus was decreased, and the dendritic length and number of intersections in newborn neurons in the hippocampus were reduced in transgenic adult mice with CX3CR1 deficiency (CX3CR1 (GFP/GFP) ). Furthermore, after experimental seizures were induced with kainic acid in these CX3CR1-deficient mice, the expression of c-fos, a marker of neuronal activity, was reduced compared with wild-type mice. Collectively, the experimental findings indicate that the functional maturation of newborn neurons during hippocampal neurogenesis in adult mice is delayed by CX3CR1 deficiency.
Collapse
Affiliation(s)
- Feng Xiao
- Department of Anesthesiology, the Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Jun-Mei Xu
- Department of Anesthesiology, the Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Xing-Hua Jiang
- Department of Anesthesiology, the Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| |
Collapse
|
347
|
Sun M, Deng B, Zhao X, Gao C, Yang L, Zhao H, Yu D, Zhang F, Xu L, Chen L, Sun X. Isoflurane preconditioning provides neuroprotection against stroke by regulating the expression of the TLR4 signalling pathway to alleviate microglial activation. Sci Rep 2015; 5:11445. [PMID: 26086415 PMCID: PMC4471883 DOI: 10.1038/srep11445] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 05/20/2015] [Indexed: 01/05/2023] Open
Abstract
Excessive microglial activation often contributes to inflammation-mediated neurotoxicity in the ischemic penumbra during the acute stage of ischemic stroke. Toll-like receptor 4 (TLR4) has been reported to induce microglial activation via the NF-κB pathway. Isoflurane preconditioning (IP) can provide neuroprotection and inhibit microglial activation. In this study, we investigated the roles of the TLR4 signalling pathway in IP to exert neuroprotection following ischemic stroke in vivo and in vitro. The results showed that 2% IP alleviated neurological deficits, reduced the infarct volume, attenuated apoptosis and weakened microglial activation in the ischemic penumbra. Furthermore, IP down-regulated the expression of HSP 60, TLR4 and MyD88 and up-regulated inhibitor of IκB-α expression compared with I/R group in vivo. In vitro, 2% IP and a specific inhibitor of TLR4, CLI-095, down-regulated the expression of TLR4, MyD88, IL-1β, TNF-α and Bax, and up-regulated IκB-α and Bcl-2 expression compared with OGD group. Moreover, IP and CLI-095 attenuated microglial activation-induced neuronal apoptosis, and overexpression of the TLR4 gene reversed the neuroprotective effects of IP. In conclusion, IP provided neuroprotection by regulating TLR4 expression directly, alleviating microglial activation and neuroinflammation. Thus, inhibiting the activation of microglial activation via TLR4 may be a new avenue for stroke treatment.
Collapse
Affiliation(s)
- Meiyan Sun
- Department of Anesthesiology, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Bin Deng
- Department of Anesthesiology, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China.,State Key Laboratory of Military Stomatology, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an 710032, China
| | - Xiaoyong Zhao
- Department of Anesthesiology, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China.,Department of Anesthesiology, Weifang Medical University, Weifang, Shandong, 261053, China
| | - Changjun Gao
- Department of Anesthesiology, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Lu Yang
- Department of Anesthesiology, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Hui Zhao
- Department of Anesthesiology, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Daihua Yu
- Department of Anesthesiology, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Feng Zhang
- Department of Medical Administration, Lintong Sanatorium of PLA Lanzhou Military District, Lintong, Xi'an, 710600, China
| | - Lixian Xu
- State Key Laboratory of Military Stomatology, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an 710032, China
| | - Lei Chen
- Department of Gynaecology and Obstetrics, Nave General Hospital, Beijing, 100059, China
| | - Xude Sun
- Department of Anesthesiology, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| |
Collapse
|
348
|
Tan W, Xue-bin C, Tian Z, Xiao-wu C, Pei-pei H, Zhi-bin C, Bei-sha T. Effects of simvastatin on the expression of inducible nitric oxide synthase and brain-derived neurotrophic factor in a lipopolysaccharide-induced rat model of Parkinson disease. Int J Neurosci 2015; 126:278-86. [PMID: 26000813 DOI: 10.3109/00207454.2015.1012758] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To investigate the effects of simvastatin on the expression of inducible nitric oxide synthase (iNOS) and brain-derived neurotrophic factor (BDNF) in the substantia nigra in a lipopolysaccharide (LPS)-induced rat model of Parkinson disease (PD), and to study the mechanisms underlying the neuroprotective effects of simvastatin in PD. METHODS The LPS-PD model was established by injection of LPS (5 mg/mL, 2.0 μL) into the right substantia nigra compacta (SNC). Rats in the sham-operated group received saline. The simvastatin treatment group was intraperitoneally administered simvastatin (5 mg/kg, 2.0 μL) at 1 h before, and daily for 14 days after surgery, while the sham-operated and LPS-model groups received saline. Iba-1-positive cells and tyrosine hydroxylase (TH), as well as iNOS and BDNF in the SNC were detected by immunohistochemistry and Western blotting, respectively. The effect of simvastatin in the PD model was also examined in behavioral tests. RESULTS The LPS-model group exhibited typical animal PD behaviors. Compared with the control group, the LPS-model group exhibited a decreased number of DA neurons (p < 0.01) in the SNC, as well as increases in the Iba-1-positive cell number and iNOS expression (p < 0.05), while BDNF expression was downregulated (p < 0.01). These effects were inhibited by simvastatin treatment (p < 0.05). CONCLUSION Simvastatin mediates a protective effect on dopaminergic neurons in the SNC in the LPS-PD model, possibly by promoting neuronal repair and regeneration, and by inhibiting oxidative stress, thus improving substantia nigra function.
Collapse
Affiliation(s)
- Wang Tan
- a Department of Neurology, Xiangya Hospital , Central South University , Changsha , China ;,b Department of Neurology , Affiliated Hospital of Hainan Medical College , Haikou , China
| | - Cao Xue-bin
- c Department of Neurology, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| | - Zhang Tian
- b Department of Neurology , Affiliated Hospital of Hainan Medical College , Haikou , China
| | - Chen Xiao-wu
- b Department of Neurology , Affiliated Hospital of Hainan Medical College , Haikou , China
| | - Huang Pei-pei
- c Department of Neurology, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| | - Chen Zhi-bin
- b Department of Neurology , Affiliated Hospital of Hainan Medical College , Haikou , China
| | - Tang Bei-sha
- a Department of Neurology, Xiangya Hospital , Central South University , Changsha , China
| |
Collapse
|
349
|
Lokensgard JR, Schachtele SJ, Mutnal MB, Sheng WS, Prasad S, Hu S. Chronic reactive gliosis following regulatory T cell depletion during acute MCMV encephalitis. Glia 2015; 63:1982-1996. [PMID: 26041050 DOI: 10.1002/glia.22868] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 05/12/2015] [Indexed: 12/21/2022]
Abstract
Long-term, persistent central nervous system inflammation is commonly seen following brain infection. Using a murine model of viral encephalitis (murine cytomegalovirus, MCMV) we have previously shown that post-encephalitic brains are maintained in an inflammatory state consisting of glial cell reactivity, retention of brain-infiltrating tissue-resident memory CD8+ T-cells, and long-term persistence of antibody-producing cells of the B-lineage. Here, we report that this neuroinflammation occurs concomitantly with accumulation and retention of immunosuppressive regulatory T-cells (Tregs), and is exacerbated following their ablation. However, the extent to which these Tregs function to control neuroimmune activation following MCMV encephalitis is unknown. In this study, we used Foxp3-diphtheria toxin receptor-GFP (Foxp3-DTR-GFP) transgenic mice, which upon administration of low-dose diphtheria toxin (DTx) results in the specific depletion of Tregs, to investigate their function. We found treatment with DTx during the acute phase of viral brain infection (0-4 dpi) resulted in depletion of Tregs from the brain, exacerbation of encephalitis (i.e., increased presence of CD4+ and CD8+ T-cells), and chronic reactive phenotypes of resident glial cells (i.e., elevated MHC Class II as well as PD-L1 levels, sustained microgliosis, and increased glial fibrillary acidic protein (GFAP) expression on astrocytes) versus untreated, infected animals. This chronic proinflammatory environment was associated with reduced cognitive performance in spatial learning and memory tasks (Barnes Maze) by convalescent animals. These data demonstrate that chronic glial cell activation, unremitting post-encephalitic neuroinflammation, and its associated long-term neurological sequelae in response to viral brain infection are modulated by the immunoregulatory properties of Tregs. GLIA 2015;63:1982-1996.
Collapse
Affiliation(s)
- James R Lokensgard
- Center for Infectious Diseases and Microbiology Translational Research, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Scott J Schachtele
- Center for Infectious Diseases and Microbiology Translational Research, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Manohar B Mutnal
- Center for Infectious Diseases and Microbiology Translational Research, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Wen S Sheng
- Center for Infectious Diseases and Microbiology Translational Research, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Sujata Prasad
- Center for Infectious Diseases and Microbiology Translational Research, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Shuxian Hu
- Center for Infectious Diseases and Microbiology Translational Research, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
350
|
He X, Lakkaraju SK, Hanscom M, Zhao Z, Wu J, Stoica B, MacKerell AD, Faden AI, Xue F. Acyl-2-aminobenzimidazoles: a novel class of neuroprotective agents targeting mGluR5. Bioorg Med Chem 2015; 23:2211-20. [PMID: 25801156 PMCID: PMC4697443 DOI: 10.1016/j.bmc.2015.02.054] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/13/2015] [Accepted: 02/26/2015] [Indexed: 01/08/2023]
Abstract
Positive allosteric modulators (PAMs) of the metabotropic glutamate receptor 5 (mGluR5) are promising therapeutic agents for treating traumatic brain injury (TBI). Using computational and medicinal methods, the structure-activity relationship of a class of acyl-2-aminobenzimidazoles (1-26) is reported. The new compounds are designed based on the chemical structure of 3,3'-difluorobenzaldazine (DFB), a known mGluR5 PAM. Ligand design and prediction of binding affinities of the new compounds have been performed using the site identification by ligand competitive saturation (SILCS) method. Binding affinities of the compounds to the transmembrane domain of mGluR5 have been evaluated using nitric oxide (NO) production assay, while the safety of the compounds is tested. One new compound found in this study, compound 22, showed promising activity with an IC₅₀ value of 6.4 μM, which is ∼20 fold more potent than that of DFB. Compound 22 represents a new lead for possible development as a treatment for TBI and related neurodegenerative conditions.
Collapse
Affiliation(s)
- Xinhua He
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, United States
| | - Sirish K Lakkaraju
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, United States
| | - Marie Hanscom
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Zaorui Zhao
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Junfang Wu
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Bogdan Stoica
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Alexander D MacKerell
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, United States
| | - Alan I Faden
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Fengtian Xue
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, United States.
| |
Collapse
|