301
|
Bai M, Xie J, Liu X, Chen X, Liu W, Wu F, Chen D, Sun Y, Li X, Wang C, Ye L. Microenvironmental Stiffness Regulates Dental Papilla Cell Differentiation: Implications for the Importance of Fibronectin-Paxillin-β-Catenin Axis. ACS APPLIED MATERIALS & INTERFACES 2018; 10:26917-26927. [PMID: 30004214 DOI: 10.1021/acsami.8b08450] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The mechanical stiffness of substrates is recognized to be an important physical cue in the microenvironment of local cellular residents in mammalian species due to their great capacity in regulating cell behavior. Dental papilla cells (DPCs) play an important role in the field of dental tissue engineering for their stem cell-like properties. Therefore, it is essential to provide the suitable microenvironment by combining with the physical cues of biomaterials for DPCs to carry out the function of effective tissue regeneration. However, how the substrate stiffness influences the odontogenic differentiation of DPCs is still unclear. Thus, we fabricated poly(dimethylsiloxane) substrates with varied stiffness for cell behavior. Both cell morphology and focal adhesion were shown to have significant changes in response to varied stiffness. Paxillin, an important protein adapter of focal adhesion kinase protein, was shown to interact with both ectoplasmic fibronectin and cytoplasmic β-catenin by coimmunoprecipitation. The resultant changes of β-catenin by varied stiffness were confirmed by immunofluorescent stain and western blotting. Further, the higher quantity nuclear translocation of β-catenin and the less phospho-β-catenin on the stiff substrate were detected. This nuclear translocation in the stiff substrate finally led to an increased mineralization of DPCs relative to the soft substrate detected by Von Kossa and Alizarin Red stain. Taken together, this work not only points out that the substrate stiffness can regulate the odontogenic differentiation potential of DPCs via fibronectin/paxillin/β-catenin pathway but also provides significant consequence for biomechanical control of cell behavior in cell-based tooth tissue regeneration.
Collapse
Affiliation(s)
- Mingru Bai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu 610041 , P. R. China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu 610041 , P. R. China
| | - Xiaoyu Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu 610041 , P. R. China
| | - Xia Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu 610041 , P. R. China
| | - Wenjing Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu 610041 , P. R. China
| | - Fanzi Wu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu 610041 , P. R. China
| | - Dian Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu 610041 , P. R. China
| | - Yimin Sun
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu 610041 , P. R. China
| | - Xin Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu 610041 , P. R. China
| | - Chenglin Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu 610041 , P. R. China
| | - Ling Ye
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu 610041 , P. R. China
| |
Collapse
|
302
|
Salvi AM, DeMali KA. Mechanisms linking mechanotransduction and cell metabolism. Curr Opin Cell Biol 2018; 54:114-120. [PMID: 29902730 DOI: 10.1016/j.ceb.2018.05.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/17/2018] [Accepted: 05/08/2018] [Indexed: 11/17/2022]
Abstract
Throughout their lifetimes, all cells experience force. These forces are sensed by cell surface adhesion receptors, such as the cadherins and integrins. Much attention has focused on identifying how these adhesion receptors transmit force. In contrast, less is known regarding how these force-activated pathways are integrated with other cellular processes. In this review, we describe how cadherins and integrins transmit force, and discuss how these adhesion receptors are linked to cell metabolism. We focus on understanding this connection by highlighting how the cadherins and integrins interact with a master regulator of energy homeostasis, AMP-activated protein kinase (AMPK) and its upstream activator, Liver Kinase B1 (LKB1). We consider why there is a need for force transmission to be coupled to metabolism and highlight the major unanswered questions in the field.
Collapse
Affiliation(s)
- Alicia M Salvi
- Department of Biochemistry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
| | - Kris A DeMali
- Department of Biochemistry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States.
| |
Collapse
|
303
|
Certhrax Is an Antivirulence Factor for the Anthrax-Like Organism Bacillus cereus Strain G9241. Infect Immun 2018; 86:IAI.00207-18. [PMID: 29610258 DOI: 10.1128/iai.00207-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 03/28/2018] [Indexed: 11/20/2022] Open
Abstract
Bacillus cereus G9241 caused a life-threatening anthrax-like lung infection in a previously healthy human. This strain harbors two large virulence plasmids, pBCXO1 and pBC210, that are absent from typical B. cereus isolates. The pBCXO1 plasmid is nearly identical to pXO1 from Bacillus anthracis and carries genes (pagA1, lef, and cya) for anthrax toxin components (protective antigen [called PA1 in G9241], lethal factor [LF], and edema factor [EF], respectively). The plasmid also has an intact hyaluronic acid capsule locus. The pBC210 plasmid has a tetrasaccharide capsule locus, a gene for a PA1 homolog called PA2 (pagA2), and a gene (cer) for Certhrax, an ADP-ribosyltransferase toxin that inactivates vinculin. LF, EF, and Certhrax require PA for entry into cells. In this study, we asked what role PA1, PA2, LF, and Certhrax play in the pathogenicity of G9241. To answer this, we generated isogenic deletion mutations in the targeted toxin gene components and then assessed the strains for virulence in highly G9241-susceptible (A/J) and moderately G9241-sensitive (C57BL/6) mice. We found that full virulence of G9241 required PA1 and LF, while PA2 contributed minimally to pathogenesis of G9241 but could not functionally replace PA1 as a toxin-binding subunit in vivo Surprisingly, we discovered that Certhrax attenuated the virulence of G9241; i.e., a Δcer Δlef mutant strain was more virulent than a Δlef mutant strain following subcutaneous inoculation of A/J mice. Moreover, the enzymatic activity of Certhrax contributed to this phenotype. We concluded that Certhrax acts as an antivirulence factor in the anthrax-like organism B. cereus G9241.
Collapse
|
304
|
Dickson BC, Swanson D, Charames GS, Fletcher CD, Hornick JL. Epithelioid fibrous histiocytoma: molecular characterization of ALK fusion partners in 23 cases. Mod Pathol 2018; 31:753-762. [PMID: 29327718 DOI: 10.1038/modpathol.2017.191] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/23/2017] [Accepted: 10/26/2017] [Indexed: 02/08/2023]
Abstract
Epithelioid fibrous histiocytoma is a rare and distinctive cutaneous neoplasm. Most cases harbor ALK rearrangement and show ALK overexpression, which distinguish this neoplasm from conventional cutaneous fibrous histiocytoma and variants. SQSTM1 and VCL have previously been shown to partner with ALK in one case each of epithelioid fibrous histiocytoma. The purpose of this study was to examine a large cohort of epithelioid fibrous histiocytomas by next-generation sequencing to characterize the nature and prevalence of ALK fusion partners. A retrospective archival review was performed to identify cases of epithelioid fibrous histiocytoma (2012-2016). Immunohistochemistry was performed to confirm ALK expression. Targeted next-generation sequencing was applied on RNA extracted from formalin-fixed paraffin-embedded tissue to identify the fusion partners. Twenty-three cases fulfilled inclusion criteria. The mean patient age was 39 years (range, 8-74), there was no sex predilection, and >75% of cases involved the lower extremities. The most common gene fusions were SQSTM1-ALK (N=12; 52%) and VCL-ALK (N=7; 30%); the other four cases harbored novel fusion partners (DCTN1, ETV6, PPFIBP1, and SPECC1L). The pattern of ALK immunoreactivity was usually granular cytoplasmic (N=12; 52%) or granular cytoplasmic and nuclear (N=10; 43%); the case containing an ETV6 fusion partner showed nuclear staining alone. There was no apparent relationship between tumor morphology and the ALK fusion partner. In summary, SQSTM1 and VCL are the most common ALK fusion partners in epithelioid fibrous histiocytoma; DCTN1, ETV6, PPFIBP1, and SPECC1L represent rare fusion partners. The proteins encoded by these genes play diverse roles in scaffolding, cell adhesion, signaling, and transcription (among others) without clear commonalities. These findings expand the oncogenic promiscuity of many of these ALK fusion genes, which drive neoplasia in tumors of diverse lineages with widely varied clinical behavior. This is the first documented account of ETV6-ALK and SPECC1L-ALK translocations in neoplasms.
Collapse
Affiliation(s)
- Brendan C Dickson
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada.,Department of Pathobiology and Laboratory Medicine, University of Toronto, Toronto, ON, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - David Swanson
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - George S Charames
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada.,Department of Pathobiology and Laboratory Medicine, University of Toronto, Toronto, ON, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Christopher Dm Fletcher
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Jason L Hornick
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| |
Collapse
|
305
|
Caterino M, Zacchia M, Costanzo M, Bruno G, Arcaniolo D, Trepiccione F, Siciliano R, Mazzeo M, Ruoppolo M, Capasso G. Urine Proteomics Revealed a Significant Correlation Between Urine-Fibronectin Abundance and Estimated-GFR Decline in Patients with Bardet-Biedl Syndrome. Kidney Blood Press Res 2018. [DOI: 10.1159/000488096] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
306
|
Affiliation(s)
- Jingjing Zheng
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Da Zheng
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Terry Su
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jianding Cheng
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
307
|
Ospina Stella A, Turville S. All-Round Manipulation of the Actin Cytoskeleton by HIV. Viruses 2018; 10:v10020063. [PMID: 29401736 PMCID: PMC5850370 DOI: 10.3390/v10020063] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/24/2018] [Accepted: 01/29/2018] [Indexed: 12/21/2022] Open
Abstract
While significant progress has been made in terms of human immunodeficiency virus (HIV) therapy, treatment does not represent a cure and remains inaccessible to many people living with HIV. Continued mechanistic research into the viral life cycle and its intersection with many aspects of cellular biology are not only fundamental in the continued fight against HIV, but also provide many key observations of the workings of our immune system. Decades of HIV research have testified to the integral role of the actin cytoskeleton in both establishing and spreading the infection. Here, we review how the virus uses different strategies to manipulate cellular actin networks and increase the efficiency of various stages of its life cycle. While some HIV proteins seem able to bind to actin filaments directly, subversion of the cytoskeleton occurs indirectly by exploiting the power of actin regulatory proteins, which are corrupted at multiple levels. Furthermore, this manipulation is not restricted to a discrete class of proteins, but rather extends throughout all layers of the cytoskeleton. We discuss prominent examples of actin regulators that are exploited, neutralized or hijacked by the virus, and address how their coordinated deregulation can lead to changes in cellular behavior that promote viral spreading.
Collapse
Affiliation(s)
- Alberto Ospina Stella
- The Kirby Institute, University of New South Wales (UNSW), Sydney NSW 2052, Australia.
| | - Stuart Turville
- The Kirby Institute, University of New South Wales (UNSW), Sydney NSW 2052, Australia.
| |
Collapse
|
308
|
Dutta S, Mana-Capelli S, Paramasivam M, Dasgupta I, Cirka H, Billiar K, McCollum D. TRIP6 inhibits Hippo signaling in response to tension at adherens junctions. EMBO Rep 2018; 19:337-350. [PMID: 29222344 PMCID: PMC5797958 DOI: 10.15252/embr.201744777] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 11/09/2022] Open
Abstract
The transcriptional co-activator YAP controls cell proliferation, survival, and tissue regeneration in response to changes in the mechanical environment. It is not known how mechanical stimuli such as tension are sensed and how the signal is transduced to control YAP activity. Here, we show that the LIM domain protein TRIP6 acts as part of a mechanotransduction pathway at adherens junctions to promote YAP activity by inhibiting the LATS1/2 kinases. Previous studies showed that vinculin at adherens junctions becomes activated by mechanical tension. We show that vinculin inhibits Hippo signaling by recruiting TRIP6 to adherens junctions and stimulating its binding to and inhibition of LATS1/2 in response to tension. TRIP6 competes with MOB1 for binding to LATS1/2 thereby blocking MOB1 from recruiting the LATS1/2 activating kinases MST1/2. Together, these findings reveal a novel pathway that responds to tension at adherens junctions to control Hippo pathway signaling.
Collapse
Affiliation(s)
- Shubham Dutta
- Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Sebastian Mana-Capelli
- Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Murugan Paramasivam
- Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ishani Dasgupta
- Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Heather Cirka
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Kris Billiar
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Dannel McCollum
- Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
309
|
Chen ZL, Yang J, Shen YW, Li ST, Wang X, Lv M, Wang BY, Li P, Zhao W, Qiu RY, Liu Y, Liu PJ, Yang J. AmotP130 regulates Rho GTPase and decreases breast cancer cell mobility. J Cell Mol Med 2018; 22:2390-2403. [PMID: 29377471 PMCID: PMC5867092 DOI: 10.1111/jcmm.13533] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 12/14/2017] [Indexed: 12/17/2022] Open
Abstract
Angiomotin (Amot) is a newly discovered, multifunctional protein that is involved in cell migration and angiogenesis. However, the role of its isoform, AmotP130, in the regulation of cytoskeleton and metastasis of breast cancer, is unclear. The aim of this study was to investigate the role of AmotP130 in the reorganization of the actin cytoskeleton and the changes of morphology in breast cancer cells through the Rho pathway that influences the invasion and migration of cells. The results suggested that AmotP130 suppressed the invasion ability through remodelling the cytoskeleton of breast cancer cells, including the actin fibre organization and focal adhesion protein turnover. Global transcriptome changes in breast cancer cells following knockdown of AmotP130 identified pathways related with the cytoskeleton and cell motility that involved the Rho GTPase family. From database analyses, changes in the Rho GTPase family of proteins were identified as possible prognostic factors in patients with breast cancer. We have been suggested that AmotP130 suppressed the invasion ability through remodelling of the cytoskeleton of breast cancer cells, involving regulation of the Rho pathway. The cytoskeleton-related pathway components may provide novel, clinically therapeutic targets for breast cancer treatment.
Collapse
Affiliation(s)
- Zhe-Ling Chen
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiao Yang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yan-Wei Shen
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shu-Ting Li
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xin Wang
- Department of Oncology, Shangluo Central Hospital, Shangluo, Shaanxi, China
| | - Meng Lv
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bi-Yuan Wang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Pan Li
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wen Zhao
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Rui-Yue Qiu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yu Liu
- Department of Biology & Biochemistry, University of Houston, Houston, TX, USA
| | - Pei-Jun Liu
- Center for Translational Medicine, The First Affiliated Hospital of Xian Jiaotong University, Xi'an, Shaanxi, China
| | - Jin Yang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
310
|
Lins MP, Silva ECO, Silva GR, Souza ST, Medeiros NC, Fonseca EJS, Smaniotto S. Association between biomechanical alterations and migratory ability of semaphorin-3A-treated thymocytes. Biochim Biophys Acta Gen Subj 2018; 1862:816-824. [PMID: 29305907 DOI: 10.1016/j.bbagen.2018.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/14/2017] [Accepted: 01/02/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND Class 3 semaphorins are soluble proteins involved in cell adhesion and migration. Semaphorin-3A (Sema3A) was initially shown to be involved in neuronal guidance, and it has also been reported to be associated with immune disorders. Both Sema3A and its receptors are expressed by most immune cells, including monocytes, macrophages, and lymphocytes, and these proteins regulate cell function. Here, we studied the correlation between Sema3A-induced changes in biophysical parameters of thymocytes, and the subsequent repercussions on cell function. METHODS Thymocytes from mice were treated in vitro with Sema3A for 30min. Scanning electron microscopy was performed to assess cell morphology. Atomic force microscopy was performed to further evaluate cell morphology, membrane roughness, and elasticity. Flow cytometry and/or fluorescence microscopy were performed to assess the F-actin cytoskeleton and ROCK2. Cell adhesion to a bovine serum albumin substrate and transwell migration assays were used to assess cell migration. RESULTS Sema3A induced filopodia formation in thymocytes, increased membrane stiffness and roughness, and caused a cortical distribution of the cytoskeleton without changes in F-actin levels. Sema3A-treated thymocytes showed reduced substrate adhesion and migratory ability, without changes in cell viability. In addition, Sema3A was able to down-regulate ROCK2. CONCLUSIONS Sema3A promotes cytoskeletal rearrangement, leading to membrane modifications, including increased stiffness and roughness. This effect in turn affects the adhesion and migration of thymocytes, possibly due to a reduction in ROCK2 expression. GENERAL SIGNIFICANCE Sema3A treatment impairs thymocyte migration due to biomechanical alterations in cell membranes.
Collapse
Affiliation(s)
- M P Lins
- Laboratório de Biologia Celular, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, 57072-970 Maceió, Alagoas, Brazil
| | - E C O Silva
- Grupo de Óptica e Nanoscopia (GON), Instituto de Física, Universidade Federal de Alagoas, 57072-970 Maceió, Alagoas, Brazil
| | - G R Silva
- Grupo de Óptica e Nanoscopia (GON), Instituto de Física, Universidade Federal de Alagoas, 57072-970 Maceió, Alagoas, Brazil
| | - S T Souza
- Grupo de Óptica e Nanoscopia (GON), Instituto de Física, Universidade Federal de Alagoas, 57072-970 Maceió, Alagoas, Brazil
| | - N C Medeiros
- Laboratório de Biologia Celular, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, 57072-970 Maceió, Alagoas, Brazil
| | - E J S Fonseca
- Grupo de Óptica e Nanoscopia (GON), Instituto de Física, Universidade Federal de Alagoas, 57072-970 Maceió, Alagoas, Brazil
| | - S Smaniotto
- Laboratório de Biologia Celular, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, 57072-970 Maceió, Alagoas, Brazil.
| |
Collapse
|
311
|
Lausecker F, Tian X, Inoue K, Wang Z, Pedigo CE, Hassan H, Liu C, Zimmer M, Jinno S, Huckle AL, Hamidi H, Ross RS, Zent R, Ballestrem C, Lennon R, Ishibe S. Vinculin is required to maintain glomerular barrier integrity. Kidney Int 2017; 93:643-655. [PMID: 29241625 PMCID: PMC5846847 DOI: 10.1016/j.kint.2017.09.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/23/2017] [Accepted: 09/14/2017] [Indexed: 01/08/2023]
Abstract
Cell-matrix interactions and podocyte intercellular junctions are key for maintaining the glomerular filtration barrier. Vinculin, a cytoplasmic protein, couples actin filaments to integrin-mediated cell-matrix adhesions and to cadherin-based intercellular junctions. Here, we examined the role of vinculin in podocytes by the generation of a podocyte-specific knockout mouse. Mice lacking podocyte vinculin had increased albuminuria and foot process effacement following injury in vivo. Analysis of primary podocytes isolated from the mutant mice revealed defects in cell protrusions, altered focal adhesion size and signaling, as well as impaired cell migration. Furthermore, we found a marked mislocalization of the intercellular junction protein zonula occludens-1. In kidney sections from patients with focal segmental glomerulosclerosis, minimal change disease and membranous nephropathy, we observed dramatic differences in the expression levels and localization of vinculin. Thus, our results suggest that vinculin is necessary to maintain the integrity of the glomerular filtration barrier by modulating podocyte foot processes and stabilizing intercellular junctions.
Collapse
Affiliation(s)
- Franziska Lausecker
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Xuefei Tian
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Kazunori Inoue
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Zhen Wang
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Christopher E Pedigo
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Hossam Hassan
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Chang Liu
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Margaret Zimmer
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Stephanie Jinno
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Abby L Huckle
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Hellyeh Hamidi
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Robert S Ross
- Department of Medicine/Cardiology, University of California, San Diego, School of Medicine, La Jolla, California, USA and Veterans Affairs San Diego Healthcare System, San Diego, California, USA
| | - Roy Zent
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Veterans Affairs Hospital, Nashville, Tennessee, USA
| | - Christoph Ballestrem
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| | - Rachel Lennon
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; School of Biology, Faculty of Biology, Medicine and Health, University of Medicine, Manchester Academic Health Science Centre, UK.
| | - Shuta Ishibe
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
312
|
Wang W, Zhong D, Lin Y, Fan R, Hou Z, Cao X, Ren Y. Responsiveness of voltage-gated calcium channels in SH-SY5Y human neuroblastoma cells on micropillar substrates. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 29:125-144. [PMID: 29125390 DOI: 10.1080/09205063.2017.1403714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this study, poly-L-lactic acid micropillar substrates were fabricated to evaluate the influence of topographic substrates on cell morphological and functional characteristics, such as spreading area, voltage-gated calcium channels (VGCCs) and membrane potential. The proliferation, spreading area, perimeter and circularity of SH-SY5Y cells interfaced with different substrates were first investigated. In addition, the cytoskeleton and focal adhesion of a cell as important manifestations of cell morphology were analyzed by immunofluorescence. VGCC responsiveness was evaluated by measuring the dynamic changes in intracellular Ca2+ evoked by 50 mM extracellular K+. To determine study whether the differences in VGCC responsiveness were caused by the differences in VGCC gene expression, the expression of N/L- type VGCCs was determined by qPCR and fluorescence staining. Notably, improved measurement of the membrane potential with potentiometric fluorescent dye TMRM was applied to determine the membrane potential of SH-SY5Y cells. Results indicated that the SH-SY5Y cells were deformed significantly to adapt to the substrates; however, no distinct effect on the proliferative ability of SH-SY5Y cells was observed. The micropillar substrates markedly influenced VGCC responsiveness, which correlated strongly with cell spreading but not with VGCC expression. The resting membrane potential of SH-SY5Y cells cultured on different substrates also changed, but no effect on responsiveness of VGCC was observed. These results suggest that the effect of the micropillar substrates on cell VGCC responsiveness may be attributed to changes in the functionality of the ion channel itself. Thus, topographic substrates can be used to engineer cell functionality in cell-based drug screening.
Collapse
Affiliation(s)
- Wenxu Wang
- a Key Laboratory of Biorheological Science and Technology of the State Ministry of Education, College of Bioengineering , Chongqing University , Chongqing , People's Republic of China
| | - Donghuo Zhong
- a Key Laboratory of Biorheological Science and Technology of the State Ministry of Education, College of Bioengineering , Chongqing University , Chongqing , People's Republic of China
| | - Yu Lin
- a Key Laboratory of Biorheological Science and Technology of the State Ministry of Education, College of Bioengineering , Chongqing University , Chongqing , People's Republic of China
| | - Rong Fan
- a Key Laboratory of Biorheological Science and Technology of the State Ministry of Education, College of Bioengineering , Chongqing University , Chongqing , People's Republic of China
| | - Zhengjun Hou
- a Key Laboratory of Biorheological Science and Technology of the State Ministry of Education, College of Bioengineering , Chongqing University , Chongqing , People's Republic of China
| | - Xiumei Cao
- a Key Laboratory of Biorheological Science and Technology of the State Ministry of Education, College of Bioengineering , Chongqing University , Chongqing , People's Republic of China
| | - Yubin Ren
- a Key Laboratory of Biorheological Science and Technology of the State Ministry of Education, College of Bioengineering , Chongqing University , Chongqing , People's Republic of China
| |
Collapse
|
313
|
Zhang P, Zhu M, Zhao Y, Qian J, Dufresne C, Turner R, Semba RD, Solomon SD. A proteomic approach to understanding the pathogenesis of idiopathic macular hole formation. Clin Proteomics 2017; 14:37. [PMID: 29176938 PMCID: PMC5688700 DOI: 10.1186/s12014-017-9172-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 11/07/2017] [Indexed: 12/11/2022] Open
Abstract
Idiopathic macular holes (IMH) are full-thickness defects of retinal tissue that cause severe vision loss due to disruption of the anatomic fovea. Abnormal vitreous traction is involved in the formation of macular holes. Both glial cells and hyalocytes contribute to epiretinal membrane formation in IMH. In order to gain further insight into the pathophysiology of IMH, we conducted a discovery phase investigation of the vitreous proteome in four patients with macular holes and six controls using one-dimensional gel fractionation and liquid chromatography-tandem mass spectrometry analyses on an Orbitrap Elite mass spectrometer. Of a total of 5912 vitreous proteins, 32 proteins had increased and 39 proteins had decreased expression in IMH compared with controls, using a false discovery rate approach with p value < 0.001 and q value < 0.05. IMH was associated with increased expression of proteins in the complement pathway, α-2-macroglobulin, a major inducer of Müller glial cell migration, fibrinogen, and extracellular matrix proteins, and decreased expression of proteins involved in protein folding and actin filament binding. A proteomic approach revealed proteins and biological pathways that may be involved in the pathogenesis of IMH and could be targeted for future studies.
Collapse
Affiliation(s)
- Pingbo Zhang
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Min Zhu
- National Institute on Aging, National Institutes of Health, Baltimore, MD USA
| | - Yuming Zhao
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Jiang Qian
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | | | - Randi Turner
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Richard D. Semba
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Sharon D. Solomon
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD USA
| |
Collapse
|