301
|
Tessier CR, Broadie K. Activity-dependent modulation of neural circuit synaptic connectivity. Front Mol Neurosci 2009; 2:8. [PMID: 19668708 PMCID: PMC2724028 DOI: 10.3389/neuro.02.008.2009] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 07/15/2009] [Indexed: 01/10/2023] Open
Abstract
In many nervous systems, the establishment of neural circuits is known to proceed via a two-stage process; (1) early, activity-independent wiring to produce a rough map characterized by excessive synaptic connections, and (2) subsequent, use-dependent pruning to eliminate inappropriate connections and reinforce maintained synapses. In invertebrates, however, evidence of the activity-dependent phase of synaptic refinement has been elusive, and the dogma has long been that invertebrate circuits are “hard-wired” in a purely activity-independent manner. This conclusion has been challenged recently through the use of new transgenic tools employed in the powerful Drosophila system, which have allowed unprecedented temporal control and single neuron imaging resolution. These recent studies reveal that activity-dependent mechanisms are indeed required to refine circuit maps in Drosophila during precise, restricted windows of late-phase development. Such mechanisms of circuit refinement may be key to understanding a number of human neurological diseases, including developmental disorders such as Fragile X syndrome (FXS) and autism, which are hypothesized to result from defects in synaptic connectivity and activity-dependent circuit function. This review focuses on our current understanding of activity-dependent synaptic connectivity in Drosophila, primarily through analyzing the role of the fragile X mental retardation protein (FMRP) in the Drosophila FXS disease model. The particular emphasis of this review is on the expanding array of new genetically-encoded tools that are allowing cellular events and molecular players to be dissected with ever greater precision and detail.
Collapse
Affiliation(s)
- Charles R Tessier
- Department of Biological Sciences, Vanderbilt University Nashville, TN, USA
| | | |
Collapse
|
302
|
Blum AL, Li W, Cressy M, Dubnau J. Short- and long-term memory in Drosophila require cAMP signaling in distinct neuron types. Curr Biol 2009; 19:1341-50. [PMID: 19646879 DOI: 10.1016/j.cub.2009.07.016] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 07/02/2009] [Accepted: 07/03/2009] [Indexed: 01/04/2023]
Abstract
BACKGROUND A common feature of memory and its underlying synaptic plasticity is that each can be dissected into short-lived forms involving modification or trafficking of existing proteins and long-term forms that require new gene expression. An underlying assumption of this cellular view of memory consolidation is that these different mechanisms occur within a single neuron. At the neuroanatomical level, however, different temporal stages of memory can engage distinct neural circuits, a notion that has not been conceptually integrated with the cellular view. RESULTS Here, we investigated this issue in the context of aversive Pavlovian olfactory memory in Drosophila. Previous studies have demonstrated a central role for cAMP signaling in the mushroom body (MB). The Ca(2+)-responsive adenylyl cyclase RUTABAGA is believed to be a coincidence detector in gamma neurons, one of the three principle classes of MB Kenyon cells. We were able to separately restore short-term or long-term memory to a rutabaga mutant with expression of rutabaga in different subsets of MB neurons. CONCLUSIONS Our findings suggest a model in which the learning experience initiates two parallel associations: a short-lived trace in MB gamma neurons, and a long-lived trace in alpha/beta neurons.
Collapse
Affiliation(s)
- Allison L Blum
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | | | | | | |
Collapse
|
303
|
Dubnau J. NEUROGENETIC DISSECTION OF CONDITIONED BEHAVIOR: EVOLUTION BY ANALOGY OR HOMOLOGY? J Neurogenet 2009; 17:295-326. [PMID: 15204081 DOI: 10.1080/01677060390441859] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Josh Dubnau
- Cold Spring Harbor Laboratories, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
304
|
Chaudhury S, Wadhwa S. Prenatal auditory stimulation alters the levels of CREB mRNA, p-CREB and BDNF expression in chick hippocampus. Int J Dev Neurosci 2009; 27:583-90. [PMID: 19559781 DOI: 10.1016/j.ijdevneu.2009.06.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2009] [Accepted: 06/17/2009] [Indexed: 01/23/2023] Open
Abstract
Prenatal auditory stimulation influences the development of the chick auditory pathway and the hippocampus showing an increase in various morphological parameters as well as expression of calcium-binding proteins. Calcium regulates the activity of cyclic adenosine monophosphate-response element binding (CREB) protein. CREB is known to play a role in development, undergo phosphorylation with neural activity as well as regulate transcription of BDNF. BDNF is important for the survival of neurons and regulates synaptic strength. Hence in the present study, we have evaluated the levels of CREB mRNA and protein along with p-CREB protein as well as BDNF mRNA and protein levels in the chick hippocampus at embryonic days (E) 12, E16, E20 and post-hatch day (PH) 1 following activation by prenatal auditory stimulation. Fertilized eggs were exposed to species-specific sound or sitar music (frequency range: 100-6300Hz) at 65dB levels for 15min/h over 24h from E10 till hatching. The control chick hippocampus showed higher CREB mRNA and p-CREB protein in the early embryonic stages, which later decline whereas BDNF mRNA and BDNF protein levels increase until PH1. The CREB mRNA and p-CREB protein were significantly increased at E12, E16 and PH1 in the auditory stimulated groups as compared to control group. A significant increase in the level of BDNF mRNA was observed from E12 and the protein expression from E16 onwards in both auditory stimulated groups. Therefore, enhanced phosphorylation of CREB during development following prenatal sound stimulation may be responsible for cell survival. Increased levels of p-CREB again at PH1 may trigger synthesis of proteins necessary for synaptic plasticity. Further, the increased levels of BDNF may also help in regulating synaptic plasticity.
Collapse
Affiliation(s)
- Sraboni Chaudhury
- Department of Anatomy, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | | |
Collapse
|
305
|
Inducible cAMP early repressor (ICER) and brain functions. Mol Neurobiol 2009; 40:73-86. [PMID: 19434522 PMCID: PMC2699388 DOI: 10.1007/s12035-009-8072-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Accepted: 04/07/2009] [Indexed: 12/03/2022]
Abstract
The inducible cAMP early repressor (ICER) is an endogenous repressor of cAMP-responsive element (CRE)-mediated gene transcription and belongs to the CRE-binding protein (CREB)/CRE modulator (CREM)/activating transcription factor 1 (ATF-1) gene family. ICER plays an important role in regulating the neuroendocrine system and the circadian rhythm. Other aspects of ICER function have recently attracted heightened attention. Being a natural inducible CREB antagonist, and more broadly, an inducible repressor of CRE-mediated gene transcription, ICER regulates long-lasting plastic changes that occur in the brain in response to incoming stimulation. This review will bring together data on ICER and its functions in the brain, with a special emphasis on recent findings highlighting the involvement of ICER in the regulation of long-term plasticity underlying learning and memory.
Collapse
|
306
|
Marambaud P, Dreses-Werringloer U, Vingtdeux V. Calcium signaling in neurodegeneration. Mol Neurodegener 2009; 4:20. [PMID: 19419557 PMCID: PMC2689218 DOI: 10.1186/1750-1326-4-20] [Citation(s) in RCA: 259] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 05/06/2009] [Indexed: 12/16/2022] Open
Abstract
Calcium is a key signaling ion involved in many different intracellular and extracellular processes ranging from synaptic activity to cell-cell communication and adhesion. The exact definition at the molecular level of the versatility of this ion has made overwhelming progress in the past several years and has been extensively reviewed. In the brain, calcium is fundamental in the control of synaptic activity and memory formation, a process that leads to the activation of specific calcium-dependent signal transduction pathways and implicates key protein effectors, such as CaMKs, MAPK/ERKs, and CREB. Properly controlled homeostasis of calcium signaling not only supports normal brain physiology but also maintains neuronal integrity and long-term cell survival. Emerging knowledge indicates that calcium homeostasis is not only critical for cell physiology and health, but also, when deregulated, can lead to neurodegeneration via complex and diverse mechanisms involved in selective neuronal impairments and death. The identification of several modulators of calcium homeostasis, such as presenilins and CALHM1, as potential factors involved in the pathogenesis of Alzheimer's disease, provides strong support for a role of calcium in neurodegeneration. These observations represent an important step towards understanding the molecular mechanisms of calcium signaling disturbances observed in different brain diseases such as Alzheimer's, Parkinson's, and Huntington's diseases.
Collapse
Affiliation(s)
- Philippe Marambaud
- Litwin-Zucker Research Center for the Study of Alzheimer's Disease, The Feinstein Institute for Medical Research, North Shore-LIJ, Manhasset, New York 11030, USA.
| | | | | |
Collapse
|
307
|
Song H, Sun Y, Zhang Y, Li M. Molecular cloning and characterization of Bombyx mori CREB gene. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2009; 71:31-44. [PMID: 19194985 DOI: 10.1002/arch.20292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The cAMP response element binding protein (CREB), as one of the best characterized stimulus-induced transcription factors, plays critical roles in activating transcription of target genes in response to a variety of environmental stimuli. To characterize this important molecule in the silkworm, Bombyx mori, we cloned a full-length cDNA of CREB gene from B. mori brains by using RACE-PCR. The sequence of B. mori CREB (named BmCREB1) gene contains a 88 bp 5' UTR, a 783 bp open reading frame (ORF) encoding 261 amino acids and a 348 bp 3' UTR. The deduced BmCREB amino acid sequence has 56.7% and 37.2% homology with CREB from Apis mellifera carnica and Drosophila melanogaster, respectively. The primary structure of the deduced BmCREB1 protein contains a kinase-inducible domain (KID) and a basic region/leucine zipper (bZIP) dimerization domain which exists in all CREB family members. Genomic analysis showed there are 9 exons and 5 introns in B. mori CREB genome sequences. We identified three different isoforms of BmCREB (BmCREB1, BmCREB2 and BmCREB3) through alternative splicing in C terminal. In addition, the expression of BmCREB in different developmental stages was investigated by using quantitative real-time PCR in both diapause and non-diapause type of B. mori bivoltine race (Dazao). BmCREB transcripts showed two peaks in embryonic stage and pupal stage in both types of bivoltine race. However, consistently higher expression of BmCREB was found throughout the developmental stages in the diapause type than in the non-diapause type. These results suggest that BmCREB is involved in the process of diapause induced by environmental factors.
Collapse
Affiliation(s)
- Hongsheng Song
- College of Life Sciences, Shanghai University, Shanghai, P.R. China, 200444.
| | | | | | | |
Collapse
|
308
|
NMDA-mediated and self-induced bdnf exon IV transcriptions are differentially regulated in cultured cortical neurons. Neurochem Int 2009; 54:385-92. [DOI: 10.1016/j.neuint.2009.01.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
309
|
ben Functions with scamp during synaptic transmission and long-term memory formation in Drosophila. J Neurosci 2009; 29:414-24. [PMID: 19144841 DOI: 10.1523/jneurosci.5036-07.2009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Genetic screens for Drosophila mutants defective in pavlovian olfactory memory have provided unique insight into the molecular basis of memory storage. Occasionally, these singular genetic lesions have been assembled into meaningful molecular pathways and neural circuitries. For the most part, however, these genes and their expression patterns in the CNS remain fragmented, demanding new clues from continued mutant screens. From a behavioral screen for long-term memory (LTM) mutants, we have identified ben (CG32594), which encodes a novel protein. Mutations of ben specifically disrupt LTM, leaving earlier memory phases intact. The role of ben appears physiological rather than developmental, because acutely induced expression of a ben(+) transgene in adults rescues the mutant's LTM defect. More interestingly, induced expression of ben(+) specifically in mushroom bodies (MBs), but not in the ellipsoid body of the central complex, is sufficient to rescue the mutant LTM defect. This suggests a role for ben in the MB during olfactory memory formation. We also provide evidence that BEN interacts genetically in both synaptic transmission and LTM formation with SCAMP, a synaptic protein known to be involved in vesicle recycling.
Collapse
|
310
|
Distinctive neuronal networks and biochemical pathways for appetitive and aversive memory in Drosophila larvae. J Neurosci 2009; 29:852-62. [PMID: 19158309 DOI: 10.1523/jneurosci.1315-08.2009] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Associative strength between conditioned stimulus (CS) and unconditioned stimulus (US) is thought to determine learning efficacy in classical conditioning. Elucidation of the neuronal mechanism that underlies the association between CS and US in the brain is thus critical to understand the principle of memory formation. With a simple brain organization, the Drosophila larva provides an attractive model system to investigate learning at the neurocircuitry level. Previously, we described a single-odor paradigm for larval associative learning using sucrose as a reward, and showed that larval appetitive memory lasts longer than 2 h. In this work, we describe behavioral and genetic characterization of larval aversive olfactory memory formed in our paradigm, and compare its stability and neurocircuitry with those of appetitive memory. Despite identical training paradigms, larval olfactory memory formed with quinine or NaCl is short-lived to be lost in 20 min. As with appetitive memory, larval aversive memory produced in this paradigm depends on intact cAMP signaling, but neither mutation of amnesiac nor suppression of CREB activity affects its kinetics. Neurocircuitry analyses suggest that aversive memory is stored before the presynaptic termini of the larval mushroom body neurons as is the case with appetitive memory. However, synaptic output of octopaminergic and dopaminergic neurons, which exhibit distinctive innervation patterns on the larval mushroom body and antennal lobe, is differentially required for the acquisition of appetitive and aversive memory, respectively. These results as a whole suggest that the genetically programmed memory circuitries might provide predisposition in the efficacy of inducing longer-lived memory components in associative learning.
Collapse
|
311
|
Xia M, Guo V, Huang R, Inglese J, Nirenberg M, Austin CP. A Cell-based beta-Lactamase Reporter Gene Assay for the CREB Signaling Pathway. CURRENT CHEMICAL GENOMICS 2009; 3:7-12. [PMID: 19936037 PMCID: PMC2779037 DOI: 10.2174/1875397300903010007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Cyclic-AMP Response Element Binding (CREB) proteins comprise a family of transcription factors that stimulate or repress the expression of a wide variety of genes by binding to nucleotide sequences known as cAMP Response Elements. CREB-mediated transcription has been implicated in a wide variety of important physiological processes, including long-term memory, and enhancement of CREB signaling has been suggested as an attractive therapeutic strategy for human memory disorders. To identify small molecule compounds that enhance CREB pathway signaling, we have optimized and validated a cell-based β-lactamase reporter gene CREB pathway assay in 1536-well plate format. The LOPAC library of 1280 compounds was screened in triplicate in this assay on a quantitative high throughput screening (qHTS) platform. A variety of compounds which affect known members of the CREB pathway were identified as active, including twelve known phosphodiesterase (PDE) inhibitors, and forskolin, a known activator of adenylate cyclase, thus validating the assay’s performance. This qHTS platform assay will facilitate identification of novel small molecule CREB signaling enhancers, which will be useful for chemical genetic dissection of the CREB pathway and as starting points for potentially memory-enhancing therapeutics.
Collapse
Affiliation(s)
- Menghang Xia
- NIH Chemical Genomics Center, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | | | | |
Collapse
|
312
|
Abstract
Transcription is a molecular requisite for long-term synaptic plasticity and long-term memory formation. Thus, in the last several years, one main interest of molecular neuroscience has been the identification of families of transcription factors that are involved in both of these processes. Transcription is a highly regulated process that involves the combined interaction and function of chromatin and many other proteins, some of which are essential for the basal process of transcription, while others control the selective activation or repression of specific genes. These regulated interactions ultimately allow a sophisticated response to multiple environmental conditions, as well as control of spatial and temporal differences in gene expression. Evidence based on correlative changes in expression, genetic mutations, and targeted molecular inhibition of gene expression have shed light on the function of transcription in both synaptic plasticity and memory formation. This review provides a brief overview of experimental work showing that several families of transcription factors, including CREB, C/EBP, Egr, AP-1, and Rel, have essential functions in both processes. The results of this work suggest that patterns of transcription regulation represent the molecular signatures of long-term synaptic changes and memory formation.
Collapse
Affiliation(s)
- Cristina M Alberini
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA.
| |
Collapse
|
313
|
Fos and Jun potentiate individual release sites and mobilize the reserve synaptic vesicle pool at the Drosophila larval motor synapse. Proc Natl Acad Sci U S A 2009; 106:4000-5. [PMID: 19228945 DOI: 10.1073/pnas.0806064106] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In all nervous systems, short-term enhancement of transmitter release is achieved by increasing the weights of unitary synapses; in contrast, long-term enhancement, which requires nuclear gene expression, is generally thought to be mediated by the addition of new synaptic vesicle release sites. In Drosophila motor neurons, induction of AP-1, a heterodimer of Fos and Jun, induces cAMP- and CREB-dependent forms of presynaptic enhancement. Light and electron microscopic studies indicate that this synaptic enhancement is caused by increasing the weight of unitary synapses and not through the insertion of additional release sites. Electrophysiological and optical measurements of vesicle dynamics demonstrate that enhanced neurotransmitter release is accompanied by an increase in the actively cycling synaptic vesicle pool at the expense of the reserve pool. Finally, the observation that AP-1 mediated enhancement eliminates tetanus-induced forms of presynaptic potentiation suggests: (i) that reserve-pool mobilization is required for tetanus-induced short-term synaptic plasticity; and (ii) that long-term synaptic plasticity may, in some instances, be accomplished by stable recruitment of mechanisms that normally underlie short-term synaptic change.
Collapse
|
314
|
Fox K. Experience-dependent plasticity mechanisms for neural rehabilitation in somatosensory cortex. Philos Trans R Soc Lond B Biol Sci 2009; 364:369-81. [PMID: 19038777 PMCID: PMC2674476 DOI: 10.1098/rstb.2008.0252] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Functional rehabilitation of the cortex following peripheral or central nervous system damage is likely to be improved by a combination of behavioural training and natural or therapeutically enhanced synaptic plasticity mechanisms. Experience-dependent plasticity studies in the somatosensory cortex have begun to reveal those synaptic plasticity mechanisms that are driven by sensory experience and might therefore be active during behavioural training. In this review the anatomical pathways, synaptic plasticity mechanisms and structural plasticity substrates involved in cortical plasticity are explored, focusing on work in the somatosensory cortex and the barrel cortex in particular.
Collapse
Affiliation(s)
- Kevin Fox
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK.
| |
Collapse
|
315
|
Wang Y, Ghezzi A, Yin JCP, Atkinson NS. CREB regulation of BK channel gene expression underlies rapid drug tolerance. GENES BRAIN AND BEHAVIOR 2009; 8:369-76. [PMID: 19243452 DOI: 10.1111/j.1601-183x.2009.00479.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pharmacodynamic tolerance is believed to involve homeostatic mechanisms initiated to restore normal neural function. Drosophila exposed to a sedating dose of an organic solvent, such as benzyl alcohol or ethanol, acquire tolerance to subsequent sedation by that solvent. The slo gene encodes BK-type Ca(2+)-activated K(+) channels and has been linked to alcohol- and organic solvent-induced behavioral tolerance in mice, Caenorhabditis elegans (C. elegans) and Drosophila. The cyclic AMP response element-binding (CREB) proteins are transcription factors that have been mechanistically linked to some behavioral changes associated with drug addiction. Here, we show that benzyl alcohol sedation alters expression of both dCREB-A and dCREB2-b genes to increase production of positively acting CREB isoforms and to reduce expression of negatively acting CREB variants. Using a CREB-responsive reporter gene, we show that benzyl alcohol sedation increases CREB-mediated transcription. Chromatin immunoprecipitation assays show that the binding of dCREB2, with a phosphorylated kinase-inducible domain, increases immediately after benzyl alcohol sedation within the slo promoter region. Most importantly, we show that a loss-of-function allele of dCREB2 eliminates drug-induced upregulation of slo expression and the production of benzyl alcohol tolerance. This unambiguously links dCREB2 transcription factors to these two benzyl alcohol-induced phenotypes. These findings suggest that CREB positively regulates the expression of slo-encoded BK-type Ca(2+)-activated K(+) channels and that this gives rise to behavioral tolerance to benzyl alcohol sedation.
Collapse
Affiliation(s)
- Y Wang
- Section of Neurobiology, The University of Texas at Austin, Austin, TX 78712-0248, USA
| | | | | | | |
Collapse
|
316
|
Identification of compounds that potentiate CREB signaling as possible enhancers of long-term memory. Proc Natl Acad Sci U S A 2009; 106:2412-7. [PMID: 19196967 DOI: 10.1073/pnas.0813020106] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Many studies have implicated the cAMP Response Element Binding (CREB) protein signaling pathway in long-term memory. To identify small molecule enhancers of CREB activation of gene expression, we screened approximately 73,000 compounds, each at 7-15 concentrations in a quantitative high-throughput screening (qHTS) format, for activity in cells by assaying CREB mediated beta-lactamase reporter gene expression. We identified 1,800 compounds that potentiated CREB mediated gene expression, with potencies as low as 16 nM, comprising 96 structural series. Mechanisms of action were systematically determined, and compounds that affect phosphodiesterase 4, protein kinase A, and cAMP production were identified, as well as compounds that affect CREB signaling via apparently unidentified mechanisms. qHTS followed by interrogation of pathway targets is an efficient paradigm for lead generation for chemical genomics and drug development.
Collapse
|
317
|
Costa-Mattioli M, Sossin WS, Klann E, Sonenberg N. Translational control of long-lasting synaptic plasticity and memory. Neuron 2009; 61:10-26. [PMID: 19146809 DOI: 10.1016/j.neuron.2008.10.055] [Citation(s) in RCA: 742] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 10/10/2008] [Accepted: 10/17/2008] [Indexed: 01/07/2023]
Abstract
Long-lasting forms of synaptic plasticity and memory are dependent on new protein synthesis. Recent advances obtained from genetic, physiological, pharmacological, and biochemical studies provide strong evidence that translational control plays a key role in regulating long-term changes in neural circuits and thus long-term modifications in behavior. Translational control is important for regulating both general protein synthesis and synthesis of specific proteins in response to neuronal activity. In this review, we summarize and discuss recent progress in the field and highlight the prospects for better understanding of long-lasting changes in synaptic strength, learning, and memory and implications for neurological diseases.
Collapse
Affiliation(s)
- Mauro Costa-Mattioli
- Department of Biochemistry and McGill Cancer Center, McGill University, Montreal QCH3G1Y6, Canada.
| | | | | | | |
Collapse
|
318
|
Abstract
Most molecular and cellular studies of cognitive function have focused on either normal or pathological states, but recent research with transgenic mice has started to address the mechanisms of enhanced cognition. These results point to key synaptic and nuclear signalling events that can be manipulated to facilitate the induction or increase the stability of synaptic plasticity, and therefore enhance the acquisition or retention of information. Here, we review these surprising findings and explore their implications to both mechanisms of learning and memory and to ongoing efforts to develop treatments for cognitive disorders. These findings represent the beginning of a fundamental new approach in the study of enhanced cognition.
Collapse
Affiliation(s)
- Yong-Seok Lee
- Department of Neurobiology, Brain Research Institute, University of California, Los Angeles, California 90095, USA
| | | |
Collapse
|
319
|
Cosetti M, Culang D, Kotla S, O'Brien P, Eberl DF, Hannan F. Unique transgenic animal model for hereditary hearing loss. Ann Otol Rhinol Laryngol 2009; 117:827-33. [PMID: 19102128 DOI: 10.1177/000348940811701106] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVES This study capitalizes on the unique molecular and developmental similarities between the auditory organs of Drosophila and mammals, to investigate genes implicated in human syndromic and nonsyndromic hearing loss in a genetically tractable experimental animal model, the fruit fly Drosophila. METHODS The Drosophila counterparts of 3 human deafness genes (DIAPH1/DFNA1, ESPN/DFNB36, and TMHS/DF-NB67) were identified by sequence similarity. An electrophysiological assay was used to record sound-evoked potentials in response to an acoustic stimulus, the Drosophila courtship song. RESULTS Flies with mutations affecting the diaphanous,forked, and CG12026/TMHS genes displayed significant reductions in the amplitude of sound-evoked potentials compared to wild-type flies (p < 0.05 to p < 0.005). The mean responses were reduced from approximately 500 to 600 microV in wild-type flies to approximately 100 to 300 microV in most mutant flies. CONCLUSIONS The identification of significant auditory dysfunction in Drosophila orthologs of human deafness genes will facilitate exploration of the molecular biochemistry of auditory mechanosensation. This may eventually allow for novel diagnostic and therapeutic approaches to human hereditary hearing loss.
Collapse
Affiliation(s)
- Maura Cosetti
- Department of Otolaryngology, New York Eye and Ear Infirmary, New York, New York, USA
| | | | | | | | | | | |
Collapse
|
320
|
Abstract
Mental retardation--known more commonly nowadays as intellectual disability--is a severe neurological condition affecting up to 3% of the general population. As a result of the analysis of familial cases and recent advances in clinical genetic testing, great strides have been made in our understanding of the genetic etiologies of mental retardation. Nonetheless, no treatment is currently clinically available to patients suffering from intellectual disability. Several animal models have been used in the study of memory and cognition. Established paradigms in Drosophila have recently captured cognitive defects in fly mutants for orthologs of genes involved in human intellectual disability. We review here three protocols designed to understand the molecular genetic basis of learning and memory in Drosophila and the genes identified so far with relation to mental retardation. In addition, we explore the mental retardation genes for which evidence of neuronal dysfunction other than memory has been established in Drosophila. Finally, we summarize the findings in Drosophila for mental retardation genes for which no neuronal information is yet available. All in all, this review illustrates the impressive overlap between genes identified in human mental retardation and genes involved in physiological learning and memory.
Collapse
Affiliation(s)
- François V. Bolduc
- Watson School of Biological Sciences, Cold Spring Harbor, New York USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York USA
| | - Tim Tully
- Watson School of Biological Sciences, Cold Spring Harbor, New York USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York USA
| |
Collapse
|
321
|
Chapter 3 Mapping and Manipulating Neural Circuits in the Fly Brain. ADVANCES IN GENETICS 2009; 65:79-143. [DOI: 10.1016/s0065-2660(09)65003-3] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
322
|
Protein kinase A inhibits a consolidated form of memory in Drosophila. Proc Natl Acad Sci U S A 2008; 105:20976-81. [PMID: 19075226 DOI: 10.1073/pnas.0810119105] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Increasing activity of the cAMP/protein kinase A (PKA) pathway has often been proposed as an approach to improve memory in various organisms. However, here we demonstrate that single-point mutations, which decrease PKA activity, dramatically improve aversive olfactory memory in Drosophila. These mutations do not affect formation of early memory phases or of protein synthesis-dependent long-term memory but do cause a significant increase in a specific consolidated form of memory, anesthesia-resistant memory. Significantly, heterozygotes of null mutations in PKA are sufficient to cause this memory increase. Expressing a PKA transgene in the mushroom bodies, brain structures critical for memory formation in Drosophila, reduces memory back to wild-type levels. These results indicate that although PKA is critical for formation of several memory phases, it also functions to inhibit at least one memory phase.
Collapse
|
323
|
nemy encodes a cytochrome b561 that is required for Drosophila learning and memory. Proc Natl Acad Sci U S A 2008; 105:19986-91. [PMID: 19064935 DOI: 10.1073/pnas.0810698105] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although many genes have been shown to play essential roles in learning and memory, the precise molecular and cellular mechanisms underlying these processes remain to be fully elucidated. Here, we present the molecular and behavioral characterization of the Drosophila memory mutant nemy. We provide multiple lines of evidence to show that nemy arises from a mutation in a Drosophila homologue of cytochrome B561. nemy is predominantly expressed in neuroendocrine neurons in the larval brain, and in mushroom bodies and antennal lobes in the adult brain, where it is partially coexpressed with peptidyl alpha-hydroxylating monooxygenase (PHM), an enzyme required for peptide amidation. Cytochrome b561 was found to be a requisite cofactor for PHM activity and we found that the levels of amidated peptides were reduced in nemy mutants. Moreover, we found that knockdown of PHM gave rise to defects in memory retention. Altogether, the data are consistent with a model whereby cytochrome B561-mediated electron transport plays a role in memory formation by regulating intravesicular PHM activity and the formation of amidated neuropeptides.
Collapse
|
324
|
Qiu Z, Ghosh A. A brief history of neuronal gene expression: regulatory mechanisms and cellular consequences. Neuron 2008; 60:449-55. [PMID: 18995819 DOI: 10.1016/j.neuron.2008.10.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A central goal of cellular and molecular neuroscience is to explain the development and function of the nervous system in terms of the function of genes and proteins. Models of gene regulation have evolved from being focused on transcriptional and translational control to include a variety of regulatory mechanisms such as epigenetic control, mRNA splicing, microRNAs, and local translation. Here we discuss how developments in molecular biology influenced the study of neuronal gene expression, and how this has shaped our understanding of neuronal development and function.
Collapse
Affiliation(s)
- Zilong Qiu
- Neurobiology Section, Division of Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
325
|
Affiliation(s)
- Rozi Andretic
- The Neuroscience Institute, San Diego, California 92121
| | - Paul Franken
- Center for Integrative Genomics (CIG), University of Lausanne, 1015 Lausanne, Switzerland;
| | - Mehdi Tafti
- Center for Integrative Genomics (CIG), University of Lausanne, 1015 Lausanne, Switzerland;
| |
Collapse
|
326
|
Yossifoff M, Kisliouk T, Meiri N. Dynamic changes in DNA methylation during thermal control establishment affect CREB binding to the brain-derived neurotrophic factor promoter. Eur J Neurosci 2008; 28:2267-77. [DOI: 10.1111/j.1460-9568.2008.06532.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
327
|
Upregulation of calcium/calmodulin-dependent protein kinase IV improves memory formation and rescues memory loss with aging. J Neurosci 2008; 28:9910-9. [PMID: 18829949 DOI: 10.1523/jneurosci.2625-08.2008] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Previous studies have suggested that calcium/calmodulin-dependent protein kinase IV (CaMKIV) functions as a positive regulator for memory formation and that age-related memory deficits are the result of dysfunctional signaling pathways mediated by cAMP response element-binding protein (CREB), the downstream transcription factor of CaMKIV. Little is known, however, about the effects of increased CaMKIV levels on the ability to form memory in adult and aged stages. We generated a transgenic mouse overexpressing CaMKIV in the forebrain and showed that the upregulation of CaMKIV led to an increase in learning-induced CREB activity, increased learning-related hippocampal potentiation, and enhanced consolidation of contextual fear and social memories. Importantly, we also observed reduced hippocampal CaMKIV expression with aging and a correlation between CaMKIV expression level and memory performance in aged mice. Genetic overexpression of CaMKIV was able to rescue associated memory deficits in aged mice. Our findings suggest that the level of CaMKIV expression correlates positively with the ability to form long-term memory and implicate the decline of CaMKIV signaling mechanisms in age-related memory deficits.
Collapse
|
328
|
Canal CE, Chang Q, Gold PE. Intra-amygdala injections of CREB antisense impair inhibitory avoidance memory: role of norepinephrine and acetylcholine. Learn Mem 2008; 15:677-86. [PMID: 18772255 PMCID: PMC2632786 DOI: 10.1101/lm.904308] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2008] [Accepted: 07/05/2008] [Indexed: 01/12/2023]
Abstract
Infusions of CREB antisense into the amygdala prior to training impair memory for aversive tasks, suggesting that the antisense may interfere with CRE-mediated gene transcription and protein synthesis important for the formation of new memories within the amygdala. However, the amygdala also appears to modulate memory formation in distributed brain sites, through mechanisms that include the release of norepinephrine and acetylcholine within the amygdala. Thus, CREB antisense injections may affect memory by interfering with mechanisms of modulation, rather than storage, of memory. In the present experiment, rats received bilateral intra-amygdala infusions of CREB antisense (2 nmol/1 microL) 6 h prior to inhibitory avoidance training. In vivo microdialysis samples were collected from the right amygdala before, during, and following training. CREB antisense produced amnesia tested at 48 h after training. In addition, CREB antisense infusions dampened the training-related release of norepinephrine, and to a lesser extent of acetylcholine, in the amygdala. Furthermore, intra-amygdala infusions of the beta-adrenergic receptor agonist clenbuterol administered immediately after training attenuated memory impairments induced by intra-amygdala injections of CREB antisense. These findings suggest that intra-amygdala treatment with CREB antisense may affect processes involved in modulation of memory in part through interference with norepinephrine and acetylcholine neurotransmission in the amygdala.
Collapse
Affiliation(s)
- Clinton E. Canal
- Neuroscience Program, University of Illinois, Urbana–Champaign, Illinois 61820, USA
| | - Qing Chang
- Department of Animal Sciences, Department of Psychology, Department of Psychiatry, Department of Biomedical Engineering, University of Illinois, Urbana–Champaign, Illinois 61820, USA
| | - Paul E. Gold
- Neuroscience Program, University of Illinois, Urbana–Champaign, Illinois 61820, USA
- The Institute for Genomic Biology, University of Illinois, Urbana–Champaign, Illinois 61820, USA
| |
Collapse
|
329
|
Abstract
Angelman syndrome is a neurological disorder whose symptoms include severe mental retardation, loss of motor coordination, and sleep disturbances. The disease is caused by a loss of function of UBE3A, which encodes a HECT-domain ubiquitin ligase. Here, we generate a Drosophila model for the disease. The results of several experiments show that the functions of human UBE3A and its fly counterpart, dube3a, are similar. First, expression of Dube3a is enriched in the Drosophila nervous system, including mushroom bodies, the seat of learning and memory. Second, we have generated dube3a null mutants, and they appear normal externally, but display abnormal locomotive behavior and circadian rhythms, and defective long-term memory. Third, flies that overexpress Dube3a in the nervous system also display locomotion defects, dependent on the ubiquitin ligase activity. Finally, missense mutations in UBE3A alleles of Angelman syndrome patients alter amino acid residues conserved in the fly protein, and when introduced into dube3a, behave as loss-of-function mutations. The simplest model for Angelman syndrome is that in the absence of UBE3A, particular substrates fail to be ubiquitinated and proteasomally degraded, accumulate in the brain, and interfere with brain function. We have generated flies useful for genetic screens to identify Dube3a substrates. These flies overexpress Dube3a in the eye or wing and display morphological abnormalities, dependent on the critical catalytic cysteine. We conclude that dube3a mutants are a valid model for Angelman syndrome, with great potential for identifying the elusive UBE3A substrates relevant to the disease.
Collapse
|
330
|
Inducible cAMP early repressor acts as a negative regulator for kindling epileptogenesis and long-term fear memory. J Neurosci 2008; 28:6459-72. [PMID: 18562617 DOI: 10.1523/jneurosci.0412-08.2008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Long-lasting neuronal plasticity as well as long-term memory (LTM) requires de novo synthesis of proteins through dynamic regulation of gene expression. cAMP-responsive element (CRE)-mediated gene transcription occurs in an activity-dependent manner and plays a pivotal role in neuronal plasticity and LTM in a variety of species. To study the physiological role of inducible cAMP early repressor (ICER), a CRE-mediated gene transcription repressor, in neuronal plasticity and LTM, we generated two types of ICER mutant mice: ICER-overexpressing (OE) mice and ICER-specific knock-out (KO) mice. Both ICER-OE and ICER-KO mice show no apparent abnormalities in their development and reproduction. A comprehensive battery of behavioral tests revealed no robust changes in locomotor activity, sensory and motor functions, and emotional responses in the mutant mice. However, long-term conditioned fear memory was attenuated in ICER-OE mice and enhanced in ICER-KO mice without concurrent changes in short-term fear memory. Furthermore, ICER-OE mice exhibited retardation of kindling development, whereas ICER-KO mice exhibited acceleration of kindling. These results strongly suggest that ICER negatively regulates the neuronal processes required for long-term fear memory and neuronal plasticity underlying kindling epileptogenesis, possibly through suppression of CRE-mediated gene transcription.
Collapse
|
331
|
Iijima-Ando K, Hearn SA, Granger L, Shenton C, Gatt A, Chiang HC, Hakker I, Zhong Y, Iijima K. Overexpression of neprilysin reduces alzheimer amyloid-beta42 (Abeta42)-induced neuron loss and intraneuronal Abeta42 deposits but causes a reduction in cAMP-responsive element-binding protein-mediated transcription, age-dependent axon pathology, and premature death in Drosophila. J Biol Chem 2008; 283:19066-76. [PMID: 18463098 PMCID: PMC2441542 DOI: 10.1074/jbc.m710509200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2007] [Revised: 04/01/2008] [Indexed: 12/20/2022] Open
Abstract
The amyloid-beta42 (Abeta42) peptide has been suggested to play a causative role in Alzheimer disease (AD). Neprilysin (NEP) is one of the rate-limiting Abeta-degrading enzymes, and its enhancement ameliorates extracellular amyloid pathology, synaptic dysfunction, and memory defects in mouse models of Abeta amyloidosis. In addition to the extracellular Abeta, intraneuronal Abeta42 may contribute to AD pathogenesis. However, the protective effects of neuronal NEP expression on intraneuronal Abeta42 accumulation and neurodegeneration remain elusive. In contrast, sustained NEP activation may be detrimental because NEP can degrade many physiological peptides, but its consequences in the brain are not fully understood. Using transgenic Drosophila expressing human NEP and Abeta42, we demonstrated that NEP efficiently suppressed the formation of intraneuronal Abeta42 deposits and Abeta42-induced neuron loss. However, neuronal NEP overexpression reduced cAMP-responsive element-binding protein-mediated transcription, caused age-dependent axon degeneration, and shortened the life span of the flies. Interestingly, the mRNA levels of endogenous fly NEP genes and phosphoramidon-sensitive NEP activity declined during aging in fly brains, as observed in mammals. Taken together, these data suggest both the protective and detrimental effects of chronically high NEP activity in the brain. Down-regulation of NEP activity in aging brains may be an evolutionarily conserved phenomenon, which could predispose humans to developing late-onset AD.
Collapse
Affiliation(s)
- Kanae Iijima-Ando
- Laboratory of Neurogenetics and Pathobiology, Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
332
|
Lee YS, Bailey CH, Kandel ER, Kaang BK. Transcriptional regulation of long-term memory in the marine snail Aplysia. Mol Brain 2008; 1:3. [PMID: 18803855 PMCID: PMC2546398 DOI: 10.1186/1756-6606-1-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Accepted: 06/17/2008] [Indexed: 12/05/2022] Open
Abstract
Whereas the induction of short-term memory involves only covalent modifications of constitutively expressed preexisting proteins, the formation of long-term memory requires gene expression, new RNA, and new protein synthesis. On the cellular level, transcriptional regulation is thought to be the starting point for a series of molecular steps necessary for both the initiation and maintenance of long-term synaptic facilitation (LTF). The core molecular features of transcriptional regulation involved in the long-term process are evolutionally conserved in Aplysia, Drosophila, and mouse, and indicate that gene regulation by the cyclic AMP response element binding protein (CREB) acting in conjunction with different combinations of transcriptional factors is critical for the expression of many forms of long-term memory. In the marine snail Aplysia, the molecular mechanisms that underlie the storage of long-term memory have been extensively studied in the monosynaptic connections between identified sensory neuron and motor neurons of the gill-withdrawal reflex. One tail shock or one pulse of serotonin (5-HT), a modulatory transmitter released by tail shocks, produces a transient facilitation mediated by the cAMP-dependent protein kinase leading to covalent modifications in the sensory neurons that results in an enhancement of transmitter release and a strengthening of synaptic connections lasting minutes. By contrast, repeated pulses of 5-hydroxytryptamine (5-HT) induce a transcription- and translation-dependent long-term facilitation (LTF) lasting more than 24 h and trigger the activation of a family of transcription factors in the presynaptic sensory neurons including ApCREB1, ApCREB2 and ApC/EBP. In addition, we have recently identified novel transcription factors that modulate the expression of ApC/EBP and also are critically involved in LTF. In this review, we examine the roles of these transcription factors during consolidation of LTF induced by different stimulation paradigms.
Collapse
Affiliation(s)
- Yong-Seok Lee
- National Creative Research Initiative Center for Memory, Department of Biological Sciences, Seoul National University, Korea
| | | | | | | |
Collapse
|
333
|
Rapid consolidation to a radish and protein synthesis-dependent long-term memory after single-session appetitive olfactory conditioning in Drosophila. J Neurosci 2008; 28:3103-13. [PMID: 18354013 DOI: 10.1523/jneurosci.5333-07.2008] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In Drosophila, formation of aversive olfactory long-term memory (LTM) requires multiple training sessions pairing odor and electric shock punishment with rest intervals. In contrast, here we show that a single 2 min training session pairing odor with a more ethologically relevant sugar reinforcement forms long-term appetitive memory that lasts for days. Appetitive LTM has some mechanistic similarity to aversive LTM in that it can be disrupted by cycloheximide, the dCreb2-b transcriptional repressor, and the crammer and tequila LTM-specific mutations. However, appetitive LTM is completely disrupted by the radish mutation that apparently represents a distinct mechanistic phase of consolidated aversive memory. Furthermore, appetitive LTM requires activity in the dorsal paired medial neuron and mushroom body alpha'beta' neuron circuit during the first hour after training and mushroom body alphabeta neuron output during retrieval, suggesting that appetitive middle-term memory and LTM are mechanistically linked. Last, experiments feeding and/or starving flies after training reveals a critical motivational drive that enables appetitive LTM retrieval.
Collapse
|
334
|
Puzzo D, Sapienza S, Arancio O, Palmeri A. Role of phosphodiesterase 5 in synaptic plasticity and memory. Neuropsychiatr Dis Treat 2008; 4:371-87. [PMID: 18728748 PMCID: PMC2518390 DOI: 10.2147/ndt.s2447] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Phosphodiesterases (PDEs) are enzymes that break down the phosphodiesteric bond of the cyclic nucleotides, cAMP and cGMP, second messengers that regulate many biological processes. PDEs participate in the regulation of signal transduction by means of a fine regulation of cyclic nucleotides so that the response to cell stimuli is both specific and activates the correct third messengers. Several PDE inhibitors have been developed and used as therapeutic agents because they increase cyclic nucleotide levels by blocking the PDE function. In particular, sildenafil, an inhibitor of PDE5, has been mainly used in the treatment of erectile dysfunction but is now also utilized against pulmonary hypertension. This review examines the physiological role of PDE5 in synaptic plasticity and memory and the use of PDE5 inhibitors as possible therapeutic agents against disorders of the central nervous system (CNS).
Collapse
Affiliation(s)
- Daniela Puzzo
- Dept of Physiological Sciences, University of Catania Catania, Italy.
| | | | | | | |
Collapse
|
335
|
Shemer I, Brinne B, Tegnér J, Grillner S. Electrotonic signals along intracellular membranes may interconnect dendritic spines and nucleus. PLoS Comput Biol 2008; 4:e1000036. [PMID: 18369427 PMCID: PMC2266990 DOI: 10.1371/journal.pcbi.1000036] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Accepted: 02/13/2008] [Indexed: 11/20/2022] Open
Abstract
Synapses on dendritic spines of pyramidal neurons show a remarkable ability to induce phosphorylation of transcription factors at the nuclear level with a short latency, incompatible with a diffusion process from the dendritic spines to the nucleus. To account for these findings, we formulated a novel extension of the classical cable theory by considering the fact that the endoplasmic reticulum (ER) is an effective charge separator, forming an intrinsic compartment that extends from the spine to the nuclear membrane. We use realistic parameters to show that an electrotonic signal may be transmitted along the ER from the dendritic spines to the nucleus. We found that this type of signal transduction can additionally account for the remarkable ability of the cell nucleus to differentiate between depolarizing synaptic signals that originate from the dendritic spines and back-propagating action potentials. This study considers a novel computational role for dendritic spines, and sheds new light on how spines and ER may jointly create an additional level of processing within the single neuron. Our study incorporates the fact that the endoplasmic reticulum (ER) forms a complete continuum from the spine head to the nuclear envelope and suggests that electrical current flow in a neuron may be better described by a cable-within-a-cable system, where synaptic current flows simultaneously in the medium between the cell membrane and the ER, and within the ER (the internal cable). Our paper provides a novel extension to the classical cable theory (namely, cable-within-cable theory) and presents several interesting predictions. We show that some of these predictions are supported by recent experiments, whereas the principal hypothesis may shed new light on some puzzling observations related to signaling from synapse-to-nucleus. Overall, we show that intracellular-level electrophysiology may introduce principles that appear counter-intuitive with views originating from conventional cellular-level electrophysiology.
Collapse
Affiliation(s)
- Isaac Shemer
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | |
Collapse
|
336
|
Abstract
Brain-derived neurotrophic factor (BDNF), via activation of TrkB receptors, mediates vital physiological functions in the brain, ranging from neuronal survival to synaptic plasticity, and has been implicated in the pathophysiology of neurodegenerative disorders. Although transcriptional regulation of the BDNF gene (Bdnf) has been extensively studied, much remains to be understood. We discovered a sequence within Bdnf promoter 4 that binds the basic helix-loop-helix protein BHLHB2 and is a target for BHLHB2-mediated transcriptional repression. NMDA receptor activation de-repressed promoter 4-mediated transcription and correlated with reduced occupancy of the promoter by BHLHB2 in cultured hippocampal neurons. Bhlhb2 gene -/- mice showed increased hippocampal exon 4-specific Bdnf mRNA levels compared with +/+ littermates under basal and activity-dependent conditions. Bhlhb2 knock-out mice also showed increased status epilepticus susceptibility, suggesting that BHLHB2 alters neuronal excitability. Together, these results support a role for BHLHB2 as a new modulator of Bdnf transcription and neuronal excitability.
Collapse
|
337
|
Smith AM. An essay on the evolution of cognition: constructing a theoretical conceptual framework. ACTA ACUST UNITED AC 2008; 101:257-72. [PMID: 18291631 DOI: 10.1016/j.jphysparis.2007.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this essay we provide an interdisciplinary approach to the problem of the evolution of human cognition and suggest the theoretical framework of genetic system theory (GST) for organizing the relevant content of several disciplines. This bio-social-cultural theory is based on the assumption that organisms are dynamic systems which interact with one another and their environment and are themselves composed of dynamic internal relations at several levels. Special emphasis will be placed upon these internal cellular and molecular mechanisms underlying the physiological mechanisms of learning and memory. The human individual organism is emphasized because in its experiential activity over time it is the site of integration for social, and cultural stimuli and because of its unique properties among living things. The primary disciplines for our discussion are drawn from the biological, social, and humanistic sciences and several concrete examples are given from each science.
Collapse
Affiliation(s)
- Alan M Smith
- University of Utah, Honors College, 1975 DeTrobriand Salt Lake City, UT 84113-5003, United States.
| |
Collapse
|
338
|
Abel T, Nguyen PV. Regulation of hippocampus-dependent memory by cyclic AMP-dependent protein kinase. PROGRESS IN BRAIN RESEARCH 2008; 169:97-115. [PMID: 18394470 DOI: 10.1016/s0079-6123(07)00006-4] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The hippocampus is crucial for the consolidation of new declarative long-term memories. Genetic and behavioral experimentation have revealed that several protein kinases are critical for the formation of hippocampus-dependent long-term memories. Cyclic-AMP dependent protein kinase (PKA) is a serine-threonine kinase that has been strongly implicated in the expression of specific forms of hippocampus-dependent memory. We review evidence that PKA is required for hippocampus-dependent memory in mammals, and we highlight some of the proteins that have been implicated as targets of PKA. Future directions and open questions regarding the role of PKA in memory storage are also described.
Collapse
Affiliation(s)
- Ted Abel
- University of Pennsylvania, Department of Biology, Biological Basis of Behavior Program, Philadelphia, PA 19104, USA
| | | |
Collapse
|
339
|
Glanzman DL. New tricks for an old slug: the critical role of postsynaptic mechanisms in learning and memory in Aplysia. PROGRESS IN BRAIN RESEARCH 2008; 169:277-92. [PMID: 18394481 DOI: 10.1016/s0079-6123(07)00017-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The marine snail Aplysia has served for more than four decades as an important model system for neurobiological analyses of learning and memory. Until recently, it has been believed that learning and memory in Aplysia were due predominately, if not exclusively, to presynaptic mechanisms. For example, two nonassociative forms of learning exhibited by Aplysia, sensitization and dishabituation of its defensive withdrawal reflex, have been previously ascribed to presynaptic facilitation of the connections between sensory and motor neurons that mediate the reflex. Recent evidence, however, indicates that postsynaptic mechanisms play a far more important role in learning and memory in Aplysia than formerly appreciated. In particular, dishabituation and sensitization depend on a rise in intracellular Ca(2+) in the postsynaptic motor neuron, postsynaptic exocytosis, and modulation of the functional expression of postsynaptic AMPA-type glutamate receptors. In addition, the expression of the persistent presynaptic changes that occur during intermediate- and long-term dishabituation and sensitization appears to require retrograde signals that are triggered by elevated postsynaptic Ca(2+). The model for learning-related synaptic plasticity proposed here for Aplysia is similar to current mammalian models. This similarity suggests that the cellular mechanisms of learning and memory have been highly conserved during evolution.
Collapse
Affiliation(s)
- David L Glanzman
- Department of Physiological Science, UCLA College, Los Angeles, CA 90095-1606, USA.
| |
Collapse
|
340
|
Hernandez PJ, Abel T. The role of protein synthesis in memory consolidation: progress amid decades of debate. Neurobiol Learn Mem 2007; 89:293-311. [PMID: 18053752 DOI: 10.1016/j.nlm.2007.09.010] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Accepted: 09/30/2007] [Indexed: 12/30/2022]
Abstract
A major component of consolidation theory holds that protein synthesis is required to produce the synaptic modification needed for long-term memory storage. Protein synthesis inhibitors have played a pivotal role in the development of this theory. However, these commonly used drugs have unintended effects that have prompted some to reevaluate the role of protein synthesis in memory consolidation. Here we review the role of protein synthesis in memory formation as proposed by consolidation theory calling special attention to the controversy involving the non-specific effects of a group of protein synthesis inhibitors commonly used to study memory formation in vivo. We argue that molecular and genetic approaches that were subsequently applied to the problem of memory formation confirm the results of less selective pharmacological studies. Thus, to a certain extent, the debate over the role of protein synthesis in memory based on interpretational difficulties inherent to the use of protein synthesis inhibitors may be somewhat moot. We conclude by presenting avenues of research we believe will best provide answers to both long-standing and more recent questions facing field of learning and memory.
Collapse
Affiliation(s)
- Pepe J Hernandez
- Department of Biology, University of Pennsylvania, 433 S. University Avenue, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
341
|
Specific requirement of NMDA receptors for long-term memory consolidation in Drosophila ellipsoid body. Nat Neurosci 2007; 10:1578-86. [PMID: 17982450 DOI: 10.1038/nn2005] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Accepted: 10/01/2007] [Indexed: 01/21/2023]
Abstract
In humans and many other animals, memory consolidation occurs through multiple temporal phases and usually involves more than one neuroanatomical brain system. Genetic dissection of Pavlovian olfactory learning in Drosophila melanogaster has revealed multiple memory phases, but the predominant view holds that all memory phases occur in mushroom body neurons. Here, we demonstrate an acute requirement for NMDA receptors (NMDARs) outside of the mushroom body during long-term memory (LTM) consolidation. Targeted dsRNA-mediated silencing of Nmdar1 and Nmdar2 (also known as dNR1 or dNR2, respectively) in cholinergic R4m-subtype large-field neurons of the ellipsoid body specifically disrupted LTM consolidation, but not retrieval. Similar silencing of functional NMDARs in the mushroom body disrupted an earlier memory phase, leaving LTM intact. Our results clearly establish an anatomical site outside of the mushroom body involved with LTM consolidation, thus revealing both a distributed brain system subserving olfactory memory formation and the existence of a system-level memory consolidation in Drosophila.
Collapse
|
342
|
Alberini CM. The role of protein synthesis during the labile phases of memory: revisiting the skepticism. Neurobiol Learn Mem 2007; 89:234-46. [PMID: 17928243 DOI: 10.1016/j.nlm.2007.08.007] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Accepted: 08/08/2007] [Indexed: 12/23/2022]
Abstract
Despite the fact that extensive evidence supports the view that phases of de novo protein synthesis are necessary for memory formation and maintenance, doubts are still raised. Skeptics generally argue that amnesia and the disruption of long-term synaptic plasticity are caused by "non-specific effects" of the reagents or approaches used to disrupt protein synthesis. This paper attempts to clarify some of these issues by reviewing, discussing and providing results addressing some of the major critiques that argue against the idea that de novo protein synthesis is necessary for the stabilization of long-term memory.
Collapse
Affiliation(s)
- Cristina M Alberini
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA.
| |
Collapse
|
343
|
Wang Y, Krishnan HR, Ghezzi A, Yin JCP, Atkinson NS. Drug-induced epigenetic changes produce drug tolerance. PLoS Biol 2007; 5:e265. [PMID: 17941717 PMCID: PMC2020501 DOI: 10.1371/journal.pbio.0050265] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Accepted: 08/10/2007] [Indexed: 12/19/2022] Open
Abstract
Tolerance to drugs that affect neural activity is mediated, in part, by adaptive mechanisms that attempt to restore normal neural excitability. Changes in the expression of ion channel genes are thought to play an important role in these neural adaptations. The slo gene encodes the pore-forming subunit of BK-type Ca(2+)-activated K(+) channels, which regulate many aspects of neural activity. Given that induction of slo gene expression plays an important role in the acquisition of tolerance to sedating drugs, we investigated the molecular mechanism of gene induction. Using chromatin immunoprecipitation followed by real-time PCR, we show that a single brief sedation with the anesthetic benzyl alcohol generates a spatiotemporal pattern of histone H4 acetylation across the slo promoter region. Inducing histone acetylation with a histone deacetylase inhibitor yields a similar pattern of changes in histone acetylation, up-regulates slo expression, and phenocopies tolerance in a slo-dependent manner. The cAMP response element binding protein (CREB) is an important transcription factor mediating experience-based neuroadaptations. The slo promoter region contains putative binding sites for the CREB transcription factor. Chromatin immunoprecipitation assays show that benzyl alcohol sedation enhances CREB binding within the slo promoter region. Furthermore, activation of a CREB dominant-negative transgene blocks benzyl alcohol-induced changes in histone acetylation within the slo promoter region, slo induction, and behavioral tolerance caused by benzyl alcohol sedation. These findings provide unique evidence that links molecular epigenetic histone modifications and transcriptional induction of an ion channel gene with a single behavioral event.
Collapse
Affiliation(s)
- Yan Wang
- Section of Neurobiology, The University of Texas at Austin, Austin, Texas, United States of America
- The Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, United States of America
| | - Harish R Krishnan
- Section of Neurobiology, The University of Texas at Austin, Austin, Texas, United States of America
- Institute for Neuroscience, The University of Texas at Austin, Austin, Texas, United States of America
| | - Alfredo Ghezzi
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - Jerry C. P Yin
- Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Nigel S Atkinson
- Section of Neurobiology, The University of Texas at Austin, Austin, Texas, United States of America
- The Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
344
|
Hebda-Bauer EK, Luo J, Watson SJ, Akil H. Female CREBalphadelta- deficient mice show earlier age-related cognitive deficits than males. Neuroscience 2007; 150:260-72. [PMID: 18029102 DOI: 10.1016/j.neuroscience.2007.09.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 08/31/2007] [Accepted: 09/11/2007] [Indexed: 11/25/2022]
Abstract
Age-related changes in the hippocampus increase vulnerability to impaired learning and memory. Our goal is to understand how a genetic vulnerability to cognitive impairment can be modified by aging and sex. Mice with a mutation in the cAMP response element binding (CREB) protein gene (CREB(alphadelta-) deficient mice) have a mild cognitive impairment and show test condition-dependent learning and memory deficits. We tested three ages of CREB(alphadelta-) deficient and wild-type (WT) mice in two Morris water maze (MWM) protocols: four trials per day with a 3-5 min inter-trial interval (ITI) (MWM4) and two trials per day with a 1 min ITI (MWM2). All CREB(alphadelta-) deficient mice performed well in the easier MWM4, except for the aged females that performed poorly. In the harder MWM2, young male and female and middle-aged male CREB(alphadelta-) deficient mice performed well, but aged male and all middle-aged and aged female CREB(alphadelta-) deficient mice were impaired. These results show that mice with a genetic vulnerability to impaired learning and memory exhibit increased vulnerability with age that is most apparent among females. Thus, a genetic predisposition to cognitive impairment may render females more vulnerable than males to such deficits with age.
Collapse
Affiliation(s)
- E K Hebda-Bauer
- Molecular and Behavioral Neuroscience Institute, University of Michigan, 205 Zina Pitcher Place, Ann Arbor, MI 48109, USA.
| | | | | | | |
Collapse
|
345
|
Fibuch EE, Wang JQ. Inhibition of the MAPK/ERK cascade: a potential transcription-dependent mechanism for the amnesic effect of anesthetic propofol. Neurosci Bull 2007; 23:119-24. [PMID: 17592535 PMCID: PMC5550596 DOI: 10.1007/s12264-007-0017-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Intravenous anesthetics are known to cause amnesia, but the underlying molecular mechanisms remain elusive. To identify a possible molecular mechanism, we recently turned our attention to a key intracellular signaling pathway organized by a family of mitogen-activated protein kinases (MAPKs). As a prominent synapse-to-nucleus superhighway, MAPKs couple surface glutamate receptors to nuclear transcriptional events essential for the development and/or maintenance of different forms of synaptic plasticity (long-term potentiation and long-term depression) and memory formation. To define the role of MAPK-dependent transcription in the amnesic property of anesthetics, we conducted a series of studies to examine the effect of a prototype intravenous anesthetic propofol on the MAPK response to N-methyl-D-aspartate receptor (NMDAR) stimulation in hippocampal neurons. Our results suggest that propofol possesses the ability to inhibit NMDAR-mediated activation of a classic subclass of MAPKs, extracellular signal-regulated protein kinase 1/2 (ERK1/2). Concurrent inhibition of transcriptional activity also occurs as a result of inhibited responses of ERK1/2 to NMDA. These findings provide first evidence for an inhibitory modulation of the NMDAR-MAPK pathway by an intravenous anesthetic and introduce a new avenue to elucidate a transcription-dependent mechanism processing the amnesic effect of anesthetics.
Collapse
Affiliation(s)
- Eugene E. Fibuch
- Department of Anesthesiology, University of Missouri-Kansas City School of Medicine, Saint Luke’s Hospital, Kansas City, Missouri 64108 USA
| | - John Q. Wang
- Department of Anesthesiology, University of Missouri-Kansas City School of Medicine, Saint Luke’s Hospital, Kansas City, Missouri 64108 USA
| |
Collapse
|
346
|
Lu Y, Lu YS, Shuai Y, Feng C, Tully T, Xie Z, Zhong Y, Zhou HM. The AKAP Yu is required for olfactory long-term memory formation in Drosophila. Proc Natl Acad Sci U S A 2007; 104:13792-7. [PMID: 17690248 PMCID: PMC1959461 DOI: 10.1073/pnas.0700439104] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Extensive neurogenetic analysis has shown that memory formation depends critically on cAMP-protein kinase A (PKA) signaling. Details of how this pathway is involved in memory formation, however, remain to be fully elucidated. From a large-scale behavioral screen in Drosophila, we identified the yu mutant to be defective in one-day memory after spaced training. The yu mutation disrupts a gene encoding an A-kinase anchoring protein (AKAP). AKAPs comprise a family of proteins, which determine the subcellular localization of PKAs and thereby critically restrict cAMP signaling within a cell. Further behavioral characterizations revealed that long-term memory (LTM) was disrupted specifically in the yu mutant, whereas learning, short-term memory and anesthesia-resistant memory all appeared normal. Another independently isolated mutation of the yu gene failed to complement the LTM defect associated with the yu mutation, and this phenotypic defect could be rescued by induced acute expression of a yu(+) transgene, suggesting that yu functions physiologically during memory formation. AKAP Yu is expressed preferentially in the mushroom body (MB) neuroanatomical structure, and expression of a yu(+) transgene to the MB, but not to other brain regions, is sufficient to rescue the LTM defect of the yu mutant. These observations lead us to conclude that proper localization of PKA by Yu AKAP in MB neurons is required for the formation of LTM.
Collapse
Affiliation(s)
- Yubing Lu
- *Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
| | - Yi-Sheng Lu
- *Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
| | - Yichun Shuai
- *Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
| | | | - Tim Tully
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Zuoping Xie
- *Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
| | - Yi Zhong
- *Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
- To whom correspondence may be addressed. E-mail: or
| | - Hai-Meng Zhou
- *Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
- To whom correspondence may be addressed. E-mail: or
| |
Collapse
|
347
|
Ho IS, Hannan F, Guo HF, Hakker I, Zhong Y. Distinct functional domains of neurofibromatosis type 1 regulate immediate versus long-term memory formation. J Neurosci 2007; 27:6852-7. [PMID: 17581973 PMCID: PMC6672704 DOI: 10.1523/jneurosci.0933-07.2007] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is a dominant genetic disorder that causes tumors of the peripheral nervous system. In addition, >40% of afflicted children have learning difficulties. The NF1 protein contains a highly conserved GTPase-activating protein domain that inhibits Ras activity, and the C-terminal region regulates cAMP levels via G-protein-dependent activation of adenylyl cyclase. Behavioral analysis indicates that learning is disrupted in both Drosophila and mouse NF1 models. Our previous work has shown that defective cAMP signaling leads to the learning phenotype in Drosophila Nf1 mutants. In the present report, our experiments showed that in addition to learning, long-term memory was also abolished in Nf1 mutants. However, altered NF1-regulated Ras activity is responsible for this defect rather than altered cAMP levels. Furthermore, by expressing clinically relevant human NF1 mutations and deletions in Drosophila Nf1-null mutants, we demonstrated that the GAP-related domain of NF1 was necessary and sufficient for long-term memory, whereas the C-terminal domain of NF1 was essential for immediate memory. Thus, we show that two separate functional domains of the same protein can participate independently in the formation of two distinct memory components.
Collapse
Affiliation(s)
- Ivan Shun Ho
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | | | | | |
Collapse
|
348
|
Keene AC, Waddell S. Drosophila olfactory memory: single genes to complex neural circuits. Nat Rev Neurosci 2007; 8:341-54. [PMID: 17453015 DOI: 10.1038/nrn2098] [Citation(s) in RCA: 325] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A central goal of neuroscience is to understand how neural circuits encode memory and guide behaviour. Studying simple, genetically tractable organisms, such as Drosophila melanogaster, can illuminate principles of neural circuit organization and function. Early genetic dissection of D. melanogaster olfactory memory focused on individual genes and molecules. These molecular tags subsequently revealed key neural circuits for memory. Recent advances in genetic technology have allowed us to manipulate and observe activity in these circuits, and even individual neurons, in live animals. The studies have transformed D. melanogaster from a useful organism for gene discovery to an ideal model to understand neural circuit function in memory.
Collapse
Affiliation(s)
- Alex C Keene
- Department of Neurobiology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, USA
| | | |
Collapse
|
349
|
Abstract
In the central nervous system, long-term adaptive responses to changes in the environment, such as the processes involved in learning and memory, require the conversion of extracellular stimuli into intracellular signals. Many of these signals involve the induction of gene expression. The late, transcription- and translation-dependent phase of long-term synaptic potentiation (L-LTP) is an attractive cellular model for long-lasting memory formation. The transcription factor cAMP response element-binding protein (CREB) plays an essential role in the maintenance of L-LTP. However, how synaptic signals propagate to the nucleus to initiate CREB-target gene expression is unclear. Recent studies indicate that the CREB transducer of regulated CREB activity 1 coactivator undergoes neuronal activity-dependent translocation from the cytoplasm to the nucleus, a process required for CRE-dependent gene expression and the maintenance of L-LTP in the hippocampus.
Collapse
Affiliation(s)
- Hao Wu
- Institute of Neuroscience and Key Laboratory of Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | |
Collapse
|
350
|
Qian M, Pan G, Sun L, Feng C, Xie Z, Tully T, Zhong Y. Receptor-like tyrosine phosphatase PTP10D is required for long-term memory in Drosophila. J Neurosci 2007; 27:4396-402. [PMID: 17442824 PMCID: PMC3045567 DOI: 10.1523/jneurosci.4054-06.2007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Tyrosine phosphorylation mediates multiple signal transduction pathways that play key roles in developmental processes and behavioral plasticity. The level of tyrosine phosphorylation is regulated by protein tyrosine kinases and protein tyrosine phosphatases (PTPs). Extensive studies have investigated the roles of tyrosine kinases in memory formation. However, there were few studies on PTPs. To date, learning has been shown to be defective only for mouse knock-outs of PTPalpha, leukocyte common antigen-related, or PTPdelta. A major limitation of these studies arises from their inability to distinguish an acute (biochemical) impairment of memory formation from a more chronic abnormality in neurodevelopment. From a behavioral screen for defective long-term memory, we found chi mutants to disrupt expression of the PTP10D protein tyrosine phosphatase gene. We show that chi mutants are normal for learning, early memory, and anesthesia-resistant memory, whereas long-term memory specifically is abolished. Significantly, induction of a heat shock-PTP10D+ transgene before training fully rescues the memory defect of chi mutants, thereby demonstrating an acute role for PTP10D in behavioral plasticity. We show that PTP10D is widely expressed in the embryonic CNS and in the adult brain. Transgenic expression of upstream activating sequence-PTP10D+ in mushroom bodies is sufficient to rescue the memory defect of chi mutants. Our data clearly demonstrate that signaling through PTP10D in mushroom bodies is critical for the formation of long-term memory.
Collapse
Affiliation(s)
- Meng Qian
- Department of Biological Science and Biotechnology, Tsinghua University, Beijing, China 100084
| | - Guohui Pan
- Department of Biological Science and Biotechnology, Tsinghua University, Beijing, China 100084
| | - Lu Sun
- Department of Biological Science and Biotechnology, Tsinghua University, Beijing, China 100084
| | | | - Zuoping Xie
- Department of Biological Science and Biotechnology, Tsinghua University, Beijing, China 100084
| | - Tim Tully
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724, and
| | - Yi Zhong
- Department of Biological Science and Biotechnology, Tsinghua University, Beijing, China 100084
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724, and
| |
Collapse
|