301
|
Alroy J, Lyons JA. Lysosomal Storage Diseases. JOURNAL OF INBORN ERRORS OF METABOLISM AND SCREENING 2014. [DOI: 10.1177/2326409813517663] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Joseph Alroy
- Department of Pathology, Tufts University School of Medicine1, Boston, MA, USA
- Tufts Medical Center, Boston, MA, USA
- Department of Biomedical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA
| | - Jeremiah A. Lyons
- Department of Biomedical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA
| |
Collapse
|
302
|
Samie MA, Xu H. Lysosomal exocytosis and lipid storage disorders. J Lipid Res 2014; 55:995-1009. [PMID: 24668941 DOI: 10.1194/jlr.r046896] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Indexed: 12/11/2022] Open
Abstract
Lysosomes are acidic compartments in mammalian cells that are primarily responsible for the breakdown of endocytic and autophagic substrates such as membranes, proteins, and lipids into their basic building blocks. Lysosomal storage diseases (LSDs) are a group of metabolic disorders caused by genetic mutations in lysosomal hydrolases required for catabolic degradation, mutations in lysosomal membrane proteins important for catabolite export or membrane trafficking, or mutations in nonlysosomal proteins indirectly affecting these lysosomal functions. A hallmark feature of LSDs is the primary and secondary excessive accumulation of undigested lipids in the lysosome, which causes lysosomal dysfunction and cell death, and subsequently pathological symptoms in various tissues and organs. There are more than 60 types of LSDs, but an effective therapeutic strategy is still lacking for most of them. Several recent in vitro and in vivo studies suggest that induction of lysosomal exocytosis could effectively reduce the accumulation of the storage materials. Meanwhile, the molecular machinery and regulatory mechanisms for lysosomal exocytosis are beginning to be revealed. In this paper, we first discuss these recent developments with the focus on the functional interactions between lipid storage and lysosomal exocytosis. We then discuss whether lysosomal exocytosis can be manipulated to correct lysosomal and cellular dysfunction caused by excessive lipid storage, providing a potentially general therapeutic approach for LSDs.
Collapse
Affiliation(s)
- Mohammad Ali Samie
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Haoxing Xu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
303
|
Presta M, Belleri M, Cox TM. The role of the endothelium in globoid-cell leukodystrophy: unexpected revelations. FUTURE NEUROLOGY 2014. [DOI: 10.2217/fnl.13.75] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Marco Presta
- Department of Molecular & Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Mirella Belleri
- Department of Molecular & Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Timothy M Cox
- Department of Medicine, University of Cambridge, Box 157, Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| |
Collapse
|
304
|
Jakóbkiewicz-Banecka J, Gabig-Cimińska M, Banecka-Majkutewicz Z, Banecki B, Węgrzyn A, Węgrzyn G. Factors and processes modulating phenotypes in neuronopathic lysosomal storage diseases. Metab Brain Dis 2014; 29:1-8. [PMID: 24307179 PMCID: PMC3930848 DOI: 10.1007/s11011-013-9455-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 11/21/2013] [Indexed: 11/30/2022]
Abstract
Lysosomal storage diseases are inherited metabolic disorders caused by genetic defects causing deficiency of various lysosomal proteins, and resultant accumulation of non-degraded compounds. They are multisystemic diseases, and in most of them (>70%) severe brain dysfunctions are evident. However, expression of various phenotypes in particular diseases is extremely variable, from non-neuronopathic to severely neurodegenerative in the deficiency of the same enzyme. Although all lysosomal storage diseases are monogenic, clear genotype-phenotype correlations occur only in some cases. In this article, we present an overview on various factors and processes, both general and specific for certain disorders, that can significantly modulate expression of phenotypes in these diseases. On the basis of recent reports describing studies on both animal models and clinical data, we propose a hypothesis that efficiency of production of compounds that cannot be degraded due to enzyme deficiency might be especially important in modulation of phenotypes of patients suffering from lysosomal storage diseases.
Collapse
Affiliation(s)
| | - Magdalena Gabig-Cimińska
- Laboratory of Molecular Biology, Gdańsk University, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | | | - Bogdan Banecki
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Kładki 24, 80-822 Gdańsk, Poland
| | - Alicja Węgrzyn
- Department of Microbiology, University of Szczecin, Felczaka 3c, 71-412 Szczecin, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| |
Collapse
|
305
|
Appelqvist H, Wäster P, Kågedal K, Öllinger K. The lysosome: from waste bag to potential therapeutic target. J Mol Cell Biol 2014; 5:214-26. [PMID: 23918283 DOI: 10.1093/jmcb/mjt022] [Citation(s) in RCA: 547] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Lysosomes are ubiquitous membrane-bound intracellular organelles with an acidic interior. They are central for degradation and recycling of macromolecules delivered by endocytosis, phagocytosis, and autophagy. In contrast to the rather simplified view of lysosomes as waste bags, nowadays lysosomes are recognized as advanced organelles involved in many cellular processes and are considered crucial regulators of cell homeostasis. The function of lysosomes is critically dependent on soluble lysosomal hydrolases (e.g. cathepsins) as well as lysosomal membrane proteins (e.g. lysosome-associated membrane proteins). This review focuses on lysosomal involvement in digestion of intra- and extracellular material, plasma membrane repair, cholesterol homeostasis, and cell death. Regulation of lysosomal biogenesis and function via the transcription factor EB (TFEB) will also be discussed. In addition, lysosomal contribution to diseases, including lysosomal storage disorders, neurodegenerative disorders, cancer, and cardiovascular diseases, is presented.
Collapse
Affiliation(s)
- Hanna Appelqvist
- Experimental Pathology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | | | | | | |
Collapse
|
306
|
Raimundo N. Mitochondrial pathology: stress signals from the energy factory. Trends Mol Med 2014; 20:282-92. [PMID: 24508276 DOI: 10.1016/j.molmed.2014.01.005] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 01/06/2014] [Accepted: 01/08/2014] [Indexed: 12/16/2022]
Abstract
Mitochondria are undergoing a renaissance. The cellular power plant is now recognized as a key cellular signaling platform. The signals released by mitochondria are currently an area of intense research. A complex network is emerging involving metabolic intermediates, the roles of the mitochondrial unfolded protein response, and the interaction of mitochondria with other organelles and with the cellular autophagic system. Despite the diversity of the perturbations leading to mitochondrial diseases, some emerging trends are apparent. The long-held notion that mitochondrial diseases result from decreased mitochondrial energy output has been challenged by new data showing that mitochondrial pathological signaling can cause disease irrespective of the energy output. This review proposes a novel integrative view of mitochondrial signaling in physiology and disease.
Collapse
Affiliation(s)
- Nuno Raimundo
- University Medical Center Goettingen, Institute for Cellular Biochemistry, Humboldtallee 23, Room 01.423, 37073 Goettingen, Germany.
| |
Collapse
|
307
|
Gonzalez A, Valeiras M, Sidransky E, Tayebi N. Lysosomal integral membrane protein-2: a new player in lysosome-related pathology. Mol Genet Metab 2014; 111:84-91. [PMID: 24389070 PMCID: PMC3924958 DOI: 10.1016/j.ymgme.2013.12.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/03/2013] [Accepted: 12/03/2013] [Indexed: 12/27/2022]
Abstract
Lysosomes require the presence of many specialized proteins to facilitate their roles in cellular maintenance. One such protein that has proven to be an important player in the lysosomal field is lysosomal integral membrane protein-2 (LIMP-2), encoded by the gene SCARB2. LIMP-2 is required for the normal biogenesis and maintenance of lysosomes and endosomes and has been identified as the specific receptor for glucocerebrosidase, the enzyme deficient in Gaucher disease. Research into LIMP-2 and the SCARB2 gene indicate that it may be a factor contributing to the clinical heterogeneity seen among patients with Gaucher disease. Mutations in SCARB2 have also been identified as the cause of action myoclonus renal failure (AMRF), and in some cases progressive myoclonic epilepsy. A total of 14 disease-causing SCARB2 mutations have been identified to date. The role of LIMP-2 in human pathology has expanded with its identification as a component of the intercalated disk in cardiac muscle and as a receptor for specific enteroviruses, two unanticipated findings that reaffirm the myriad roles of lysosomal proteins. Studies into the full impact of LIMP-2 deficiency and the LIMP2/glucocerebrosidase molecular pathway will lead to a better understanding of disease pathogenesis in Gaucher disease and AMRF, and to new insights into lysosomal processing, trafficking and function.
Collapse
Affiliation(s)
- Ashley Gonzalez
- Section on Molecular Neurogenetics, Medical Genetics Branch, NHGRI, NIH, Bethesda, MD 20892, USA
| | - Mark Valeiras
- Section on Molecular Neurogenetics, Medical Genetics Branch, NHGRI, NIH, Bethesda, MD 20892, USA
| | - Ellen Sidransky
- Section on Molecular Neurogenetics, Medical Genetics Branch, NHGRI, NIH, Bethesda, MD 20892, USA.
| | - Nahid Tayebi
- Section on Molecular Neurogenetics, Medical Genetics Branch, NHGRI, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
308
|
Abstract
Lysosomes are membrane-bound organelles responsible for the transport and degradation of intracellular and extracellular cargo. The intracellular motion of lysosomes is both diffusive and active, mediated by motor proteins moving lysosomes along microtubules. We sought to determine how lysosome diameter influences lysosome transport. We used osmotic swelling to double the diameter of lysosomes, creating a population of enlarged lysosomes. This allowed us to directly examine the intracellular transport of the same organelle as a function of diameter. Lysosome transport was measured using live cell fluorescence microscopy and single particle tracking. We find, as expected, the diffusive component of intracellular transport is decreased proportional to the increased lysosome diameter. Active transport of the enlarged lysosomes is not affected by the increased lysosome diameter.
Collapse
|
309
|
Girard E, Chmiest D, Fournier N, Johannes L, Paul JL, Vedie B, Lamaze C. Rab7 is functionally required for selective cargo sorting at the early endosome. Traffic 2014; 15:309-26. [PMID: 24329906 DOI: 10.1111/tra.12143] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 12/04/2013] [Accepted: 12/10/2013] [Indexed: 12/26/2022]
Abstract
The small GTPases of the Rab family act as a molecular switch regulating various aspects of membrane trafficking through the selective recruitment of effector proteins. Whereas Rab7 has been classically involved in the regulation of transport within the endolysosomal network, persistent controversy remains as to whether Rab7 also plays a role in earlier steps of endosomal trafficking. In this study, we show that Rab7 depletion or inactivation results in enlargement of both early and late endosomes. Rab7 depletion led to the retention of a significant fraction of internalized low-density lipoproteins (LDL) mainly in enlarged early endosomes (EE). As a result, LDL processing and the transcriptional regulation of sterol-sensitive genes were impaired. We found that Rab7 activity was also required for the sorting of the mannose-6-phosphate receptor, the interferon alpha-receptor and the Shiga toxin B-subunit. In contrast, epidermal growth factor (EGF) sorting at the EE or the recycling of transferrin and LDL-R were not affected by Rab7 depletion. Our findings demonstrate that in addition to regulating late endosomes (LE) to lysosomes transport, Rab7 plays a functional role in the selective sorting of distinct cargos at the EE and that the Rab5 to Rab7 exchange occurs early in the endosomal maturation process.
Collapse
Affiliation(s)
- Emmanuelle Girard
- AP-HP (Assistance Publique - Hôpitaux de Paris), Hôpital Européen Georges Pompidou, Service de Biochimie, 75015, Paris, France; Université Paris-Sud, EA 4529, UFR de Pharmacie, 92296, Châtenay-Malabry, France; CNRS UMR144, 75248 Paris cedex 05, France; Institut Curie, Centre de Recherche, Laboratoire Trafic, Signalisation et Ciblage Intracellulaires, 75248, Paris Cedex 05, France
| | | | | | | | | | | | | |
Collapse
|
310
|
Settembre C, Ballabio A. New targets for old diseases: lessons from mucolipidosis type II. EMBO Mol Med 2013; 5:1801-3. [PMID: 24293315 PMCID: PMC3914528 DOI: 10.1002/emmm.201303496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Carmine Settembre
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children Hospital, Houston, TX, USA; Department of Translational and Medical Sciences, Medical Genetics, Federico II University, Naples, Italy
| | | |
Collapse
|
311
|
Xiong J, Xia M, Xu M, Zhang Y, Abais JM, Li G, Riebling CR, Ritter JK, Boini KM, Li PL. Autophagy maturation associated with CD38-mediated regulation of lysosome function in mouse glomerular podocytes. J Cell Mol Med 2013; 17:1598-607. [PMID: 24238063 PMCID: PMC3914646 DOI: 10.1111/jcmm.12173] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 09/27/2013] [Indexed: 01/08/2023] Open
Abstract
Podocytes are highly differentiated glomerular epithelial cells that contribute to the glomerular barrier function of kidney. A role for autophagy has been proposed in maintenance of their cellular integrity, but the mechanisms controlling autophagy in podocytes are not clear. The present study tested whether CD38-mediated regulation of lysosome function contributes to autophagic flux or autophagy maturation in podocytes. Podocytes were found to exhibit a high constitutive level of LC3-II, a robust marker of autophagosomes (APs), suggesting a high basal level of autophagic activity. Treatment with the mTOR inhibitor, rapamycin, increased LC3-II and the content of both APs detected by Cyto-ID Green staining and autophagolysosomes (APLs) measured by acridine orange staining and colocalization of LC3 and Lamp1. Lysosome function inhibitor bafilomycin A1 increased APs, but decreased APLs content under both basal and rapamycin-induced conditions. Inhibition of CD38 activity by nicotinamide or silencing of CD38 gene produced the similar effects to that bafilomycin A1 did in podocytes. To explore the possibility that CD38 may control podocyte autophagy through its regulation of lysosome function, the fusion of APs with lysosomes in living podocytes was observed by co-transfection of GFP-LC3B and RFP-Lamp1 expression vectors. A colocalization of GFP-LC3B and RFP-Lamp1 upon stimulation of rapamycin became obvious in transfected podocytes, which could be substantially blocked by nicotinamide, CD38 shRNA, and bafilomycin. Moreover, blockade of the CD38-mediated regulation by PPADS completely abolished rapamycin-induced fusion of APs with lysosomes. These results indicate that CD38 importantly control lysosomal function and influence autophagy at the maturation step in podocytes.
Collapse
Affiliation(s)
- Jing Xiong
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
312
|
Shapiro IM, Layfield R, Lotz M, Settembre C, Whitehouse C. Boning up on autophagy: the role of autophagy in skeletal biology. Autophagy 2013; 10:7-19. [PMID: 24225636 DOI: 10.4161/auto.26679] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
From an evolutionary perspective, the major function of bone is to provide stable sites for muscle attachment and affording protection of vital organs, especially the heart and lungs (ribs) and spinal cord (vertebrae and intervertebral discs). However, bone has a considerable number of other functions: serving as a store for mineral ions, providing a site for blood cell synthesis and participating in a complex system-wide endocrine system. Not surprisingly, bone and cartilage cell homeostasis is tightly controlled, as is the maintenance of tissue structure and mass. While a great deal of new information is accruing concerning skeletal cell homeostasis, one relatively new observation is that the cells of bone (osteoclasts osteoblasts and osteocytes) and cartilage (chondrocytes) exhibit autophagy. The focus of this review is to examine the significance of this process in terms of the functional demands of the skeleton in health and during growth and to provide evidence that dysregulation of the autophagic response is involved in the pathogenesis of diseases of bone (Paget disease of bone) and cartilage (osteoarthritis and the mucopolysaccharidoses). Delineation of molecular changes in the autophagic process is uncovering new approaches for the treatment of diseases that affect the axial and appendicular skeleton.
Collapse
Affiliation(s)
- Irving M Shapiro
- Jefferson Medical College; Thomas Jefferson University; Philadelphia, PA USA
| | - Robert Layfield
- School of Life Sciences; University of Nottingham Medical School; Nottingham UK
| | - Martin Lotz
- Arthritis Research; The Scripps Research Institute; La Jolla, CA USA
| | - Carmine Settembre
- Telethon Institute of Genetics and Medicine (TIGEM); Naples, Italy; Department of Molecular and Human Genetics; Baylor College of Medicine, Houston, TXUSA and Jan and Dan Duncan Neurological Research Institute; Texas Children's Hospital; Houston, TX USA; Medical Genetics; Department of Translational and Medical Science; Federico II University; Naples, Italy
| | - Caroline Whitehouse
- Department of Medical and Molecular Genetics; Kings College London; London UK
| |
Collapse
|
313
|
Murine neural stem cells model Hunter disease in vitro: glial cell-mediated neurodegeneration as a possible mechanism involved. Cell Death Dis 2013; 4:e906. [PMID: 24201805 PMCID: PMC3847312 DOI: 10.1038/cddis.2013.430] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 09/06/2013] [Accepted: 09/23/2013] [Indexed: 11/09/2022]
Abstract
Mucopolysaccharidosis type II (MPSII or Hunter Syndrome) is a lysosomal storage disorder caused by the deficit of iduronate 2-sulfatase (IDS) activity and characterized by progressive systemic and neurological impairment. As the early mechanisms leading to neuronal degeneration remain elusive, we chose to examine the properties of neural stem cells (NSCs) isolated from an animal model of the disease in order to evaluate whether their neurogenic potential could be used to recapitulate the early phases of neurogenesis in the brain of Hunter disease patients. Experiments here reported show that NSCs derived from the subventricular zone (SVZ) of early symptomatic IDS-knockout (IDS-ko) mouse retained self-renewal capacity in vitro, but differentiated earlier than wild-type (wt) cells, displaying an evident lysosomal aggregation in oligodendroglial and astroglial cells. Consistently, the SVZ of IDS-ko mice appeared similar to the wt SVZ, whereas the cortex and striatum presented a disorganized neuronal pattern together with a significant increase of glial apoptotic cells, suggesting that glial degeneration likely precedes neuronal demise. Interestingly, a very similar pattern was observed in the brain cortex of a Hunter patient. These observations both in vitro, in our model, and in vivo suggest that IDS deficit seems to affect the late phases of neurogenesis and/or the survival of mature cells rather than NSC self-renewal. In particular, platelet-derived growth factor receptor-α-positive (PDGFR-α+) glial progenitors appeared reduced in both the IDS-ko NSCs and in the IDS-ko mouse and human Hunter brains, compared with the respective healthy controls. Treatment of mutant NSCs with IDS or PDGF throughout differentiation was able to increase the number of PDGFR-α+ cells and to reduce that of apoptotic cells to levels comparable to wt. This evidence supports IDS-ko NSCs as a reliable in vitro model of the disease, and suggests the rescue of PDGFR-α+ glial cells as a therapeutic strategy to prevent neuronal degeneration.
Collapse
|
314
|
Belleri M, Ronca R, Coltrini D, Nico B, Ribatti D, Poliani PL, Giacomini A, Alessi P, Marchesini S, Santos MB, Bongarzone ER, Presta M. Inhibition of angiogenesis by β-galactosylceramidase deficiency in globoid cell leukodystrophy. ACTA ACUST UNITED AC 2013; 136:2859-75. [PMID: 23983033 DOI: 10.1093/brain/awt215] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Globoid cell leukodystrophy (Krabbe disease) is a neurological disorder of infants caused by genetic deficiency of the lysosomal enzyme β-galactosylceramidase leading to accumulation of the neurotoxic metabolite 1-β-d-galactosylsphingosine (psychosine) in the central nervous system. Angiogenesis plays a pivotal role in the physiology and pathology of the brain. Here, we demonstrate that psychosine has anti-angiogenic properties by causing the disassembling of endothelial cell actin structures at micromolar concentrations as found in the brain of patients with globoid cell leukodystrophy. Accordingly, significant alterations of microvascular endothelium were observed in the post-natal brain of twitcher mice, an authentic model of globoid cell leukodystrophy. Also, twitcher endothelium showed a progressively reduced capacity to respond to pro-angiogenic factors, defect that was corrected after transduction with a lentiviral vector harbouring the murine β-galactosylceramidase complementary DNA. Finally, RNA interference-mediated β-galactosylceramidase gene silencing causes psychosine accumulation in human endothelial cells and hampers their mitogenic and motogenic response to vascular endothelial growth factor. Accordingly, significant alterations were observed in human microvasculature from brain biopsy of a globoid cell leukodystrophy case. Together these data demonstrate that β-galactosylceramidase deficiency induces significant alterations in endothelial neovascular responses that may contribute to central nervous system and systemic damages that occur in globoid cell leukodystrophy.
Collapse
Affiliation(s)
- Mirella Belleri
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
315
|
Nielsen R, Mollet G, Esquivel EL, Weyer K, Nielsen PK, Antignac C, Christensen EI. Increased lysosomal proteolysis counteracts protein accumulation in the proximal tubule during focal segmental glomerulosclerosis. Kidney Int 2013; 84:902-10. [DOI: 10.1038/ki.2013.218] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 04/08/2013] [Accepted: 04/11/2013] [Indexed: 12/26/2022]
|
316
|
Lampe C, Bellettato CM, Karabul N, Scarpa M. Mucopolysaccharidoses and other lysosomal storage diseases. Rheum Dis Clin North Am 2013; 39:431-55. [PMID: 23597973 DOI: 10.1016/j.rdc.2013.03.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Mucopolysaccharidosis and other lysosomal storage diseases are rare, chronic, and progressive inherited diseases caused by a deficit of lysosomal enzymes. Patients are affected by a wide variety of symptoms. For some lysosomal storage diseases, effective treatments to arrest disease progression, or slow the pathologic process, and increase patient life expectancy are available or being developed. Timely diagnosis is crucial. Rheumatologists, orthopedics, and neurologists are commonly consulted due to unspecific musculoskeletal signs and symptoms. Pain, stiffness, contractures of joints in absence of clinical signs of inflammation, bone pain or abnormalities, osteopenia, osteonecrosis, secondary osteoarthritis or hip dysplasia are the alerting symptoms that should induce suspicion of a lysosomal storage disease.
Collapse
Affiliation(s)
- Christina Lampe
- Department of Pediatric and Adolescent Medicine, Villa Metabolica, University Medical Center of the Johannes Gutenberg, University of Mainz, Langenbeckstrasse 2, Mainz 55131, Germany.
| | | | | | | |
Collapse
|
317
|
Harlalka GV, Lehman A, Chioza B, Baple EL, Maroofian R, Cross H, Sreekantan-Nair A, Priestman DA, Al-Turki S, McEntagart ME, Proukakis C, Royle L, Kozak RP, Bastaki L, Patton M, Wagner K, Coblentz R, Price J, Mezei M, Schlade-Bartusiak K, Platt FM, Hurles ME, Crosby AH. Mutations in B4GALNT1 (GM2 synthase) underlie a new disorder of ganglioside biosynthesis. ACTA ACUST UNITED AC 2013; 136:3618-24. [PMID: 24103911 PMCID: PMC3859217 DOI: 10.1093/brain/awt270] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Glycosphingolipids are ubiquitous constituents of eukaryotic plasma membranes, and their sialylated derivatives, gangliosides, are the major class of glycoconjugates expressed by neurons. Deficiencies in their catabolic pathways give rise to a large and well-studied group of inherited disorders, the lysosomal storage diseases. Although many glycosphingolipid catabolic defects have been defined, only one proven inherited disease arising from a defect in ganglioside biosynthesis is known. This disease, because of defects in the first step of ganglioside biosynthesis (GM3 synthase), results in a severe epileptic disorder found at high frequency amongst the Old Order Amish. Here we investigated an unusual neurodegenerative phenotype, most commonly classified as a complex form of hereditary spastic paraplegia, present in families from Kuwait, Italy and the Old Order Amish. Our genetic studies identified mutations in B4GALNT1 (GM2 synthase), encoding the enzyme that catalyzes the second step in complex ganglioside biosynthesis, as the cause of this neurodegenerative phenotype. Biochemical profiling of glycosphingolipid biosynthesis confirmed a lack of GM2 in affected subjects in association with a predictable increase in levels of its precursor, GM3, a finding that will greatly facilitate diagnosis of this condition. With the description of two neurological human diseases involving defects in two sequentially acting enzymes in ganglioside biosynthesis, there is the real possibility that a previously unidentified family of ganglioside deficiency diseases exist. The study of patients and animal models of these disorders will pave the way for a greater understanding of the role gangliosides play in neuronal structure and function and provide insights into the development of effective treatment therapies.
Collapse
Affiliation(s)
- Gaurav V Harlalka
- 1 Institute of Biomedical and Clinical Science, University of Exeter Medical School, St. Luke's Campus, Heavitree Road, EX1 2LU, Exeter, Devon, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
318
|
Trushina E, Canaria CA, Lee DY, McMurray CT. Loss of caveolin-1 expression in knock-in mouse model of Huntington's disease suppresses pathophysiology in vivo. Hum Mol Genet 2013; 23:129-44. [PMID: 24021477 DOI: 10.1093/hmg/ddt406] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Loss of cholesterol homeostasis and altered vesicle trafficking have been detected in Huntington's disease (HD) cellular and animal models, yet the role of these dysfunctions in pathophysiology of HD is unknown. We demonstrate here that defects in caveolar-related cholesterol trafficking directly contribute to the mechanism of HD in vivo. We generated new mouse models that express mutant Huntington's protein (mhtt), but have partial or total loss of caveolin-1 (Cav1) expression. Fluorescence resonance energy transfer dequenching confirms a direct interaction between mhtt and Cav1. Mhtt-expressing neurons exhibited cholesterol accumulation and suppressed caveolar-related post-Golgi trafficking from endoplasmic reticulum/Golgi to plasma membrane. Loss or reduction of Cav1 expression in a knock-in HD mouse model rescues the cholesterol phenotype in neurons and significantly delays the onset of motor decline and development of neuronal inclusions. We propose that aberrant interaction between Cav1 and mhtt leads to altered cholesterol homeostasis and plays a direct causative role in the onset of HD pathophysiology in vivo.
Collapse
|
319
|
Wiegmann EM, Westendorf E, Kalus I, Pringle TH, Lübke T, Dierks T. Arylsulfatase K, a novel lysosomal sulfatase. J Biol Chem 2013; 288:30019-30028. [PMID: 23986440 DOI: 10.1074/jbc.m113.499541] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The human sulfatase family has 17 members, 13 of which have been characterized biochemically. These enzymes specifically hydrolyze sulfate esters in glycosaminoglycans, sulfolipids, or steroid sulfates, thereby playing key roles in cellular degradation, cell signaling, and hormone regulation. The loss of sulfatase activity has been linked to severe pathophysiological conditions such as lysosomal storage disorders, developmental abnormalities, or cancer. A novel member of this family, arylsulfatase K (ARSK), was identified bioinformatically through its conserved sulfatase signature sequence directing posttranslational generation of the catalytic formylglycine residue in sulfatases. However, overall sequence identity of ARSK with other human sulfatases is low (18-22%). Here we demonstrate that ARSK indeed shows desulfation activity toward arylsulfate pseudosubstrates. When expressed in human cells, ARSK was detected as a 68-kDa glycoprotein carrying at least four N-glycans of both the complex and high-mannose type. Purified ARSK turned over p-nitrocatechol and p-nitrophenyl sulfate. This activity was dependent on cysteine 80, which was verified to undergo conversion to formylglycine. Kinetic parameters were similar to those of several lysosomal sulfatases involved in degradation of sulfated glycosaminoglycans. An acidic pH optimum (~4.6) and colocalization with LAMP1 verified lysosomal functioning of ARSK. Further, it carries mannose 6-phosphate, indicating lysosomal sorting via mannose 6-phosphate receptors. ARSK mRNA expression was found in all tissues tested, suggesting a ubiquitous physiological substrate and a so far non-classified lysosomal storage disorder in the case of ARSK deficiency, as shown before for all other lysosomal sulfatases.
Collapse
Affiliation(s)
- Elena Marie Wiegmann
- From the Department of Chemistry, Biochemistry I, Bielefeld University, 33615 Bielefeld, Germany and
| | - Eva Westendorf
- From the Department of Chemistry, Biochemistry I, Bielefeld University, 33615 Bielefeld, Germany and
| | - Ina Kalus
- From the Department of Chemistry, Biochemistry I, Bielefeld University, 33615 Bielefeld, Germany and
| | | | - Torben Lübke
- From the Department of Chemistry, Biochemistry I, Bielefeld University, 33615 Bielefeld, Germany and
| | - Thomas Dierks
- From the Department of Chemistry, Biochemistry I, Bielefeld University, 33615 Bielefeld, Germany and.
| |
Collapse
|
320
|
Boustany RMN. Lysosomal storage diseases--the horizon expands. NATURE REVIEWS. NEUROLOGY 2013. [PMID: 23938739 DOI: 10.1038/nrneurol.2013.163]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Since the discovery of the lysosome in 1955, advances have been made in understanding the key roles and functions of this organelle. The concept of lysosomal storage diseases (LSDs)--disorders characterized by aberrant, excessive storage of cellular material in lysosomes--developed following the discovery of α-glucosidase deficiency as the cause of Pompe disease in 1963. Great strides have since been made in understanding the pathobiology of LSDs and the neuronal ceroid lipofuscinoses (NCLs). The NCLs are neurodegenerative disorders that display symptoms of cognitive and motor decline, seizures, blindness, early death, and accumulation of lipofuscin in various cell types, and also show some similarities to 'classic' LSDs. Defective lysosomal storage can occur in many cell types, but the CNS and PNS are particularly vulnerable to LSDs and NCLs, being affected in two-thirds of these disorders. Most LSDs are inherited in an autosomal recessive manner, with the exception of X-linked Hunter disease, Fabry disease and Danon disease, and a variant type of adult NCL (Kuf disease). This Review provides a summary of known LSDs, and the pathways affected in these disorders. Existing therapies and barriers to development of novel and improved treatments for LSDs and NCLs are also discussed.
Collapse
Affiliation(s)
- Rose-Mary Naaman Boustany
- Department of Paediatrics and Adolescent Medicine, Biochemistry and Molecular Genetics, American University of Beirut, PO Box 11-0236, Riad El-Solh, 1107 2020, Beirut, Lebanon.
| |
Collapse
|
321
|
Abstract
Since the discovery of the lysosome in 1955, advances have been made in understanding the key roles and functions of this organelle. The concept of lysosomal storage diseases (LSDs)--disorders characterized by aberrant, excessive storage of cellular material in lysosomes--developed following the discovery of α-glucosidase deficiency as the cause of Pompe disease in 1963. Great strides have since been made in understanding the pathobiology of LSDs and the neuronal ceroid lipofuscinoses (NCLs). The NCLs are neurodegenerative disorders that display symptoms of cognitive and motor decline, seizures, blindness, early death, and accumulation of lipofuscin in various cell types, and also show some similarities to 'classic' LSDs. Defective lysosomal storage can occur in many cell types, but the CNS and PNS are particularly vulnerable to LSDs and NCLs, being affected in two-thirds of these disorders. Most LSDs are inherited in an autosomal recessive manner, with the exception of X-linked Hunter disease, Fabry disease and Danon disease, and a variant type of adult NCL (Kuf disease). This Review provides a summary of known LSDs, and the pathways affected in these disorders. Existing therapies and barriers to development of novel and improved treatments for LSDs and NCLs are also discussed.
Collapse
Affiliation(s)
- Rose-Mary Naaman Boustany
- Department of Paediatrics and Adolescent Medicine, Biochemistry and Molecular Genetics, American University of Beirut, PO Box 11-0236, Riad El-Solh, 1107 2020, Beirut, Lebanon.
| |
Collapse
|
322
|
Region- and age-dependent alterations of glial-neuronal metabolic interactions correlate with CNS pathology in a mouse model of globoid cell leukodystrophy. J Cereb Blood Flow Metab 2013; 33:1127-37. [PMID: 23611871 PMCID: PMC3705444 DOI: 10.1038/jcbfm.2013.64] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 02/27/2013] [Accepted: 03/27/2013] [Indexed: 01/20/2023]
Abstract
Globoid cell leukodystrophy (GLD) or Krabbe disease is a lysosomal storage disorder caused by genetic defects in the expression and activity of galactosylceramidase, a key enzyme in the catabolism of myelin-enriched sphingolipids. While there are several histologic, biochemical, and functional studies on GLD, correlations between morphologic and biochemical alterations in central nervous system (CNS) tissues during disease progression are lacking. Here, we combined immunohistochemistry and metabolic analysis using (1)H and (13)C magnetic resonance (MR) spectra of spinal cord, cerebellum, and forebrain to investigate glial-neuronal metabolic interactions and dysfunction in a GLD murine model that recapitulates the human pathology. In order to assess the temporal- and region-dependent disease progression and the potential metabolic correlates, we investigated CNS tissues at mildly symptomatic and fully symptomatic stages of the disease. When compared with age-matched controls, GLD mice showed glucose hypometabolism, alterations in neurotransmitter content, N-acetylaspartate, N-acetylaspartylglutamate, and osmolytes levels. Notably, age- and region-dependent patterns of metabolic disturbances were in close agreement with the progression of astrogliosis, microglia activation, apoptosis, and neurodegeneration. We suggest that MR spectroscopy could be used in vivo to monitor disease progression, as well as ex vivo and in vivo to provide criteria for the outcome of experimental therapies.
Collapse
|
323
|
Signals from the lysosome: a control centre for cellular clearance and energy metabolism. Nat Rev Mol Cell Biol 2013; 14:283-96. [PMID: 23609508 DOI: 10.1038/nrm3565] [Citation(s) in RCA: 1214] [Impact Index Per Article: 101.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
For a long time, lysosomes were considered merely to be cellular 'incinerators' involved in the degradation and recycling of cellular waste. However, now there is compelling evidence indicating that lysosomes have a much broader function and that they are involved in fundamental processes such as secretion, plasma membrane repair, signalling and energy metabolism. Furthermore, the essential role of lysosomes in autophagic pathways puts these organelles at the crossroads of several cellular processes, with significant implications for health and disease. The identification of a master regulator, transcription factor EB (TFEB), that regulates lysosomal biogenesis and autophagy has revealed how the lysosome adapts to environmental cues, such as starvation, and targeting TFEB may provide a novel therapeutic strategy for modulating lysosomal function in human disease.
Collapse
|
324
|
Campos D, Monaga M, González EC, Herrera D, de la Peña D. Optimization of enzymatic diagnosis for mucopolysaccharidosis I in dried blood spots on filter paper. Clin Biochem 2013; 46:805-9. [DOI: 10.1016/j.clinbiochem.2013.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 03/07/2013] [Accepted: 03/08/2013] [Indexed: 10/27/2022]
|
325
|
De Francesco PN, Mucci JM, Ceci R, Fossati CA, Rozenfeld PA. Fabry disease peripheral blood immune cells release inflammatory cytokines: role of globotriaosylceramide. Mol Genet Metab 2013; 109:93-9. [PMID: 23452955 DOI: 10.1016/j.ymgme.2013.02.003] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 02/05/2013] [Indexed: 01/21/2023]
Abstract
Fabry disease is an X-linked lysosomal disorder (LD) due to deficiency of the enzyme α-galactosidase A (αGal), which leads to the accumulation of neutral glycosphingolipids, mainly globotriaosylceramide (Gb3). Several mechanisms contribute to the diverse physiopathological alterations observed in this disease, and it has been suggested that an underlying proinflammatory state could play a significant role. The aim of this study is to investigate the presence of a proinflammatory state in the different subsets of peripheral blood mononuclear cells (PBMC) and to understand the mechanisms that contribute to its onset and perpetuation. We have shown that cultured PBMC from Fabry patients present a higher proinflammatory cytokine expression and production. Moreover, we determined that among PBMC, dendritic cells and monocytes present a basal proinflammatory cytokine production profile, which is further exacerbated with an inflammatory stimulus. Finally we established that normal, monocyte-derived dendritic cells and macrophages display the same proinflammatory profile when cultured in the presence of Gb3 and an inhibitor of αGal. Furthermore, this effect can be abolished using a TLR4 blocking antibody, indicating that TLR4 is necessary in the process. In summary, our results demonstrate the presence of a proinflammatory state involving two key subsets of innate immunity, and provide direct evidence of Gb3 having a proinflammatory role, likely mediated by TLR4, a finding that could help in the understanding of the underlying causes of the inflammatory pathogenesis of Fabry disease.
Collapse
Affiliation(s)
- Pablo N De Francesco
- LISIN, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata (1900), Argentina
| | | | | | | | | |
Collapse
|
326
|
Brozzi A, Urbanelli L, Germain PL, Magini A, Emiliani C. hLGDB: a database of human lysosomal genes and their regulation. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2013; 2013:bat024. [PMID: 23584836 PMCID: PMC3625959 DOI: 10.1093/database/bat024] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lysosomes are cytoplasmic organelles present in almost all eukaryotic cells, which play a fundamental role in key aspects of cellular homeostasis such as membrane repair, autophagy, endocitosis and protein metabolism. The characterization of the genes and enzymes constituting the lysosome represents a central issue to be addressed toward a better understanding of the biology of this organelle. In humans, mutations that cause lysosomal enzyme deficiencies result in >50 different disorders and severe pathologies. So far, many experimental efforts using different methodologies have been carried out to identity lysosomal genes. The Human Lysosome Gene Database (hLGDB) is the first resource that provides a comprehensive and accessible census of the human genes belonging to the lysosomal system. This database was developed by collecting and annotating gene lists from many different sources. References to the studies that have identified each gene are provided together with cross databases gene related information. Special attention has been given to the regulation of the genes through microRNAs and the transcription factor EB. The hLGDB can be easily queried to retrieve, combine and analyze information on different lists of lysosomal genes and their regulation by microRNA (binding sites predicted by five different algorithms). The hLGDB is an open access dynamic project that will permit in the future to collapse in a unique publicly accessible resource all the available biological information about lysosome genes and their regulation. Database URL:http://lysosome.unipg.it/
Collapse
Affiliation(s)
- Alessandro Brozzi
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | | | | | | | | |
Collapse
|
327
|
Platt FM, Boland B, van der Spoel AC. The cell biology of disease: lysosomal storage disorders: the cellular impact of lysosomal dysfunction. ACTA ACUST UNITED AC 2013. [PMID: 23185029 PMCID: PMC3514785 DOI: 10.1083/jcb.201208152] [Citation(s) in RCA: 514] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lysosomal storage diseases (LSDs) are a family of disorders that result from inherited gene mutations that perturb lysosomal homeostasis. LSDs mainly stem from deficiencies in lysosomal enzymes, but also in some non-enzymatic lysosomal proteins, which lead to abnormal storage of macromolecular substrates. Valuable insights into lysosome functions have emerged from research into these diseases. In addition to primary lysosomal dysfunction, cellular pathways associated with other membrane-bound organelles are perturbed in these disorders. Through selective examples, we illustrate why the term “cellular storage disorders” may be a more appropriate description of these diseases and discuss therapies that can alleviate storage and restore normal cellular function.
Collapse
Affiliation(s)
- Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, England, UK.
| | | | | |
Collapse
|
328
|
Kollmann K, Uusi-Rauva K, Scifo E, Tyynelä J, Jalanko A, Braulke T. Cell biology and function of neuronal ceroid lipofuscinosis-related proteins. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1866-81. [PMID: 23402926 DOI: 10.1016/j.bbadis.2013.01.019] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/18/2013] [Accepted: 01/23/2013] [Indexed: 01/17/2023]
Abstract
Neuronal ceroid lipofuscinoses (NCL) comprise a group of inherited lysosomal disorders with variable age of onset, characterized by lysosomal accumulation of autofluorescent ceroid lipopigments, neuroinflammation, photoreceptor- and neurodegeneration. Most of the NCL-related genes encode soluble and transmembrane proteins which localize to the endoplasmic reticulum or to the endosomal/lysosomal compartment and directly or indirectly regulate lysosomal function. Recently, exome sequencing led to the identification of four novel gene defects in NCL patients and a new NCL nomenclature currently comprising CLN1 through CLN14. Although the precise function of most of the NCL proteins remains elusive, comprehensive analyses of model organisms, particularly mouse models, provided new insight into pathogenic mechanisms of NCL diseases and roles of mutant NCL proteins in cellular/subcellular protein and lipid homeostasis, as well as their adaptive/compensatorial regulation at the transcriptional level. This review summarizes the current knowledge on the expression, function and regulation of NCL proteins and their impact on lysosomal integrity. This article is part of a Special Issue entitled: The Neuronal Ceroid Lipofuscinoses or Batten Disease.
Collapse
Affiliation(s)
- Katrin Kollmann
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
329
|
Production of α-L-iduronidase in maize for the potential treatment of a human lysosomal storage disease. Nat Commun 2013; 3:1062. [PMID: 22990858 DOI: 10.1038/ncomms2070] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 08/16/2012] [Indexed: 02/03/2023] Open
Abstract
Lysosomal storage diseases are a class of over 70 rare genetic diseases that are amenable to enzyme replacement therapy. Towards developing a plant-based enzyme replacement therapeutic for the lysosomal storage disease mucopolysaccharidosis I, here we expressed α-L-iduronidase in the endosperm of maize seeds by a previously uncharacterized mRNA-targeting-based mechanism. Immunolocalization, cellular fractionation and in situ RT-PCR demonstrate that the α-L-iduronidase protein and mRNA are targeted to endoplasmic reticulum (ER)-derived protein bodies and to protein body-ER regions, respectively, using regulatory (5'- and 3'-UTR) and signal-peptide coding sequences from the γ-zein gene. The maize α-L-iduronidase exhibits high activity, contains high-mannose N-glycans and is amenable to in vitro phosphorylation. This mRNA-based strategy is of widespread importance as plant N-glycan maturation is controlled and the therapeutic protein is generated in a native form. For our target enzyme, the N-glycan structures are appropriate for downstream processing, a prerequisite for its potential as a therapeutic protein.
Collapse
|
330
|
|
331
|
Abstract
The mucopolysaccharidoses (MPS) and mucolipidoses (ML) are progressive storage disorders that share many clinical features varying from facial dysmorphism, bone dysplasia, hepatosplenomegaly, neurological abnormalities, developmental regression, and a reduced life expectancy at the severe end of the clinical spectrum to an almost normal clinical phenotype and life span in patients with more attenuated disease. MPS and ML are transmitted in an autosomal recessive manner, except for the X-linked MPS II (Hunter syndrome). Diagnosis is initially by detecting partially degraded GAG or oligosaccharide in urine and confirmed by specific enzyme assays in serum, leukocytes, or skin fibroblasts. For the majority of disorders treatment is palliative, but there have been important advances in the use of specific enzyme replacement therapy strategies for some MPS disorders and this is an area of very rapid development. In addition, hematopoietic stem cell transplantation (HSCT) can improve outcome in carefully selected patients with MPS (especially MPS IH, Hurler syndrome), but this procedure is associated with significant risk. Gene augmentation/transfer using a variety of vectors has been successful in animal models but has not yet been successfully performed in a human patient with one of these disorders. It is important to remember that prenatal diagnosis is possible for all of these disorders.
Collapse
|
332
|
Ombrone D, Malvagia S, Funghini S, Giocaliere E, Della Bona ML, Forni G, De Luca A, Villanelli F, Casetta B, Guerrini R, la Marca G. Screening of lysosomal storage disorders: application of the online trapping-and-cleanup liquid chromatography/mass spectrometry method for mucopolysaccharidosis I. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2013; 19:497-503. [PMID: 24378468 DOI: 10.1255/ejms.1257] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In recent years, new treatments have become available to treat some lysosomal storage disorders (LSDs) and many studies suggest that there is a benefit with starting therapy early. Newborn screening should detect diseases early enough for prompt treatment. Some countries include additional conditions, such as some LSDs, into their newborn screening panels. Mucopolysaccharidosis Type I (MPS I) is an autosomal recessive disorder caused by the deficiency of α-L-iduronidase (IDUA) activity. Currently, enzyme replacement therapy (ERT) or bone marrow transplantation is available and this has raised a growing interest for the development of a newborn screening test. In 2009, we reported a new fast and simplified tandem mass spectrometry-based method for quantifying five enzyme activities on dried blood spots. Here, we describe the inclusion of IDUA activity determination for the simultaneous detection of six lysosomal storage diseases. We have defined reference normal ranges by testing 680 healthy newborns and 240 adults. The assay was checked through three confirmed MPS I patients whose IDUA activity was below the normal range. Reproducibility of the assays has been established by assessing the intra-day and inter-day assay imprecisions. This quick assay has been devised to be implemented in newborn screening by liquid chromatography tandem mass spectrometry.
Collapse
Affiliation(s)
- Daniela Ombrone
- Newborn Screening, Biochemistry and Pharmacology Laboratories, Clinic of Pediatric Neurology, Meyer University Children's Hospital, 24 Viale Pieraccini 24, 50139 Florence, Italy and Department of Neurosciences, Psychology, Pharmacology and Child Health, University of Florence, Viale Pieraccini 24, 50139 Florence, Italy
| | - Sabrina Malvagia
- Newborn Screening, Biochemistry and Pharmacology Laboratories, Clinic of Pediatric Neurology, Meyer University Children's Hospital, 24 Viale Pieraccini 24, 50139 Florence, Italy and Paediatric Neurology Unit and Laboratories, Neuroscience Department, Meyer Children's Hospital, 24 Viale Pieraccini 24, 50139 Florence, Italy
| | - Silvia Funghini
- Newborn Screening, Biochemistry and Pharmacology Laboratories, Clinic of Pediatric Neurology, Meyer University Children's Hospital, 24 Viale Pieraccini 24, 50139 Florence, Italy and Paediatric Neurology Unit and Laboratories, Neuroscience Department, Meyer Children's Hospital, 24 Viale Pieraccini 24, 50139 Florence, Italy
| | - Elisa Giocaliere
- Newborn Screening, Biochemistry and Pharmacology Laboratories, Clinic of Pediatric Neurology, Meyer University Children's Hospital, 24 Viale Pieraccini 24, 50139 Florence, Italy
| | - Maria Luisa Della Bona
- Newborn Screening, Biochemistry and Pharmacology Laboratories, Clinic of Pediatric Neurology, Meyer University Children's Hospital, 24 Viale Pieraccini 24, 50139 Florence, Italy
| | - Giulia Forni
- Newborn Screening, Biochemistry and Pharmacology Laboratories, Clinic of Pediatric Neurology, Meyer University Children's Hospital, 24 Viale Pieraccini 24, 50139 Florence, Italy
| | - Alessio De Luca
- Newborn Screening, Biochemistry and Pharmacology Laboratories, Clinic of Pediatric Neurology, Meyer University Children's Hospital, 24 Viale Pieraccini 24, 50139 Florence, Italy
| | - Fabio Villanelli
- Newborn Screening, Biochemistry and Pharmacology Laboratories, Clinic of Pediatric Neurology, Meyer University Children's Hospital, 24 Viale Pieraccini 24, 50139 Florence, Italy
| | - Bruno Casetta
- AB Sciex Italia srl, Via Lombardia 218, 20861 Brugherio, Italy
| | - Renzo Guerrini
- Paediatric Neurology Unit and Laboratories, Neuroscience Department, Meyer Children's Hospital, 24 Viale Pieraccini 24, 50139 Florence, Italy
| | - Giancarlo la Marca
- Newborn Screening, Biochemistry and Pharmacology Laboratories, Clinic of Pediatric Neurology, Meyer University Children's Hospital, 24 Viale Pieraccini 24, 50139 Florence, Italy, Department of Neurosciences, Psychology, Pharmacology and Child Health, University of Florence, Viale Pieraccini 24, 50139 Florence, Italy and Paediatric Neurology Unit and Laboratories, Neuroscience Department, Meyer Children's Hospital, 24 Viale Pieraccini 24, 50139 Florence, Italy.
| |
Collapse
|
333
|
Kolter T. Ganglioside biochemistry. ISRN BIOCHEMISTRY 2012; 2012:506160. [PMID: 25969757 PMCID: PMC4393008 DOI: 10.5402/2012/506160] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 10/09/2012] [Indexed: 01/21/2023]
Abstract
Gangliosides are sialic acid-containing glycosphingolipids. They occur especially on the cellular surfaces of neuronal cells, where they form a complex pattern, but are also found in many other cell types. The paper provides a general overview on their structures, occurrence, and metabolism. Key functional, biochemical, and pathobiochemical aspects are summarized.
Collapse
Affiliation(s)
- Thomas Kolter
- Program Unit Membrane Biology & Lipid Biochemistry, LiMES, University of Bonn, Gerhard-Domagk Straße 1, 53121 Bonn, Germany
| |
Collapse
|
334
|
Kollmann K, Damme M, Markmann S, Morelle W, Schweizer M, Hermans-Borgmeyer I, Röchert AK, Pohl S, Lübke T, Michalski JC, Käkelä R, Walkley SU, Braulke T. Lysosomal dysfunction causes neurodegeneration in mucolipidosis II 'knock-in' mice. ACTA ACUST UNITED AC 2012; 135:2661-75. [PMID: 22961545 DOI: 10.1093/brain/aws209] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Mucolipidosis II is a neurometabolic lysosomal trafficking disorder of infancy caused by loss of mannose 6-phosphate targeting signals on lysosomal proteins, leading to lysosomal dysfunction and accumulation of non-degraded material. However, the identity of storage material and mechanisms of neurodegeneration in mucolipidosis II are unknown. We have generated 'knock-in' mice with a common mucolipidosis II patient mutation that show growth retardation, progressive brain atrophy, skeletal abnormalities, elevated lysosomal enzyme activities in serum, lysosomal storage in fibroblasts and brain and premature death, closely mimicking the mucolipidosis II disease in humans. The examination of affected mouse brains at different ages by immunohistochemistry, ultrastructural analysis, immunoblotting and mass spectrometric analyses of glycans and anionic lipids revealed that the expression and proteolytic processing of distinct lysosomal proteins such as α-l-fucosidase, β-hexosaminidase, α-mannosidase or Niemann-Pick C2 protein are more significantly impacted by the loss of mannose 6-phosphate residues than enzymes reaching lysosomes independently of this targeting mechanism. As a consequence, fucosylated N-glycans, GM2 and GM3 gangliosides, cholesterol and bis(monoacylglycero)phosphate accumulate progressively in the brain of mucolipidosis II mice. Prominent astrogliosis and the accumulation of organelles and storage material in focally swollen axons were observed in the cerebellum and were accompanied by a loss of Purkinje cells. Moreover, an increased neuronal level of the microtubule-associated protein 1 light chain 3 and the formation of p62-positive neuronal aggregates indicate an impairment of constitutive autophagy in the mucolipidosis II brain. Our findings demonstrate the essential role of mannose 6-phosphate for selected lysosomal proteins to maintain the capability for degradation of sequestered components in lysosomes and autophagolysosomes and prevent neurodegeneration. These lysosomal proteins might be a potential target for a valid therapeutic approach for mucolipidosis II disease.
Collapse
Affiliation(s)
- K Kollmann
- Department of Biochemistry, Children’s Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
335
|
Abstract
The interplay of translation and mRNA turnover has helped unveil how the regulation of gene expression is a continuum in which events that occur during the birth of a transcript in the nucleus can have profound effects on subsequent steps in the cytoplasm. Exemplifying this continuum is nonsense-mediated mRNA decay (NMD), the process wherein a premature stop codon affects both translation and mRNA decay. Studies of NMD helped lead us to the therapeutic concept of treating a subset of patients suffering from multiple genetic disorders due to nonsense mutations with a single small-molecule drug that modulates the translation termination process at a premature nonsense codon. Here we review both translation termination and NMD, and our subsequent efforts over the past 15 years that led to the identification, characterization, and clinical testing of ataluren, a new therapeutic with the potential to treat a broad range of genetic disorders due to nonsense mutations.
Collapse
Affiliation(s)
- Stuart W Peltz
- PTC Therapeutics, Inc., South Plainfield, New Jersey 07080, USA.
| | | | | | | |
Collapse
|
336
|
Parenti G, Pignata C, Vajro P, Salerno M. New strategies for the treatment of lysosomal storage diseases (review). Int J Mol Med 2012; 31:11-20. [PMID: 23165354 DOI: 10.3892/ijmm.2012.1187] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 10/29/2012] [Indexed: 11/05/2022] Open
Abstract
The lysosomal storage diseases (LSDs) are a group of inherited metabolic disorders caused by the deficiency of any of the lysosomal functions, in most cases of lysosomal hydrolases. LSDs are typically characterized by storage of a variety of substrates in multiple tissues and organs and by the variable association of unusual clinical manifestations that are often responsible for physical and neurological handicaps. During the past two decades, research in the field of LSDs has made marked progress, particularly with the development of a variety of innovative therapeutic approaches. These include several strategies aimed at increasing the residual activity of the missing enzyme, such as hematopoietic stem cell transplantation, enzyme replacement therapy, pharmacological chaperone therapy and gene therapy. An alternative approach is based on reducing the synthesis of the stored substrate. More recently, the improved knowledge on LSD pathophysiology has indicated additional targets of therapy. The recent progress made in the treatment of LSDs represents a good model that may be extended to other genetic disorders.
Collapse
|
337
|
van Gelder CM, Vollebregt AAM, Plug I, van der Ploeg AT, Reuser AJJ. Treatment options for lysosomal storage disorders: developing insights. Expert Opin Pharmacother 2012; 13:2281-99. [PMID: 23009070 DOI: 10.1517/14656566.2012.729039] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Lysosomal storage disorders (LSDs) are clinically heterogeneous disorders that result primarily from lysosomal accumulation of macromolecules in various tissues. LSDs are always progressive, and often lead to severe symptoms and premature death. The identification of the underlying genetic and enzymatic defects has prompted the development of various treatment options. AREAS COVERED To describe the current treatment options for LSDs, the authors provide a focused overview of their pathophysiology. They discuss the current applications and challenges of enzyme-replacement therapy, stem-cell therapy, gene therapy, chaperone therapy and substrate-reduction therapy, as well as future therapeutic prospects. EXPERT OPINION Over recent decades, considerable progress has been made in the treatment of LSDs and in the outcome of patients. None of the current options are completely curative yet. They are complicated by the difficulty in efficiently targeting all affected tissues (particularly the central nervous system), in reaching sufficiently high enzyme levels in the target tissues, and by their high costs. The pathways leading from the genetic mutation to the clinical symptoms should be further elucidated, as they might prompt the development of new and ultimately curative therapies.
Collapse
Affiliation(s)
- Carin M van Gelder
- Erasmus MC University Medical Center, Center for Lysosomal and Metabolic Diseases, Department of Paediatrics, Dr. Molewaterplein 60, Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
338
|
Abstract
Lysosomal myopathies are hereditary myopathies characterized morphologically by the presence of autophagic vacuoles. In mammals, autophagy plays an important role for the turnover of cellular components, particularly in response to starvation or glucagons. In normal muscle, autolysosomes or autophagosomes are typically inconspicuous. In distinct neuromuscular disorders, however, lysosomes become structurally abnormal and functionally impaired, leading to the accumulation of autophagic vacuoles in myofibers. In some instances, the accumulation of autophagic vacuoles can be a prominent feature, implicating autophagy as a contributor to disease pathomechanism and/or progression. At present, there are two disorders in the muscle that are associated with a primary defect in lysosomal proteins, namely Pompe disease and Danon disease. This review will give a brief discussion on these disorders, highlighting the role of autophagy in disease progression.
Collapse
Affiliation(s)
- May Christine V Malicdan
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | | |
Collapse
|
339
|
Astrocyte dysfunction triggers neurodegeneration in a lysosomal storage disorder. Proc Natl Acad Sci U S A 2012; 109:E2334-42. [PMID: 22826245 DOI: 10.1073/pnas.1209577109] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The role of astrocytes in neurodegenerative processes is increasingly appreciated. Here we investigated the contribution of astrocytes to neurodegeneration in multiple sulfatase deficiency (MSD), a severe lysosomal storage disorder caused by mutations in the sulfatase modifying factor 1 (SUMF1) gene. Using Cre/Lox mouse models, we found that astrocyte-specific deletion of Sumf1 in vivo induced severe lysosomal storage and autophagy dysfunction with consequential cytoplasmic accumulation of autophagic substrates. Lysosomal storage in astrocytes was sufficient to induce degeneration of cortical neurons in vivo. Furthermore, in an ex vivo coculture assay, we observed that Sumf1(-/-) astrocytes failed to support the survival and function of wild-type cortical neurons, suggesting a non-cell autonomous mechanism for neurodegeneration. Compared with the astrocyte-specific deletion of Sumf1, the concomitant removal of Sumf1 in both neurons and glia in vivo induced a widespread neuronal loss and robust neuroinflammation. Finally, behavioral analysis of mice with astrocyte-specific deletion of Sumf1 compared with mice with Sumf1 deletion in both astrocytes and neurons allowed us to link a subset of neurological manifestations of MSD to astrocyte dysfunction. This study indicates that astrocytes are integral components of the neuropathology in MSD and that modulation of astrocyte function may impact disease course.
Collapse
|
340
|
Tomanin R, Zanetti A, Zaccariotto E, D'Avanzo F, Bellettato CM, Scarpa M. Gene therapy approaches for lysosomal storage disorders, a good model for the treatment of mendelian diseases. Acta Paediatr 2012; 101:692-701. [PMID: 22428546 DOI: 10.1111/j.1651-2227.2012.02674.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
UNLABELLED This review describes the different gene therapy technologies applied to approach lysosomal storage disorders, monogenic conditions, with known genetic and biochemical defects, for many of which animal models are available. Both viral and nonviral procedures are described, underlying the specific needs that the treatment of genetic disorders requires. CONCLUSIONS Lysosomal storage disorders represent a good model of study of gene therapeutic procedures that are, or could be, relevant to the treatment of several other mendelian diseases.
Collapse
Affiliation(s)
- Rosella Tomanin
- Gene Therapy Laboratory, Department of Pediatrics, University of Padova, Italy
| | | | | | | | | | | |
Collapse
|
341
|
TM7SF1 (GPR137B): a novel lysosome integral membrane protein. Mol Biol Rep 2012; 39:8883-9. [PMID: 22729905 DOI: 10.1007/s11033-012-1755-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Accepted: 06/07/2012] [Indexed: 01/29/2023]
Abstract
In the previous proteomic study of human placenta, transmembrane 7 superfamily member 1 (TM7SF1) was found enriched in lysosome compartments. TM7SF1 encodes a 399-amino acid protein with a calculated molecular mass of 45 kDa. Bioinformatic analysis of its amino acid sequence showed that it is a multipass transmembrane protein containing a potential dileucine-based lysosomal targeting signal and four putative N-glycosylation sites. By percoll-gradient centrifugation and further subfraction ways, the lysosomal solute and membrane compartments were isolated respectively. Immunoblotting analysis indicated that TM7SF1 was co-fractioned with lysosome associated membrane protein 2 (LAMP2), which was only detected in lysosomal membrane compartments whereas not detected in the solute compartments. Using specific anti-TM7SF1 antibody and double-immunofluorescence with lysosome membrane protein LAMP1 and Lyso-Tracker Red, the colocalisations of endogenous TM7SF1 with lysosome and late endosome markers were demonstrated. All of this indicated that TM7SF1 is an integral lysosome membrane protein. Rat ortholog of TM7SF1 was found to be strongly expressed in heart, liver, kidney and brain while not or low detected in other tissues. In summary, TM7SF1 was a lysosomal integral membrane protein that shows tissue-specific expression. As a G-protein-coupled receptor in lysosome membrane, TM7SF1 was predicted function as signal transduction across lysosome membrane.
Collapse
|
342
|
Arylsulfatase G inactivation causes loss of heparan sulfate 3-O-sulfatase activity and mucopolysaccharidosis in mice. Proc Natl Acad Sci U S A 2012; 109:10310-5. [PMID: 22689975 DOI: 10.1073/pnas.1202071109] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Deficiency of glycosaminoglycan (GAG) degradation causes a subclass of lysosomal storage disorders called mucopolysaccharidoses (MPSs), many of which present with severe neuropathology. Critical steps in the degradation of the GAG heparan sulfate remain enigmatic. Here we show that the lysosomal arylsulfatase G (ARSG) is the long-sought glucosamine-3-O-sulfatase required to complete the degradation of heparan sulfate. Arsg-deficient mice accumulate heparan sulfate in visceral organs and the central nervous system and develop neuronal cell death and behavioral deficits. This accumulated heparan sulfate exhibits unique nonreducing end structures with terminal N-sulfoglucosamine-3-O-sulfate residues, allowing diagnosis of the disorder. Recombinant human ARSG is able to cleave 3-O-sulfate groups from these residues as well as from an authentic 3-O-sulfated N-sulfoglucosamine standard. Our results demonstrate the key role of ARSG in heparan sulfate degradation and strongly suggest that ARSG deficiency represents a unique, as yet unknown form of MPS, which we term MPS IIIE.
Collapse
|
343
|
Campos D, Monaga M. Mucopolysaccharidosis type I: current knowledge on its pathophysiological mechanisms. Metab Brain Dis 2012; 27:121-9. [PMID: 22527994 DOI: 10.1007/s11011-012-9302-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 03/23/2012] [Indexed: 01/25/2023]
Abstract
Mucopolysaccharidosis type I is one of the most frequent lysosomal storage diseases. It has a high morbidity and mortality, causing in many cases severe neurological and somatic damage in the first years of life. Although the clinical phenotypes have been described for decades, and the enzymatic deficiency and many of the mutations that cause this disease are well known, the underlying pathophysiological mechanisms that lead to its development are not completely understood. In this review we describe and discuss the different pathogenic mechanisms currently proposed for this disease regarding its neurological damage. Deficiency in the lysosomal degradation of heparan sulfate and dermatan sulfate, as well as its primary accumulation, may disrupt a variety of physiological and biochemical processes: the intracellular and extracellular homeostasis of these macromolecules, the pathways related to gangliosides metabolism, mechanisms related to the activation of inflammation, receptor-mediated signaling, oxidative stress and permeability of the lysosomal membrane, as well as alterations in intracellular ionic homeostasis and the endosomal pathway. Many of the pathogenic mechanisms proposed for mucopolysaccharidosis type I are also present in other lysosomal storage diseases with neurological implications. Results from the use of methods that allow the analysis of multiple genes and proteins, in both patients and animal models, will shed light on the role of each of these mechanisms and their combination in the development of different phenotypes due to the same deficiency.
Collapse
Affiliation(s)
- Derbis Campos
- Department of Biochemical Genetics, National Center for Medical Genetics, Campus ICBP Victoria de Girón, Playa, La Habana, Cuba.
| | | |
Collapse
|
344
|
Demirel Ö, Jan I, Wolters D, Blanz J, Saftig P, Tampé R, Abele R. The lysosomal polypeptide transporter TAPL is stabilized by interaction with LAMP-1 and LAMP-2. J Cell Sci 2012; 125:4230-40. [PMID: 22641697 DOI: 10.1242/jcs.087346] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
TAPL (ABCB9) is a homodimeric polypeptide translocation machinery which transports cytosolic peptides into the lumen of lysosomes for degradation. Since the function of proteins is strongly dependent on the interaction network involved, we investigated the interactome of TAPL. A proteomic approach allowed identification of the lysosome-associated membrane proteins LAMP-1 and LAMP-2B as the most abundant interaction partners. Albeit with low frequency, major histocompatibility complex II subunits were also detected. The interaction interface with LAMP was mapped to the four-transmembrane helices constituting the N-terminal domain of TAPL (TMD0). The LAMP proteins bind independently to TAPL. This interaction has influence on neither subcellular localization nor peptide transport activity. However, in LAMP-deficient cells, the half-life of TAPL is decreased by a factor of five, whereas another lysosomal membrane protein, LIMP-2, is not affected. Reduced stability of TAPL is caused by increased lysosomal degradation, indicating that LAMP proteins retain TAPL on the limiting membrane of endosomes and prevent its sorting to intraluminal vesicles.
Collapse
Affiliation(s)
- Özlem Demirel
- Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | | | | | | | | | | | | |
Collapse
|
345
|
Lieberman AP, Puertollano R, Raben N, Slaugenhaupt S, Walkley SU, Ballabio A. Autophagy in lysosomal storage disorders. Autophagy 2012; 8:719-30. [PMID: 22647656 PMCID: PMC3378416 DOI: 10.4161/auto.19469] [Citation(s) in RCA: 306] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Lysosomes are ubiquitous intracellular organelles that have an acidic internal pH, and play crucial roles in cellular clearance. Numerous functions depend on normal lysosomes, including the turnover of cellular constituents, cholesterol homeostasis, downregulation of surface receptors, inactivation of pathogenic organisms, repair of the plasma membrane and bone remodeling. Lysosomal storage disorders (LSDs) are characterized by progressive accumulation of undigested macromolecules within the cell due to lysosomal dysfunction. As a consequence, many tissues and organ systems are affected, including brain, viscera, bone and cartilage. The progressive nature of phenotype development is one of the hallmarks of LSDs. In recent years biochemical and cell biology studies of LSDs have revealed an ample spectrum of abnormalities in a variety of cellular functions. These include defects in signaling pathways, calcium homeostasis, lipid biosynthesis and degradation and intracellular trafficking. Lysosomes also play a fundamental role in the autophagic pathway by fusing with autophagosomes and digesting their content. Considering the highly integrated function of lysosomes and autophagosomes it was reasonable to expect that lysosomal storage in LSDs would have an impact upon autophagy. The goal of this review is to provide readers with an overview of recent findings that have been obtained through analysis of the autophagic pathway in several types of LSDs, supporting the idea that LSDs could be seen primarily as "autophagy disorders."
Collapse
Affiliation(s)
- Andrew P Lieberman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI USA
| | | | | | | | | | | |
Collapse
|
346
|
Settembre C, Zoncu R, Medina DL, Vetrini F, Erdin S, Erdin S, Huynh T, Ferron M, Karsenty G, Vellard MC, Facchinetti V, Sabatini DM, Ballabio A. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J 2012; 31:1095-108. [PMID: 22343943 PMCID: PMC3298007 DOI: 10.1038/emboj.2012.32] [Citation(s) in RCA: 1475] [Impact Index Per Article: 113.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 01/27/2012] [Indexed: 12/26/2022] Open
Abstract
The lysosome plays a key role in cellular homeostasis by controlling both cellular clearance and energy production to respond to environmental cues. However, the mechanisms mediating lysosomal adaptation are largely unknown. Here, we show that the Transcription Factor EB (TFEB), a master regulator of lysosomal biogenesis, colocalizes with master growth regulator mTOR complex 1 (mTORC1) on the lysosomal membrane. When nutrients are present, phosphorylation of TFEB by mTORC1 inhibits TFEB activity. Conversely, pharmacological inhibition of mTORC1, as well as starvation and lysosomal disruption, activates TFEB by promoting its nuclear translocation. In addition, the transcriptional response of lysosomal and autophagic genes to either lysosomal dysfunction or pharmacological inhibition of mTORC1 is suppressed in TFEB-/- cells. Interestingly, the Rag GTPase complex, which senses lysosomal amino acids and activates mTORC1, is both necessary and sufficient to regulate starvation- and stress-induced nuclear translocation of TFEB. These data indicate that the lysosome senses its content and regulates its own biogenesis by a lysosome-to-nucleus signalling mechanism that involves TFEB and mTOR.
Collapse
Affiliation(s)
- Carmine Settembre
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Roberto Zoncu
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- David H Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, USA
| | - Diego L Medina
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Francesco Vetrini
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Serkan Erdin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - SerpilUckac Erdin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Tuong Huynh
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Mathieu Ferron
- Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Gerard Karsenty
- Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | | | - Valeria Facchinetti
- Department of Immunology, Center for Cancer Immunology Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David M Sabatini
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- David H Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, USA
- Seven Cambridge Center, Broad Institute, Cambridge, MA, USA
- Howard Hughes Medical Institute, MIT, Cambridge, MA, USA
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
- Medical Genetics, Department of Pediatrics, Federico II University, Naples, Italy
| |
Collapse
|
347
|
Dysregulation of gene expression in a lysosomal storage disease varies between brain regions implicating unexpected mechanisms of neuropathology. PLoS One 2012; 7:e32419. [PMID: 22403656 PMCID: PMC3293807 DOI: 10.1371/journal.pone.0032419] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 01/30/2012] [Indexed: 12/19/2022] Open
Abstract
The characteristic neurological feature of many neurogenetic diseases is intellectual disability. Although specific neuropathological features have been described, the mechanisms by which specific gene defects lead to cognitive impairment remain obscure. To gain insight into abnormal functions occurring secondary to a single gene defect, whole transcriptome analysis was used to identify molecular and cellular pathways that are dysregulated in the brain in a mouse model of a lysosomal storage disorder (LSD) (mucopolysaccharidosis [MPS] VII). We assayed multiple anatomical regions separately, in a large cohort of normal and diseased mice, which greatly increased the number of significant changes that could be detected compared to past studies in LSD models. We found that patterns of aberrant gene expression and involvement of multiple molecular and cellular systems varied significantly between brain regions. A number of changes revealed unexpected system and process alterations, such as up-regulation of the immune system with few inflammatory changes (a significant difference from the closely related MPS IIIb model), down-regulation of major oligodendrocyte genes even though white matter changes are not a feature histopathologically, and a plethora of developmental gene changes. The involvement of multiple neural systems indicates that the mechanisms of neuropathology in this type of disease are much broader than previously appreciated. In addition, the variation in gene dysregulation between brain regions indicates that different neuropathologic mechanisms may predominate within different regions of a diseased brain caused by a single gene mutation.
Collapse
|
348
|
Colletti GA, Miedel MT, Quinn J, Andharia N, Weisz OA, Kiselyov K. Loss of lysosomal ion channel transient receptor potential channel mucolipin-1 (TRPML1) leads to cathepsin B-dependent apoptosis. J Biol Chem 2012; 287:8082-91. [PMID: 22262857 DOI: 10.1074/jbc.m111.285536] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mucolipidosis type IV (MLIV) is a lysosomal storage disease caused by mutations in the gene MCOLN1, which codes for the transient receptor potential family ion channel TRPML1. MLIV has an early onset and is characterized by developmental delays, motor and cognitive deficiencies, gastric abnormalities, retinal degeneration, and corneal cloudiness. The degenerative aspects of MLIV have been attributed to cell death, whose mechanisms remain to be delineated in MLIV and in most other storage diseases. Here we report that an acute siRNA-mediated loss of TRPML1 specifically causes a leak of lysosomal protease cathepsin B (CatB) into the cytoplasm. CatB leak is associated with apoptosis, which can be prevented by CatB inhibition. Inhibition of the proapoptotic protein Bax prevents TRPML1 KD-mediated apoptosis but does not prevent cytosolic release of CatB. This is the first evidence of a mechanistic link between acute TRPML1 loss and cell death.
Collapse
Affiliation(s)
- Grace A Colletti
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | | | | | |
Collapse
|
349
|
Silva LC, Ben David O, Pewzner-Jung Y, Laviad EL, Stiban J, Bandyopadhyay S, Merrill AH, Prieto M, Futerman AH. Ablation of ceramide synthase 2 strongly affects biophysical properties of membranes. J Lipid Res 2012; 53:430-436. [PMID: 22231783 DOI: 10.1194/jlr.m022715] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Little is known about the effects of altering sphingolipid (SL) acyl chain structure and composition on the biophysical properties of biological membranes. We explored the biophysical consequences of depleting very long acyl chain (VLC) SLs in membranes prepared from lipid fractions isolated from a ceramide synthase 2 (CerS2)-null mouse, which is unable to synthesize C22-C24 ceramides. We demonstrate that ablation of CerS2 has different effects on liver and brain, causing a significant alteration in the fluidity of the membrane and affecting the type and/or extent of the phases present in the membrane. These changes are a consequence of the depletion of VLC and unsaturated SLs, which occurs to a different extent in liver and brain. In addition, ablation of CerS2 causes changes in intrinsic membrane curvature, leading to strong morphological alterations that promote vesicle adhesion, membrane fusion, and tubule formation. Together, these results show that depletion of VLC-SLs strongly affects membrane biophysical properties, which may compromise cellular processes that critically depend on membrane structure, such as trafficking and sorting.
Collapse
Affiliation(s)
- Liana C Silva
- iMed.UL, Research Institute for Medicines and Pharmaceutical Sciences, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal; Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel; CQFM & IN, Instituto Superior Técnico, 1049-001 Lisboa, Portugal.
| | - Oshrit Ben David
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yael Pewzner-Jung
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Elad L Laviad
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Johnny Stiban
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sibali Bandyopadhyay
- School of Biology and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0230
| | - Alfred H Merrill
- School of Biology and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0230
| | - Manuel Prieto
- CQFM & IN, Instituto Superior Técnico, 1049-001 Lisboa, Portugal
| | - Anthony H Futerman
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
350
|
de Pablo-Latorre R, Saide A, Polishhuck EV, Nusco E, Fraldi A, Ballabio A. Impaired parkin-mediated mitochondrial targeting to autophagosomes differentially contributes to tissue pathology in lysosomal storage diseases. Hum Mol Genet 2012; 21:1770-81. [PMID: 22215441 PMCID: PMC3313794 DOI: 10.1093/hmg/ddr610] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Dysfunctional mitochondria are a well-known disease hallmark. The accumulation of aberrant mitochondria can alter cell homeostasis, thus resulting in tissue degeneration. Lysosomal storage disorders (LSDs) are a group of inherited diseases characterized by the buildup of undegraded material inside the lysosomes that leads to autophagic-lysosomal dysfunction. In LSDs, autophagic stress has been associated to mitochondrial accumulation and dysfunction. However, the mechanisms underlying mitochondrial aberrations and how these are involved in tissue pathogenesis remain largely unexplored. In normal conditions, mitochondrial clearance occurs by mitophagy, a selective form of autophagy, which relies on a parkin-mediated mitochondrial priming and subsequent sequestration by autophagosomes. Here, we performed a detailed analysis of key steps of mitophagy in a mouse model of multiple sulfatase deficiency (MSD), a severe type of LSD characterized by both neurological and systemic involvement. We demonstrated that in MSD liver reduced parkin levels resulted in inefficient mitochondrial priming, thus contributing to the accumulation of giant mitochondria that are located outside autophagic vesicles ultimately leading to cytochrome c release and apoptotic cell death. Morphological and functional changes were also observed in mitochondria from MSD brain but these were not directly associated with neuronal cell loss, suggesting a secondary contribution of mitochondria to neurodegeneration. Together, these data shed new light on the mechanisms underlying mitochondrial dysfunction in LSDs and on their tissue-specific differential contribution to the pathogenesis of this group of metabolic disorders.
Collapse
|