301
|
Mahalakshmi AM, Ray B, Tuladhar S, Hediyal TA, Raj P, Rathipriya AG, Qoronfleh MW, Essa MM, Chidambaram SB. Impact of Pharmacological and Non-Pharmacological Modulators on Dendritic Spines Structure and Functions in Brain. Cells 2021; 10:3405. [PMID: 34943913 PMCID: PMC8699406 DOI: 10.3390/cells10123405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Dendritic spines are small, thin, hair-like protrusions found on the dendritic processes of neurons. They serve as independent compartments providing large amplitudes of Ca2+ signals to achieve synaptic plasticity, provide sites for newer synapses, facilitate learning and memory. One of the common and severe complication of neurodegenerative disease is cognitive impairment, which is said to be closely associated with spine pathologies viz., decreased in spine density, spine length, spine volume, spine size etc. Many treatments targeting neurological diseases have shown to improve the spine structure and distribution. However, concise data on the various modulators of dendritic spines are imperative and a need of the hour. Hence, in this review we made an attempt to consolidate the effects of various pharmacological (cholinergic, glutamatergic, GABAergic, serotonergic, adrenergic, and dopaminergic agents) and non-pharmacological modulators (dietary interventions, enriched environment, yoga and meditation) on dendritic spines structure and functions. These data suggest that both the pharmacological and non-pharmacological modulators produced significant improvement in dendritic spine structure and functions and in turn reversing the pathologies underlying neurodegeneration. Intriguingly, the non-pharmacological approaches have shown to improve intellectual performances both in preclinical and clinical platforms, but still more technology-based evidence needs to be studied. Thus, we conclude that a combination of pharmacological and non-pharmacological intervention may restore cognitive performance synergistically via improving dendritic spine number and functions in various neurological disorders.
Collapse
Affiliation(s)
- Arehally M. Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (A.M.M.); (B.R.); (S.T.); (T.A.H.); (P.R.)
- SIG-Brain, Behaviour and Cognitive Neurosciences Research (BBRC), JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Bipul Ray
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (A.M.M.); (B.R.); (S.T.); (T.A.H.); (P.R.)
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Sunanda Tuladhar
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (A.M.M.); (B.R.); (S.T.); (T.A.H.); (P.R.)
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Tousif Ahmed Hediyal
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (A.M.M.); (B.R.); (S.T.); (T.A.H.); (P.R.)
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Praveen Raj
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (A.M.M.); (B.R.); (S.T.); (T.A.H.); (P.R.)
| | | | - M. Walid Qoronfleh
- Q3CG Research Institute (QRI), Research and Policy Division, 7227 Rachel Drive, Ypsilanti, MI 48917, USA;
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat 123, Oman
- Ageing and Dementia Research Group, Sultan Qaboos University, Muscat 123, Oman
- Biomedical Sciences Department, University of Pacific, Sacramento, CA 95211, USA
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (A.M.M.); (B.R.); (S.T.); (T.A.H.); (P.R.)
- SIG-Brain, Behaviour and Cognitive Neurosciences Research (BBRC), JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| |
Collapse
|
302
|
Sayers B, Wijeyesekera A, Gibson G. Exploring the potential of prebiotic and polyphenol-based dietary interventions for the alleviation of cognitive and gastrointestinal perturbations associated with military specific stressors. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
303
|
Effect of Tempeh on Gut Microbiota and Anti-Stress Activity in Zebrafish. Int J Mol Sci 2021; 22:ijms222312660. [PMID: 34884465 PMCID: PMC8658004 DOI: 10.3390/ijms222312660] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/02/2022] Open
Abstract
Rhizopus oryzae is a fungus used to ferment tempeh in Indonesia and is generally recognized as safe (GRAS) for human consumption by the USA FDA. We previously assessed the effect of a tempeh extract on cortisol levels in zebrafish but did not include behavioral studies. Here, we measured the GABA content in three strains of Rhizopus oryzae, two isolated by us (MHU 001 and MHU 002) and one purchased. We then investigated the effect of tempeh on cortisol and the gut microbiota in a zebrafish experimental model. GABA concentration was the highest in MHU 002 (9.712 ± 0.404 g kg−1) followed by our MHU 001 strain and the purchased one. The fish were divided into one control group fed a normal diet and three experimental groups fed soybean tempeh fermented with one of the three strains of Rhizopus oryzae. After two weeks, individual fish were subjected to unpredicted chronic stress using the novel tank diving test and the tank light–dark test. Next-generation sequencing was used to analyze gut microbial communities and RT-PCR to analyze the expression of BDNF (brain-derived neurotrophic factor) gene and of other genes involved in serotonin signaling/metabolism in gut and brain. Tempeh-fed zebrafish exhibited increased exploratory behavior (less stress) in both tank tests. They also had significantly reduced gut Proteobacteria (include E. coli) (51.90% vs. 84.97%) and significantly increased gut Actinobacteria (include Bifidobacterium spp.) (1.80% vs. 0.79%). The content of Bifidobacteriumadolescentis, a “psychobiotic”, increased ten-fold from 0.04% to 0.45%. Tempeh also increases BDNF levels in zebrafish brain. Rhizopus oryzae MHU 001 greatly improved the anti-stress effect of tempeh and microbiota composition in zebrafish gut.
Collapse
|
304
|
Yılmaz C, Gökmen V. Perspective on the Formation, Analysis, and Health Effects of Neuroactive Compounds in Foods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13364-13372. [PMID: 34738798 DOI: 10.1021/acs.jafc.1c05181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Foods contain neuroactive compounds, such as γ-aminobutyric acid, serotonin, kynurenic acid, and catecholamines. Neuroactive compounds synthesized by humans have various behavioral and physiological roles. It is thus significant for future studies to investigate how diet-derived neuroactive compounds can impact human health and mood. In this perspective, we provide a background for the brief formation mechanisms of neuroactive compounds in plants and microorganisms, their concentrations in foods, and their potential health effects. Liquid chromatography approaches for the analysis of neuroactive compounds are highlighted, together with the extraction procedures. The possibilities for the design of novel foods containing neuroactive compounds are also discussed.
Collapse
Affiliation(s)
- Cemile Yılmaz
- Food Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University, 06800 Beytepe, Ankara, Turkey
| | - Vural Gökmen
- Food Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University, 06800 Beytepe, Ankara, Turkey
| |
Collapse
|
305
|
Yadav M, Chauhan NS. Microbiome therapeutics: exploring the present scenario and challenges. Gastroenterol Rep (Oxf) 2021; 10:goab046. [PMID: 35382166 PMCID: PMC8972995 DOI: 10.1093/gastro/goab046] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 12/11/2022] Open
Abstract
Human gut-microbiome explorations have enriched our understanding of microbial colonization, maturation, and dysbiosis in health-and-disease subsets. The enormous metabolic potential of gut microbes and their role in the maintenance of human health is emerging, with new avenues to use them as therapeutic agents to overcome human disorders. Microbiome therapeutics are aimed at engineering the gut microbiome using additive, subtractive, or modulatory therapy with an application of native or engineered microbes, antibiotics, bacteriophages, and bacteriocins. This approach could overcome the limitation of conventional therapeutics by providing personalized, harmonized, reliable, and sustainable treatment. Its huge economic potential has been shown in the global therapeutics market. Despite the therapeutic and economical potential, microbiome therapeutics is still in the developing stage and is facing various technical and administrative issues that require research attention. This review aims to address the current knowledge and landscape of microbiome therapeutics, provides an overview of existing health-and-disease applications, and discusses the potential future directions of microbiome modulations.
Collapse
Affiliation(s)
- Monika Yadav
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Nar Singh Chauhan
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
306
|
|
307
|
Alagiakrishnan K, Halverson T. Microbial Therapeutics in Neurocognitive and Psychiatric Disorders. J Clin Med Res 2021; 13:439-459. [PMID: 34691318 PMCID: PMC8510649 DOI: 10.14740/jocmr4575] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/28/2021] [Indexed: 12/12/2022] Open
Abstract
Microbial therapeutics, which include gut biotics and fecal transplantation, are interventions designed to improve the gut microbiome. Gut biotics can be considered as the administration of direct microbial populations. The delivery of this can be done through live microbial flora, certain food like fiber, microbial products (metabolites and elements) obtained through the fermentation of food products, or as genetically engineered substances, that may have therapeutic benefit on different health disorders. Dietary intervention and pharmacological supplements with gut biotics aim at correcting disruption of the gut microbiota by repopulating with beneficial microorganism leading to decrease in gut permeability, inflammation, and alteration in metabolic activities, through a variety of mechanisms of action. Our understanding of the pharmacokinetics of microbial therapeutics has improved with in vitro models, sampling techniques in the gut, and tools for the reliable identification of gut biotics. Evidence from human studies points out that prebiotics, probiotics and synbiotics have the potential for treating and preventing mental health disorders, whereas with paraprobiotics, proteobiotics and postbiotics, the research is limited at this point. Some animal studies point out that gut biotics can be used with conventional treatments for a synergistic effect on mental health disorders. If future research shows that there is a possibility of synergistic effect of psychotropic medications with gut biotics, then a gut biotic or nutritional prescription can be given along with psychotropics. Even though the overall safety of gut biotics seems to be good, caution is needed to watch for any known and unknown side effects as well as the need for risk benefit analysis with certain vulnerable populations. Future research is needed before wide spread use of natural and genetically engineered gut biotics. Regulatory framework for gut biotics needs to be optimized. Holistic understanding of gut dysbiosis, along with life style factors, by health care providers is necessary for the better management of these conditions. In conclusion, microbial therapeutics are a new psychotherapeutic approach which offer some hope in certain conditions like dementia and depression. Future of microbial therapeutics will be driven by well-done randomized controlled trials and longitudinal research, as well as by replication studies in human subjects.
Collapse
Affiliation(s)
- Kannayiram Alagiakrishnan
- Division of Geriatric Medicine, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Tyler Halverson
- Division of Psychiatry, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
308
|
Chen HM, Kuo PH, Hsu CY, Chiu YH, Liu YW, Lu ML, Chen CH. Psychophysiological Effects of Lactobacillus plantarum PS128 in Patients with Major Depressive Disorder: A Preliminary 8-Week Open Trial. Nutrients 2021; 13:nu13113731. [PMID: 34835987 PMCID: PMC8618644 DOI: 10.3390/nu13113731] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
Recent studies have suggested that gut–brain axis may be one of the mechanisms of major depression disorder (MDD). The current study aimed to investigate the effects of Lactobacillus plantarum PS128 (PS128) on psychophysiology in patients with MDD. We recruited 11 patients with MDD and gave them PS128 for 8 weeks. We compared depression symptoms, serum markers of inflammation and gut permeability, and gut microbiota before and after 8-week intervention and also explored the correlations among symptoms, biomarkers, and gut microbiota. After 8-week PS128 intervention, scores of Hamilton Depression Rating Scale-17 and Depression and Somatic symptoms Scale significantly decreased. Serum levels of high sensitivity c-reactive protein, interluekin-6, and tumor necrosis factor-α, zonulin and intestinal fatty acid binding protein, and the composition of gut microbiota did not significantly change after 8-week PS128 intervention. However, we found changes of some genera were correlated with changes of symptoms and biomarkers. In conclusion, this is an open trial with small sample size and has several limitations. The results need to be verified by randomized, double-blind, placebo-controlled trial with larger sample size.
Collapse
Affiliation(s)
- Hui-Mei Chen
- Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei 100, Taiwan;
| | - Po-Hsiu Kuo
- Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei 100, Taiwan;
- Department of Psychiatry, National Taiwan University Hospital, Taipei 100, Taiwan
- Correspondence: (P.-H.K.); (C.-H.C.); Tel.: +886-2-3366-8015 (P.-H.K.); +886-2-2930-7930 (ext. 53961) (C.-H.C.); Fax: +886-2-2351-1955 (P.-H.K.); +886-2-2933-5221 (C.-H.C.)
| | - Chia-Yueh Hsu
- Department of Psychiatry, Taipei Municipal Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan; (C.-Y.H.); (Y.-H.C.); (M.-L.L.)
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Yi-Hung Chiu
- Department of Psychiatry, Taipei Municipal Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan; (C.-Y.H.); (Y.-H.C.); (M.-L.L.)
| | - Yen-Wenn Liu
- Institute of Biochemistry of Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan;
| | - Mong-Liang Lu
- Department of Psychiatry, Taipei Municipal Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan; (C.-Y.H.); (Y.-H.C.); (M.-L.L.)
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Chun-Hsin Chen
- Department of Psychiatry, Taipei Municipal Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan; (C.-Y.H.); (Y.-H.C.); (M.-L.L.)
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: (P.-H.K.); (C.-H.C.); Tel.: +886-2-3366-8015 (P.-H.K.); +886-2-2930-7930 (ext. 53961) (C.-H.C.); Fax: +886-2-2351-1955 (P.-H.K.); +886-2-2933-5221 (C.-H.C.)
| |
Collapse
|
309
|
Predictive Value of Gut Microbiome for Cognitive Impairment in Patients with Hypertension. DISEASE MARKERS 2021; 2021:1683981. [PMID: 34659587 PMCID: PMC8514967 DOI: 10.1155/2021/1683981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 12/20/2022]
Abstract
A connection exists between hypertension (HTN) and cognitive impairment (CI) or gut microbiota (GM) and neuropsychiatric disease. However, the link between GM and HTNCI has not been illustrated. This study endeavoured to profile the landscape of GM in HTNCI patients and evaluate the value of GM as HTNCI biomarkers. We recruited 128 patients with hypertension and assigned them to two groups of different MoCA scores. Clinical and biological data were recorded. GM composition was illustrated with 16S ribosomal RNA sequencing, and the dominant species were identified by linear discriminant analysis Effect Size (LEfSe). It showed higher abundance of TM7 and lower abundances of Veillonella and Peptoniphilus in the HTNCI group than in the HTN without cognitive impairment (HTNnCI) group. We next clarified the link between GM and MoCA scores or HTNCI factors. KEGG analysis revealed the involvement of decreased bile secretion. An evident correlation showed up between HTNCI and Veillonella abundance (P = 0.0340). We concluded that some representative GM species, especially Veillonella, could predict cognitive impairment in hypertension patients, making them potential benchmarks of HTNCI.
Collapse
|
310
|
Microbiota-brain interactions: Moving toward mechanisms in model organisms. Neuron 2021; 109:3930-3953. [PMID: 34653349 DOI: 10.1016/j.neuron.2021.09.036] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/03/2021] [Accepted: 09/17/2021] [Indexed: 02/07/2023]
Abstract
Changes in the microbiota are associated with alterations in nervous system structure-function and behavior and have been implicated in the etiology of neuropsychiatric and neurodegenerative disorders. Most of these studies have centered on mammalian models due to their phylogenetic proximity to humans. Indeed, the germ-free mouse has been a particularly useful model organism for investigating microbiota-brain interactions. However, microbiota-brain axis research on simpler genetic model organisms with a vast and diverse scientific toolkit (zebrafish, Drosophila melanogaster, and Caenorhabditis elegans) is now also coming of age. In this review, we summarize the current state of microbiota-brain axis research in rodents and humans, and then we elaborate and discuss recent research on the neurobiological and behavioral effects of the microbiota in the model systems of fish, flies, and worms. We propose that a cross-species, holistic and mechanistic approach to unravel the microbiota-brain communication is an essential step toward rational microbiota-based therapeutics to combat brain disorders.
Collapse
|
311
|
Hull R, Lolas G, Makrogkikas S, Jensen LD, Syrigos KN, Evangelou G, Padayachy L, Egbor C, Mehrotra R, Makhafola TJ, Oyomno M, Dlamini Z. Microbiomics in Collusion with the Nervous System in Carcinogenesis: Diagnosis, Pathogenesis and Treatment. Microorganisms 2021; 9:2129. [PMID: 34683450 PMCID: PMC8538279 DOI: 10.3390/microorganisms9102129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022] Open
Abstract
The influence of the naturally occurring population of microbes on various human diseases has been a topic of much recent interest. Not surprisingly, continuously growing attention is devoted to the existence of a gut brain axis, where the microbiota present in the gut can affect the nervous system through the release of metabolites, stimulation of the immune system, changing the permeability of the blood-brain barrier or activating the vagus nerves. Many of the methods that stimulate the nervous system can also lead to the development of cancer by manipulating pathways associated with the hallmarks of cancer. Moreover, neurogenesis or the creation of new nervous tissue, is associated with the development and progression of cancer in a similar manner as the blood and lymphatic systems. Finally, microbes can secrete neurotransmitters, which can stimulate cancer growth and development. In this review we discuss the latest evidence that support the importance of microbiota and peripheral nerves in cancer development and dissemination.
Collapse
Affiliation(s)
- Rodney Hull
- SAMRC Precision Oncology Research Unit (PORU), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa; (R.H.); (G.L.); (L.P.); (C.E.); (R.M.); (T.J.M.); (M.O.)
| | - Georgios Lolas
- SAMRC Precision Oncology Research Unit (PORU), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa; (R.H.); (G.L.); (L.P.); (C.E.); (R.M.); (T.J.M.); (M.O.)
- Department of Medicine, National & Kapodistrian University of Athens, 11527 Athens, Greece; (K.N.S.); (G.E.)
| | | | - Lasse D. Jensen
- Division of Cardiovascular Medicine, Department of Health, Medicine and Caring Sciences, Faculty of Medicine, Linköping University, 581 83 Linköping, Sweden;
| | - Konstantinos N. Syrigos
- Department of Medicine, National & Kapodistrian University of Athens, 11527 Athens, Greece; (K.N.S.); (G.E.)
| | - George Evangelou
- Department of Medicine, National & Kapodistrian University of Athens, 11527 Athens, Greece; (K.N.S.); (G.E.)
| | - Llewellyn Padayachy
- SAMRC Precision Oncology Research Unit (PORU), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa; (R.H.); (G.L.); (L.P.); (C.E.); (R.M.); (T.J.M.); (M.O.)
- Department of Neurosurgery, University of Pretoria, Hatfield 0028, South Africa
| | - Cyril Egbor
- SAMRC Precision Oncology Research Unit (PORU), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa; (R.H.); (G.L.); (L.P.); (C.E.); (R.M.); (T.J.M.); (M.O.)
- Department of Neurosurgery, University of Pretoria, Hatfield 0028, South Africa
| | - Ravi Mehrotra
- SAMRC Precision Oncology Research Unit (PORU), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa; (R.H.); (G.L.); (L.P.); (C.E.); (R.M.); (T.J.M.); (M.O.)
- Centre for Health Innovation and Policy (CHIP) Foundation, Noida 201301, India
- Datar Cancer Genetics, Nashik 422010, India
| | - Tshepiso Jan Makhafola
- SAMRC Precision Oncology Research Unit (PORU), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa; (R.H.); (G.L.); (L.P.); (C.E.); (R.M.); (T.J.M.); (M.O.)
- Centre for Quality of Health and Living, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein 9300, South Africa
| | - Meryl Oyomno
- SAMRC Precision Oncology Research Unit (PORU), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa; (R.H.); (G.L.); (L.P.); (C.E.); (R.M.); (T.J.M.); (M.O.)
- Department of Surgery, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, Pretoria 0007, South Africa
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa; (R.H.); (G.L.); (L.P.); (C.E.); (R.M.); (T.J.M.); (M.O.)
| |
Collapse
|
312
|
Lombardi M, Troisi J. Gut Reactions: How Far Are We from Understanding and Manipulating the Microbiota Complexity and the Interaction with Its Host? Lessons from Autism Spectrum Disorder Studies. Nutrients 2021; 13:3492. [PMID: 34684493 PMCID: PMC8538077 DOI: 10.3390/nu13103492] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 12/11/2022] Open
Abstract
Autism is a group of neurodevelopmental disorders, characterized by early onset difficulties in social communication and restricted, repetitive behaviors and interests. It is characterized by familial aggregation, suggesting that genetic factors play a role in disease development, in addition to developmentally early environmental factors. Here, we review the role of the gut microbiome in autism, as it has been characterized in case-control studies. We discuss how methodological differences may have led to inconclusive or contradictory results, even though a disproportion between harmful and beneficial bacteria is generally described in autism. Furthermore, we review the studies concerning the effects of gut microbial-based and dietary interventions on autism symptoms. Also, in this case, the results are not comparable due to the lack of standardized methods. Therefore, autism-specific microbiome signatures and, consequently, possible microbiome-oriented interventions are far from being recognized. We argue that a multi-omic longitudinal implementation may be useful to study metabolic changes connected to microbiome changes.
Collapse
Affiliation(s)
- Martina Lombardi
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Via Giovanni Paolo II, 132-84084 Fisciano, SA, Italy; or
- Theoreo Srl Spin Off Company, University of Salerno, Via Giovanni Paolo II, 132-84084 Fisciano, SA, Italy
| | - Jacopo Troisi
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Via Giovanni Paolo II, 132-84084 Fisciano, SA, Italy; or
- Theoreo Srl Spin Off Company, University of Salerno, Via Giovanni Paolo II, 132-84084 Fisciano, SA, Italy
| |
Collapse
|
313
|
Petrella C, Strimpakos G, Torcinaro A, Middei S, Ricci V, Gargari G, Mora D, De Santa F, Farioli-Vecchioli S. Proneurogenic and neuroprotective effect of a multi strain probiotic mixture in a mouse model of acute inflammation: Involvement of the gut-brain axis. Pharmacol Res 2021; 172:105795. [PMID: 34339837 DOI: 10.1016/j.phrs.2021.105795] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/20/2021] [Accepted: 07/27/2021] [Indexed: 12/31/2022]
Abstract
Neuroinflammation can severely affect brain homeostasis and adult hippocampal neurogenesis with detrimental effects on cognitive processes. Brain and gut are intimately connected via the "gut-brain axis", a bidirectional communication system, and the administration of live bacteria (probiotics) has been shown to represent an intriguing approach for the prevention or even the cure of several diseases. In the present study we evaluated the putative neuroprotective effect of 15-days consumption of a multi-strain probiotic formulation based on food-associated strains and human gut bacteria at the dose of 109 CFU/mouse/day in a mouse model of acute inflammation, induced by an intraperitoneal single injection of LPS (0.1 mg/kg) at the end of probiotic administration. The results indicate that the prolonged administration of the multi-strain probiotic formulation not only prevents the LPS-dependent increase of pro-inflammatory cytokines in specific regions of the brain (hippocampus and cortex) and in the gastrointestinal district but also triggers a potent proneurogenic response capable of enhancing hippocampal neurogenesis. This effect is accompanied by a potentiation of intestinal barrier, as documented by the increased epithelial junction expression in the colon. Our hypothesis is that pre-treatment with the multi-strain probiotic formulation helps to create a systemic protection able to counteract or alleviate the effects of LPS-dependent acute pro-inflammatory responses.
Collapse
Affiliation(s)
- Carla Petrella
- Institute of Biochemistry and Cell Biology, IBBC, CNR, Policlinico Umberto I, Rome, Italy
| | - Georgios Strimpakos
- Institute of Biochemistry and Cell Biology, IBBC, CNR, Monterotondo, Rome, Italy
| | - Alessio Torcinaro
- Institute of Biochemistry and Cell Biology, IBBC, CNR, Monterotondo, Rome, Italy
| | - Silvia Middei
- Institute of Biochemistry and Cell Biology, IBBC, CNR, Monterotondo, Rome, Italy; European Brain Research Institute (EBRI), Rome, Italy
| | - Valentina Ricci
- Institute of Biochemistry and Cell Biology, IBBC, CNR, Monterotondo, Rome, Italy
| | - Giorgio Gargari
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Diego Mora
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Francesca De Santa
- Institute of Biochemistry and Cell Biology, IBBC, CNR, Monterotondo, Rome, Italy
| | | |
Collapse
|
314
|
Minayo MDS, Miranda I, Telhado RS. A systematic review of the effects of probiotics on depression and anxiety: an alternative therapy? CIENCIA & SAUDE COLETIVA 2021; 26:4087-4099. [PMID: 34586262 DOI: 10.1590/1413-81232021269.21342020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 06/26/2020] [Indexed: 12/28/2022] Open
Abstract
This review aims to understand and analyse the effects of probiotics on depression, anxiety and psychological stress. These disorders are among the leading causes of disability worldwide. Conventional pharmacotherapies usually have a poor response or adverse side effects. In this context, recent studies have demonstrated a dense bi-directional communication named gut-brain axis. Evidences are demonstrating the relationship between disturbance in the enteric microbiome and psychiatric disorders, paving the way for the emergence of alternative therapies. A systematic search for randomized double/triple blind placebo-controlled clinical trials was performed in PubMed, Scopus and Lilacs. The studies selection followed the recommendations of the main items for report systematic reviews and meta-analyses (PRISMA). Nine articles met the criteria and were analysed for effects on depression, anxiety, psychological stress and biomarkers. Seven found positive results in at least one of the items. We concluded that the use of probiotics to alleviate depressive symptoms and anxiety is promising, mainly due to its potential anti-inflammatory effect, but additional and more rigorous double blind randomized clinical trials are necessary to endorse such conclusions.
Collapse
Affiliation(s)
- Miryam de Souza Minayo
- Cooperação Internacional, Fundação Oswaldo Cruz. Av. Brasil 4.365 (prédio atrás do castelo), Manguinhos. 21040-360 Rio de Janeiro RJ Brasil.
| | - Iasmim Miranda
- Centro Universitário IBMR, Laureate International Universities. Rio de Janeiro RJ Brasil
| | - Raquel Senna Telhado
- Centro Universitário IBMR, Laureate International Universities. Rio de Janeiro RJ Brasil
| |
Collapse
|
315
|
Foster JA, Baker GB, Dursun SM. The Relationship Between the Gut Microbiome-Immune System-Brain Axis and Major Depressive Disorder. Front Neurol 2021; 12:721126. [PMID: 34650506 PMCID: PMC8508781 DOI: 10.3389/fneur.2021.721126] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/24/2021] [Indexed: 12/17/2022] Open
Abstract
Major depressive disorder (MDD) is a prominent cause of disability worldwide. Current antidepressant drugs produce full remission in only about one-third of MDD patients and there are no biomarkers to guide physicians in selecting the best treatment for individuals. There is an urgency to learn more about the etiology of MDD and to identify new targets that will lead to improved therapy and hopefully aid in predicting and preventing MDD. There has been extensive interest in the roles of the immune system and the gut microbiome in MDD and in how these systems interact. Gut microbes can contribute to the nature of immune responses, and a chronic inflammatory state may lead to increased responsiveness to stress and to development of MDD. The gut microbiome-immune system-brain axis is bidirectional, is sensitive to stress and is important in development of stress-related disorders such as MDD. Communication between the gut and brain involves the enteric nervous system (ENS), the autonomic nervous system (ANS), neuroendocrine signaling systems and the immune system, and all of these can interact with the gut microbiota. Preclinical studies and preliminary clinical investigations have reported improved mood with administration of probiotics and prebiotics, but large, carefully controlled clinical trials are now necessary to evaluate their effectiveness in treating MDD. The roles that several gut microbe-derived molecules such as neurotransmitters, short chain fatty acids and tryptophan play in MDD are reviewed briefly. Challenges and potential future directions associated with studying this important axis as it relates to MDD are discussed.
Collapse
Affiliation(s)
- Jane A. Foster
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Glen B. Baker
- Department of Psychiatry and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Serdar M. Dursun
- Department of Psychiatry and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
316
|
Effect of Psychobiotics on Psychometric Tests and Inflammatory Markers in Major Depressive Disorder: Meta-Analysis of Randomized Controlled Trials with Meta-Regression. Pharmaceuticals (Basel) 2021; 14:ph14100952. [PMID: 34681176 PMCID: PMC8541446 DOI: 10.3390/ph14100952] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 01/01/2023] Open
Abstract
Probiotics were shown to act positively on gut–brain axis signaling. We aimed to assess the effect of the administration of a new class of probiotics—psychobiotics—using data from individual psychometric scales, markers of the immune system and neuroactive metabolites. Medical databases were searched from database inception until 22 April 2021 for randomized clinical trials in clinically proven Major Depressive Disorder (MDD) patients treated with either probiotics or placebo reporting any psychometric score (PROSPERO registration number: CRD42021253024). Ten studies with 705 randomized participants and 603 analyzed were included. The mean age of individuals was 38.43 ± 12.1 years, predominantly women (n = 461, 76.45). The mean study duration was 48.8 ± 12.3 (range = 28–62) days. The dosage ranged between 1 × 109 to 2 × 1010 colony forming units (CFU)/day. We found that probiotics might alleviate symptoms of MDD; endpoint data (pooled scores): SMD = −0.292, 95%CI = −0.577 to −0.007, p < 0.044; change scores (BDI): SMD = −0.482, 95%CI = −0.854 to –0.109, p < 0.011; DM = −4.848, 95%CI = −8.559 to −1.137, p < 0.01. The therapy tended to be more effective with time of psychobiotic supplementation (coefficient = −0.12, SE = 0.06, Z = −1.84, p = 0.06) and in men (% of females: coefficient = 0.1, SE = 0.06, Z = 1.78, p = 0.07). Psychobiotics have great potential in the treatment of MDD. However, no specific strain/strains, dosage or duration of treatment can currently be recommended.
Collapse
|
317
|
Poluektova EU, Danilenko VN. Probiotic Bacteria in the Correction of Depression Symptoms, Their Active Genes and Proteins. RUSS J GENET+ 2021. [DOI: 10.1134/s102279542109009x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
318
|
Aziz MNM, Kumar J, Muhammad Nawawi KN, Raja Ali RA, Mokhtar NM. Irritable Bowel Syndrome, Depression, and Neurodegeneration: A Bidirectional Communication from Gut to Brain. Nutrients 2021; 13:nu13093061. [PMID: 34578939 PMCID: PMC8468817 DOI: 10.3390/nu13093061] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
Patients with irritable bowel syndrome (IBS) are increasingly presenting with a wide range of neuropsychiatric symptoms, such as deterioration in gastroenteric physiology, including visceral hypersensitivity, altered intestinal membrane permeability, and gastrointestinal motor dysfunction. Functional imaging of IBS patients has revealed several abnormalities in various brain regions, such as significant activation of amygdala, thinning of insular and anterior cingulate cortex, and increase in hypothalamic gray matter, which results in poor psychiatric and cognitive outcomes. Interrelations between the enteric and central events in IBS-related gastrointestinal, neurological, and psychiatric pathologies have compelled researchers to study the gut-brain axis-a bidirectional communication that maintains the homeostasis of the gastrointestinal and central nervous system with gut microbiota as the protagonist. Thus, it can be disrupted by any alteration owing to the gut dysbiosis or loss of diversity in microbial composition. Available evidence indicates that the use of probiotics as a part of a balanced diet is effective in the management of IBS and IBS-associated neurodegenerative and psychiatric comorbidities. In this review, we delineate the pathogenesis and complications of IBS from gastrointestinal and neuropsychiatric standpoints while also discussing the neurodegenerative events in enteric and central nervous systems of IBS patients and the therapeutic potential of gut microbiota-based therapy established on clinical and preclinical data.
Collapse
Affiliation(s)
- Muhammad Nazirul Mubin Aziz
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (M.N.M.A.); (J.K.)
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (M.N.M.A.); (J.K.)
- Gut Research Group, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (K.N.M.N.); (R.A.R.A.)
| | - Khairul Najmi Muhammad Nawawi
- Gut Research Group, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (K.N.M.N.); (R.A.R.A.)
- Gastroenterology Unit, Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Raja Affendi Raja Ali
- Gut Research Group, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (K.N.M.N.); (R.A.R.A.)
- Gastroenterology Unit, Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Norfilza M. Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (M.N.M.A.); (J.K.)
- Gut Research Group, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (K.N.M.N.); (R.A.R.A.)
- Correspondence:
| |
Collapse
|
319
|
Forouzan S, McGrew K, Kosten TA. Drugs and bugs: Negative affect, psychostimulant use and withdrawal, and the microbiome. Am J Addict 2021; 30:525-538. [PMID: 34414622 DOI: 10.1111/ajad.13210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND OBJECTIVES A growing body of literature demonstrates that the human microbiota plays a crucial role in health and disease states, as well as in the body's response to stress. In addition, the microbiome plays a role in psychological well-being and regulating negative affect. Regulation of negative affect is a factor in psychostimulant abuse disorders. We propose a risk chain in which stress leads to negative affect that places an individual at risk to develop or relapse to psychostimulant abuse disorder. Stress, negative affect, and psychostimulant use all alter the gut microbiome. METHODS This review brings together the literature on affective disorders, stress, and psychostimulant abuse disorders to assess possible modulatory actions of the gut-brain axis to regulate these conditions. RESULTS Studies reviewed across the various disciplines suggest that the dysbiosis resulting from drug use, drug withdrawal, or stress may cause an individual to be more susceptible to addiction and relapse. Probiotics and prebiotics reduce stress and negative affect. SCIENTIFIC SIGNIFICANCE Treatment during the withdrawal phase of psychostimulant abuse disorder, when the microbiome is altered, may ameliorate the symptoms of stress and negative affect leading to a reduced risk of relapse to psychostimulant use.
Collapse
Affiliation(s)
- Shadab Forouzan
- Department of Psychology, Texas Institute for Measurement, Evaluation and Statistics (TIMES), University of Houston, Houston, Texas, USA
| | - Keely McGrew
- Department of Psychology, Texas Institute for Measurement, Evaluation and Statistics (TIMES), University of Houston, Houston, Texas, USA
| | - Therese A Kosten
- Department of Psychology, Texas Institute for Measurement, Evaluation and Statistics (TIMES), University of Houston, Houston, Texas, USA
| |
Collapse
|
320
|
Murciano-Brea J, Garcia-Montes M, Geuna S, Herrera-Rincon C. Gut Microbiota and Neuroplasticity. Cells 2021; 10:2084. [PMID: 34440854 PMCID: PMC8392499 DOI: 10.3390/cells10082084] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023] Open
Abstract
The accumulating evidence linking bacteria in the gut and neurons in the brain (the microbiota-gut-brain axis) has led to a paradigm shift in the neurosciences. Understanding the neurobiological mechanisms supporting the relevance of actions mediated by the gut microbiota for brain physiology and neuronal functioning is a key research area. In this review, we discuss the literature showing how the microbiota is emerging as a key regulator of the brain's function and behavior, as increasing amounts of evidence on the importance of the bidirectional communication between the intestinal bacteria and the brain have accumulated. Based on recent discoveries, we suggest that the interaction between diet and the gut microbiota, which might ultimately affect the brain, represents an unprecedented stimulus for conducting new research that links food and mood. We also review the limited work in the clinical arena to date, and we propose novel approaches for deciphering the gut microbiota-brain axis and, eventually, for manipulating this relationship to boost mental wellness.
Collapse
Affiliation(s)
- Julia Murciano-Brea
- Department of Biodiversity, Ecology & Evolution, Biomathematics Unit, Complutense University of Madrid, 28040 Madrid, Spain; (J.M.-B.); (M.G.-M.)
- Modeling, Data Analysis and Computational Tools for Biology Research Group, Complutense University of Madrid, 28040 Madrid, Spain
| | - Martin Garcia-Montes
- Department of Biodiversity, Ecology & Evolution, Biomathematics Unit, Complutense University of Madrid, 28040 Madrid, Spain; (J.M.-B.); (M.G.-M.)
- Modeling, Data Analysis and Computational Tools for Biology Research Group, Complutense University of Madrid, 28040 Madrid, Spain
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, School of Medicine, University of Torino, 10124 Torino, Italy;
| | - Celia Herrera-Rincon
- Department of Biodiversity, Ecology & Evolution, Biomathematics Unit, Complutense University of Madrid, 28040 Madrid, Spain; (J.M.-B.); (M.G.-M.)
- Modeling, Data Analysis and Computational Tools for Biology Research Group, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
321
|
Lin A, Shih CT, Chu HF, Chen CW, Cheng YT, Wu CC, Yang CCH, Tsai YC. Lactobacillus fermentum PS150 promotes non-rapid eye movement sleep in the first night effect of mice. Sci Rep 2021; 11:16313. [PMID: 34381098 PMCID: PMC8357945 DOI: 10.1038/s41598-021-95659-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 07/06/2021] [Indexed: 12/30/2022] Open
Abstract
The first night effect (FNE) is a type of sleep disturbance caused by an unfamiliar environment, which leads to difficulty falling asleep and reduced sleep duration. Previously, we reported that Lactobacillus fermentum PS150 (PS150) improves sleep conditions in a pentobarbital-induced sleep mouse model. In this study, we aimed to evaluate the effect of PS150 on the FNE in mice. Briefly, mice were implanted with electrodes and orally administered PS150 for four weeks, and then the FNE was induced by cage changing. Analysis of polysomnographic signals revealed that intervention with PS150 restored non-rapid eye movement (NREM) sleep length under the FNE. Compared to diphenhydramine, a commonly used sleep aid, PS150 had no unwanted side effects, such as rapid eye movement (REM) sleep deprivation and fragmented sleep. Moreover, temporal analysis revealed that PS150 efficiently reduced both sleep latency and time spent restoring normal levels of REM sleep. Taken together, these results suggest that PS150 efficiently ameliorates sleep disturbance caused by the FNE. Additionally, V3–V4 16S rRNA sequencing revealed significant increases in Erysipelotrichia, Actinobacteria, and Coriobacteriia in fecal specimens of the PS150-treated group, indicating that PS150 induces gut microbiota remodeling.
Collapse
Affiliation(s)
- Alexander Lin
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, 155, Section 2, Linong Street, Beitou District, Taipei, 11221, Taiwan.,Chung Mei Biopharma Co., Ltd., Taichung, Taiwan
| | | | - Hsu-Feng Chu
- Biomedical Industry Ph.D. Program, National Yang-Ming University, Taipei, Taiwan
| | - Chieh-Wen Chen
- Institute of Brain Science, National Yang-Ming University, No. 155, Section 2, Linong Street, Beitou District, Taipei, 11221, Taiwan.,Sleep Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Ting Cheng
- Institute of Brain Science, National Yang-Ming University, No. 155, Section 2, Linong Street, Beitou District, Taipei, 11221, Taiwan.,Sleep Research Center, National Yang-Ming University, Taipei, Taiwan
| | | | - Cheryl C H Yang
- Institute of Brain Science, National Yang-Ming University, No. 155, Section 2, Linong Street, Beitou District, Taipei, 11221, Taiwan. .,Sleep Research Center, National Yang-Ming University, Taipei, Taiwan. .,Brain Research Center, National Yang-Ming University, Taipei, Taiwan.
| | - Ying-Chieh Tsai
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, 155, Section 2, Linong Street, Beitou District, Taipei, 11221, Taiwan.
| |
Collapse
|
322
|
Le Morvan de Sequeira C, Kaeber M, Cekin SE, Enck P, Mack I. The Effect of Probiotics on Quality of Life, Depression and Anxiety in Patients with Irritable Bowel Syndrome: A Systematic Review and Meta-Analysis. J Clin Med 2021; 10:jcm10163497. [PMID: 34441793 PMCID: PMC8397103 DOI: 10.3390/jcm10163497] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Functional gastrointestinal disorders such as irritable bowel syndrome (IBS) report clinical improvement following probiotic therapy, but whether psychiatric comorbidity and quality-of-life in IBS improves directly or in directly is unknown. This meta-analysis synthesized the evidence regarding the effects of probiotics on quality of life (QoL), anxiety and depression in IBS. Methods: The review was executed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines using the databases PubMed, Web of Science and Cochrane Library. For QoL, the data were meta-analyzed, and for anxiety and depression a qualitative analysis was performed. Results: Thirty-five placebo-controlled studies were included of which 11 were eligible for meta-analysis. QoL improved with probiotic and placebo similarly, with the probiotic interventions slightly superior (mean QoL difference—0.36 (95% CI: 0.07, 0.64); p = 0.01). Anxiety and depression were similar between placebo and probiotic groups following therapy. Conclusion: For IBS, probiotic therapy improved QoL, but had no effects on anxiety and depression. However, the applied probiotics were not developed for selective effects on psyche and the brain. Therefore, it remains to be shown whether or not patients with IBS would benefit from second generation probiotics developed for these central effects (psychobiotics).
Collapse
|
323
|
Zheng S, Zhu Y, Wu W, Zhang Q, Wang Y, Wang Z, Yang F. A correlation study of intestinal microflora and first-episode depression in Chinese patients and healthy volunteers. Brain Behav 2021; 11:e02036. [PMID: 33960717 PMCID: PMC8413750 DOI: 10.1002/brb3.2036] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/22/2020] [Accepted: 12/25/2020] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE This research examines the intestinal-associated flora of patients with depression compared with healthy volunteers to identify the characteristics and differences of flora associated with depression. It provides a theoretical basis for the prevention and treatment of depression through intestinal micro-ecological regulation. METHODS We recruited 30 patients with depression to participate in the patient group (PG), and 30 volunteers were recruited for the healthy control group (HG) from the Beijing Hui-long-guan Hospital. Thereafter, the 16S rRNA high-throughput sequencing method, using the Hamilton Depression Scale, was applied to analyze patient and healthy groups. RESULTS PG and HG microflora were different regarding phylum, Family, Genus, and Order. The results showed that Barnesiella was the dominant flora in depression patients, while Lachnospiraceae and Alloprevotella were the dominant bacteria in healthy participants. The proportion of Betaproteobateria (Proteobacteria), Alcaligenaceae (proinflammatory), Peptostreptococcaceae, Catenibacterium, Romboutsia, Sutterella, and Burkholderiales in the anxiety-negative depressed group was significantly higher than in the anxiety-positive group; and the proportion of Anaerostipes (inflammation) and Faecalibacterium (anti-inflammatory) bacteria was significantly lower than that of patients with anxiety. CONCLUSION Results showed there were differences in intestinal micro-ecology between patients with depression and healthy volunteers. We found that the level of inflammation-related bacteria in anxiety-positive patients was lower than that in anxiety-negative patients. These results enrich the knowledge of relationships between depression and intestinal flora and provide a theoretical basis for probiotics to assist in the treatment of depression.
Collapse
Affiliation(s)
- Shaojun Zheng
- College of Basic Medical and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.,Department of Pharmacology, Basic Medical College, Inner Mongolia Medical University, Huhehaote, China
| | - Yubing Zhu
- College of Basic Medical and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Weidong Wu
- Department of Pharmacology, Basic Medical College, Inner Mongolia Medical University, Huhehaote, China
| | - Qi Zhang
- HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Yongqian Wang
- HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Zhiren Wang
- HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Fude Yang
- HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| |
Collapse
|
324
|
Nguyen TT, Hathaway H, Kosciolek T, Knight R, Jeste DV. Gut microbiome in serious mental illnesses: A systematic review and critical evaluation. Schizophr Res 2021; 234:24-40. [PMID: 31495702 PMCID: PMC7056547 DOI: 10.1016/j.schres.2019.08.026] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 02/08/2023]
Abstract
Schizophrenia and bipolar disorder (BD) are associated with debilitating psychiatric and cognitive dysfunction, worse health outcomes, and shorter life expectancies. The pathophysiological understanding of and therapeutic resources for these neuropsychiatric disorders are still limited. Humans harbor over 1000 unique bacterial species in our gut, which have been linked to both physical and mental/cognitive health. The gut microbiome is a novel and promising avenue to understand the attributes of psychiatric diseases and, potentially, to modify them. Building upon our previous work, this systematic review evaluates the most recent evidence of the gut microbiome in clinical populations with serious mental illness (SMI). Sixteen articles that met our selection criteria were reviewed, including cross-sectional cohort studies and longitudinal treatment trials. All studies reported alterations in the gut microbiome of patients with SMI compared to non-psychiatric comparison subjects (NCs), and beta-diversity was consistently reported to be different between schizophrenia and NCs. Ruminococcaceae and Faecalibacterium were relatively decreased in BD, and abundance of Ruminococcaceae was reported across several investigations of SMI to be associated with better clinical characteristics. Lactic acid bacteria were relatively more abundant in SMI and associated with worse clinical outcomes. There was very limited evidence for the efficacy of probiotic or prebiotic interventions in SMI. As microbiome research in psychiatry is still nascent, the extant literature has several limitations. We critically evaluate the current data, including experimental approaches. There is a need for more unified methodological standards in order to arrive at robust biological understanding of microbial contributions to SMI.
Collapse
Affiliation(s)
- Tanya T Nguyen
- Department of Psychiatry, University of California San Diego, CA, United States of America; Sam and Rose Stein Institute for Research on Aging, University of California San Diego, CA, United States of America.
| | - Hugh Hathaway
- Medical Sciences Division, University of Oxford, Oxford, United Kingdom; Department of Pediatrics, University of California San Diego, CA, United States of America
| | - Tomasz Kosciolek
- Department of Pediatrics, University of California San Diego, CA, United States of America; Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, CA, United States of America; Department of Computer Science and Engineering, University of California San Diego, CA, United States of America; Department of Bioengineering, University of California San Diego, CA, United States of America; Center for Microbiome Innovation, University of California San Diego, CA, United States of America
| | - Dilip V Jeste
- Department of Psychiatry, University of California San Diego, CA, United States of America; Center for Microbiome Innovation, University of California San Diego, CA, United States of America; Department of Neurosciences, University of California San Diego, CA, United States of America; Sam and Rose Stein Institute for Research on Aging, University of California San Diego, CA, United States of America
| |
Collapse
|
325
|
Berding K, Vlckova K, Marx W, Schellekens H, Stanton C, Clarke G, Jacka F, Dinan TG, Cryan JF. Diet and the Microbiota-Gut-Brain Axis: Sowing the Seeds of Good Mental Health. Adv Nutr 2021; 12:1239-1285. [PMID: 33693453 PMCID: PMC8321864 DOI: 10.1093/advances/nmaa181] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
Over the past decade, the gut microbiota has emerged as a key component in regulating brain processes and behavior. Diet is one of the major factors involved in shaping the gut microbiota composition across the lifespan. However, whether and how diet can affect the brain via its effects on the microbiota is only now beginning to receive attention. Several mechanisms for gut-to-brain communication have been identified, including microbial metabolites, immune, neuronal, and metabolic pathways, some of which could be prone to dietary modulation. Animal studies investigating the potential of nutritional interventions on the microbiota-gut-brain axis have led to advancements in our understanding of the role of diet in this bidirectional communication. In this review, we summarize the current state of the literature triangulating diet, microbiota, and host behavior/brain processes and discuss potential underlying mechanisms. Additionally, determinants of the responsiveness to a dietary intervention and evidence for the microbiota as an underlying modulator of the effect of diet on brain health are outlined. In particular, we emphasize the understudied use of whole-dietary approaches in this endeavor and the need for greater evidence from clinical populations. While promising results are reported, additional data, specifically from clinical cohorts, are required to provide evidence-based recommendations for the development of microbiota-targeted, whole-dietary strategies to improve brain and mental health.
Collapse
Affiliation(s)
| | | | - Wolfgang Marx
- Deakin University, iMPACT – the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, VIC,Australia
| | - Harriet Schellekens
- APC Microbiome Ireland, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Sciences, University College Cork, Cork, Ireland
| | - Felice Jacka
- Deakin University, iMPACT – the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, VIC,Australia
- Centre for Adolescent Health, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Black Dog Institute, Randwick, NSW, Australia
- College of Public Health, Medical & Veterinary Sciences, James Cook University, Douglas, QLD, Australia
| | - Timothy G Dinan
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Sciences, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
326
|
Chen CM, Wu CC, Huang CL, Chang MY, Cheng SH, Lin CT, Tsai YC. Lactobacillus plantarum PS128 Promotes Intestinal Motility, Mucin Production, and Serotonin Signaling in Mice. Probiotics Antimicrob Proteins 2021; 14:535-545. [PMID: 34327633 PMCID: PMC9076750 DOI: 10.1007/s12602-021-09814-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2021] [Indexed: 12/27/2022]
Abstract
Lactobacillus plantarum PS128 has been reported as a psychobiotic to improve mental health through the gut–brain axis in experimental animal models. To explore its mechanism of action in the gut, this study aimed to analyze the effects of L. plantarum PS128 ingestion on naïve and loperamide (Lop)-induced constipation mice. We found that, in the two mouse models, the weight, number, and water content of feces in the L. plantarum PS128 group were higher than those in the vehicle control group. Histological observation revealed that L. plantarum PS128 increased the level of colonic mucins including the major mucin MUC2. In addition, the charcoal meal test showed that L. plantarum PS128 significantly increased the small intestine transit in naïve mice, but not in the Lop-treated mice. Since intestinal serotonin has been found to modulate motility, we further analyzed the expression of genes related to serotonin signal transduction in the small intestine of naïve mice. The results showed that L. plantarum PS128 significantly altered the expression levels of Tph1, Chga, Slc6a4, and Htr4, but did not affect the expression levels of Tph2, Htr3a, and Maoa. Furthermore, immunohistochemistry revealed that L. plantarum PS128 significantly increased the number of serotonin-containing intestinal cells in mice. Taken together, our results suggest that L. plantarum PS128 could promote intestinal motility, mucin production, and serotonin signal transduction, leading to a laxative effect in mice.
Collapse
Affiliation(s)
| | | | | | - Min-Yu Chang
- Bened Biomedical Co., Ltd, Taipei, 10448, Taiwan
| | | | - Ching-Ting Lin
- School of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan.
| | - Ying-Chieh Tsai
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.
| |
Collapse
|
327
|
Nutrition, Exercise, and Stress Management for Treatment and Prevention of Psychiatric Disorders. A Narrative Review Psychoneuroendocrineimmunology-Based. ENDOCRINES 2021. [DOI: 10.3390/endocrines2030022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Psychoneuroendocrineimmunology (PNEI) brings together knowledge acquired since the 1930s from endocrinology, immunology, neuroscience, and psychology. With PNEI, a model of research and interpretation of health and disease is emerging, which sees the human body as a structured and interconnected unit, where the psychological and biological systems are mutually coordinated. In the PNEI view, many factors could influence mental health, with the endocrine system involved in mediating the effects of environmental stress on mental health and inflammation in the onset and course of psychiatric disorders as a result of individual and collective conditions and behaviors. Among these, nutrition is one way by which the environment impacts physiology: indeed, many pieces of research showed that several elements (e.g., probiotics, fish oil, zinc) have a positive effect on mental disorders thus being potentially augmentation agents in treatment. Still, physical activity can moderate depressive symptoms, while prolonged stress increases the risk of psychopathology. Taken together, the PNEI-based approach may inform prevention and treatment strategies, also in the field of mental health care.
Collapse
|
328
|
Marazziti D, Buccianelli B, Palermo S, Parra E, Arone A, Beatino MF, Massa L, Carpita B, Barberi FM, Mucci F, Dell’Osso L. The Microbiota/Microbiome and the Gut-Brain Axis: How Much Do They Matter in Psychiatry? Life (Basel) 2021; 11:life11080760. [PMID: 34440503 PMCID: PMC8401073 DOI: 10.3390/life11080760] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023] Open
Abstract
The functioning of the central nervous system (CNS) is the result of the constant integration of bidirectional messages between the brain and peripheral organs, together with their connections with the environment. Despite the anatomical separation, gut microbiota, i.e., the microorganisms colonising the gastrointestinal tract, is highly related to the CNS through the so-called "gut-brain axis". The aim of this paper was to review and comment on the current literature on the role of the intestinal microbiota and the gut-brain axis in some common neuropsychiatric conditions. The recent literature indicates that the gut microbiota may affect brain functions through endocrine and metabolic pathways, antibody production and the enteric network while supporting its possible role in the onset and maintenance of several neuropsychiatric disorders, neurodevelopment and neurodegenerative disorders. Alterations in the gut microbiota composition were observed in mood disorders and autism spectrum disorders and, apparently to a lesser extent, even in obsessive-compulsive disorder (OCD) and related conditions, as well as in schizophrenia. Therefore, gut microbiota might represent an interesting field of research for a better understanding of the pathophysiology of common neuropsychiatric disorders and possibly as a target for the development of innovative treatments that some authors have already labelled "psychobiotics".
Collapse
Affiliation(s)
- Donatella Marazziti
- Department of Clinical and Experimental Medicine Section of Psychiatry, University of Pisa, 56100 Pisa, Italy; (B.B.); (S.P.); (E.P.); (A.A.); (M.F.B.); (L.M.); (B.C.); (F.M.B.); (L.D.)
- Unicamillus—Saint Camillus International University of Medical and Health Sciences, 00131 Rome, Italy
- Correspondence:
| | - Beatrice Buccianelli
- Department of Clinical and Experimental Medicine Section of Psychiatry, University of Pisa, 56100 Pisa, Italy; (B.B.); (S.P.); (E.P.); (A.A.); (M.F.B.); (L.M.); (B.C.); (F.M.B.); (L.D.)
| | - Stefania Palermo
- Department of Clinical and Experimental Medicine Section of Psychiatry, University of Pisa, 56100 Pisa, Italy; (B.B.); (S.P.); (E.P.); (A.A.); (M.F.B.); (L.M.); (B.C.); (F.M.B.); (L.D.)
| | - Elisabetta Parra
- Department of Clinical and Experimental Medicine Section of Psychiatry, University of Pisa, 56100 Pisa, Italy; (B.B.); (S.P.); (E.P.); (A.A.); (M.F.B.); (L.M.); (B.C.); (F.M.B.); (L.D.)
| | - Alessandro Arone
- Department of Clinical and Experimental Medicine Section of Psychiatry, University of Pisa, 56100 Pisa, Italy; (B.B.); (S.P.); (E.P.); (A.A.); (M.F.B.); (L.M.); (B.C.); (F.M.B.); (L.D.)
| | - Maria Francesca Beatino
- Department of Clinical and Experimental Medicine Section of Psychiatry, University of Pisa, 56100 Pisa, Italy; (B.B.); (S.P.); (E.P.); (A.A.); (M.F.B.); (L.M.); (B.C.); (F.M.B.); (L.D.)
| | - Lucia Massa
- Department of Clinical and Experimental Medicine Section of Psychiatry, University of Pisa, 56100 Pisa, Italy; (B.B.); (S.P.); (E.P.); (A.A.); (M.F.B.); (L.M.); (B.C.); (F.M.B.); (L.D.)
| | - Barbara Carpita
- Department of Clinical and Experimental Medicine Section of Psychiatry, University of Pisa, 56100 Pisa, Italy; (B.B.); (S.P.); (E.P.); (A.A.); (M.F.B.); (L.M.); (B.C.); (F.M.B.); (L.D.)
| | - Filippo M. Barberi
- Department of Clinical and Experimental Medicine Section of Psychiatry, University of Pisa, 56100 Pisa, Italy; (B.B.); (S.P.); (E.P.); (A.A.); (M.F.B.); (L.M.); (B.C.); (F.M.B.); (L.D.)
| | - Federico Mucci
- Dipartimento di Biochimica e Biologia Molecolare, University of Siena, 53100 Siena, Italy;
| | - Liliana Dell’Osso
- Department of Clinical and Experimental Medicine Section of Psychiatry, University of Pisa, 56100 Pisa, Italy; (B.B.); (S.P.); (E.P.); (A.A.); (M.F.B.); (L.M.); (B.C.); (F.M.B.); (L.D.)
| |
Collapse
|
329
|
Hepsomali P, Groeger JA. Diet, Sleep, and Mental Health: Insights from the UK Biobank Study. Nutrients 2021; 13:2573. [PMID: 34444731 PMCID: PMC8398967 DOI: 10.3390/nu13082573] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 12/17/2022] Open
Abstract
Diet has long been the focus of attention as a leading risk factor for non-communicable diseases. As such, a better understanding of it is crucial to establish priorities for dietary guidelines and to inform, design, and implement strategies for preventing, helping manage, and stopping the progression of sleep and mental health-related symptoms/disorders. The aim of the current study is to conduct the largest investigation of diet, sleep, and mental health to date by utilizing the UK Biobank (UKB) dataset to identify the associations between diet and (i) sleep quality/health, and (ii) mental health symptomatology. This cross-sectional population-based study involved 502,494 middle-aged adults. UKB food frequency, sleep, and psychological factors and mental health questionnaires at baseline were used. Scores were also calculated for healthy diet, healthy sleep, mental health symptomatology, partial fibre intake, and milk intake. We observed positive associations with healthy diet and sleep and mental health, especially benefits of high intakes of vegetable, fruit, fish, water, and fibre. However, processed meat and milk intake were adversely associated with sleep and mental health. These findings make clear that there are health and wellbeing benefits and drawbacks of different diets, but do not, at this stage, demonstrate the clear causal relationships, which would support dietary interventions that might play a role in the treatment and also self-management of sleep and mental health disorders/symptoms. Further research is required to understand mechanisms of actions of which diet acts on to modulate sleep and mental health, while taking comorbidity of sleep and mental health disorders/symptoms into consideration.
Collapse
Affiliation(s)
- Piril Hepsomali
- Department of Psychology, University of Roehampton, London SW15 4JD, UK
- Unilever R&D, Colworth Science Park, Bedford MK44 1LQ, UK
| | - John A. Groeger
- Department of Psychology, School of Social Sciences, Nottingham Trent University, Nottingham NG1 4BU, UK;
| |
Collapse
|
330
|
Białecka-Dębek A, Granda D, Szmidt MK, Zielińska D. Gut Microbiota, Probiotic Interventions, and Cognitive Function in the Elderly: A Review of Current Knowledge. Nutrients 2021; 13:2514. [PMID: 34444674 PMCID: PMC8401879 DOI: 10.3390/nu13082514] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/18/2021] [Accepted: 07/18/2021] [Indexed: 12/23/2022] Open
Abstract
Changes in the composition and proportions of the gut microbiota may be associated with numerous diseases, including cognitive impairment. Over the recent years, the growing interest in this relation is observed, but there are still many unknowns, especially in the elderly. To the best of our knowledge, this is the first work that synthesizes and critically evaluates existing evidence on the possible association between human gut microbiota and cognitive function in the elderly. For this purpose, comprehensive literature searches were conducted using the electronic databases PubMed, Google Scholar, and ScienceDirect. The gut microbiota of cognitively healthy and impaired elderly people may differ in the diversity and abundance of individual taxes, but specific taxes cannot be identified. However, some tendencies to changing the Firmicutes/Bacteroidetes ratio can be identified. Currently, clinical trials involving probiotics, prebiotics, and synbiotics supplementation have shown that there are premises for the claim that these factors can improve cognitive functions, however there is no single intervention beneficial to the elderly population. More reliable evidence from large-scale, long-period RCT is needed. Despite proposing several potential mechanisms of the gut microbiota's influence on the cognitive function impairment, prospective research on this topic is extremely difficult to conduct due to numerous confounding factors that may affect the gut microbiota. Heterogeneity of research outcomes impairs insight into these relations.
Collapse
Affiliation(s)
- Agata Białecka-Dębek
- Department of Human Nutrition, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159c, 02-776 Warsaw, Poland; (D.G.); (M.K.S.)
| | - Dominika Granda
- Department of Human Nutrition, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159c, 02-776 Warsaw, Poland; (D.G.); (M.K.S.)
| | - Maria Karolina Szmidt
- Department of Human Nutrition, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159c, 02-776 Warsaw, Poland; (D.G.); (M.K.S.)
| | - Dorota Zielińska
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159c, 02-776 Warsaw, Poland;
| |
Collapse
|
331
|
Zhu G, Zhao J, Zhang H, Chen W, Wang G. Probiotics for Mild Cognitive Impairment and Alzheimer's Disease: A Systematic Review and Meta-Analysis. Foods 2021; 10:1672. [PMID: 34359543 PMCID: PMC8303183 DOI: 10.3390/foods10071672] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 12/17/2022] Open
Abstract
Accumulating evidence from animal studies supports the potential role of probiotics and prebiotics in alleviating neurodegenerative diseases. However, whether dietary supplementation with probiotics improves cognitive function in patients with Alzheimer's disease (AD) or mild cognitive impairment (MCI) is unclear. We searched literature databases for relevant randomized control trials and compared the outcomes between control/placebo and intervention groups. The results of the included studies were meta-analyzed using a random-effects model, with standardized mean differences (SMDs) and 95% confidence intervals (CIs) calculated as summary statistics. We also performed a risk-of-bias assessment, sensitivity analysis and subgroup analysis. Among the 294 articles identified, eight articles involving 174 patients with AD and 446 with MCI were included in the qualitative synthesis and seven studies were meta-analyzed. Our analysis detected high between-group heterogeneity (SMD = 0.43, 95% CI -0.02-0.88, p < 0.0001, I2 = 86.4%) in cognitive function across the included studies. Subgroup analyses identified a significant effect of probiotics on cognitive function only in the studies involving people with MCI (I2 = 44%, p = 0.15 for heterogeneity, p = 0.0002 for overall effect). Our findings suggest that dietary supplementation with probiotics improves cognitive function, especially in people with MCI.
Collapse
Affiliation(s)
- Guangsu Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (G.Z.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (G.Z.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (G.Z.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Wuxi Translational Medicine Research Center, Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (G.Z.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (G.Z.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| |
Collapse
|
332
|
Probiotics, Prebiotics and Postbiotics on Mitigation of Depression Symptoms: Modulation of the Brain-Gut-Microbiome Axis. Biomolecules 2021; 11:biom11071000. [PMID: 34356624 PMCID: PMC8301955 DOI: 10.3390/biom11071000] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/17/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
The brain–gut–microbiome axis is a bidirectional communication pathway between the gut microbiota and the central nervous system. The growing interest in the gut microbiota and mechanisms of its interaction with the brain has contributed to the considerable attention given to the potential use of probiotics, prebiotics and postbiotics in the prevention and treatment of depressive disorders. This review discusses the up-to-date findings in preclinical and clinical trials regarding the use of pro-, pre- and postbiotics in depressive disorders. Studies in rodent models of depression show that some of them inhibit inflammation, decrease corticosterone level and change the level of neurometabolites, which consequently lead to mitigation of the symptoms of depression. Moreover, certain clinical studies have indicated improvement in mood as well as changes in biochemical parameters in patients suffering from depressive disorders.
Collapse
|
333
|
Annunziata G, Sureda A, Orhan IE, Battino M, Arnone A, Jiménez-García M, Capó X, Cabot J, Sanadgol N, Giampieri F, Tenore GC, Kashani HRK, Silva AS, Habtemariam S, Nabavi SF, Nabavi SM. The neuroprotective effects of polyphenols, their role in innate immunity and the interplay with the microbiota. Neurosci Biobehav Rev 2021; 128:437-453. [PMID: 34245757 DOI: 10.1016/j.neubiorev.2021.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 05/21/2021] [Accepted: 07/05/2021] [Indexed: 12/19/2022]
Abstract
Neurodegenerative disorders, particularly in the elderly population, represent one of the most pressing social and health-care problems in the world. Besides the well-established role of both oxidative stress and inflammation, alterations of the immune response have been found to be closely linked to the development of neurodegenerative diseases. Interestingly, various scientific evidence reported that an altered gut microbiota composition may contribute to the development of neuroinflammatory disorders. This leads to the proposal of the concept of the gut-brain-immune axis. In this scenario, polyphenols play a pivotal role due to their ability to exert neuroprotective, immunomodulatory and microbiota-remodeling activities. In the present review, we summarized the available literature to provide a scientific evidence regarding this neuroprotective and immunomodulatory effects and the interaction with gut microbiota of polyphenols and, the main signaling pathways involved that can explain their potential therapeutic application in neurodegenerative diseases.
Collapse
Affiliation(s)
- Giuseppe Annunziata
- NutraPharmaLabs, Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy.
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress and Health Research Institute of the Balearic Islands (IdISBa), University of Balearic Islands-IUNICS, E-07122, Palma de Mallorca, Spain; CIBEROBN (Physiopathology of Obesity and Nutrition), Istituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330, Ankara, Turkey.
| | - Maurizio Battino
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo - Vigo Campus, Vigo, Spain; Dept of Clinical Sciences, Università Politecnica delle Marche, Ancona, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China.
| | - Angela Arnone
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131, Naples, Italy.
| | - Manuel Jiménez-García
- Laboratory of Neurophysiology, Biology Department, University of Balearic Islands (UIB), Ctra. Valldemossa Km 7.5, E-07122, Palma de Mallorca, Spain.
| | - Xavier Capó
- Research Group in Community Nutrition and Oxidative Stress and Health Research Institute of the Balearic Islands (IdISBa), University of Balearic Islands-IUNICS, E-07122, Palma de Mallorca, Spain.
| | - Joan Cabot
- Biology Department, University of Balearic Islands (UIB), Ctra. Valldemossa Km 7.5, E-07122 Palma de Mallorca, Spain.
| | - Nima Sanadgol
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran; Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil.
| | - Francesca Giampieri
- Department of Odontostomatologic and Specialized Clinical Sciences, Faculty of Medicine, Polytechnic University of Marche, Ancona, Italy; Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Gian Carlo Tenore
- NutraPharmaLabs, Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy.
| | | | - Ana Sanches Silva
- National Institute of Agrarian and Veterinary Research (INIAV), Rua dos Lágidos, Lugar da Madalena, Vairão, Vila do Conde, Oporto, 4485-655, Portugal; Center for Study in Animal Science (CECA), ICETA, University of Oporto, Oporto, Portugal.
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services UK, University of Greenwich, Central Avenue, Charham-Maritime, Kent, ME4 4TB, UK.
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
334
|
Yunes RA, Poluektova EU, Vasileva EV, Odorskaya MV, Marsova MV, Kovalev GI, Danilenko VN. A Multi-strain Potential Probiotic Formulation of GABA-Producing Lactobacillus plantarum 90sk and Bifidobacterium adolescentis 150 with Antidepressant Effects. Probiotics Antimicrob Proteins 2021; 12:973-979. [PMID: 31677091 DOI: 10.1007/s12602-019-09601-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Today, a number of studies conclusively show that certain bacterial strains, mainly from the genera Lactobacillus and Bifidobacterium, influence the functioning of the central nervous system, leading to changes in beahvior, nociception and the cognitive abilities of humans and animals. Such strains serve as the basis for developing probiotics with a curative potential for the central nervous system - psychobioitcs. However, the question of how to find such strains and which criteria to use for their selection remains unanswered. Some compounds produced by bacteria, such as gamma-aminobutyric acid (GABA), the main inhibitory neurotransmitter of the central nervous system, are potential mediators between bacterial cells and the host. Previously, we established that some species of Lactobacillus and Bifidobacterium are capable of producing GABA. We presumed that GABA-producing Lactobacillus and Bifidobacterium strains are great candidates to use as psychobiotics. Therefore, we selected the strains Lactobacillus plantarum 90sk and Bifidobacterium adolescentis 150 as efficient GABA producers. The goal of this work was to assess the probiotic properties of the selected strains as well as their antidepressive effects in mice. We established that the ingestion of the probiotic composition based on the selected strains by BALB/c mice for 2 weeks reduced depressive-like behavior in the forced swimming test; the effect was similar to that of fluoxetine.
Collapse
Affiliation(s)
- R A Yunes
- Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russian Federation.
| | - E U Poluektova
- Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russian Federation
| | - E V Vasileva
- Federal State Budgetary Institution "Research Zakusov Institute of Pharmacology", Moscow, Russian Federation
| | - M V Odorskaya
- Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russian Federation
| | - M V Marsova
- Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russian Federation
| | - G I Kovalev
- Federal State Budgetary Institution "Research Zakusov Institute of Pharmacology", Moscow, Russian Federation
| | - V N Danilenko
- Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
335
|
Larroya A, Pantoja J, Codoñer-Franch P, Cenit MC. Towards Tailored Gut Microbiome-Based and Dietary Interventions for Promoting the Development and Maintenance of a Healthy Brain. Front Pediatr 2021; 9:705859. [PMID: 34277527 PMCID: PMC8280474 DOI: 10.3389/fped.2021.705859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 05/31/2021] [Indexed: 01/07/2023] Open
Abstract
Mental health is determined by a complex interplay between the Neurological Exposome and the Human Genome. Multiple genetic and non-genetic (exposome) factors interact early in life, modulating the risk of developing the most common complex neurodevelopmental disorders (NDDs), with potential long-term consequences on health. To date, the understating of the precise etiology underpinning these neurological alterations, and their clinical management pose a challenge. The crucial role played by diet and gut microbiota in brain development and functioning would indicate that modulating the gut-brain axis may help protect against the onset and progression of mental-health disorders. Some nutritional deficiencies and gut microbiota alterations have been linked to NDDs, suggesting their potential pathogenic implications. In addition, certain dietary interventions have emerged as promising alternatives or adjuvant strategies for improving the management of particular NDDs, at least in particular subsets of subjects. The gut microbiota can be a key to mediating the effects of other exposome factors such as diet on mental health, and ongoing research in Psychiatry and Neuropediatrics is developing Precision Nutrition Models to classify subjects according to a diet response prediction based on specific individual features, including microbiome signatures. Here, we review current scientific evidence for the impact of early life environmental factors, including diet, on gut microbiota and neuro-development, emphasizing the potential long-term consequences on health; and also summarize the state of the art regarding the mechanisms underlying diet and gut microbiota influence on the brain-gut axis. Furthermore, we describe the evidence supporting the key role played by gut microbiota, diet and nutrition in neurodevelopment, as well as the effectiveness of certain dietary and microbiome-based interventions aimed at preventing or treating NDDs. Finally, we emphasize the need for further research to gain greater insight into the complex interplay between diet, gut microbiome and brain development. Such knowledge would help towards achieving tailored integrative treatments, including personalized nutrition.
Collapse
Affiliation(s)
- Ana Larroya
- Microbial Ecology, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| | - Jorge Pantoja
- Department of Pediatrics, University Hospital De la Plana, Vila-Real, Castellón, Spain
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Pilar Codoñer-Franch
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
- Department of Pediatrics, Dr. Peset University Hospital, Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, Valencia, Spain
| | - María Carmen Cenit
- Microbial Ecology, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
- Department of Pediatrics, University Hospital De la Plana, Vila-Real, Castellón, Spain
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| |
Collapse
|
336
|
LC R, EM B, DB H, H S, AR P. A pilot randomized controlled trial testing supplements of omega-3 fatty acids, probiotics, combination or placebo on symptoms of depression, anxiety and stress. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2021. [DOI: 10.1016/j.jadr.2021.100141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
337
|
Lu CS, Chang HC, Weng YH, Chen CC, Kuo YS, Tsai YC. The Add-On Effect of Lactobacillus plantarum PS128 in Patients With Parkinson's Disease: A Pilot Study. Front Nutr 2021; 8:650053. [PMID: 34277679 PMCID: PMC8277995 DOI: 10.3389/fnut.2021.650053] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Lactobacillus plantarum PS128 (PS128) is a specific probiotic, known as a psychobiotic, which has been demonstrated to alleviate motor deficits and inhibit neurodegenerative processes in Parkinson's disease (PD)-model mice. We hypothesize that it may also be beneficial to patients with PD based on the possible mechanism via the microbiome-gut-brain axis. Methods: This is an open-label, single-arm, baseline-controlled trial. The eligible participants were scheduled to take 60 billion colony-forming units of PS128 once per night for 12 weeks. Clinical assessments were conducted using the Unified Parkinson's Disease Rating Scale (UPDRS), modified Hoehn and Yahr scale, and change in patient "ON-OFF" diary recording as primary outcome measures. The non-motor symptoms questionnaire, Beck depression inventory-II, patient assessment of constipation symptom, 39-item Parkinson's Disease Questionnaire (PDQ-39), and Patient Global Impression of Change (PGI-C) were assessed as secondary outcome measures. Results: Twenty-five eligible patients (32% women) completed the study. The mean age was 61.84 ± 5.74 years (range, 52-72), mean disease duration was 10.12 ± 2.3 years (range, 5-14), and levodopa equivalent daily dosage was 1063.4 ± 209.5 mg/daily (range, 675-1,560). All patients remained on the same dosage of anti-parkinsonian and other drugs throughout the study. After 12 weeks of PS128 supplementation, the UPDRS motor scores improved significantly in both the OFF and ON states (p = 0.004 and p = 0.007, respectively). In addition, PS128 intervention significantly improved the duration of the ON period and OFF period as well as PDQ-39 values. However, no obvious effect of PS128 on non-motor symptoms of patients with PD was observed. Notably, the PGI-C scores improved in 17 patients (68%). PS128 intervention was also found to significantly reduce plasma myeloperoxidase and urine creatinine levels. Conclusion: The present study demonstrated that PS128 supplementation for 12 weeks with constant anti-parkinsonian medication improved the UPDRS motor score and quality of life of PD patients. We suggest that PS128 could serve as a therapeutic adjuvant for the treatment of PD. In the future, placebo-controlled studies are needed to further support the efficacy of PS128 supplementation. Clinical Trial Registration: https://clinicaltrials.gov/, identifier: NCT04389762.
Collapse
Affiliation(s)
- Chin-Song Lu
- Professor Lu Neurological Clinic, Taoyuan, Taiwan
| | | | - Yi-Hsin Weng
- Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chiung-Chu Chen
- Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yi-Shan Kuo
- Professor Lu Neurological Clinic, Taoyuan, Taiwan
| | - Ying-Chieh Tsai
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
338
|
Decoding the Role of Gut-Microbiome in the Food Addiction Paradigm. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18136825. [PMID: 34202073 PMCID: PMC8297196 DOI: 10.3390/ijerph18136825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022]
Abstract
Eating behaviour is characterised by a solid balance between homeostatic and hedonic regulatory mechanisms at the central level and highly influenced by peripheral signals. Among these signals, those generated by the gut microbiota have achieved relevance in recent years. Despite this complex regulation, under certain circumstances eating behaviour can be deregulated becoming addictive. Although there is still an ongoing debate about the food addiction concept, studies agree that patients with eating addictive behaviour present similar symptoms to those experienced by drug addicts, by affecting central areas involved in the control of motivated behaviour. In this context, this review tries to summarise the main data regarding the role of the gut microbiome in eating behaviour and how a gut dysbiosis can be responsible for a maladaptive behaviour such as “food addiction”.
Collapse
|
339
|
Gall AJ, Griffin GD. Anxiolytic effects of administration of a commercially available prebiotic blend of galacto-oligosaccharides and beta glucans in Sprague-Dawley rats. Benef Microbes 2021; 12:35-43. [PMID: 34169805 DOI: 10.3920/bm2020.0169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Prebiotics are nondigestible food agents that stimulate the growth of bacteria in the gut, whereas probiotics are live microorganisms that replace or restore beneficial bacteria in the digestive tract. Both agents have been shown to have beneficial qualities within the microbiota-gut-brain axis, but the behavioural effects of prebiotics have been less studied than probiotics. Whereas several studies have shown that prebiotics reduce inflammation and modulate anxiety in animals that are injected with lipopolysacccharides or chronically stressed animals, respectively, it is not yet known how they affect a healthy organism. Here, we tested the behavioural effects of galacto-oligosaccharides and beta glucan as a commercially available prebiotic blend in healthy, naïve Sprague-Dawley rats. We used the open field test and elevated plus maze to assess anxiety-like behaviour in controls and in rats that ingested the prebiotic blend in their drinking water. We also used the Morris Water Maze to assess spatial memory performance in controls and prebiotic treated rats. Rats treated with prebiotics spent more time in the intermediate zone of the open field test and in the open arms of the elevated plus maze, and exhibited a shorter latency to enter each of these zones. No significant differences between groups were found in the Morris Water Maze. Our results suggest that whereas prebiotics significantly reduced anxiety-like behaviours, it had no effect on spatial memory performance. Altogether, our data indicate that commercially available prebiotic beta glucan blends have anxiolytic effects in healthy rats.
Collapse
Affiliation(s)
- A J Gall
- Department of Psychology and Neuroscience Program, Hope College, 35 E. 12th Street, Holland, MI 49423, USA
| | - G D Griffin
- Department of Psychology and Neuroscience Program, Hope College, 35 E. 12th Street, Holland, MI 49423, USA.,Department of Biology, Hope College, 35 East 12th Street, Holland, MI 49423, USA
| |
Collapse
|
340
|
Westfall S, Caracci F, Estill M, Frolinger T, Shen L, Pasinetti GM. Chronic Stress-Induced Depression and Anxiety Priming Modulated by Gut-Brain-Axis Immunity. Front Immunol 2021; 12:670500. [PMID: 34248950 PMCID: PMC8264434 DOI: 10.3389/fimmu.2021.670500] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 06/08/2021] [Indexed: 12/18/2022] Open
Abstract
Chronic stress manifests as depressive- and anxiety-like behavior while recurrent stress elicits disproportionate behavioral impairments linked to stress-induced immunological priming. The gut-brain-microbiota-axis is a promising therapeutic target for stress-induced behavioral impairments as it simultaneously modulates peripheral and brain immunological landscapes. In this study, a combination of probiotics and prebiotics, known as a synbiotic, promoted behavioral resilience to chronic and recurrent stress by normalizing gut microbiota populations and promoting regulatory T cell (Treg) expansion through modulation of ileal innate lymphoid cell (ILC)3 activity, an impact reflecting behavioral responses better than limbic brain region neuroinflammation. Supporting this conclusion, a multivariate machine learning model correlatively predicted a cross-tissue immunological signature of stress-induced behavioral impairment where the ileal Treg/T helper17 cell ratio associated to hippocampal chemotactic chemokine and prefrontal cortex IL-1β production in the context of stress-induced behavioral deficits. In conclusion, stress-induced behavioral impairments depend on the gut-brain-microbiota-axis and through ileal immune regulation, synbiotics attenuate the associated depressive- and anxiety-like behavior.
Collapse
Affiliation(s)
- Susan Westfall
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Francesca Caracci
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Molly Estill
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Tal Frolinger
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Li Shen
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Giulio M. Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Geriatric Research, Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, United States
| |
Collapse
|
341
|
Patrono E, Svoboda J, Stuchlík A. Schizophrenia, the gut microbiota, and new opportunities from optogenetic manipulations of the gut-brain axis. Behav Brain Funct 2021; 17:7. [PMID: 34158061 PMCID: PMC8218443 DOI: 10.1186/s12993-021-00180-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/01/2021] [Indexed: 12/18/2022] Open
Abstract
Schizophrenia research arose in the twentieth century and is currently rapidly developing, focusing on many parallel research pathways and evaluating various concepts of disease etiology. Today, we have relatively good knowledge about the generation of positive and negative symptoms in patients with schizophrenia. However, the neural basis and pathophysiology of schizophrenia, especially cognitive symptoms, are still poorly understood. Finding new methods to uncover the physiological basis of the mental inabilities related to schizophrenia is an urgent task for modern neuroscience because of the lack of specific therapies for cognitive deficits in the disease. Researchers have begun investigating functional crosstalk between NMDARs and GABAergic neurons associated with schizophrenia at different resolutions. In another direction, the gut microbiota is getting increasing interest from neuroscientists. Recent findings have highlighted the role of a gut-brain axis, with the gut microbiota playing a crucial role in several psychopathologies, including schizophrenia and autism. There have also been investigations into potential therapies aimed at normalizing altered microbiota signaling to the enteric nervous system (ENS) and the central nervous system (CNS). Probiotics diets and fecal microbiota transplantation (FMT) are currently the most common therapies. Interestingly, in rodent models of binge feeding, optogenetic applications have been shown to affect gut colony sensitivity, thus increasing colonic transit. Here, we review recent findings on the gut microbiota–schizophrenia relationship using in vivo optogenetics. Moreover, we evaluate if manipulating actors in either the brain or the gut might improve potential treatment research. Such research and techniques will increase our knowledge of how the gut microbiota can manipulate GABA production, and therefore accompany changes in CNS GABAergic activity.
Collapse
Affiliation(s)
- Enrico Patrono
- Institute of Physiology of the Czech Academy of Sciences, Videnska, 1830, Prague, 142 20, Czech Republic.
| | - Jan Svoboda
- Institute of Physiology of the Czech Academy of Sciences, Videnska, 1830, Prague, 142 20, Czech Republic
| | - Aleš Stuchlík
- Institute of Physiology of the Czech Academy of Sciences, Videnska, 1830, Prague, 142 20, Czech Republic.
| |
Collapse
|
342
|
Psychobiotic interventions for anxiety in young people: a systematic review and meta-analysis, with youth consultation. Transl Psychiatry 2021; 11:352. [PMID: 34131108 PMCID: PMC8206413 DOI: 10.1038/s41398-021-01422-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/08/2021] [Accepted: 04/19/2021] [Indexed: 01/10/2023] Open
Abstract
The human gut microbiome influence on brain function and mental health is an emerging area of intensive research. Animal and human research indicates adolescence as a sensitive period when the gut-brain axis is fine-tuned, where dietary interventions to change the microbiome may have long-lasting consequences for mental health. This study reports a systematic review and meta-analysis of microbiota-targeted (psychobiotics) interventions on anxiety in youth, with discussion of a consultation on the acceptability of psychobiotic interventions for mental health management amongst youth with lived experience. Six databases were searched for controlled trials in human samples (age range: 10-24 years) seeking to reduce anxiety. Post intervention outcomes were extracted as standard mean differences (SMDs) and pooled based on a random-effects model. 5416 studies were identified: 14 eligible for systematic review and 10 eligible for meta-analysis (total of 324 experimental and 293 control subjects). The meta-analysis found heterogeneity I2 was 12% and the pooled SMD was -0.03 (95% CI: -0.21, 0.14), indicating an absence of effect. One study presented with low bias risk, 5 with high, and 4 with uncertain risk. Accounting for risk, sensitivities analysis revealed a SMD of -0.16 (95% CI: -0.38, 0.07), indicative of minimal efficacy of psychobiotics for anxiety treatment in humans. There is currently limited evidence for use of psychobiotics to treat anxiety in youth. However, future progress will require a multidisciplinary research approach, which gives priority to specifying mechanisms in the human models, providing causal understanding, and addressing the wider context, and would be welcomed by anxious youths.
Collapse
|
343
|
Venkataraman R, Madempudi RS, Neelamraju J, Ahire JJ, Vinay HR, Lal A, Thomas G, Stephen S. Effect of Multi-strain Probiotic Formulation on Students Facing Examination Stress: a Double-Blind, Placebo-Controlled Study. Probiotics Antimicrob Proteins 2021; 13:12-18. [PMID: 32601955 DOI: 10.1007/s12602-020-09681-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this placebo-controlled, double-blind clinical trial, we have investigated the effect of multi-strain probiotic (Bacillus coagulans Unique IS2, Lactobacillus rhamnosus UBLR58, Bifidobacterium lactis UBBLa70, Lactobacillus plantarum UBLP40 (each of 2 billion CFU); Bifidobacterium breve UBBr01, Bifidobacterium infantis UBBI01 (each of 1 billion CFU)) capsule with glutamine (250 mg) on students facing examination stress. A total of 80 students (18-24 years) were enrolled and randomised to receive multi-strain probiotic or placebo capsules twice a day for 28 days (i.e. pre- and during examination). The stress was analysed at the baseline and the end of the treatment by using the perceived stress scale (PSS), depression anxiety stress scale (DASS), and state-trait anxiety inventory (STAI) questionnaire. The serum cortisol levels were also determined. As a result, at the end of the trial, a total of 74 students completed the study, and those who consumed probiotic capsules showed a significant reduction in PSS, DASS, and STAI scores, and serum cortisol levels from the baseline as compared with placebo. No adverse events were reported during the study. In conclusion, the multi-strain probiotic is effective in reducing stress associated with examination. CTRI/2019/03/018178.
Collapse
Affiliation(s)
- Rajesh Venkataraman
- Department of Pharmacy Practice, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, Mandya, Karnataka, 571448, India
| | - Ratna Sudha Madempudi
- Centre for Research and Development, Unique Biotech Ltd., Plot No. 2, Phase II, Alexandria Knowledge Park, Hyderabad, Telangana, 500078, India
| | - Jayanthi Neelamraju
- Centre for Research and Development, Unique Biotech Ltd., Plot No. 2, Phase II, Alexandria Knowledge Park, Hyderabad, Telangana, 500078, India
| | - Jayesh J Ahire
- Centre for Research and Development, Unique Biotech Ltd., Plot No. 2, Phase II, Alexandria Knowledge Park, Hyderabad, Telangana, 500078, India.
| | - H R Vinay
- Adichunchanagiri Hospital and Research Centre, Adichunchanagiri University, Mandya, Karnataka, 571448, India
| | - Anila Lal
- Department of Pharmacy Practice, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, Mandya, Karnataka, 571448, India
| | - Glory Thomas
- Department of Pharmacy Practice, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, Mandya, Karnataka, 571448, India
| | - Stephy Stephen
- Department of Pharmacy Practice, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, Mandya, Karnataka, 571448, India
| |
Collapse
|
344
|
Handajani YS, Turana Y, Yogiara Y, Widjaja NT, Sani TP, Christianto GAM, Suwanto A. Tempeh Consumption and Cognitive Improvement in Mild Cognitive Impairment. Dement Geriatr Cogn Disord 2021; 49:497-502. [PMID: 33080604 DOI: 10.1159/000510563] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/28/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Tempeh consumption has been linked to the improvement of cognitive function in older people. However, to what extent the amount of microorganism or the size of tempeh serving consumed per day influences the benefit to cognitive functions has not yet been studied. METHODS This experimental study involved a total of 90 respondents, who were divided into 3 groups: group A (consuming 100 g of Tempeh A/day), group B (consuming 100 g of Tempeh B/day), and group C (control). Intervention was given for 6 months. Cognitive assessments were done before and after the intervention. Blood uric acid level was checked at the end of intervention to examine the effect of tempeh consumption on this. The inclusion criteria were respondents aged 60 years or over with mild cognitive impairment (MCI) who agreed not to consume other fermented food during the study period. Respondents with diabetes were excluded. RESULTS There were 84 subjects at the end of the study, majority being female (71.4%) and aged over 65 years (72.6%). An increase in global cognitive scores was found in both groups A and B. The increase in language domain scores was found only in group A. CONCLUSION Both Tempeh A or Tempeh B consumption for 6 months appeared to be beneficial in improving global cognitive function of older people with MCI. Consuming Tempeh A, which had a lower number of microorganisms, was also associated with an improvement in the language domain.
Collapse
Affiliation(s)
- Yvonne Suzy Handajani
- Center of Health Research, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | - Yuda Turana
- Department of Neurology, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia,
| | - Yogiara Yogiara
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | - Nelly Tina Widjaja
- Center of Health Research, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | - Tara Puspitarini Sani
- Department of Neurology, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | | | - Antonius Suwanto
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| |
Collapse
|
345
|
De la Fuente M. The Role of the Microbiota-Gut-Brain Axis in the Health and Illness Condition: A Focus on Alzheimer's Disease. J Alzheimers Dis 2021; 81:1345-1360. [PMID: 33935086 DOI: 10.3233/jad-201587] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Trillions of commensal microbes live in our body, the majority in the gut. This gut microbiota is in constant interaction with the homeostatic systems, the nervous, immune and endocrine systems, being fundamental for their appropriate development and function as well as for the neuroimmunoendocrine communication. The health state of an individual is understood in the frame of this communication, in which the microbiota-gut-brain axis is a relevant example. This bidirectional axis is constituted in early age and is affected by many environmental and lifestyle factors such as diet and stress, among others, being involved in the adequate maintenance of homeostasis and consequently in the health of each subject and in his/her rate of aging. For this, an alteration of gut microbiota, as occurs in a dysbiosis, and the associated gut barrier deterioration and the inflammatory state, affecting the function of immune, endocrine and nervous systems, in gut and in all the locations, is in the base of a great number of pathologies as those that involve alterations in the brain functions. There is an age-related deterioration of microbiota and the homeostatic systems due to oxi-inflamm-aging, and thus the risk of aging associated pathologies such as the neurodegenerative illness. Currently, this microbiota-gut-brain axis has been considered to have a relevant role in the pathogenesis of Alzheimer's disease and represents an important target in the prevention and slowdown of the development of this pathology. In this context, the use of probiotics seems to be a promising help.
Collapse
Affiliation(s)
- Mónica De la Fuente
- Department of Genetics, Physiology and Microbiology (Animal Physiology Unit), School of Biology, Complutense University of Madrid. Institute of Investigation of Hospital 12 de Octubre (i+12), Madrid, Spain
| |
Collapse
|
346
|
Lactobacillus plantarum PS128 and Other Probiotics in Children and Adolescents with Autism Spectrum Disorder: A Real-World Experience. Nutrients 2021; 13:nu13062036. [PMID: 34198499 PMCID: PMC8231766 DOI: 10.3390/nu13062036] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/04/2021] [Accepted: 06/12/2021] [Indexed: 02/07/2023] Open
Abstract
Autism Spectrum Disorder is a neurodevelopmental disorder. Recent data suggest that probiotics can reduce some symptoms of this disorder and Lactobacillus plantarum PS128 has been reported to be especially useful. We recruited a sample of 131 autistic children and adolescents (M:F = 122:19; age: 86.1 ± 41.1 months) and evaluated their changes after use of probiotics by mean of CGI. We found some significant improvements with very few side effects; these positive effects were more evident in younger children. Patients taking Lactobacillus plantarum PS128 had greater improvements and fewer side effects than those taking other probiotics. Our real-life data are consistent with existing literature showing a specific effect of Lactobacillus plantarum PS128 in Autism Spectrum Disorder.
Collapse
|
347
|
Buffet-Bataillon S, Bellanger A, Boudry G, Gangneux JP, Yverneau M, Beuchée A, Blat S, Le Huërou-Luron I. New Insights Into Microbiota Modulation-Based Nutritional Interventions for Neurodevelopmental Outcomes in Preterm Infants. Front Microbiol 2021; 12:676622. [PMID: 34177860 PMCID: PMC8232935 DOI: 10.3389/fmicb.2021.676622] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/12/2021] [Indexed: 12/19/2022] Open
Abstract
Gut microbiota and the central nervous system have parallel developmental windows during pre and post-natal life. Increasing evidences suggest that intestinal dysbiosis in preterm infants predisposes the neonate to adverse neurological outcomes later in life. Understanding the link between gut microbiota colonization and brain development to tailor therapies aimed at optimizing initial colonization and microbiota development are promising strategies to warrant adequate brain development and enhance neurological outcomes in preterm infants. Breast-feeding has been associated with both adequate cognitive development and healthy microbiota in preterms. Infant formula are industrially produced substitutes for infant nutrition that do not completely recapitulate breast-feeding benefices and could be largely improved by the understanding of the role of breast milk components upon gut microbiota. In this review, we will first discuss the nutritional and bioactive component information on breast milk composition and its contribution to the assembly of the neonatal gut microbiota in preterms. We will then discuss the emerging pathways connecting the gut microbiota and brain development. Finally, we will discuss the promising microbiota modulation-based nutritional interventions (including probiotic and prebiotic supplementation of infant formula and maternal nutrition) for improving neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Sylvie Buffet-Bataillon
- Institut NuMeCan, INRAE, INSERM, Univ Rennes, Saint-Gilles, France
- Department of Clinical Microbiology, CHU Rennes, Rennes, France
| | - Amandine Bellanger
- Institut NuMeCan, INRAE, INSERM, Univ Rennes, Saint-Gilles, France
- Department of Pediatrics-Neonatology, CHU Rennes, Rennes, France
| | - Gaelle Boudry
- Institut NuMeCan, INRAE, INSERM, Univ Rennes, Saint-Gilles, France
| | | | | | - Alain Beuchée
- Department of Pediatrics-Neonatology, Univ Rennes, CHU Rennes, LTSI-UMR 1099, Rennes, France
| | - Sophie Blat
- Institut NuMeCan, INRAE, INSERM, Univ Rennes, Saint-Gilles, France
| | | |
Collapse
|
348
|
Dao VH, Hoang LB, Trinh TO, Tran TTT, Dao VL. Psychobiotics for Patients with Chronic Gastrointestinal Disorders Having Anxiety or Depression Symptoms. J Multidiscip Healthc 2021; 14:1395-1402. [PMID: 34140777 PMCID: PMC8203266 DOI: 10.2147/jmdh.s312316] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/28/2021] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Using psychobiotics to modify the gut microbiome has been shown to improve the anxiety and depression situation of patients with chronic gastrointestinal (GI) symptoms. This study evaluated changes in depression, anxiety, GI symptomss and side effects when patients used a multispecies probiotics product. PATIENTS AND METHODS A single-center uncontrolled trial was conducted in patients with chronic GI symptoms, anxiety and depression who used a multispecies probiotics product. The patients were screened for anxiety and depression symptoms using the Hospital Anxiety and Depression Scale (HADS). Those who had a component score of 8 or higher were given the multispecies probiotics product for 2 months and followed up after 1 and 2 months. All data are collected and managed in a case report form. RESULTS Eighty-three patients were enrolled, with a mean age (SD) of 43.9 (12.3) years; 73.5% of the patients were female. Of these patients, 8 met the Rome IV criteria for irritable bowel syndrome. The HADS scores displayed significant improvement at follow-up. The mean (SD) total HADS scores were 20.0 (6.3), 7.2 (5.4), and 4.9 (5.1) at baseline, 1 month, and 2 months, respectively. Quality of life also improved significantly. A small proportion (<5%) of patients developed mild symptoms, including fullness, diarrhea, and sleep complaints. CONCLUSION After 2 months using the probiotic product, the symptoms of anxiety and depression improved significantly. Mild gastrointestinal or constitutional symptoms developed in some patients.
Collapse
Affiliation(s)
- Viet Hang Dao
- Internal Medicine Faculty, Hanoi Medical University, Hanoi, Vietnam
- Research and Training Management Unit, Institute of Gastroenterology and Hepatology, Hanoi, Vietnam
| | - Long Bao Hoang
- Research and Training Management Unit, Institute of Gastroenterology and Hepatology, Hanoi, Vietnam
| | - Thi Oanh Trinh
- Research and Training Management Unit, Institute of Gastroenterology and Hepatology, Hanoi, Vietnam
| | - Thi Thu Trang Tran
- Research and Training Management Unit, Institute of Gastroenterology and Hepatology, Hanoi, Vietnam
| | - Van Long Dao
- Internal Medicine Faculty, Hanoi Medical University, Hanoi, Vietnam
- Research and Training Management Unit, Institute of Gastroenterology and Hepatology, Hanoi, Vietnam
| |
Collapse
|
349
|
Bastiaanssen TFS, Cussotto S, Claesson MJ, Clarke G, Dinan TG, Cryan JF. Gutted! Unraveling the Role of the Microbiome in Major Depressive Disorder. Harv Rev Psychiatry 2021; 28:26-39. [PMID: 31913980 PMCID: PMC7012351 DOI: 10.1097/hrp.0000000000000243] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Microorganisms can be found in virtually any environment. In humans, the largest collection of microorganisms is found in the gut ecosystem. The adult gut microbiome consists of more genes than its human host and typically spans more than 60 genera from across the taxonomic tree. In addition, the gut contains the largest number of neurons in the body, after the brain. In recent years, it has become clear that the gut microbiome is in communication with the brain, through the gut-brain axis. A growing body of literature shows that the gut microbiome plays a shaping role in a variety of psychiatric disorders, including major depressive disorder (MDD). In this review, the interplay between the microbiome and MDD is discussed in three facets. First, we discuss factors that affect the onset/development of MDD that also greatly impinge on the composition of the gut microbiota-especially diet and stressful life events. We then examine the interplay between the microbiota and MDD. We examine evidence suggesting that the microbiota is altered in MDD, and we discuss why the microbiota should be considered during MDD treatment. Finally, we look toward the future and examine how the microbiota might become a therapeutic target for MDD. This review is intended to introduce those familiar with the neurological and psychiatric aspects of MDD to the microbiome and its potential role in the disorder. Although research is in its very early days, with much yet to be the understood, the microbiome is offering new avenues for developing potentially novel strategies for managing MDD.
Collapse
|
350
|
Liu J, Yu C, Li R, Liu K, Jin G, Ge R, Tang F, Cui S. High-altitude Tibetan fermented milk ameliorated cognitive dysfunction by modified gut microbiota in Alzheimer's disease transgenic mice. Food Funct 2021; 11:5308-5319. [PMID: 32458851 DOI: 10.1039/c9fo03007g] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disease that is regarded as a growing global challenge. Accumulating evidence linking gut microbiota with AD has become intriguing. The purpose of this study was to investigate how Tibetan fermented milk affected memory impairment in amyloid precursor protein (APP)/presenilin-1 (PS1) mice, using APP/PS1 transgenic mice as examples. We used Tibetan fermented milk (the yogurt samples with the highest microbial diversity were selected by 16S sequencing) as an intervention in such mice for 20 weeks, with aseptic maintenance feed as their basic diet. At the end of the intervention, we collected fecal samples for 16S ribosomal ribonucleic acid (rRNA) sequencing. We evaluated the effects of Tibetan fermented milk on the mice's cognitive function by behavioral examination, and deposition of amyloid beta (Aβ) in the hippocampus and cortex of the mice by immunohistochemistry (IHC). Results showed that Tibetan fermented milk could improve cognitive impairment in APP/PS1 mice, including spatial learning/memory and object recognition/memory. Sequencing of 16S ribosomal RNA in mouse feces showed that Tibetan fermented milk increased intestinal microbial diversity and elevated the relative abundance of Bacteroides and Faecalibacterium spp. Mucispirillum and Ruminiclostridium were highly abundant in APP/PS1 mice. Additionally, correlation analysis revealed that cognitive function was correlated negatively with Mucispirillum abundance and positively with Muribaculum and Erysipelatoclostridium abundance. Tibetan fermented milk could also reduce deposition of Aβ in the cerebral cortex and hippocampus. Our data suggested that long-term intake of Tibetan fermented milk had a beneficial effect on the composition of intestinal flora, which was correlated with cognitive improvements in APP/PS1 mice and seemed to help prevent and treat AD-induced cognitive decline.
Collapse
Affiliation(s)
- JunLi Liu
- Research Center for High Altitude Medicine, Qinghai University, Key Laboratory for Application of High Altitude Medicine in Qinghai Province, Xining, China. and Qinghai University Affiliated Hospital, Xining, China
| | - ChunYang Yu
- Ningxia Key Laboratory of Cerebrocranial Diseases, School of Laboratory Medicine, Ningxia Medical University, Yinchuan, China
| | - RunLe Li
- Research Center for High Altitude Medicine, Qinghai University, Key Laboratory for Application of High Altitude Medicine in Qinghai Province, Xining, China.
| | - KunMei Liu
- Ningxia Key Laboratory of Cerebrocranial Diseases, School of Laboratory Medicine, Ningxia Medical University, Yinchuan, China
| | - GuoEn Jin
- Research Center for High Altitude Medicine, Qinghai University, Key Laboratory for Application of High Altitude Medicine in Qinghai Province, Xining, China.
| | - RiLi Ge
- Research Center for High Altitude Medicine, Qinghai University, Key Laboratory for Application of High Altitude Medicine in Qinghai Province, Xining, China.
| | - Feng Tang
- Research Center for High Altitude Medicine, Qinghai University, Key Laboratory for Application of High Altitude Medicine in Qinghai Province, Xining, China.
| | - Sen Cui
- Research Center for High Altitude Medicine, Qinghai University, Key Laboratory for Application of High Altitude Medicine in Qinghai Province, Xining, China. and Qinghai University Affiliated Hospital, Xining, China
| |
Collapse
|