301
|
Cropley JE, Eaton SA, Aiken A, Young PE, Giannoulatou E, Ho JWK, Buckland ME, Keam SP, Hutvagner G, Humphreys DT, Langley KG, Henstridge DC, Martin DIK, Febbraio MA, Suter CM. Male-lineage transmission of an acquired metabolic phenotype induced by grand-paternal obesity. Mol Metab 2016; 5:699-708. [PMID: 27656407 PMCID: PMC5021672 DOI: 10.1016/j.molmet.2016.06.008] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 06/14/2016] [Accepted: 06/16/2016] [Indexed: 12/22/2022] Open
Abstract
Objective Parental obesity can induce metabolic phenotypes in offspring independent of the inherited DNA sequence. Here we asked whether such non-genetic acquired metabolic traits can be passed on to a second generation that has never been exposed to obesity, even as germ cells. Methods We examined the F1, F2, and F3 a/a offspring derived from F0 matings of obese prediabetic Avy/a sires and lean a/a dams. After F0, only lean a/a mice were used for breeding. Results We found that F1 sons of obese founder males exhibited defects in glucose and lipid metabolism, but only upon a post-weaning dietary challenge. F1 males transmitted these defects to their own male progeny (F2) in the absence of the dietary challenge, but the phenotype was largely attenuated by F3. The sperm of F1 males exhibited changes in the abundance of several small RNA species, including the recently reported diet-responsive tRNA-derived fragments. Conclusions These data indicate that induced metabolic phenotypes may be propagated for a generation beyond any direct exposure to an inducing factor. This non-genetic inheritance likely occurs via the actions of sperm noncoding RNA. Paternal obesity induces latent defects in metabolism in F1 sons. Metabolic disease in F1 sons is exposed by short challenge with a Western diet. F1 sons transmit their phenotype to F2 grandsons in the absence of dietary challenge. F1 sperm exhibit changes to prominent small RNA species.
Collapse
Affiliation(s)
- Jennifer E Cropley
- Molecular, Structural and Computational Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia; Faculty of Medicine, University of New South Wales, Kensington, NSW, 2052, Australia.
| | - Sally A Eaton
- Molecular, Structural and Computational Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia; Faculty of Medicine, University of New South Wales, Kensington, NSW, 2052, Australia
| | - Alastair Aiken
- Molecular, Structural and Computational Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia
| | - Paul E Young
- Molecular, Structural and Computational Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia
| | - Eleni Giannoulatou
- Molecular, Structural and Computational Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia
| | - Joshua W K Ho
- Molecular, Structural and Computational Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia; Faculty of Medicine, University of New South Wales, Kensington, NSW, 2052, Australia
| | - Michael E Buckland
- Brain and Mind Research Institute, University of Sydney, Sydney, NSW, 2006, Australia
| | - Simon P Keam
- Faculty of Engineering and Information Technology, Centre of Health Technologies, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Gyorgy Hutvagner
- Faculty of Engineering and Information Technology, Centre of Health Technologies, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - David T Humphreys
- Molecular, Structural and Computational Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia
| | - Katherine G Langley
- Cellular and Molecular Metabolism Laboratory, Baker IDI Diabetes and Heart Research Institute, Melbourne, VIC, 3004, Australia
| | - Darren C Henstridge
- Cellular and Molecular Metabolism Laboratory, Baker IDI Diabetes and Heart Research Institute, Melbourne, VIC, 3004, Australia
| | - David I K Martin
- Molecular, Structural and Computational Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia; Children's Hospital Oakland Research Institute, Oakland, CA, 94609, USA
| | - Mark A Febbraio
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
| | - Catherine M Suter
- Molecular, Structural and Computational Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia; Faculty of Medicine, University of New South Wales, Kensington, NSW, 2052, Australia.
| |
Collapse
|
302
|
Trim28 Haploinsufficiency Triggers Bi-stable Epigenetic Obesity. Cell 2016; 164:353-64. [PMID: 26824653 PMCID: PMC4735019 DOI: 10.1016/j.cell.2015.12.025] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/12/2015] [Accepted: 12/08/2015] [Indexed: 12/21/2022]
Abstract
More than one-half billion people are obese, and despite progress in genetic research, much of the heritability of obesity remains enigmatic. Here, we identify a Trim28-dependent network capable of triggering obesity in a non-Mendelian, “on/off” manner. Trim28+/D9 mutant mice exhibit a bi-modal body-weight distribution, with isogenic animals randomly emerging as either normal or obese and few intermediates. We find that the obese-“on” state is characterized by reduced expression of an imprinted gene network including Nnat, Peg3, Cdkn1c, and Plagl1 and that independent targeting of these alleles recapitulates the stochastic bi-stable disease phenotype. Adipose tissue transcriptome analyses in children indicate that humans too cluster into distinct sub-populations, stratifying according to Trim28 expression, transcriptome organization, and obesity-associated imprinted gene dysregulation. These data provide evidence of discrete polyphenism in mouse and man and thus carry important implications for complex trait genetics, evolution, and medicine. Video Abstract
Trim28 haploinsufficiency triggers stochastic bi-stable obesity or polyphenism Non-classical imprinted gene dysregulation specifies “on” versus “off” obese states Peg3 and Nnat perturbation trigger stochastic bi-stable obesity Human BMI distributions and transcriptomes suggest Trim28-associated subpopulations
Collapse
|
303
|
Yang Q, Lin J, Liu M, Li R, Tian B, Zhang X, Xu B, Liu M, Zhang X, Li Y, Shi H, Wu L. Highly sensitive sequencing reveals dynamic modifications and activities of small RNAs in mouse oocytes and early embryos. SCIENCE ADVANCES 2016; 2:e1501482. [PMID: 27500274 PMCID: PMC4974095 DOI: 10.1126/sciadv.1501482] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 05/20/2016] [Indexed: 05/03/2023]
Abstract
Small RNAs play important roles in early embryonic development. However, their expression dynamics and modifications are poorly understood because of the scarcity of RNA that is obtainable for sequencing analysis. Using an improved deep sequencing method that requires as little as 10 ng of total RNA or 50 oocytes, we profile small RNAs in mouse oocytes and early embryos. We find that microRNA (miRNA) expression starts soon after fertilization, and the mature miRNAs carried into the zygote by sperm during fertilization are relatively rare compared to the oocyte miRNAs. Intriguingly, the zygotic miRNAs display a marked increase in 3' mono- and oligoadenylation in one- to two-cell embryos, which may protect the miRNAs from the massive degradation taking place during that time. Moreover, bioinformatics analyses show that the function of miRNA is suppressed from the oocyte to the two-cell stage and appears to be reactivated after the two-cell stage to regulate genes important in embryonic development. Our study thus provides a highly sensitive profiling method and valuable data sets for further examination of small RNAs in early embryos.
Collapse
Affiliation(s)
- Qiyuan Yang
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jimin Lin
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Miao Liu
- China National Population and Family Planning Key Laboratory of Contraceptive Drugs and Devices, Shanghai Institute of Planned Parenthood Research, Shanghai 200032, China
| | - Ronghong Li
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bin Tian
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Xue Zhang
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Beiying Xu
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Mofang Liu
- Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xuan Zhang
- China National Population and Family Planning Key Laboratory of Contraceptive Drugs and Devices, Shanghai Institute of Planned Parenthood Research, Shanghai 200032, China
| | - Yiping Li
- Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Huijuan Shi
- China National Population and Family Planning Key Laboratory of Contraceptive Drugs and Devices, Shanghai Institute of Planned Parenthood Research, Shanghai 200032, China
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
- Corresponding author. (H.S.); (L.W.)
| | - Ligang Wu
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Corresponding author. (H.S.); (L.W.)
| |
Collapse
|
304
|
Epigenetic Inheritance and Its Role in Evolutionary Biology: Re-Evaluation and New Perspectives. BIOLOGY 2016; 5:biology5020024. [PMID: 27231949 PMCID: PMC4929538 DOI: 10.3390/biology5020024] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/26/2016] [Accepted: 05/11/2016] [Indexed: 01/08/2023]
Abstract
Epigenetics increasingly occupies a pivotal position in our understanding of inheritance, natural selection and, perhaps, even evolution. A survey of the PubMed database, however, reveals that the great majority (>93%) of epigenetic papers have an intra-, rather than an inter-generational focus, primarily on mechanisms and disease. Approximately ~1% of epigenetic papers even mention the nexus of epigenetics, natural selection and evolution. Yet, when environments are dynamic (e.g., climate change effects), there may be an “epigenetic advantage” to phenotypic switching by epigenetic inheritance, rather than by gene mutation. An epigenetically-inherited trait can arise simultaneously in many individuals, as opposed to a single individual with a gene mutation. Moreover, a transient epigenetically-modified phenotype can be quickly “sunsetted”, with individuals reverting to the original phenotype. Thus, epigenetic phenotype switching is dynamic and temporary and can help bridge periods of environmental stress. Epigenetic inheritance likely contributes to evolution both directly and indirectly. While there is as yet incomplete evidence of direct permanent incorporation of a complex epigenetic phenotype into the genome, doubtlessly, the presence of epigenetic markers and the phenotypes they create (which may sort quite separately from the genotype within a population) will influence natural selection and, so, drive the collective genotype of a population.
Collapse
|
305
|
Tian Y, Garcia G, Bian Q, Steffen KK, Joe L, Wolff S, Meyer BJ, Dillin A. Mitochondrial Stress Induces Chromatin Reorganization to Promote Longevity and UPR(mt). Cell 2016; 165:1197-1208. [PMID: 27133166 DOI: 10.1016/j.cell.2016.04.011] [Citation(s) in RCA: 264] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 10/23/2015] [Accepted: 04/01/2016] [Indexed: 01/01/2023]
Abstract
Organisms respond to mitochondrial stress through the upregulation of an array of protective genes, often perpetuating an early response to metabolic dysfunction across a lifetime. We find that mitochondrial stress causes widespread changes in chromatin structure through histone H3K9 di-methylation marks traditionally associated with gene silencing. Mitochondrial stress response activation requires the di-methylation of histone H3K9 through the activity of the histone methyltransferase met-2 and the nuclear co-factor lin-65. While globally the chromatin becomes silenced by these marks, remaining portions of the chromatin open up, at which point the binding of canonical stress responsive factors such as DVE-1 occurs. Thus, a metabolic stress response is established and propagated into adulthood of animals through specific epigenetic modifications that allow for selective gene expression and lifespan extension.
Collapse
Affiliation(s)
- Ye Tian
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA; The Glenn Center for Aging Research, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Gilberto Garcia
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA; The Glenn Center for Aging Research, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Qian Bian
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kristan K Steffen
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA; The Glenn Center for Aging Research, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Larry Joe
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA; The Glenn Center for Aging Research, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Suzanne Wolff
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA; The Glenn Center for Aging Research, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Barbara J Meyer
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Andrew Dillin
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA; The Glenn Center for Aging Research, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
306
|
Hypomethylation of ERVs in the sperm of mice haploinsufficient for the histone methyltransferase Setdb1 correlates with a paternal effect on phenotype. Sci Rep 2016; 6:25004. [PMID: 27112447 PMCID: PMC4845014 DOI: 10.1038/srep25004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 04/07/2016] [Indexed: 01/09/2023] Open
Abstract
The number of reports of paternal epigenetic influences on the phenotype of offspring in rodents is increasing but the molecular events involved remain unclear. Here, we show that haploinsufficiency for the histone 3 lysine 9 methyltransferase Setdb1 in the sire can influence the coat colour phenotype of wild type offspring. This effect occurs when the allele that directly drives coat colour is inherited from the dam, inferring that the effect involves an “in trans” step. The implication of this finding is that epigenetic state of the sperm can alter the expression of genes inherited on the maternally derived chromosomes. Whole genome bisulphite sequencing revealed that Setdb1 mutant mice show DNA hypomethylation at specific classes of transposable elements in the sperm. Our results identify Setdb1 as a paternal effect gene in the mouse and suggest that epigenetic inheritance may be more likely in individuals with altered levels of epigenetic modifiers.
Collapse
|
307
|
Transfer RNA-derived small RNAs in the cancer transcriptome. Pflugers Arch 2016; 468:1041-7. [PMID: 27095039 PMCID: PMC4893054 DOI: 10.1007/s00424-016-1822-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 04/04/2016] [Accepted: 04/07/2016] [Indexed: 01/08/2023]
Abstract
The cellular lifetime includes stages such as differentiation, proliferation, division, senescence and apoptosis. These stages are driven by a strictly ordered process of transcription dynamics. Molecular disruption to RNA polymerase assembly, chromatin remodelling and transcription factor binding through to RNA editing, splicing, post-transcriptional regulation and ribosome scanning can result in significant costs arising from genome instability. Cancer development is one example of when such disruption takes place. RNA silencing is a term used to describe the effects of post-transcriptional gene silencing mediated by a diverse set of small RNA molecules. Small RNAs are crucial for regulating gene expression and microguarding genome integrity. RNA silencing studies predominantly focus on small RNAs such as microRNAs, short-interfering RNAs and piwi-interacting RNAs. We describe an emerging renewal of interest in a ‘larger’ small RNA, the transfer RNA (tRNA). Precisely generated tRNA-derived small RNAs, named tRNA halves (tiRNAs) and tRNA fragments (tRFs), have been reported to be abundant with dysregulation associated with cancer. Transfection of tiRNAs inhibits protein translation by displacing eukaryotic initiation factors from messenger RNA (mRNA) and inaugurating stress granule formation. Knockdown of an overexpressed tRF inhibits cancer cell proliferation. Recovery of lacking tRFs prevents cancer metastasis. The dual oncogenic and tumour-suppressive role is typical of functional small RNAs. We review recent reports on tiRNA and tRF discovery and biogenesis, identification and analysis from next-generation sequencing data and a mechanistic animal study to demonstrate their physiological role in cancer biology. We propose tRNA-derived small RNA-mediated RNA silencing is an innate defence mechanism to prevent oncogenic translation. We expect that cancer cells are percipient to their ablated control of transcription and attempt to prevent loss of genome control through RNA silencing.
Collapse
|
308
|
Abstract
There has been increasing interest in the possibility that behavioral experience--in particular, exposure to stress--can be passed on to subsequent generations through heritable epigenetic modifications. The possibility remains highly controversial, however, reflecting the lack of standardized definitions of epigenetics and the limited empirical support for potential mechanisms of transgenerational epigenetic inheritance. Nonetheless, growing evidence supports a role for epigenetic regulation as a key mechanism underlying lifelong regulation of gene expression that mediates stress vulnerability. This Perspective provides an overview of the multiple meanings of the term epigenetic, discusses the challenges of studying epigenetic contributions to stress susceptibility--and the experimental evidence for and against the existence of such mechanisms--and outlines steps required for future investigations.
Collapse
|
309
|
Bauer T, Trump S, Ishaque N, Thürmann L, Gu L, Bauer M, Bieg M, Gu Z, Weichenhan D, Mallm JP, Röder S, Herberth G, Takada E, Mücke O, Winter M, Junge KM, Grützmann K, Rolle-Kampczyk U, Wang Q, Lawerenz C, Borte M, Polte T, Schlesner M, Schanne M, Wiemann S, Geörg C, Stunnenberg HG, Plass C, Rippe K, Mizuguchi J, Herrmann C, Eils R, Lehmann I. Environment-induced epigenetic reprogramming in genomic regulatory elements in smoking mothers and their children. Mol Syst Biol 2016; 12:861. [PMID: 27013061 PMCID: PMC4812527 DOI: 10.15252/msb.20156520] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 02/25/2016] [Accepted: 03/04/2016] [Indexed: 01/11/2023] Open
Abstract
Epigenetic mechanisms have emerged as links between prenatal environmental exposure and disease risk later in life. Here, we studied epigenetic changes associated with maternal smoking at base pair resolution by mapping DNA methylation, histone modifications, and transcription in expectant mothers and their newborn children. We found extensive global differential methylation and carefully evaluated these changes to separate environment associated from genotype-related DNA methylation changes. Differential methylation is enriched in enhancer elements and targets in particular "commuting" enhancers having multiple, regulatory interactions with distal genes. Longitudinal whole-genome bisulfite sequencing revealed that DNA methylation changes associated with maternal smoking persist over years of life. Particularly in children prenatal environmental exposure leads to chromatin transitions into a hyperactive state. Combined DNA methylation, histone modification, and gene expression analyses indicate that differential methylation in enhancer regions is more often functionally translated than methylation changes in promoters or non-regulatory elements. Finally, we show that epigenetic deregulation of a commuting enhancer targeting c-Jun N-terminal kinase 2 (JNK2) is linked to impaired lung function in early childhood.
Collapse
Affiliation(s)
- Tobias Bauer
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Saskia Trump
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research Leipzig - UFZ, Leipzig, Germany
| | - Naveed Ishaque
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany Heidelberg Center for Personalized Oncology, DKFZ-HIPO, DKFZ, Heidelberg, Germany
| | - Loreen Thürmann
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research Leipzig - UFZ, Leipzig, Germany
| | - Lei Gu
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mario Bauer
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research Leipzig - UFZ, Leipzig, Germany
| | - Matthias Bieg
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany Heidelberg Center for Personalized Oncology, DKFZ-HIPO, DKFZ, Heidelberg, Germany
| | - Zuguang Gu
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany Heidelberg Center for Personalized Oncology, DKFZ-HIPO, DKFZ, Heidelberg, Germany
| | - Dieter Weichenhan
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan-Philipp Mallm
- Research Group Genome Organization & Function, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| | - Stefan Röder
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research Leipzig - UFZ, Leipzig, Germany
| | - Gunda Herberth
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research Leipzig - UFZ, Leipzig, Germany
| | - Eiko Takada
- Department of Immunology, Tokyo Medical University, Tokyo, Japan
| | - Oliver Mücke
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marcus Winter
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research Leipzig - UFZ, Leipzig, Germany
| | - Kristin M Junge
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research Leipzig - UFZ, Leipzig, Germany
| | - Konrad Grützmann
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research Leipzig - UFZ, Leipzig, Germany
| | - Ulrike Rolle-Kampczyk
- Department Metabolomics, Helmholtz Centre for Environmental Research Leipzig - UFZ, Leipzig, Germany
| | - Qi Wang
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian Lawerenz
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Borte
- Municipal Hospital "St Georg" Children's Hospital, Leipzig, Germany
| | - Tobias Polte
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research Leipzig - UFZ, Leipzig, Germany Department of Dermatology, Venerology and Allerology, Leipzig University Medical Center, Leipzig, Germany
| | - Matthias Schlesner
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michaela Schanne
- Genomics and Proteomics Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan Wiemann
- Genomics and Proteomics Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christina Geörg
- Sample Processing Lab, National Center for Tumor Disease and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hendrik G Stunnenberg
- Department of Molecular Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Christoph Plass
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Karsten Rippe
- Research Group Genome Organization & Function, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| | | | - Carl Herrmann
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany Institute of Pharmacy and Molecular Biotechnology and Bioquant Center, University of Heidelberg, Heidelberg, Germany
| | - Roland Eils
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany Heidelberg Center for Personalized Oncology, DKFZ-HIPO, DKFZ, Heidelberg, Germany Institute of Pharmacy and Molecular Biotechnology and Bioquant Center, University of Heidelberg, Heidelberg, Germany Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Irina Lehmann
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research Leipzig - UFZ, Leipzig, Germany
| |
Collapse
|
310
|
Dias BG. Commentary: Inheritance of acquired characteristics: eliminating alternatives in the search for mechanisms. Commentary on Galton F: Feasible experiments on the possibility of transmitting acquired habits by means of inheritance. Int J Epidemiol 2016; 45:20-3. [PMID: 26989214 DOI: 10.1093/ije/dyw031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- B G Dias
- Emory University School of Medicine, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Atlanta GA 30329, USA. E-mail:
| |
Collapse
|
311
|
Decoding Lamarck—transgenerational control of metabolism by noncoding RNAs. Pflugers Arch 2016; 468:959-69. [DOI: 10.1007/s00424-016-1807-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 02/25/2016] [Accepted: 03/02/2016] [Indexed: 12/20/2022]
|
312
|
Strain Specific Factors Control Effector Gene Silencing in Phytophthora sojae. PLoS One 2016; 11:e0150530. [PMID: 26930612 PMCID: PMC4773254 DOI: 10.1371/journal.pone.0150530] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 02/15/2016] [Indexed: 12/04/2022] Open
Abstract
The Phytophthora sojae avirulence gene Avr3a encodes an effector that is capable of triggering immunity on soybean plants carrying the resistance gene Rps3a. P. sojae strains that express Avr3a are avirulent to Rps3a plants, while strains that do not are virulent. To study the inheritance of Avr3a expression and virulence towards Rps3a, genetic crosses and self-fertilizations were performed. A cross between P. sojae strains ACR10 X P7076 causes transgenerational gene silencing of Avr3a allele, and this effect is meiotically stable up to the F5 generation. However, test-crosses of F1 progeny (ACR10 X P7076) with strain P6497 result in the release of silencing of Avr3a. Expression of Avr3a in the progeny is variable and correlates with the phenotypic penetrance of the avirulence trait. The F1 progeny from a direct cross of P6497 X ACR10 segregate for inheritance for Avr3a expression, a result that could not be explained by parental imprinting or heterozygosity. Analysis of small RNA arising from the Avr3a gene sequence in the parental strains and hybrid progeny suggests that the presence of small RNA is necessary but not sufficient for gene silencing. Overall, we conclude that inheritance of the Avr3a gene silenced phenotype relies on factors that are variable among P. sojae strains.
Collapse
|
313
|
Houri-Ze’evi L, Korem Y, Sheftel H, Faigenbloom L, Toker IA, Dagan Y, Awad L, Degani L, Alon U, Rechavi O. A Tunable Mechanism Determines the Duration of the Transgenerational Small RNA Inheritance in C. elegans. Cell 2016; 165:88-99. [DOI: 10.1016/j.cell.2016.02.057] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/19/2016] [Accepted: 02/24/2016] [Indexed: 01/13/2023]
|
314
|
Hammoud SS, Low DHP, Yi C, Lee CL, Oatley JM, Payne CJ, Carrell DT, Guccione E, Cairns BR. Transcription and imprinting dynamics in developing postnatal male germline stem cells. Genes Dev 2016; 29:2312-24. [PMID: 26545815 PMCID: PMC4647563 DOI: 10.1101/gad.261925.115] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Hammoud et al. conducted extensive genomic profiling and classified three broad spermatogonial stem cell (SSC) populations in juveniles: (1) epithelial-like SSCs, (2) more abundant mesenchymal-like SSCs, and (3) (in older juveniles) abundant cells committing to gametogenesis. Mesenchymal-like SSCs lacked imprinting specifically at paternally imprinted loci but fully restored imprinting prior to puberty. Mesenchymal-like SSCs also displayed developmentally linked DNA demethylation at meiotic genes and also at certain monoallelic neural genes. Postnatal spermatogonial stem cells (SSCs) progress through proliferative and developmental stages to populate the testicular niche prior to productive spermatogenesis. To better understand, we conducted extensive genomic profiling at multiple postnatal stages on subpopulations enriched for particular markers (THY1, KIT, OCT4, ID4, or GFRa1). Overall, our profiles suggest three broad populations of spermatogonia in juveniles: (1) epithelial-like spermatogonia (THY1+; high OCT4, ID4, and GFRa1), (2) more abundant mesenchymal-like spermatogonia (THY1+; moderate OCT4 and ID4; high mesenchymal markers), and (3) (in older juveniles) abundant spermatogonia committing to gametogenesis (high KIT+). Epithelial-like spermatogonia displayed the expected imprinting patterns, but, surprisingly, mesenchymal-like spermatogonia lacked imprinting specifically at paternally imprinted loci but fully restored imprinting prior to puberty. Furthermore, mesenchymal-like spermatogonia also displayed developmentally linked DNA demethylation at meiotic genes and also at certain monoallelic neural genes (e.g., protocadherins and olfactory receptors). We also reveal novel candidate receptor–ligand networks involving SSCs and the developing niche. Taken together, neonates/juveniles contain heterogeneous epithelial-like or mesenchymal-like spermatogonial populations, with the latter displaying extensive DNA methylation/chromatin dynamics. We speculate that this plasticity helps SSCs proliferate and migrate within the developing seminiferous tubule, with proper niche interaction and membrane attachment reverting mesenchymal-like spermatogonial subtype cells back to an epithelial-like state with normal imprinting profiles.
Collapse
Affiliation(s)
- Saher Sue Hammoud
- Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA; Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA; Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA; Department of Human Genetics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Diana H P Low
- Division of Cancer Genetics and Therapeutics, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology, and Research), Singapore 138673, Singapore
| | - Chongil Yi
- Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA; Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA; Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | - Chee Leng Lee
- Division of Cancer Genetics and Therapeutics, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology, and Research), Singapore 138673, Singapore
| | - Jon M Oatley
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, Pullman, Washington 99164, USA
| | - Christopher J Payne
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA; Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA; Human Molecular Genetics Program, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois 60614, USA
| | - Douglas T Carrell
- Department of Surgery (Urology), University of Utah School of Medicine, Salt Lake City, Utah 84112, USA; Department of Obstetrics and Gynecology, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA; Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | - Ernesto Guccione
- Division of Cancer Genetics and Therapeutics, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology, and Research), Singapore 138673, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Bradley R Cairns
- Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA; Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA; Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| |
Collapse
|
315
|
Junien C, Panchenko P, Pirola L, Amarger V, Kaeffer B, Parnet P, Torrisani J, Bolaños Jimenez F, Jammes H, Gabory A. [The new paradigm of the developmental origin of health and diseases (DOHaD)--Epigenetics and environment: evidence and missing links]. Med Sci (Paris) 2016; 32:27-34. [PMID: 26850604 DOI: 10.1051/medsci/20163201006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
According to the new paradigm of the Developpemental Origins of Health and Disease (DOHaD), the environmental factors to which an individual is exposed throughout his life can leave an epigenetic footprint on the genome. A crucial period is the early development, where the epigenome is particularly sensitive to the effects of the environment, and during which the individual builds up his health capital that will enable him to respond more or less well to the vagaries of life. The research challenge is to decipher the modes of action and the epigenetic mechanisms put into play by environmental factors that lead to increased disease susceptibility or resilience. The challenge for health is to translate these scientific discoveries into action through, among others, the establishment of preventive recommendations to slow down the growing incidence of non communicable diseases.
Collapse
Affiliation(s)
- Claudine Junien
- Inra, UMR1198, biologie du développement et reproduction, Domaine de Vilvert, Bâtiment 230, F-78352 Jouy-en-Josas, France
| | - Polina Panchenko
- Inra, UMR1198, biologie du développement et reproduction, Domaine de Vilvert, Bâtiment 230, F-78352 Jouy-en-Josas, France - Université Pierre et Marie Curie, F-75005 Paris, France
| | | | - Valérie Amarger
- UMR 1280 Inra université de Nantes, Institut des maladies de l'appareil digestif, Nantes, France
| | - Bertrand Kaeffer
- UMR 1280 Inra université de Nantes, Institut des maladies de l'appareil digestif, Nantes, France
| | - Patricia Parnet
- UMR 1280 Inra université de Nantes, Institut des maladies de l'appareil digestif, Nantes, France
| | - Jérôme Torrisani
- Inserm UMR1037, Centre de recherche en cancérologie de Toulouse, université de Toulouse III Paul Sabatier, F-31037 Toulouse, France
| | | | - Hélène Jammes
- Inra, UMR1198, biologie du développement et reproduction, Domaine de Vilvert, Bâtiment 230, F-78352 Jouy-en-Josas, France
| | - Anne Gabory
- Inra, UMR1198, biologie du développement et reproduction, Domaine de Vilvert, Bâtiment 230, F-78352 Jouy-en-Josas, France
| |
Collapse
|
316
|
Dey S, Proulx SR, Teotónio H. Adaptation to Temporally Fluctuating Environments by the Evolution of Maternal Effects. PLoS Biol 2016; 14:e1002388. [PMID: 26910440 PMCID: PMC4766184 DOI: 10.1371/journal.pbio.1002388] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/21/2016] [Indexed: 01/27/2023] Open
Abstract
All organisms live in temporally fluctuating environments. Theory predicts that the evolution of deterministic maternal effects (i.e., anticipatory maternal effects or transgenerational phenotypic plasticity) underlies adaptation to environments that fluctuate in a predictably alternating fashion over maternal-offspring generations. In contrast, randomizing maternal effects (i.e., diversifying and conservative bet-hedging), are expected to evolve in response to unpredictably fluctuating environments. Although maternal effects are common, evidence for their adaptive significance is equivocal since they can easily evolve as a correlated response to maternal selection and may or may not increase the future fitness of offspring. Using the hermaphroditic nematode Caenorhabditis elegans, we here show that the experimental evolution of maternal glycogen provisioning underlies adaptation to a fluctuating normoxia-anoxia hatching environment by increasing embryo survival under anoxia. In strictly alternating environments, we found that hermaphrodites evolved the ability to increase embryo glycogen provisioning when they experienced normoxia and to decrease embryo glycogen provisioning when they experienced anoxia. At odds with existing theory, however, populations facing irregularly fluctuating normoxia-anoxia hatching environments failed to evolve randomizing maternal effects. Instead, adaptation in these populations may have occurred through the evolution of fitness effects that percolate over multiple generations, as they maintained considerably high expected growth rates during experimental evolution despite evolving reduced fecundity and reduced embryo survival under one or two generations of anoxia. We develop theoretical models that explain why adaptation to a wide range of patterns of environmental fluctuations hinges on the existence of deterministic maternal effects, and that such deterministic maternal effects are more likely to contribute to adaptation than randomizing maternal effects.
Collapse
Affiliation(s)
- Snigdhadip Dey
- Institut de Biologie de l´École Normale Supérieure, INSERM U1024, CNRS UMR 8197, Paris, France
| | - Stephen R. Proulx
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, California, United States of America
| | - Henrique Teotónio
- Institut de Biologie de l´École Normale Supérieure, INSERM U1024, CNRS UMR 8197, Paris, France
| |
Collapse
|
317
|
Abstract
The hallmarks of premalignant lesions were first described in the 1970s, a time when relatively little was known about the molecular underpinnings of cancer. Yet it was clear there must be opportunities to intervene early in carcinogenesis. A vast array of molecular information has since been uncovered, with much of this stemming from studies of existing cancer or cancer models. Here, examples of how an understanding of cancer biology has informed cancer prevention studies are highlighted and emerging areas that may have implications for the field of cancer prevention research are described. A note of caution accompanies these examples, in that while there are similarities, there are also fundamental differences between the biology of premalignant lesions or premalignant conditions and invasive cancer. These differences must be kept in mind, and indeed leveraged, when exploring potential cancer prevention measures.
Collapse
Affiliation(s)
- Bríd M Ryan
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA..
| | | |
Collapse
|
318
|
Green D, Dalmay T, Chapman T. Microguards and micromessengers of the genome. Heredity (Edinb) 2016; 116:125-34. [PMID: 26419338 PMCID: PMC4806885 DOI: 10.1038/hdy.2015.84] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 07/23/2015] [Accepted: 08/03/2015] [Indexed: 01/12/2023] Open
Abstract
The regulation of gene expression is of fundamental importance to maintain organismal function and integrity and requires a multifaceted and highly ordered sequence of events. The cyclic nature of gene expression is known as 'transcription dynamics'. Disruption or perturbation of these dynamics can result in significant fitness costs arising from genome instability, accelerated ageing and disease. We review recent research that supports the idea that an important new role for small RNAs, particularly microRNAs (miRNAs), is in protecting the genome against short-term transcriptional fluctuations, in a process we term 'microguarding'. An additional emerging role for miRNAs is as 'micromessengers'-through alteration of gene expression in target cells to which they are trafficked within microvesicles. We describe the scant but emerging evidence that miRNAs can be moved between different cells, individuals and even species, to exert biologically significant responses. With these two new roles, miRNAs have the potential to protect against deleterious gene expression variation from perturbation and to themselves perturb the expression of genes in target cells. These interactions between cells will frequently be subject to conflicts of interest when they occur between unrelated cells that lack a coincidence of fitness interests. Hence, there is the potential for miRNAs to represent both a means to resolve conflicts of interest, as well as instigate them. We conclude by exploring this conflict hypothesis, by describing some of the initial evidence consistent with it and proposing new ideas for future research into this exciting topic.
Collapse
Affiliation(s)
- D Green
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, UK
| | - T Dalmay
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - T Chapman
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| |
Collapse
|
319
|
Klosin A, Lehner B. Mechanisms, timescales and principles of trans-generational epigenetic inheritance in animals. Curr Opin Genet Dev 2016; 36:41-9. [DOI: 10.1016/j.gde.2016.04.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/31/2016] [Accepted: 04/01/2016] [Indexed: 12/20/2022]
|
320
|
Beebe K, Kennedy AD. Sharpening Precision Medicine by a Thorough Interrogation of Metabolic Individuality. Comput Struct Biotechnol J 2016; 14:97-105. [PMID: 26929792 PMCID: PMC4744241 DOI: 10.1016/j.csbj.2016.01.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/07/2016] [Accepted: 01/10/2016] [Indexed: 12/24/2022] Open
Abstract
Precision medicine is an active component of medical practice today, but aspirations are to both broaden its reach to a greater diversity of individuals and improve its “precision” by enhancing the ability to define even more disease states in combination with associated treatments. Given complexity of human phenotypes, much work is required. In this review, we deconstruct this challenge at a high level to define what is needed to move closer toward these aspirations. In the context of the variables that influence the diverse array of phenotypes across human health and disease – genetics, epigenetics, environmental influences, and the microbiome – we detail the factors behind why an individual's biochemical (metabolite) composition is increasingly regarded as a key element to precisely defining phenotypes. Although an individual's biochemical (metabolite) composition is generally regarded, and frequently shown, to be a surrogate to the phenotypic state, we review how metabolites (and therefore an individual's metabolic profile) are also functionally related to the myriad of phenotypic influencers like genetics and the microbiota. We describe how using the technology to comprehensively measure an individual's biochemical profile – metabolomics – is integrative to defining individual phenotypes and how it is currently being deployed in efforts to continue to elaborate on human health and disease in large population studies. Finally, we summarize instances where metabolomics is being used to assess individual health in instances where signatures (i.e. biomarkers) have been defined. Untargeted biochemical profiling has the potential to phenotype individuals where genetic associations do not seem to show penetrance Metabolomics can be leveraged with other ‘omics data to discern phenotype information that is driven by environmental, microbiota, or epigenetic factors. Tracking the biochemical profile of individuals may help discern effectiveness or response to treatment or disease progression.
Collapse
|
321
|
Char DS. How should whole-genome sequencing be implemented in children? A consideration of the current limitations. Per Med 2016; 13:33-42. [DOI: 10.2217/pme.15.44] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In children, whole-genome sequencing (WGS) is envisioned as a tool to improve diagnosis of undiagnosed diseases and to improve population-based screening. Pilot applications have shown benefits: genomic information has been used as a diagnostic aid; pharmacogenomics can reduce medicine-related adverse events; advanced knowledge of the potential for later-onset disease can target tests and appropriate therapies. However, emerging technical, conceptual and ethical challenges may limit WGS from fulfilling the current vision for future applications. WGS platforms still struggle with reliability and accuracy. The role of the genome in long-term organismal function and disease is still being established. Ethical implications of WGS in both undiagnosed disease and population screening, particularly potential impacts of testing on children and their families are still unresolved.
Collapse
Affiliation(s)
- Danton S Char
- Department of Anesthesiology, Stanford University School of Medicine, Division of Pediatric Cardiac Anesthesia, H3580, Stanford University Medical Center, 300 Pasteur Drive, Stanford, CA 94305, USA
| |
Collapse
|
322
|
Bhandari RK. Medaka as a model for studying environmentally induced epigenetic transgenerational inheritance of phenotypes. ENVIRONMENTAL EPIGENETICS 2016; 2:dvv010. [PMID: 29492282 PMCID: PMC5804509 DOI: 10.1093/eep/dvv010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 11/24/2015] [Accepted: 12/08/2015] [Indexed: 05/29/2023]
Abstract
Ability of environmental stressors to induce transgenerational diseases has been experimentally demonstrated in plants, worms, fish, and mammals, indicating that exposures affect not only human health but also fish and ecosystem health. Small aquarium fish have been reliable model to study genetic and epigenetic basis of development and disease. Additionally, fish can also provide better, economic opportunity to study transgenerational inheritance of adverse health and epigenetic mechanisms. Molecular mechanisms underlying germ cell development in fish are comparable to those in mammals and humans. This review will provide a short overview of long-term effects of environmental chemical contaminant exposure in various models, associated epigenetic mechanisms, and a perspective on fish as model to study environmentally induced transgenerational inheritance of altered phenotypes.
Collapse
Affiliation(s)
- Ramji K Bhandari
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, MO 65211, USA
| |
Collapse
|
323
|
Liu Y, Li X. Darwin and Mendel today: a comment on “Limits of imagination: the 150th Anniversary of Mendel’s Laws, and why Mendel failed to see the importance of his discovery for Darwin’s theory of evolution”. Genome 2016; 59:75-7. [DOI: 10.1139/gen-2015-0155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We comment on a recent paper by Rama Singh, who concludes that Mendel deserved to be called the father of genetics, and Darwin would not have understood the significance of Mendel’s paper had he read it. We argue that Darwin should have been regarded as the father of genetics not only because he was the first to formulate a unifying theory of heredity, variation, and development — Pangenesis, but also because he clearly described almost all genetical phenomena of fundamental importance, including what he called “prepotency” and what we now call “dominance” or “Mendelian inheritance”. The word “gene” evolved from Darwin’s imagined “gemmules”, instead of Mendel’s so-called “factors”.
Collapse
Affiliation(s)
- Yongsheng Liu
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, 453003, China; Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, 453003, China; Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Xiuju Li
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, 453003, China; Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, 453003, China; Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
324
|
Chen Q, Yan M, Cao Z, Li X, Zhang Y, Shi J, Feng GH, Peng H, Zhang X, Zhang Y, Qian J, Duan E, Zhai Q, Zhou Q. Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science 2015; 351:397-400. [PMID: 26721680 DOI: 10.1126/science.aad7977] [Citation(s) in RCA: 957] [Impact Index Per Article: 95.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 12/11/2015] [Indexed: 12/11/2022]
Abstract
Increasing evidence indicates that metabolic disorders in offspring can result from the father's diet, but the mechanism remains unclear. In a paternal mouse model given a high-fat diet (HFD), we showed that a subset of sperm transfer RNA-derived small RNAs (tsRNAs), mainly from 5' transfer RNA halves and ranging in size from 30 to 34 nucleotides, exhibited changes in expression profiles and RNA modifications. Injection of sperm tsRNA fractions from HFD males into normal zygotes generated metabolic disorders in the F1 offspring and altered gene expression of metabolic pathways in early embryos and islets of F1 offspring, which was unrelated to DNA methylation at CpG-enriched regions. Hence, sperm tsRNAs represent a paternal epigenetic factor that may mediate intergenerational inheritance of diet-induced metabolic disorders.
Collapse
Affiliation(s)
- Qi Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China. Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV 89512 USA
| | - Menghong Yan
- Key Laboratory of Nutrition and Metabolism, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhonghong Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China. University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yunfang Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China. University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junchao Shi
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China. University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gui-hai Feng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongying Peng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China. Beijing Royal Integrative Medicine Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xudong Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China. University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jingjing Qian
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China. University of Chinese Academy of Sciences, Beijing 100049, China
| | - Enkui Duan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiwei Zhai
- Key Laboratory of Nutrition and Metabolism, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
325
|
Mutation of C. elegans demethylase spr-5 extends transgenerational longevity. Cell Res 2015; 26:229-38. [PMID: 26691751 DOI: 10.1038/cr.2015.148] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 09/25/2015] [Accepted: 10/29/2015] [Indexed: 12/26/2022] Open
Abstract
Complex organismal properties such as longevity can be transmitted across generations by non-genetic factors. Here we demonstrate that deletion of the C. elegans histone H3 lysine 4 dimethyl (H3K4me2) demethylase, spr-5, causes a trans-generational increase in lifespan. We identify a chromatin-modifying network, which regulates this lifespan extension. We further show that this trans-generational lifespan extension is dependent on a hormonal signaling pathway involving the steroid dafachronic acid, an activator of the nuclear receptor DAF-12. These findings suggest that loss of the demethylase SPR-5 causes H3K4me2 mis-regulation and activation of a known lifespan-regulating signaling pathway, leading to trans-generational lifespan extension.
Collapse
|
326
|
Lynn DA, Dalton HM, Sowa JN, Wang MC, Soukas AA, Curran SP. Omega-3 and -6 fatty acids allocate somatic and germline lipids to ensure fitness during nutrient and oxidative stress in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2015; 112:15378-83. [PMID: 26621724 PMCID: PMC4687584 DOI: 10.1073/pnas.1514012112] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Animals in nature are continually challenged by periods of feast and famine as resources inevitably fluctuate, and must allocate somatic reserves for reproduction to abate evolutionary pressures. We identify an age-dependent lipid homeostasis pathway in Caenorhabditis elegans that regulates the mobilization of lipids from the soma to the germline, which supports fecundity but at the cost of survival in nutrient-poor and oxidative stress environments. This trade-off is responsive to the levels of dietary carbohydrates and organismal oleic acid and is coupled to activation of the cytoprotective transcription factor SKN-1 in both laboratory-derived and natural isolates of C. elegans. The homeostatic balance of lipid stores between the somatic and germ cells is mediated by arachidonic acid (omega-6) and eicosapentaenoic acid (omega-3) precursors of eicosanoid signaling molecules. Our results describe a mechanism for resource reallocation within intact animals that influences reproductive fitness at the cost of somatic resilience.
Collapse
Affiliation(s)
- Dana A Lynn
- Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089; Dornsife College of Letters, Arts, and Sciences, Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089
| | - Hans M Dalton
- Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089; Dornsife College of Letters, Arts, and Sciences, Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089
| | - Jessica N Sowa
- Department of Molecular and Human Genetics, Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030
| | - Meng C Wang
- Department of Molecular and Human Genetics, Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030
| | - Alexander A Soukas
- Center for Human Genetic Research and Diabetes Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - Sean P Curran
- Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089; Dornsife College of Letters, Arts, and Sciences, Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089;
| |
Collapse
|
327
|
Abstract
Adaptation is the process in which organisms improve their fitness by changing their phenotype using genetic or non-genetic mechanisms. The adaptation toolbox consists of varied molecular and genetic means that we posit span an almost continuous "adaptation spectrum." Different adaptations are characterized by the time needed for organisms to attain them and by their duration. We suggest that organisms often adapt by progressing the adaptation spectrum, starting with rapidly attained physiological and epigenetic adaptations and culminating with slower long-lasting genetic ones. A tantalizing possibility is that earlier adaptations facilitate realization of later ones.
Collapse
|
328
|
Lempradl A, Pospisilik JA, Penninger JM. Exploring the emerging complexity in transcriptional regulation of energy homeostasis. Nat Rev Genet 2015; 16:665-81. [PMID: 26460345 DOI: 10.1038/nrg3941] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Obesity and its associated diseases are expected to affect more than 1 billion people by the year 2030. These figures have sparked intensive research into the molecular control of food intake, nutrient distribution, storage and metabolism--processes that are collectively termed energy homeostasis. Recent decades have also seen dramatic developments in our understanding of gene regulation at the signalling, chromatin and post-transcriptional levels. The seemingly exponential growth in this complexity now poses a major challenge for translational researchers in need of simplified but accurate paradigms for clinical use. In this Review, we consider the current understanding of transcriptional control of energy homeostasis, including both transcriptional and epigenetic regulators, and crosstalk between pathways. We also provide insights into emerging developments and challenges in this field.
Collapse
Affiliation(s)
- Adelheid Lempradl
- Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108 Freiburg, Germany
| | - J Andrew Pospisilik
- Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108 Freiburg, Germany
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Dr Bohr-Gasse 3, 1030 Vienna, Austria
| |
Collapse
|
329
|
Lynn DA, Curran SP. The SKN-1 hunger games: May the odds be ever in your favor. WORM 2015; 4:e1078959. [PMID: 26430571 DOI: 10.1080/21624054.2015.1078959] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 07/27/2015] [Accepted: 07/27/2015] [Indexed: 02/03/2023]
Abstract
Animals must continually assess nutrient availability to develop appropriate strategies for survival and reproductive success. It is no secret that nutritional state plays a large role in both aging and health.(1-7) Appropriate cellular energy usage is not only crucial for animal starvation survival, but is also important for diseases such as obesity and cancer, which characteristically have metabolic dysfunction.(8-10) C. elegans are exceptionally well poised to handle bouts of starvation as resource availability in the wild varies greatly.(11,12) We recently discovered an evolutionarily conserved pathway, regulated by the cytoprotective transcription factor SKN-1/Nrf2, which integrates diet composition and availability with utilization for survival.(13,14) These responses have potent impact on organismal physiology and remarkably are influenced by current and parental life history events, including choice of diet. In this commentary we will focus on recent insights concerning dietary intake and the impact that this can have throughout the life history of the nematode, Caenorhabditis elegans. In light of the strong impact that diet plays throughout life we urge caution when interpreting previous studies that make use of only one diet and suggest a reinvestigation utilizing a different diet is warranted.
Collapse
Affiliation(s)
- Dana A Lynn
- Davis School of Gerontology; University of Southern California ; Los Angeles, CA USA ; Dornsife College of Letters, Arts, and Sciences; University of Southern California ; Los Angeles, CA USA
| | - Sean P Curran
- Davis School of Gerontology; University of Southern California ; Los Angeles, CA USA ; Dornsife College of Letters, Arts, and Sciences; University of Southern California ; Los Angeles, CA USA ; Keck School of Medicine; University of Southern California ; Los Angeles, CA USA
| |
Collapse
|
330
|
Eaton SA, Jayasooriah N, Buckland ME, Martin DIK, Cropley JE, Suter CM. Roll over Weismann: extracellular vesicles in the transgenerational transmission of environmental effects. Epigenomics 2015; 7:1165-71. [DOI: 10.2217/epi.15.58] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
331
|
Epigenetic regulation of ageing: linking environmental inputs to genomic stability. Nat Rev Mol Cell Biol 2015; 16:593-610. [PMID: 26373265 DOI: 10.1038/nrm4048] [Citation(s) in RCA: 407] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ageing is affected by both genetic and non-genetic factors. Here, we review the chromatin-based epigenetic changes that occur during ageing, the role of chromatin modifiers in modulating lifespan and the importance of epigenetic signatures as biomarkers of ageing. We also discuss how epigenome remodelling by environmental stimuli affects several aspects of transcription and genomic stability, with important consequences for longevity, and outline epigenetic differences between the 'mortal soma' and the 'immortal germ line'. Finally, we discuss the inheritance of characteristics of ageing and potential chromatin-based strategies to delay or reverse hallmarks of ageing or age-related diseases.
Collapse
|
332
|
Abstract
Epigenetics studies the emergence of different phenotypes from a single genotype. Although these processes are essential to cellular differentiation and transcriptional memory, they are also widely used in all branches of the tree of life by organisms that require plastic but stable adaptation to their physical and social environment. Because of the inherent flexibility of epigenetic regulation, a variety of biological phenomena can be traced back to evolutionary adaptations of few conserved molecular pathways that converge on chromatin. For these reasons chromatin biology and epigenetic research have a rich history of chasing discoveries in a variety of model organisms, including yeast, flies, plants and humans. Many more fascinating examples of epigenetic plasticity lie outside the realm of model organisms and have so far been only sporadically investigated at a molecular level; however, recent progress on sequencing technology and genome editing tools have begun to blur the lines between model and non-model organisms, opening numerous new avenues for investigation. Here, I review examples of epigenetic phenomena in non-model organisms that have emerged as potential experimental systems, including social insects, fish and flatworms, and are becoming accessible to molecular approaches.
Collapse
Affiliation(s)
- Roberto Bonasio
- Epigenetics Program, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
333
|
Jobson MA, Jordan JM, Sandrof MA, Hibshman JD, Lennox AL, Baugh LR. Transgenerational Effects of Early Life Starvation on Growth, Reproduction, and Stress Resistance in Caenorhabditis elegans. Genetics 2015; 201:201-12. [PMID: 26187123 PMCID: PMC4566263 DOI: 10.1534/genetics.115.178699] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 07/15/2015] [Indexed: 11/18/2022] Open
Abstract
Starvation during early development can have lasting effects that influence organismal fitness and disease risk. We characterized the long-term phenotypic consequences of starvation during early larval development in Caenorhabditis elegans to determine potential fitness effects and develop it as a model for mechanistic studies. We varied the amount of time that larvae were developmentally arrested by starvation after hatching ("L1 arrest"). Worms recovering from extended starvation grew slowly, taking longer to become reproductive, and were smaller as adults. Fecundity was also reduced, with the smallest individuals most severely affected. Feeding behavior was impaired, possibly contributing to deficits in growth and reproduction. Previously starved larvae were more sensitive to subsequent starvation, suggesting decreased fitness even in poor conditions. We discovered that smaller larvae are more resistant to heat, but this correlation does not require passage through L1 arrest. The progeny of starved animals were also adversely affected: Embryo quality was diminished, incidence of males was increased, progeny were smaller, and their brood size was reduced. However, the progeny and grandprogeny of starved larvae were more resistant to starvation. In addition, the progeny, grandprogeny, and great-grandprogeny were more resistant to heat, suggesting epigenetic inheritance of acquired resistance to starvation and heat. Notably, such resistance was inherited exclusively from individuals most severely affected by starvation in the first generation, suggesting an evolutionary bet-hedging strategy. In summary, our results demonstrate that starvation affects a variety of life-history traits in the exposed animals and their descendants, some presumably reflecting fitness costs but others potentially adaptive.
Collapse
Affiliation(s)
- Meghan A Jobson
- Department of Biology, Duke University, Durham, North Carolina 27708
| | - James M Jordan
- Department of Biology, Duke University, Durham, North Carolina 27708
| | - Moses A Sandrof
- Department of Biology, Duke University, Durham, North Carolina 27708
| | | | - Ashley L Lennox
- Department of Biology, Duke University, Durham, North Carolina 27708
| | - L Ryan Baugh
- Department of Biology, Duke University, Durham, North Carolina 27708
| |
Collapse
|
334
|
Jose AM. Movement of regulatory RNA between animal cells. Genesis 2015; 53:395-416. [PMID: 26138457 PMCID: PMC4915348 DOI: 10.1002/dvg.22871] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 06/28/2015] [Accepted: 06/29/2015] [Indexed: 12/12/2022]
Abstract
Recent studies suggest that RNA can move from one cell to another and regulate genes through specific base-pairing. Mechanisms that modify or select RNA for secretion from a cell are unclear. Secreted RNA can be stable enough to be detected in the extracellular environment and can enter the cytosol of distant cells to regulate genes. Mechanisms that import RNA into the cytosol of an animal cell can enable uptake of RNA from many sources including other organisms. This role of RNA is akin to that of steroid hormones, which cross cell membranes to regulate genes. The potential diagnostic use of RNA in human extracellular fluids has ignited interest in understanding mechanisms that enable the movement of RNA between animal cells. Genetic model systems will be essential to gain more confidence in proposed mechanisms of RNA transport and to connect an extracellular RNA with a specific biological function. Studies in the worm C. elegans and in other animals have begun to reveal parts of this novel mechanism of cell-to-cell communication. Here, I summarize the current state of this nascent field, highlight the many unknowns, and suggest future directions.
Collapse
Affiliation(s)
- Antony M Jose
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland
| |
Collapse
|
335
|
Stegemann R, Buchner DA. Transgenerational inheritance of metabolic disease. Semin Cell Dev Biol 2015; 43:131-140. [PMID: 25937492 PMCID: PMC4626440 DOI: 10.1016/j.semcdb.2015.04.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 04/20/2015] [Accepted: 04/22/2015] [Indexed: 02/05/2023]
Abstract
Metabolic disease encompasses several disorders including obesity, type 2 diabetes, and dyslipidemia. Recently, the incidence of metabolic disease has drastically increased, driven primarily by a worldwide obesity epidemic. Transgenerational inheritance remains controversial, but has been proposed to contribute to human metabolic disease risk based on a growing number of proof-of-principle studies in model organisms ranging from Caenorhabditis elegans to Mus musculus to Sus scrofa. Collectively, these studies demonstrate that heritable risk is epigenetically transmitted from parent to offspring over multiple generations in the absence of a continued exposure to the triggering stimuli. A diverse assortment of initial triggers can induce transgenerational inheritance including high-fat or high-sugar diets, low-protein diets, various toxins, and ancestral genetic variants. Although the mechanistic basis underlying the transgenerational inheritance of disease risk remains largely unknown, putative molecules mediating transmission include small RNAs, histone modifications, and DNA methylation. Due to the considerable impact of metabolic disease on human health, it is critical to better understand the role of transgenerational inheritance of metabolic disease risk to open new avenues for therapeutic intervention and improve upon the current methods for clinical diagnoses and treatment.
Collapse
Affiliation(s)
- Rachel Stegemann
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, United States
| | - David A Buchner
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, United States; Department of Biological Chemistry, Case Western Reserve University, Cleveland, OH 44106, United States.
| |
Collapse
|
336
|
Pilpel Y, Rechavi O. The Lamarckian chicken and the Darwinian egg. Biol Direct 2015; 10:34. [PMID: 26126811 PMCID: PMC4486432 DOI: 10.1186/s13062-015-0062-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 06/22/2015] [Indexed: 11/10/2022] Open
Abstract
"Which came first, the Chicken or the Egg?" We suggest this question is not a paradox. The Modern Synthesis envisions speciation through genetic changes in germ cells via random mutations, an "Egg first" scenario, but perhaps epigenetic inheritance mechanisms can transmit adaptive changes initiated in the soma ("Chicken first").
Collapse
Affiliation(s)
- Yitzhak Pilpel
- Department of Molecular genetics, Weizmann Institute of Science, Rehovot, 76100, Israel.
| | - Oded Rechavi
- Department of Neurobiology, Wise Faculty of Life Sciences & Sagol School, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
337
|
Fernandez-Twinn DS, Constância M, Ozanne SE. Intergenerational epigenetic inheritance in models of developmental programming of adult disease. Semin Cell Dev Biol 2015; 43:85-95. [PMID: 26135290 DOI: 10.1016/j.semcdb.2015.06.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/23/2015] [Accepted: 06/24/2015] [Indexed: 02/06/2023]
Abstract
It is now well established that the environment to which we are exposed during fetal and neonatal life can have a long-term impact on our health. This has been termed the developmental origins of health and disease. Factors known to have such programming effects include intrauterine nutrient availability (determined by maternal nutrition and placental function), endocrine disruptors, toxins and infectious agents. Epigenetic processes have emerged as a key mechanism by which the early environment can permanently influence cell function and metabolism after multiple rounds of cell division. More recently it has been suggested that programmed effects can be observed beyond the first generation and that therefore epigenetic mechanisms could form the basis of transmission of phenotype from parent to child to grandchild and beyond. Here we review the evidence for such processes.
Collapse
Affiliation(s)
- Denise S Fernandez-Twinn
- University of Cambridge Metabolic Research Laboratories, MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Box 289, Addenbrookes Treatment Centre, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom
| | - Miguel Constância
- University of Cambridge Metabolic Research Laboratories, MRC Metabolic Diseases Unit, Department of Obstetrics and Gynaecology, United Kingdom; National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, United Kingdom; Centre for Trophoblast Research, University of Cambridge, United Kingdom
| | - Susan E Ozanne
- University of Cambridge Metabolic Research Laboratories, MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Box 289, Addenbrookes Treatment Centre, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom.
| |
Collapse
|
338
|
Abstract
A little over 50 years ago, Sydney Brenner had the foresight to develop the nematode (round worm) Caenorhabditis elegans as a genetic model for understanding questions of developmental biology and neurobiology. Over time, research on C. elegans has expanded to explore a wealth of diverse areas in modern biology including studies of the basic functions and interactions of eukaryotic cells, host-parasite interactions, and evolution. C. elegans has also become an important organism in which to study processes that go awry in human diseases. This primer introduces the organism and the many features that make it an outstanding experimental system, including its small size, rapid life cycle, transparency, and well-annotated genome. We survey the basic anatomical features, common technical approaches, and important discoveries in C. elegans research. Key to studying C. elegans has been the ability to address biological problems genetically, using both forward and reverse genetics, both at the level of the entire organism and at the level of the single, identified cell. These possibilities make C. elegans useful not only in research laboratories, but also in the classroom where it can be used to excite students who actually can see what is happening inside live cells and tissues.
Collapse
Affiliation(s)
- Ann K Corsi
- Biology Department, The Catholic University of America, Washington, DC 20064
| | - Bruce Wightman
- Biology Department, Muhlenberg College, Allentown, Pennsylvania 18104
| | - Martin Chalfie
- Department of Biological Sciences, Columbia University, New York, New York 10027
| |
Collapse
|
339
|
Fontana L, Partridge L. Promoting health and longevity through diet: from model organisms to humans. Cell 2015; 161:106-118. [PMID: 25815989 DOI: 10.1016/j.cell.2015.02.020] [Citation(s) in RCA: 852] [Impact Index Per Article: 85.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 01/20/2015] [Accepted: 01/20/2015] [Indexed: 12/19/2022]
Abstract
Reduced food intake, avoiding malnutrition, can ameliorate aging and aging-associated diseases in invertebrate model organisms, rodents, primates, and humans. Recent findings indicate that meal timing is crucial, with both intermittent fasting and adjusted diurnal rhythm of feeding improving health and function, in the absence of changes in overall intake. Lowered intake of particular nutrients rather than of overall calories is also key, with protein and specific amino acids playing prominent roles. Nutritional modulation of the microbiome can also be important, and there are long-term, including inter-generational, effects of diet. The metabolic, molecular, and cellular mechanisms that mediate both improvement in health during aging to diet and genetic variation in the response to diet are being identified. These new findings are opening the way to specific dietary and pharmacological interventions to recapture the full potential benefits of dietary restriction, which humans can find difficult to maintain voluntarily.
Collapse
Affiliation(s)
- Luigi Fontana
- Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Clinical and Experimental Science, Brescia University, 25123 Brescia, Italy; CEINGE Biotecnologie Avanzate, 80145 Napoli, Italy.
| | - Linda Partridge
- Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany; Institute of Healthy Ageing and Department of Genetics, Environment, and Evolution, University College London, London WC1E 6BT, UK.
| |
Collapse
|
340
|
Larance M, Pourkarimi E, Wang B, Brenes Murillo A, Kent R, Lamond AI, Gartner A. Global Proteomics Analysis of the Response to Starvation in C. elegans. Mol Cell Proteomics 2015; 14:1989-2001. [PMID: 25963834 PMCID: PMC4587315 DOI: 10.1074/mcp.m114.044289] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Indexed: 12/31/2022] Open
Abstract
Periodic starvation of animals induces large shifts in metabolism but may also influence many other cellular systems and can lead to adaption to prolonged starvation conditions. To date, there is limited understanding of how starvation affects gene expression, particularly at the protein level. Here, we have used mass-spectrometry-based quantitative proteomics to identify global changes in the Caenorhabditis elegans proteome due to acute starvation of young adult animals. Measuring changes in the abundance of over 5,000 proteins, we show that acute starvation rapidly alters the levels of hundreds of proteins, many involved in central metabolic pathways, highlighting key regulatory responses. Surprisingly, we also detect changes in the abundance of chromatin-associated proteins, including specific linker histones, histone variants, and histone posttranslational modifications associated with the epigenetic control of gene expression. To maximize community access to these data, they are presented in an online searchable database, the Encyclopedia of Proteome Dynamics (http://www.peptracker.com/epd/).
Collapse
Affiliation(s)
- Mark Larance
- From the ‡Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow St, Dundee, United Kingdom, DD15EH
| | - Ehsan Pourkarimi
- From the ‡Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow St, Dundee, United Kingdom, DD15EH
| | - Bin Wang
- From the ‡Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow St, Dundee, United Kingdom, DD15EH
| | - Alejandro Brenes Murillo
- From the ‡Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow St, Dundee, United Kingdom, DD15EH
| | - Robert Kent
- From the ‡Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow St, Dundee, United Kingdom, DD15EH
| | - Angus I Lamond
- From the ‡Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow St, Dundee, United Kingdom, DD15EH
| | - Anton Gartner
- From the ‡Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow St, Dundee, United Kingdom, DD15EH
| |
Collapse
|
341
|
MED GATA factors promote robust development of the C. elegans endoderm. Dev Biol 2015; 404:66-79. [PMID: 25959238 DOI: 10.1016/j.ydbio.2015.04.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/28/2015] [Accepted: 04/29/2015] [Indexed: 12/25/2022]
Abstract
The MED-1,2 GATA factors contribute to specification of E, the progenitor of the Caenorhabditis elegans endoderm, through the genes end-1 and end-3, and in parallel with the maternal factors SKN-1, POP-1 and PAL-1. END-1,3 activate elt-2 and elt-7 to initiate a program of intestinal development, which is maintained by positive autoregulation. Here, we advance the understanding of MED-1,2 in E specification. We find that expression of end-1 and end-3 is greatly reduced in med-1,2(-) embryos. We generated strains in which MED sites have been mutated in end-1 and end-3. Without MED input, gut specification relies primarily on POP-1 and PAL-1. 25% of embryos fail to make intestine, while those that do display abnormal numbers of gut cells due to a delayed and stochastic acquisition of intestine fate. Surviving adults exhibit phenotypes consistent with a primary defect in the intestine. Our results establish that MED-1,2 provide robustness to endoderm specification through end-1 and end-3, and reveal that gut differentiation may be more directly linked to specification than previously appreciated. The results argue against an "all-or-none" description of cell specification, and suggest that activation of tissue-specific master regulators, even when expression of these is maintained by positive autoregulation, does not guarantee proper function of differentiated cells.
Collapse
|
342
|
Greer EL, Blanco MA, Gu L, Sendinc E, Liu J, Aristizábal-Corrales D, Hsu CH, Aravind L, He C, Shi Y. DNA Methylation on N6-Adenine in C. elegans. Cell 2015; 161:868-78. [PMID: 25936839 DOI: 10.1016/j.cell.2015.04.005] [Citation(s) in RCA: 484] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 03/02/2015] [Accepted: 03/31/2015] [Indexed: 02/02/2023]
Abstract
In mammalian cells, DNA methylation on the fifth position of cytosine (5mC) plays an important role as an epigenetic mark. However, DNA methylation was considered to be absent in C. elegans because of the lack of detectable 5mC, as well as homologs of the cytosine DNA methyltransferases. Here, using multiple approaches, we demonstrate the presence of adenine N(6)-methylation (6mA) in C. elegans DNA. We further demonstrate that this modification increases trans-generationally in a paradigm of epigenetic inheritance. Importantly, we identify a DNA demethylase, NMAD-1, and a potential DNA methyltransferase, DAMT-1, which regulate 6mA levels and crosstalk between methylations of histone H3K4 and adenines and control the epigenetic inheritance of phenotypes associated with the loss of the H3K4me2 demethylase spr-5. Together, these data identify a DNA modification in C. elegans and raise the exciting possibility that 6mA may be a carrier of heritable epigenetic information in eukaryotes.
Collapse
Affiliation(s)
- Eric Lieberman Greer
- Division of Newborn Medicine, Children's Hospital Boston, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| | - Mario Andres Blanco
- Division of Newborn Medicine, Children's Hospital Boston, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Lei Gu
- Division of Newborn Medicine, Children's Hospital Boston, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Erdem Sendinc
- Division of Newborn Medicine, Children's Hospital Boston, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Jianzhao Liu
- Department of Chemistry and Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - David Aristizábal-Corrales
- Division of Newborn Medicine, Children's Hospital Boston, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Chih-Hung Hsu
- Division of Newborn Medicine, Children's Hospital Boston, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 208943, USA
| | - Chuan He
- Department of Chemistry and Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Yang Shi
- Division of Newborn Medicine, Children's Hospital Boston, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
343
|
Zhi M, Liu Y. Darwin's sub-cellular theory of inheritance: unknown or ignored? Naturwissenschaften 2015; 102:24. [PMID: 25894590 DOI: 10.1007/s00114-015-1276-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 04/09/2015] [Indexed: 10/23/2022]
Affiliation(s)
- Mingxing Zhi
- Henan Institute of Science and Technology, Henan Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, 453003, China
| | | |
Collapse
|
344
|
Bhandari RK, Deem SL, Holliday DK, Jandegian CM, Kassotis CD, Nagel SC, Tillitt DE, Vom Saal FS, Rosenfeld CS. Effects of the environmental estrogenic contaminants bisphenol A and 17α-ethinyl estradiol on sexual development and adult behaviors in aquatic wildlife species. Gen Comp Endocrinol 2015; 214:195-219. [PMID: 25277515 DOI: 10.1016/j.ygcen.2014.09.014] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 08/08/2014] [Accepted: 09/20/2014] [Indexed: 12/12/2022]
Abstract
Endocrine disrupting chemicals (EDCs), including the mass-produced component of plastics, bisphenol A (BPA) are widely prevalent in aquatic and terrestrial habitats. Many aquatic species, such as fish, amphibians, aquatic reptiles and mammals, are exposed daily to high concentrations of BPA and ethinyl estradiol (EE2), estrogen in birth control pills. In this review, we will predominantly focus on BPA and EE2, well-described estrogenic EDCs. First, the evidence that BPA and EE2 are detectable in almost all bodies of water will be discussed. We will consider how BPA affects sexual and neural development in these species, as these effects have been the best characterized across taxa. For instance, such chemicals have been in many cases reported to cause sex-reversal of males to females. Even if these chemicals do not overtly alter the gonadal sex, there are indications that several EDCs might demasculinize male-specific behaviors that are essential for attracting a mate. In so doing, these chemicals may reduce the likelihood that these males reproduce. If exposed males do reproduce, the concern is that they will then be passing on compromised genetic fitness to their offspring and transmitting potential transgenerational effects through their sperm epigenome. We will thus consider how diverse epigenetic changes might be a unifying mechanism of how BPA and EE2 disrupt several processes across species. Such changes might also serve as universal species diagnostic biomarkers of BPA and other EDCs exposure. Lastly, the evidence that estrogenic EDCs-induced effects in aquatic species might translate to humans will be considered.
Collapse
Affiliation(s)
- Ramji K Bhandari
- Biological Sciences, University of Missouri, Columbia, MO 65211, USA; Columbia Environmental Research Center, U.S. Geological Survey, Columbia, MO 65201, USA
| | - Sharon L Deem
- Institute for Conservation Medicine, Saint Louis Zoo, Saint Louis, MO 63110, USA; Veterinary Clinical Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Dawn K Holliday
- Department of Biology and Environmental Science, Westminster College, Fulton, MO 65251, USA; Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Caitlin M Jandegian
- Columbia Environmental Research Center, U.S. Geological Survey, Columbia, MO 65201, USA; Institute for Conservation Medicine, Saint Louis Zoo, Saint Louis, MO 63110, USA; Masters in Public Health Program, University of Missouri, Columbia, MO 65211, USA
| | | | - Susan C Nagel
- Biological Sciences, University of Missouri, Columbia, MO 65211, USA; Obstetrics, Gynecology, & Women's Health, University of Missouri, Columbia, MO 65211, USA
| | - Donald E Tillitt
- Columbia Environmental Research Center, U.S. Geological Survey, Columbia, MO 65201, USA
| | | | - Cheryl S Rosenfeld
- Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA; Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; Genetics Area Program Faculty Member, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
345
|
Bhandari RK, vom Saal FS, Tillitt DE. Transgenerational effects from early developmental exposures to bisphenol A or 17α-ethinylestradiol in medaka, Oryzias latipes. Sci Rep 2015; 5:9303. [PMID: 25790734 PMCID: PMC4366817 DOI: 10.1038/srep09303] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 02/25/2015] [Indexed: 12/12/2022] Open
Abstract
The transgenerational consequences of environmental contaminant exposures of aquatic vertebrates have the potential for broad ecological impacts, yet are largely uninvestigated. Bisphenol A (BPA) and 17α-ethinylestradiol (EE2) are two ubiquitous estrogenic chemicals present in aquatic environments throughout the United States and many other countries. Aquatic organisms, including fish, are exposed to varying concentrations of these chemicals at various stages of their life history. Here, we tested the ability of embryonic exposure to BPA or EE2 to cause adverse health outcomes at later life stages and transgenerational abnormalities in medaka fish. Exposures of F0 medaka to either BPA (100 μg/L) or EE2 (0.05 μg/L) during the first 7 days of embryonic development, when germ cells are differentiating, did not cause any apparent phenotypic abnormalities in F0 or F1 generations, but led to a significant reduction in the fertilization rate in offspring two generations later (F2) as well as a reduction of embryo survival in offspring three generations later (F3). Our present observations suggest that BPA or EE2 exposure during development induces transgenerational phenotypes of reproductive impairment and compromised embryonic survival in fish of subsequent generations. These adverse outcomes may have negative impacts on populations of fish inhabiting contaminated aquatic environments.
Collapse
Affiliation(s)
- Ramji K. Bhandari
- U. S. Geological Survey, Columbia Environmental Research Center, Columbia, MO 65201, U.S.A
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211
| | | | - Donald E. Tillitt
- U. S. Geological Survey, Columbia Environmental Research Center, Columbia, MO 65201, U.S.A
| |
Collapse
|
346
|
Yuan S, Oliver D, Schuster A, Zheng H, Yan W. Breeding scheme and maternal small RNAs affect the efficiency of transgenerational inheritance of a paramutation in mice. Sci Rep 2015; 5:9266. [PMID: 25783852 PMCID: PMC4363887 DOI: 10.1038/srep09266] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 02/20/2015] [Indexed: 01/03/2023] Open
Abstract
Paramutations result from interactions between two alleles at a single locus, whereby one induces a heritable change in the other. Although common in plants, paramutations are rarely studied in animals. Here, we report a new paramutation mouse model, in which the paramutant allele was induced by an insertional mutation and displayed the "white-tail-tip" (WTT) phenotype. The paramutation phenotype could be transmitted across multiple generations, and the breeding scheme (intercrossing vs. outcrossing) drastically affected the transmission efficiency. Paternal (i.e., sperm-borne) RNAs isolated from paramutant mice could induce the paramutation phenotype, which, however, failed to be transmitted to subsequent generations. Maternal miRNAs and piRNAs appeared to have an inhibitory effect on the efficiency of germline transmission of the paramutation. This paramutation mouse model represents an important tool for dissecting the underlying mechanism, which should be applicable to the phenomenon of epigenetic transgenerational inheritance (ETI) in general. Mechanistic insights of ETI will help us understand how organisms establish new heritable epigenetic states during development, or in times of environmental or nutritional stress.
Collapse
Affiliation(s)
- Shuiqiao Yuan
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Daniel Oliver
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Andrew Schuster
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Huili Zheng
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Wei Yan
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
347
|
Metz GAS, Ng JWY, Kovalchuk I, Olson DM. Ancestral experience as a game changer in stress vulnerability and disease outcomes. Bioessays 2015; 37:602-11. [PMID: 25759985 DOI: 10.1002/bies.201400217] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 02/13/2015] [Accepted: 02/24/2015] [Indexed: 12/31/2022]
Abstract
Stress is one of the most powerful experiences to influence health and disease. Through epigenetic mechanisms, stress may generate a footprint that propagates to subsequent generations. Programming by prenatal stress or adverse experience in parents, grandparents, or earlier generations may thus be a critical determinant of lifetime health trajectories. Changes in regulation of microRNAs (miRNAs) by stress may enhance the vulnerability to certain pathogenic factors. This review explores the hypothesis that miRNAs represent stress-responsive elements in epigenetic regulation that are potentially heritable. Recent findings suggest that miRNAs are key players linking adverse early environments or ancestral stress with disease risk, thus they represent useful predictive disease biomarkers. Since miRNA signatures of disease are potentially heritable, big data management platforms will be vital to harness multi-generational information and capture succinct yet potent biomarkers capable of directing preventative treatments. This feature would offer a unique window of opportunity to advance personalized medicine.
Collapse
Affiliation(s)
- Gerlinde A S Metz
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Jane W Y Ng
- Department of Pediatrics, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - David M Olson
- Departments of Obstetrics & Gynecology, Pediatrics and Physiology, University of Alberta, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
348
|
Morange M. What history tells us XXXVI. Reverse transcriptase and Lamarckian scenarios of evolution. J Biosci 2015; 40:3-6. [DOI: 10.1007/s12038-015-9504-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
349
|
Paternal diet defines offspring chromatin state and intergenerational obesity. Cell 2015; 159:1352-64. [PMID: 25480298 DOI: 10.1016/j.cell.2014.11.005] [Citation(s) in RCA: 278] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 08/27/2014] [Accepted: 10/31/2014] [Indexed: 11/21/2022]
Abstract
The global rise in obesity has revitalized a search for genetic and epigenetic factors underlying the disease. We present a Drosophila model of paternal-diet-induced intergenerational metabolic reprogramming (IGMR) and identify genes required for its encoding in offspring. Intriguingly, we find that as little as 2 days of dietary intervention in fathers elicits obesity in offspring. Paternal sugar acts as a physiological suppressor of variegation, desilencing chromatin-state-defined domains in both mature sperm and in offspring embryos. We identify requirements for H3K9/K27me3-dependent reprogramming of metabolic genes in two distinct germline and zygotic windows. Critically, we find evidence that a similar system may regulate obesity susceptibility and phenotype variation in mice and humans. The findings provide insight into the mechanisms underlying intergenerational metabolic reprogramming and carry profound implications for our understanding of phenotypic variation and evolution.
Collapse
|
350
|
Double-stranded RNA made in C. elegans neurons can enter the germline and cause transgenerational gene silencing. Proc Natl Acad Sci U S A 2015; 112:2133-8. [PMID: 25646479 DOI: 10.1073/pnas.1423333112] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
An animal that can transfer gene-regulatory information from somatic cells to germ cells may be able to communicate changes in the soma from one generation to the next. In the worm Caenorhabditis elegans, expression of double-stranded RNA (dsRNA) in neurons can result in the export of dsRNA-derived mobile RNAs to other distant cells. Here, we show that neuronal mobile RNAs can cause transgenerational silencing of a gene of matching sequence in germ cells. Consistent with neuronal mobile RNAs being forms of dsRNA, silencing of target genes that are expressed either in somatic cells or in the germline requires the dsRNA-selective importer SID-1. In contrast to silencing in somatic cells, which requires dsRNA expression in each generation, silencing in the germline is heritable after a single generation of exposure to neuronal mobile RNAs. Although initiation of inherited silencing within the germline requires SID-1, a primary Argonaute RDE-1, a secondary Argonaute HRDE-1, and an RNase D homolog MUT-7, maintenance of inherited silencing is independent of SID-1 and RDE-1, but requires HRDE-1 and MUT-7. Inherited silencing can persist for >25 generations in the absence of the ancestral source of neuronal dsRNA. Therefore, our results suggest that sequence-specific regulatory information in the form of dsRNA can be transferred from neurons to the germline to cause transgenerational silencing.
Collapse
|