301
|
Tonack S, Tang C, Offermanns S. Endogenous metabolites as ligands for G protein-coupled receptors modulating risk factors for metabolic and cardiovascular disease. Am J Physiol Heart Circ Physiol 2012; 304:H501-13. [PMID: 23241321 DOI: 10.1152/ajpheart.00641.2012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
During the last decade, several G protein-coupled receptors activated by endogenous metabolites have been described. These receptors respond to fatty acids, mono- and disaccharides, amino acids, or various intermediates and products of metabolism, including ketone bodies, lactate, succinate, or bile acids. Receptors of endogenous metabolites are expressed in taste cells, the gastrointestinal tract, adipose tissue, endocrine glands, immune cells, or the kidney and are therefore in a position to sense food intake in the gastrointestinal tract or to link metabolite levels to the appropriate responses of metabolic organs. Some of the receptors appear to provide a link between metabolic and neuronal or immune functions. Given that many of these metabolic processes are dysregulated under pathological conditions, including diabetes, dyslipidemia, and obesity, receptors of endogenous metabolites have also been recognized as potential drug targets to prevent and/or treat metabolic and cardiovascular diseases. This review describes G protein-coupled receptors activated by endogenous metabolites and summarizes their physiological, pathophysiological, and potential pharmacological roles.
Collapse
Affiliation(s)
- Sarah Tonack
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | | | | |
Collapse
|
302
|
Wanders D, Graff EC, Judd RL. Effects of high fat diet on GPR109A and GPR81 gene expression. Biochem Biophys Res Commun 2012; 425:278-83. [PMID: 22842580 DOI: 10.1016/j.bbrc.2012.07.082] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 07/17/2012] [Indexed: 11/27/2022]
Abstract
GPR109A (PUMA-G, NIACR1, HCA(2)) and GPR81 (HCA(1)) are G protein-coupled receptors located predominantly on adipocytes that mediate anti-lipolytic effects. These cell surface receptors give the adipocyte the ability to "sense" metabolic changes in the environment and respond through lipolytic regulation and release of products including free fatty acids and pro- or anti-inflammatory adipokines. The endogenous ligands for GPR109A and GPR81 are β-hydroxybutyrate and lactate, respectively, both of which are hydroxycarboxylic acids and intermediates of energy metabolism. Circulating β-hydroxybutyrate levels are increased during a 2-3 day fast and prolonged starvation, while lactate levels are elevated during times of intense exercise. Therefore, regulation of expression of these receptors is crucial for the metabolic sensing ability of the adipocyte and ultimately whole body energy homeostasis. We investigated the effects of high fat diet-induced obesity on expression of GPR109A and GPR81. Sixteen male C57BL/6 mice were placed on a control (10% kcal fat; n=8) or a high fat (60% kcal fat; n=8) diet for 11 weeks. Diet-induced obesity significantly reduced GPR109A and GPR81 gene expression in epididymal fat pads. This decrease in GPR109A and GPR81 gene expression was positively correlated with a decrease in adipose tissue PPARγ gene expression. In contrast, acute treatment of both 3T3-L1 adipocytes and RAW 264.7 macrophages with lipopolysaccharide significantly increased GPR109A gene expression, but had no effect on GPR81 expression in 3T3-L1 adipocytes. In conclusion, chronic obesity reduces GPR109A and GPR81 expression in the adipose tissue, while acute in vitro LPS treatment increases expression of GPR109A in adipocytes and macrophages.
Collapse
Affiliation(s)
- Desiree Wanders
- Department of Anatomy, Physiology and Pharmacology, Auburn University, 219 Greene Hall, Auburn, AL 36849-5518, USA
| | | | | |
Collapse
|
303
|
G protein-coupled receptors for energy metabolites as new therapeutic targets. Nat Rev Drug Discov 2012; 11:603-19. [PMID: 22790105 DOI: 10.1038/nrd3777] [Citation(s) in RCA: 209] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Several G protein-coupled receptors (GPCRs) that are activated by intermediates of energy metabolism - such as fatty acids, saccharides, lactate and ketone bodies - have recently been discovered. These receptors are able to sense metabolic activity or levels of energy substrates and use this information to control the secretion of metabolic hormones or to regulate the metabolic activity of particular cells. Moreover, most of these receptors appear to be involved in the pathophysiology of metabolic diseases such as diabetes, dyslipidaemia and obesity. This Review summarizes the functions of these metabolite-sensing GPCRs in physiology and disease, and discusses the emerging pharmacological agents that are being developed to target these GPCRs for the treatment of metabolic disorders.
Collapse
|
304
|
Liu C, Kuei C, Zhu J, Yu J, Zhang L, Shih A, Mirzadegan T, Shelton J, Sutton S, Connelly MA, Lee G, Carruthers N, Wu J, Lovenberg TW. 3,5-Dihydroxybenzoic acid, a specific agonist for hydroxycarboxylic acid 1, inhibits lipolysis in adipocytes. J Pharmacol Exp Ther 2012; 341:794-801. [PMID: 22434674 DOI: 10.1124/jpet.112.192799] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Niacin raises high-density lipoprotein and lowers low-density lipoprotein through the activation of the β-hydroxybutyrate receptor hydroxycarboxylic acid 2 (HCA2) (aka GPR109a) but with an unwanted side effect of cutaneous flushing caused by vascular dilation because of the stimulation of HCA2 receptors in Langerhans cells in skin. HCA1 (aka GPR81), predominantly expressed in adipocytes, was recently identified as a receptor for lactate. Activation of HCA1 in adipocytes by lactate results in the inhibition of lipolysis, suggesting that agonists for HCA1 may be useful for the treatment of dyslipidemia. Lactate is a metabolite of glucose, suggesting that HCA1 may also be involved in the regulation of glucose metabolism. The low potency of lactate to activate HCA1, coupled with its fast turnover rate in vivo, render it an inadequate tool for studying the biological role of lactate/HCA1 in vivo. In this article, we demonstrate the identification of 3-hydroxybenzoic acid (3-HBA) as an agonist for both HCA2 and HCA1, whereas 3,5-dihydroxybenzoic acid (3,5-DHBA) is a specific agonist for only HCA1 (EC(50) ∼150 μM). 3,5-DHBA inhibits lipolysis in wild-type mouse adipocytes but not in HCA1-deficient adipocytes. Therefore, 3,5-DHBA is a useful tool for the in vivo study of HCA1 function and offers a base for further HCA1 agonist design. Because 3-HBA and 3,5-DHBA are polyphenolic acids found in many natural products, such as fruits, berries, and coffee, it is intriguing to speculate that other heretofore undiscovered natural substances may have therapeutic benefits.
Collapse
Affiliation(s)
- Changlu Liu
- Janssen Research & Development, LLC, 3210 Merryfield Row, San Diego, CA 92121, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
305
|
Abstract
Glucagon-like peptide-1 (GLP-1) is an incretin hormone that enhances glucose-stimulated insulin secretion and exerts direct and indirect actions on the cardiovascular system. GLP-1 and its related incretin hormone, glucose-dependent insulinotropic polypeptide, are rapidly inactivated by the enzyme dipeptidyl peptidase 4 (DPP-4), a key determinant of incretin bioactivity. Two classes of medications that enhance incretin action, GLP-1 receptor (GLP-1R) agonists and DPP-4 inhibitors, are used for the treatment of type 2 diabetes mellitus. We review herein the cardiovascular biology of GLP-1R agonists and DPP-4 inhibitors, including direct and indirect effects on cardiomyocytes, blood vessels, adipocytes, the control of blood pressure, and postprandial lipoprotein secretion. Both GLP-1R activation and DPP-4 inhibition exert multiple cardioprotective actions in preclinical models of cardiovascular dysfunction, and short-term studies in human subjects appear to demonstrate modest yet beneficial actions on cardiac function in subjects with ischemic heart disease. Incretin-based agents control body weight, improve glycemic control with a low risk of hypoglycemia, decrease blood pressure, inhibit the secretion of intestinal chylomicrons, and reduce inflammation in preclinical studies. Nevertheless, there is limited information on the cardiovascular actions of these agents in patients with diabetes and established cardiovascular disease. Hence, a more complete understanding of the cardiovascular risk to benefit ratio of incretin-based therapies will require completion of long-term cardiovascular outcome studies currently underway in patients with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- John R Ussher
- Department of Medicine, Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, Ontario M5G 1X5, Canada
| | | |
Collapse
|
306
|
Dysfunction of lipid sensor GPR120 leads to obesity in both mouse and human. Nature 2012; 483:350-4. [PMID: 22343897 DOI: 10.1038/nature10798] [Citation(s) in RCA: 520] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 12/14/2011] [Indexed: 12/12/2022]
|
307
|
Smith NJ. Low affinity GPCRs for metabolic intermediates: challenges for pharmacologists. Front Endocrinol (Lausanne) 2012; 3:1. [PMID: 22649402 PMCID: PMC3355937 DOI: 10.3389/fendo.2012.00001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 01/03/2012] [Indexed: 12/22/2022] Open
Abstract
The discovery that a number of metabolites and metabolic intermediates can act through G protein-coupled receptors has attracted great interest in the field and has led to new therapeutic targets for diseases such as hypertension, type 2 diabetes, inflammation, and metabolic syndrome. However, the low apparent affinity of these ligands for their cognate receptors poses a number of challenges for pharmacologists interested in investigating receptor structure, function or physiology. Furthermore, the endogenous ligands matched to their receptors have other, well established metabolic roles and thus selectivity is difficult to achieve. This review discusses some of the issues researchers face when working with these receptors and highlights the ways in which a number of these obstacles have been overcome.
Collapse
Affiliation(s)
- Nicola J Smith
- Molecular Cardiology, Victor Chang Cardiac Research Institute Darlinghurst, NSW, Australia.
| |
Collapse
|
308
|
Klaus S, Keipert S, Rossmeisl M, Kopecky J. Augmenting energy expenditure by mitochondrial uncoupling: a role of AMP-activated protein kinase. GENES AND NUTRITION 2011; 7:369-86. [PMID: 22139637 DOI: 10.1007/s12263-011-0260-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 11/18/2011] [Indexed: 11/28/2022]
Abstract
Strategies to prevent and treat obesity aim to decrease energy intake and/or increase energy expenditure. Regarding the increase of energy expenditure, two key intracellular targets may be considered (1) mitochondrial oxidative phosphorylation, the major site of ATP production, and (2) AMP-activated protein kinase (AMPK), the master regulator of cellular energy homeostasis. Experiments performed mainly in transgenic mice revealed a possibility to ameliorate obesity and associated disorders by mitochondrial uncoupling in metabolically relevant tissues, especially in white adipose tissue (WAT), skeletal muscle (SM), and liver. Thus, ectopic expression of brown fat-specific mitochondrial uncoupling protein 1 (UCP1) elicited major metabolic effects both at the cellular/tissue level and at the whole-body level. In addition to expected increases in energy expenditure, surprisingly complex phenotypic effects were detected. The consequences of mitochondrial uncoupling in WAT and SM are not identical, showing robust and stable obesity resistance accompanied by improvement of lipid metabolism in the case of ectopic UCP1 in WAT, while preservation of insulin sensitivity in the context of high-fat feeding represents the major outcome of muscle UCP1 expression. These complex responses could be largely explained by tissue-specific activation of AMPK, triggered by a depression of cellular energy charge. Experimental data support the idea that (1) while being always activated in response to mitochondrial uncoupling and compromised intracellular energy status in general, AMPK could augment energy expenditure and mediate local as well as whole-body effects; and (2) activation of AMPK alone does not lead to induction of energy expenditure and weight reduction.
Collapse
Affiliation(s)
- Susanne Klaus
- German Institute of Human Nutrition, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | | | | | | |
Collapse
|
309
|
Kuei C, Yu J, Zhu J, Wu J, Zhang L, Shih A, Mirzadegan T, Lovenberg T, Liu C. Study of GPR81, the lactate receptor, from distant species identifies residues and motifs critical for GPR81 functions. Mol Pharmacol 2011; 80:848-58. [PMID: 21862690 DOI: 10.1124/mol.111.074500] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
Receptors from distant species may have conserved functions despite significant differences in protein sequences. Whereas the noncritical residues are often changed in distant species, the amino acids critical in receptor functions are often conserved. Studying the conserved residues between receptors from distant species offers valuable information to probe the roles of residues in receptor function. We identified two zebrafish receptors (zGPR81-1 and zGPR81-2) that show approximately 60% identity to human GPR81, GPR109a, and GPR109b but respond only to l-lactate and not to the GPR109a ligands. Protein sequence comparison among zebrafish GPR81s, mammalian GPR81s, GPR109a, and GPR109b identified a common structure (six Cys residues at the extracellular domains that potentially form three disulfide bonds) in this subfamily of receptors. In addition, a number of residues conserved in all GPR81s but not in GPR109s have been identified. Furthermore, we identified a conserved motif, C165-E166-S167-F168, at the second extracellular loop of GPR81. Using site-directed mutagenesis, we showed that Arg71 at the transmembrane domain 2 is very critical for GPR81 function. In addition, we demonstrated that the C165-E166-S167-F168 motif at the second extracellular loop is critical for GPR81 function, and the conserved six Cys residues at the extracellular regions are necessary for GPR81 function. It is important to mention that for those residues important for GPR81 function, the corresponding residues or motifs in GPR109a are also critical for GPR109a function. These findings help us better understand the interaction between lactate and GPR81 and provide useful information for GPR81 ligand design.
Collapse
Affiliation(s)
- Chester Kuei
- Johnson and Johnson Pharmaceutical Research and Development, San Diego, CA 92121, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
310
|
Lactate and the GPR81 receptor in metabolic regulation: implications for adipose tissue function and fatty acid utilisation by muscle during exercise. Br J Nutr 2011; 106:1310-6. [PMID: 21902860 DOI: 10.1017/s0007114511004673] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lactate is increasingly recognised to be more than a simple end product of anaerobic glycolysis. Skeletal muscle and white adipose tissue are considered to be the main sites of lactate production and release. Recent studies have demonstrated that there is a specific G-protein coupled receptor for lactate, GPR81, which is expressed primarily in adipose tissue, and also in muscle. Lactate inhibits lipolysis in adipose tissue by mediating, through GPR81, the anti-lipolytic action of insulin. A high proportion (50 % or more) of the glucose utilised by white adipose tissue is converted to lactate and lactate production by the tissue increases markedly in obesity; this is likely to reflect a switch towards anaerobic metabolism with the development of hypoxia in the tissue. During exercise, there is a shift in fuel utilisation by muscle from lipid to carbohydrate, but this does not appear to be a result of the inhibition of lipolysis in the main adipose tissue depots by muscle-derived lactate. It is suggested instead that a putative autocrine lactate loop in myocytes may regulate fuel utilisation by muscle during exercise, operating via a muscle GPR81 receptor. In addition to being an important substrate, lactate is a key signal in metabolic regulation.
Collapse
|
311
|
Lafontan M. Historical perspectives in fat cell biology: the fat cell as a model for the investigation of hormonal and metabolic pathways. Am J Physiol Cell Physiol 2011; 302:C327-59. [PMID: 21900692 DOI: 10.1152/ajpcell.00168.2011] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
For many years, there was little interest in the biochemistry or physiology of adipose tissue. It is now well recognized that adipocytes play an important dynamic role in metabolic regulation. They are able to sense metabolic states via their ability to perceive a large number of nervous and hormonal signals. They are also able to produce hormones, called adipokines, that affect nutrient intake, metabolism and energy expenditure. The report by Rodbell in 1964 that intact fat cells can be obtained by collagenase digestion of adipose tissue revolutionized studies on the hormonal regulation and metabolism of the fat cell. In the context of the advent of systems biology in the field of cell biology, the present seems an appropriate time to look back at the global contribution of the fat cell to cell biology knowledge. This review focuses on the very early approaches that used the fat cell as a tool to discover and understand various cellular mechanisms. Attention essentially focuses on the early investigations revealing the major contribution of mature fat cells and also fat cells originating from adipose cell lines to the discovery of major events related to hormone action (hormone receptors and transduction pathways involved in hormonal signaling) and mechanisms involved in metabolite processing (hexose uptake and uptake, storage, and efflux of fatty acids). Dormant preadipocytes exist in the stroma-vascular fraction of the adipose tissue of rodents and humans; cell culture systems have proven to be valuable models for the study of the processes involved in the formation of new fat cells. Finally, more recent insights into adipocyte secretion, a completely new role with major metabolic impact, are also briefly summarized.
Collapse
Affiliation(s)
- Max Lafontan
- Institut National de la Santé et de la Recherche Médicale, UMR, Hôpital Rangueil, Toulouse, France.
| |
Collapse
|
312
|
Abstract
Abnormal blood lipids are the major modifiable risk factor underlying the development of cardiovascular disease. Niacin has a profound ability to reduce low-density lipoprotein-C, very low-density lipoprotein-C and triglycerides and is the most effective pharmacological agent to increase high-density lipoprotein-C. Recently, the receptor for niacin, GPR109A, was discovered. GPR109A in the adipocyte mediates a niacin-induced inhibition of lipolysis, which could play a crucial part in its role as a lipid-modifying drug. GPR109A in epidermal Langerhans cells mediates flushing, an unwanted side effect of niacin therapy. For the past decade, the functions of GPR109A have been studied and full or partial agonists have been developed in an attempt to achieve the beneficial effects of niacin while avoiding the unwanted flushing side effect. This review presents what is known to date about GPR109A biology and function and the future of GPR109A as a pharmacological target.
Collapse
Affiliation(s)
- D Wanders
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | | |
Collapse
|
313
|
Petersen PS, Jin C, Madsen AN, Rasmussen M, Kuhre R, Egerod KL, Nielsen LB, Schwartz TW, Holst B. Deficiency of the GPR39 receptor is associated with obesity and altered adipocyte metabolism. FASEB J 2011; 25:3803-14. [DOI: 10.1096/fj.11-184531] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pia Steen Petersen
- Laboratory for Molecular Pharmacology, Department of Neuroscience and PharmacologyUniversity of Copenhagen Copenhagen Denmark
| | - Chunyu Jin
- Laboratory for Molecular Pharmacology, Department of Neuroscience and PharmacologyUniversity of Copenhagen Copenhagen Denmark
| | - Andreas Nygaard Madsen
- Laboratory for Molecular Pharmacology, Department of Neuroscience and PharmacologyUniversity of Copenhagen Copenhagen Denmark
| | - Maria Rasmussen
- Laboratory for Molecular Pharmacology, Department of Neuroscience and PharmacologyUniversity of Copenhagen Copenhagen Denmark
| | - Rune Kuhre
- Laboratory for Molecular Pharmacology, Department of Neuroscience and PharmacologyUniversity of Copenhagen Copenhagen Denmark
| | - Kristoffer L. Egerod
- Laboratory for Molecular Pharmacology, Department of Neuroscience and PharmacologyUniversity of Copenhagen Copenhagen Denmark
| | - Lars Bo Nielsen
- Department of Clinical BiochemistryUniversity of Copenhagen Copenhagen Denmark
| | - Thue W. Schwartz
- Laboratory for Molecular Pharmacology, Department of Neuroscience and PharmacologyUniversity of Copenhagen Copenhagen Denmark
- Novo Nordisk Foundation Center for Basic Metabolic ResearchFaculty of Health Sciences, University of Copenhagen Copenhagen Denmark
| | - Birgitte Holst
- Laboratory for Molecular Pharmacology, Department of Neuroscience and PharmacologyUniversity of Copenhagen Copenhagen Denmark
- Novo Nordisk Foundation Center for Basic Metabolic ResearchFaculty of Health Sciences, University of Copenhagen Copenhagen Denmark
| |
Collapse
|
314
|
Offermanns S, Colletti SL, Lovenberg TW, Semple G, Wise A, IJzerman AP. International Union of Basic and Clinical Pharmacology. LXXXII: Nomenclature and Classification of Hydroxy-carboxylic Acid Receptors (GPR81, GPR109A, and GPR109B). Pharmacol Rev 2011; 63:269-90. [PMID: 21454438 DOI: 10.1124/pr.110.003301] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The G-protein-coupled receptors GPR81, GPR109A, and GPR109B share significant sequence homology and form a small group of receptors, each of which is encoded by clustered genes. In recent years, endogenous ligands for all three receptors have been described. These endogenous ligands have in common that they are hydroxy-carboxylic acid metabolites, and we therefore have proposed that this receptor family be named hydroxy-carboxylic acid (HCA) receptors. The HCA(1) receptor (GPR81) is activated by 2-hydroxy-propanoic acid (lactate), the HCA(2) receptor (GPR109A) is a receptor for the ketone body 3-hydroxy-butyric acid, and the HCA(3) receptor (GPR109B) is activated by the β-oxidation intermediate 3-hydroxy-octanoic acid. HCA(1) and HCA(2) receptors are found in most mammalian species, whereas the HCA(3) receptor is present only in higher primates. The three receptors have in common that they are expressed in adipocytes and are coupled to G(i)-type G-proteins mediating antilipolytic effects in fat cells. HCA(2) and HCA(3) receptors are also expressed in a variety of immune cells. HCA(2) is a receptor for the antidyslipidemic drug nicotinic acid (niacin) and related compounds, and there is an increasing number of synthetic ligands mainly targeted at HCA(2) and HCA(3) receptors. The aim of this article is to give an overview on the discovery and pharmacological characterization of HCAs, and to introduce an International Union of Basic and Clinical Pharmacology (IUPHAR)-recommended nomenclature. We will also discuss open questions regarding this receptor family as well as their physiological role and therapeutic potential.
Collapse
Affiliation(s)
- Stefan Offermanns
- Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany.
| | | | | | | | | | | |
Collapse
|
315
|
Chaves VE, Frasson D, Kawashita NH. Several agents and pathways regulate lipolysis in adipocytes. Biochimie 2011; 93:1631-40. [PMID: 21658426 DOI: 10.1016/j.biochi.2011.05.018] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 05/23/2011] [Indexed: 01/01/2023]
Abstract
Adipose tissue is the only tissue capable of hydrolyzing its stores of triacylglycerol (TAG) and of mobilizing fatty acids and glycerol in the bloodstream so that they can be used by other tissues. The full hydrolysis of TAG depends on the activity of three enzymes, adipose triglyceride lipase (ATGL), hormone-sensitive lipase (HSL) and monoacylglycerol lipase, each of which possesses a distinct regulatory mechanism. Although more is known about HSL than about the other two enzymes, it has recently been shown that HLS and ATGL can be activated simultaneously, such that the mechanism that enables HSL to access the surface of lipid droplets also permits the stimulation of ATGL. The classical pathway of lipolysis activation in adipocytes is cAMP-dependent. The production of cAMP is modulated by G-protein-coupled receptors of the Gs/Gi family and cAMP degradation is regulated by phosphodiesterase. However, other pathways that activate TAG hydrolysis are currently under investigation. Lipolysis can also be started by G-protein-coupled receptors of the Gq family, through molecular mechanisms that involve phospholipase C, calmodulin and protein kinase C. There is also evidence that increased lipolytic activity in adipocytes occurs after stimulation of the mitogen-activated protein kinase pathway or after cGMP accumulation and activation of protein kinase G. Several agents contribute to the control of lipolysis in adipocytes by modulating the activity of HSL and ATGL. In this review, we have summarized the signalling pathways activated by several agents involved in the regulation of TAG hydrolysis in adipocytes.
Collapse
Affiliation(s)
- Valéria Ernestânia Chaves
- Department of Basic Sciences in Health, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | | | | |
Collapse
|
316
|
Scherer T, O’Hare J, Diggs-Andrews K, Schweiger M, Cheng B, Lindtner C, Zielinski E, Vempati P, Su K, Dighe S, Milsom T, Puchowicz M, Scheja L, Zechner R, Fisher SJ, Previs SF, Buettner C. Brain insulin controls adipose tissue lipolysis and lipogenesis. Cell Metab 2011; 13:183-94. [PMID: 21284985 PMCID: PMC3061443 DOI: 10.1016/j.cmet.2011.01.008] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 09/14/2010] [Accepted: 12/06/2010] [Indexed: 01/14/2023]
Abstract
White adipose tissue (WAT) dysfunction plays a key role in the pathogenesis of type 2 diabetes (DM2). Unrestrained WAT lipolysis results in increased fatty acid release, leading to insulin resistance and lipotoxicity, while impaired de novo lipogenesis in WAT decreases the synthesis of insulin-sensitizing fatty acid species like palmitoleate. Here, we show that insulin infused into the mediobasal hypothalamus (MBH) of Sprague-Dawley rats increases WAT lipogenic protein expression, inactivates hormone-sensitive lipase (Hsl), and suppresses lipolysis. Conversely, mice that lack the neuronal insulin receptor exhibit unrestrained lipolysis and decreased de novo lipogenesis in WAT. Thus, brain and, in particular, hypothalamic insulin action play a pivotal role in WAT functionality.
Collapse
Affiliation(s)
- Thomas Scherer
- Department of Medicine and Department of Neuroscience, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1055, New York, NY 10029-6574
| | - James O’Hare
- Department of Medicine and Department of Neuroscience, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1055, New York, NY 10029-6574
| | - Kelly Diggs-Andrews
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, 660 S. Euclid, St. Louis, MO 63110, USA
| | - Martina Schweiger
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/3, A- 8010 Graz, Austria
| | - Bob Cheng
- Department of Medicine and Department of Neuroscience, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1055, New York, NY 10029-6574
| | - Claudia Lindtner
- Department of Medicine and Department of Neuroscience, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1055, New York, NY 10029-6574
| | - Elizabeth Zielinski
- Department of Medicine and Department of Neuroscience, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1055, New York, NY 10029-6574
| | - Prashant Vempati
- Department of Medicine and Department of Neuroscience, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1055, New York, NY 10029-6574
| | - Kai Su
- Department of Medicine and Department of Neuroscience, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1055, New York, NY 10029-6574
| | - Shveta Dighe
- Department of Medicine and Department of Neuroscience, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1055, New York, NY 10029-6574
| | - Thomas Milsom
- Department of Medicine and Department of Neuroscience, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1055, New York, NY 10029-6574
| | - Michelle Puchowicz
- Department of Nutrition and Mouse Metabolic Phenotyping Center, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Ludger Scheja
- Department of Biochemistry and Molecular Biology II, University Medical Center, 20246 Hamburg, Germany
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/3, A- 8010 Graz, Austria
| | - Simon J. Fisher
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, 660 S. Euclid, St. Louis, MO 63110, USA
| | - Stephen F. Previs
- Department of Nutrition and Mouse Metabolic Phenotyping Center, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Christoph Buettner
- Department of Medicine and Department of Neuroscience, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1055, New York, NY 10029-6574
| |
Collapse
|
317
|
Ahmed K. Biological roles and therapeutic potential of hydroxy-carboxylic Acid receptors. Front Endocrinol (Lausanne) 2011; 2:51. [PMID: 22654812 PMCID: PMC3356039 DOI: 10.3389/fendo.2011.00051] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 09/23/2011] [Indexed: 11/13/2022] Open
Abstract
In the recent past, deorphanization studies have described intermediates of energy metabolism to activate G protein-coupled receptors and to thereby regulate metabolic functions. GPR81, GPR109A, and GPR109B, formerly known as the nicotinic acid receptor family, are encoded by clustered genes and share a high degree of sequence homology. Recently, hydroxy-carboxylic acids were identified as endogenous ligands of GPR81, GPR109A, and GPR109B, and therefore these receptors have been placed into a novel receptor family of hydroxy-carboxylic acid (HCA) receptors. The HCA(1) receptor (GPR81) is activated by the glycolytic metabolite 2-hydroxy-propionic acid (lactate), the HCA(2) receptor is activated by the ketone body 3-hydroxy-butyric acid, and the HCA(3) receptor (GPR109B) is a receptor for the β-oxidation intermediate 3-hydroxy-octanoic acid. While HCA(1) and HCA(2) receptors are present in most mammalian species, the HCA(3) receptor is exclusively found in humans and higher primates. HCA receptors are expressed in adipose tissue and mediate anti-lipolytic effects in adipocytes through G(i)-type G protein-dependent inhibition of adenylyl cyclase. HCA(2) and HCA(3) inhibit lipolysis during conditions of increased β-oxidation such as prolonged fasting, whereas HCA(1) mediates the anti-lipolytic effects of insulin in the fed state. As HCA(2) is a receptor for the established anti-dyslipidemic drug nicotinic acid, HCA(1) and HCA(3) also represent promising drug targets and several synthetic ligands for HCA receptors have been developed. In this article, we will summarize the deorphanization and pharmacological characterization of HCA receptors. Moreover, we will discuss recent progress in elucidating the physiological and pathophysiological role to further evaluate the therapeutic potential of the HCA receptor family for the treatment of metabolic disease.
Collapse
Affiliation(s)
- Kashan Ahmed
- Institute of Molecular Systems Biology, Swiss Federal Institute of TechnologyZurich, Switzerland
- Competence Center of Systems Physiology and Metabolic Disease, Swiss Federal Institute of TechnologyZurich, Switzerland
- *Correspondence: Kashan Ahmed, Institute of Molecular Systems Biology, Swiss Federal Institute of Technology Zurich, Wolfgang-Pauli-Strasse 16, CH-8093 Zurich, Switzerland. e-mail:
| |
Collapse
|
318
|
Blad CC, Ahmed K, IJzerman AP, Offermanns S. Biological and pharmacological roles of HCA receptors. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2011; 62:219-250. [PMID: 21907911 DOI: 10.1016/b978-0-12-385952-5.00005-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The hydroxy-carboxylic acid (HCA) receptors HCA(1), HCA(2), and HCA(3) were previously known as GPR81, GPR109A, and GPR109B, respectively, or as the nicotinic acid receptor family. They form a cluster of G protein-coupled receptors with high sequence homology. Recently, intermediates of energy metabolism, all HCAs, have been reported as endogenous ligands for each of these receptors. The HCA receptors are predominantly expressed on adipocytes and mediate the inhibition of lipolysis by coupling to G(i)-type proteins. HCA(1) is activated by lactate, HCA(2) by the ketone body 3-hydroxy-butyrate, and HCA(3) by hydroxylated β-oxidation intermediates, especially 3-hydroxy-octanoic acid. Both HCA(2) and HCA(3) are part of a negative feedback loop which keeps the release of fat stores in check under starvation conditions, whereas HCA(1) plays a role in the antilipolytic (fat-conserving) effect of insulin. HCA(2) was first discovered as the molecular target of the antidyslipidemic drug nicotinic acid (or niacin). Many synthetic agonists have since been designed for HCA(2) and HCA(3), but the development of a new, improved HCA-targeted drug has not been successful so far, despite a number of clinical studies. Recently, it has been shown that the major side effect of nicotinic acid, skin flushing, is mediated by HCA(2) receptors on keratinocytes, as well as on Langerhans cells in the skin. In this chapter, we summarize the latest developments in the field of HCA receptor research, with emphasis on (patho)physiology, receptor pharmacology, major ligand classes, and the therapeutic potential of HCA ligands.
Collapse
Affiliation(s)
- Clara C Blad
- Division of Medicinal Chemistry, Leiden/Amsterdam Center for Drug Research, Leiden University, Leiden, The Netherlands
| | | | | | | |
Collapse
|
319
|
Murakami M, Taketomi Y, Miki Y, Sato H, Hirabayashi T, Yamamoto K. Recent progress in phospholipase A₂ research: from cells to animals to humans. Prog Lipid Res 2010; 50:152-92. [PMID: 21185866 DOI: 10.1016/j.plipres.2010.12.001] [Citation(s) in RCA: 389] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mammalian genomes encode genes for more than 30 phospholipase A₂s (PLA₂s) or related enzymes, which are subdivided into several classes including low-molecular-weight secreted PLA₂s (sPLA₂s), Ca²+-dependent cytosolic PLA₂s (cPLA₂s), Ca²+-independent PLA₂s (iPLA₂s), platelet-activating factor acetylhydrolases (PAF-AHs), lysosomal PLA₂s, and a recently identified adipose-specific PLA. Of these, the intracellular cPLA₂ and iPLA₂ families and the extracellular sPLA₂ family are recognized as the "big three". From a general viewpoint, cPLA₂α (the prototypic cPLA₂ plays a major role in the initiation of arachidonic acid metabolism, the iPLA₂ family contributes to membrane homeostasis and energy metabolism, and the sPLA₂ family affects various biological events by modulating the extracellular phospholipid milieus. The cPLA₂ family evolved along with eicosanoid receptors when vertebrates first appeared, whereas the diverse branching of the iPLA₂ and sPLA₂ families during earlier eukaryote development suggests that they play fundamental roles in life-related processes. During the past decade, data concerning the unexplored roles of various PLA₂ enzymes in pathophysiology have emerged on the basis of studies using knockout and transgenic mice, the use of specific inhibitors, and information obtained from analysis of human diseases caused by mutations in PLA₂ genes. This review focuses on current understanding of the emerging biological functions of PLA₂s and related enzymes.
Collapse
Affiliation(s)
- Makoto Murakami
- Lipid Metabolism Project, The Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| | | | | | | | | | | |
Collapse
|
320
|
Muñoz S, Franckhauser S, Elias I, Ferré T, Hidalgo A, Monteys AM, Molas M, Cerdán S, Pujol A, Ruberte J, Bosch F. Chronically increased glucose uptake by adipose tissue leads to lactate production and improved insulin sensitivity rather than obesity in the mouse. Diabetologia 2010; 53:2417-30. [PMID: 20623219 DOI: 10.1007/s00125-010-1840-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 05/28/2010] [Indexed: 01/16/2023]
Abstract
AIMS/HYPOTHESIS In adipocytes, triacylglycerol synthesis depends on the formation of glycerol 3-phosphate, which originates either from glucose, through glycolysis, or from lactate, through glyceroneogenesis. However, glucose is traditionally viewed as the main precursor of the glycerol backbone and thus, enhanced glucose uptake would be expected to result in increased triacylglycerol synthesis and contribute to obesity. METHODS To further explore this issue, we generated a mouse model with chronically increased glucose uptake in adipose tissue by expressing Gck, which encodes the glucokinase enzyme. RESULTS Here we show that the production of high levels of glucokinase led to increased adipose tissue glucose uptake and lactate production, improved glucose tolerance and higher whole-body and skeletal muscle insulin sensitivity. There was no parallel increase in glycerol 3-phosphate synthesis in vivo, fat accumulation or obesity. Moreover, at high glucose concentrations, in cultured fat cells overproducing glucokinase, glycerol 3-phosphate synthesis from pyruvate decreased, while glyceroneogenesis increased in fat cells overproducing hexokinase II. CONCLUSIONS/INTERPRETATIONS These findings indicate that the absence of glucokinase inhibition by glucose 6-phosphate probably led to increased glycolysis and blocked glyceroneogenesis in the mouse model. Furthermore, this study suggests that under physiological conditions, when blood glucose increases, glyceroneogenesis may prevail over glycolysis for triacylglycerol formation because of the inhibition of hexokinase II by glucose 6-phosphate. Together these results point to the indirect pathway (glucose to lactate to glycerol 3-phosphate) being key for fat deposition in adipose tissue.
Collapse
Affiliation(s)
- S Muñoz
- Center of Animal Biotechnology and Gene Therapy, Edifici H, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
321
|
Marcelin G, Chua S. Contributions of adipocyte lipid metabolism to body fat content and implications for the treatment of obesity. Curr Opin Pharmacol 2010; 10:588-93. [PMID: 20860920 DOI: 10.1016/j.coph.2010.05.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 05/10/2010] [Accepted: 05/16/2010] [Indexed: 12/20/2022]
Abstract
Obesity is a chronic disease that increases susceptibility to various diseases, particularly cardiovascular dysfunction, type 2 diabetes, and some types of cancer. In this review, we highlighted recent evidence in mouse models that support a potential benefit of increasing adipose lipid utilization through stimulating lipolysis in adipose tissue and fatty acid oxidation. Brown adipocyte development within white adipose tissue of humans suggests that mouse models may be applicable to human obesity. Consequently, new therapies should target adipose tissue to specifically reduce fat mass through controlled triglyceride utilization.
Collapse
Affiliation(s)
- Genevieve Marcelin
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA
| | | |
Collapse
|
322
|
Abstract
Lactate is produced from glucose by adipose tissue. In this issue of Cell Metabolism, Ahmed et al. (2010) show that the metabolite is involved in the antilipolytic effect of insulin, providing a new link between fat and carbohydrate metabolism.
Collapse
Affiliation(s)
- Dominique Langin
- Inserm U858, Obesity Research Laboratory, Rangueil Institute of Molecular Medicine, Toulouse F-31432, France.
| |
Collapse
|