301
|
Michaelidou K, Agelaki S, Mavridis K. Molecular markers related to immunosurveillance as predictive and monitoring tools in non-small cell lung cancer: recent accomplishments and future promises. Expert Rev Mol Diagn 2020; 20:335-344. [PMID: 32000550 DOI: 10.1080/14737159.2020.1724785] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction: The landscape of systemic treatment options for lung cancer has rapidly evolved with the emergence of immunomodulatory agents such as neutralizing antibodies targeting the programmed cell death protein 1 (PD-1) and its ligand (PD-L1). Another major breakthrough was the introduction of biomarkers, such as PD-L1 expression and tumor mutational burden (TMB), predicting response to immunotherapy. However, markers for monitoring treatment response are still lacking.Areas covered: PD-L1 and TMB represent static pre-treatment evaluations. Dynamic biomarkers are required, along with static ones, to accurately predict and monitor immunotherapy response and to discriminate between responders and non-responders early in the course of treatment. The tumor immune contexture offers potential candidates that can be tested through the liquid biopsy approach, such as circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), exosomes, microRNAs (miRNAs), circular RNAs (circRNAs), RNA splice variants, and immune cell subsets.Expert opinion: A holistic approach combining information from tissue at the time of diagnosis and serial liquid biopsy data could lead to a novel combinatorial biomarker panel with enhanced treatment monitoring potential. Incorporating information from additional parts of the tumor-host ecosystem, such as metabolic markers and the microbiome is expected to provide added value to this strategy.
Collapse
Affiliation(s)
- Kleita Michaelidou
- Laboratory of Translational Oncology, School of Medicine, University of Crete, Heraklion, Greece
| | - Sofia Agelaki
- Laboratory of Translational Oncology, School of Medicine, University of Crete, Heraklion, Greece.,Department of Medical Oncology, University General Hospital, Heraklion, Greece
| | - Konstantinos Mavridis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| |
Collapse
|
302
|
Zhang FP, Huang YP, Luo WX, Deng WY, Liu CQ, Xu LB, Liu C. Construction of a risk score prognosis model based on hepatocellular carcinoma microenvironment. World J Gastroenterol 2020; 26:134-153. [PMID: 31969776 PMCID: PMC6962430 DOI: 10.3748/wjg.v26.i2.134] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/23/2019] [Accepted: 12/06/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a common cancer with a poor prognosis. Previous studies revealed that the tumor microenvironment (TME) plays an important role in HCC progression, recurrence, and metastasis, leading to poor prognosis. However, the effects of genes involved in TME on the prognosis of HCC patients remain unclear. Here, we investigated the HCC microenvironment to identify prognostic genes for HCC.
AIM To identify a robust gene signature associated with the HCC microenvironment to improve prognosis prediction of HCC.
METHODS We computed the immune/stromal scores of HCC patients obtained from The Cancer Genome Atlas based on the ESTIMATE algorithm. Additionally, a risk score model was established based on Differentially Expressed Genes (DEGs) between high‐ and low‐immune/stromal score patients.
RESULTS The risk score model consisting of eight genes was constructed and validated in the HCC patients. The patients were divided into high- or low-risk groups. The genes (Disabled homolog 2, Musculin, C-X-C motif chemokine ligand 8, Galectin 3, B-cell-activating transcription factor, Killer cell lectin like receptor B1, Endoglin and adenomatosis polyposis coli tumor suppressor) involved in our risk score model were considered to be potential immunotherapy targets, and they may provide better performance in combination. Functional enrichment analysis showed that the immune response and T cell receptor signaling pathway represented the major function and pathway, respectively, related to the immune-related genes in the DEGs between high- and low-risk groups. The receiver operating characteristic (ROC) curve analysis confirmed the good potency of the risk score prognostic model. Moreover, we validated the risk score model using the International Cancer Genome Consortium and the Gene Expression Omnibus database. A nomogram was established to predict the overall survival of HCC patients.
CONCLUSION The risk score model and the nomogram will benefit HCC patients through personalized immunotherapy.
Collapse
MESH Headings
- Aged
- Antineoplastic Agents, Immunological/pharmacology
- Antineoplastic Agents, Immunological/therapeutic use
- Biomarkers, Tumor/antagonists & inhibitors
- Biomarkers, Tumor/genetics
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/mortality
- Databases, Genetic/statistics & numerical data
- Datasets as Topic
- Female
- Gene Expression Profiling/methods
- Gene Expression Regulation, Neoplastic/immunology
- Humans
- Kaplan-Meier Estimate
- Liver/immunology
- Liver/pathology
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/immunology
- Liver Neoplasms/mortality
- Male
- Middle Aged
- Models, Genetic
- Neoplasm Staging
- Nomograms
- Precision Medicine/methods
- ROC Curve
- Risk Assessment/methods
- Treatment Outcome
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Fa-Peng Zhang
- Department of Biliary Pancreatic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong Province, China
| | - Yi-Pei Huang
- Department of Biliary Pancreatic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong Province, China
| | - Wei-Xin Luo
- Department of Biliary Pancreatic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong Province, China
| | - Wan-Yu Deng
- Department of Biliary Pancreatic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong Province, China
- College of Life Science, Shangrao Normal University, Shangrao 334001, Jiangxi Province, China
| | - Chao-Qun Liu
- Department of Biliary Pancreatic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong Province, China
| | - Lei-Bo Xu
- Department of Biliary Pancreatic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong Province, China
| | - Chao Liu
- Department of Biliary Pancreatic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong Province, China
| |
Collapse
|
303
|
Ma Z, Shuai Y, Gao X, Wen X, Ji J. Circular RNAs in the tumour microenvironment. Mol Cancer 2020; 19:8. [PMID: 31937318 PMCID: PMC6958568 DOI: 10.1186/s12943-019-1113-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/02/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are a new class of endogenous non-coding RNAs (ncRNAs) widely expressed in eukaryotic cells. Mounting evidence has highlighted circRNAs as critical regulators of various tumours. More importantly, circRNAs have been revealed to recruit and reprogram key components involved in the tumour microenvironment (TME), and mediate various signaling pathways, thus affecting tumourigenesis, angiogenesis, immune response, and metastatic progression. In this review, we briefly introduce the biogenesis, characteristics and classification of circRNAs, and describe various mechanistic models of circRNAs. Further, we provide the first systematic overview of the interplay between circRNAs and cellular/non-cellular counterparts of the TME and highlight the potential of circRNAs as prospective biomarkers or targets in cancer clinics. Finally, we discuss the biological mechanisms through which the circRNAs drive development of resistance, revealing the mystery of circRNAs in drug resistance of tumours. SHORT CONCLUSION Deep understanding the emerging role of circRNAs and their involvements in the TME may provide potential biomarkers and therapeutic targets for cancer patients. The combined targeting of circRNAs and co-activated components in the TME may achieve higher therapeutic efficiency and become a new mode of tumour therapy in the future.
Collapse
Affiliation(s)
- Zhonghua Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China.,Department of Gastrointestinal Surgery, Peking University Cancer Hospital, Beijing, People's Republic of China
| | - You Shuai
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Xiangyu Gao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China.,Department of Gastrointestinal Surgery, Peking University Cancer Hospital, Beijing, People's Republic of China
| | - Xianzi Wen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Jiafu Ji
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China. .,Department of Gastrointestinal Surgery, Peking University Cancer Hospital, Beijing, People's Republic of China.
| |
Collapse
|
304
|
Banys-Paluchowski M, Reinhardt F, Fehm T. Disseminated Tumor Cells and Dormancy in Breast Cancer Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1220:35-43. [PMID: 32304078 DOI: 10.1007/978-3-030-35805-1_3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Hematogenous dissemination of single cancer cells is a common phenomenon in patients with solid tumors. These cells may experience different fates: most will die during the process; some will grow into metastasis and some will persist in secondary homing sites for many years in a state referred to as dormancy. The mechanisms of this state are still not clear; single cancer cells can survive either by completely withdrawing from the cell cycle or by continuing to proliferate at a slow rate that is counterbalanced by cell death. Another hypothesis assumes that at least some of dormant tumor cells feature stem cell-like characteristics that may contribute to their extremely long half-lives and enhance chemotherapy resistance. Breast cancer is particularly known for prolonged periods of clinical freedom of disease (sometimes up to 20-30 years), followed by a distant relapse. In this chapter, we explore the relationship between the clinical phenomenon of tumor dormancy and the disseminated tumor cells and discuss the potential implications for treatment.
Collapse
Affiliation(s)
| | - Florian Reinhardt
- Department of Obstetrics and Gynecology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Tanja Fehm
- Department of Obstetrics and Gynecology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
305
|
Shiraha H, Iwamuro M, Okada H. Hepatic Stellate Cells in Liver Tumor. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1234:43-56. [PMID: 32040854 DOI: 10.1007/978-3-030-37184-5_4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hepatocellular carcinoma and intrahepatic cholangiocarcinoma are the most common types of primary liver cancers. Moreover, the liver is the second most frequently involved organ in cancer metastasis after lymph nodes. The tumor microenvironment is crucial for the development of both primary and secondary liver cancers. The hepatic microenvironment consists of multiple cell types, including liver sinusoidal endothelial cells, Kupffer cells, natural killer cells, liver-associated lymphocytes, and hepatic stellate cells (HSCs). The microenvironment of a normal liver changes to a tumor microenvironment when tumor cells exist or tumor cells migrate to and multiply in the liver. Interactions between tumor cells and non-transformed cells generate a tumor microenvironment that contributes significantly to tumor progression. HSCs play a central role in the tumor microenvironment crosstalk. As this crosstalk is crucial for liver carcinogenesis and liver-tumor development, elucidating the mechanism underlying the interaction of HSCs with the tumor microenvironment could provide potential therapeutic targets for liver cancer.
Collapse
Affiliation(s)
- Hidenori Shiraha
- Department of Gastroenterology and Hepatology, Okayama University Faculty of Medicine, Okayama, Japan.
| | - Masaya Iwamuro
- Department of Gastroenterology and Hepatology, Okayama University Faculty of Medicine, Okayama, Japan
| | - Hiroyuki Okada
- Department of Gastroenterology and Hepatology, Okayama University Faculty of Medicine, Okayama, Japan
| |
Collapse
|
306
|
Abstract
The tumor microenvironment is the primary location in which tumor cells and the host immune system interact. There are many physiological, biochemical, cellular mechanisms in the neighbor of tumor which is composed of various cell types. Interactions of chemokines and chemokine receptors can recruit immune cell subsets into the tumor microenvironment. These interactions can modulate tumor progression and metastasis. In this chapter, we will focus on chemokine (C-C motif) ligand 7 (CCL7) that is highly expressed in the tumor microenvironment of various cancers, including colorectal cancer, breast cancer, oral cancer, renal cancer, and gastric cancer. We reviewed how CCL7 can affect cancer immunity and tumorigenesis by describing its regulation and roles in immune cell recruitment and stromal cell biology.
Collapse
|
307
|
Bigoni-Ordóñez GD, Czarnowski D, Parsons T, Madlambayan GJ, Villa-Diaz LG. Integrin α6 (CD49f), The Microenvironment and Cancer Stem Cells. Curr Stem Cell Res Ther 2019; 14:428-436. [PMID: 30280675 DOI: 10.2174/1574888x13666181002151330] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/20/2018] [Accepted: 09/02/2018] [Indexed: 12/16/2022]
Abstract
Cancer is a highly prevalent and potentially terminal disease that affects millions of individuals worldwide. Here, we review the literature exploring the intricacies of stem cells bearing tumorigenic characteristics and collect evidence demonstrating the importance of integrin α6 (ITGA6, also known as CD49f) in cancer stem cell (CSC) activity. ITGA6 is commonly used to identify CSC populations in various tissues and plays an important role sustaining the self-renewal of CSCs by interconnecting them with the tumorigenic microenvironment.
Collapse
Affiliation(s)
- Gabriele D Bigoni-Ordóñez
- Division de Investigacion Basica, Instituto Nacional de Cancerologia, Secretaria de Salud, Mexico City, Mexico.,Programa de Maestría y Doctorado en Ciencias Bioquímicas, Facultad de Química, UNAM, Mexico City, Mexico
| | - Daniel Czarnowski
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, United States
| | - Tyler Parsons
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, United States
| | - Gerard J Madlambayan
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, United States
| | - Luis G Villa-Diaz
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, United States
| |
Collapse
|
308
|
Gershovich PM, Karabelskii AV, Ulitin AB, Ivanov RA. The Role of Checkpoint Inhibitors and Cytokines in Adoptive Cell-Based Cancer Immunotherapy with Genetically Modified T Cells. BIOCHEMISTRY (MOSCOW) 2019; 84:695-710. [PMID: 31509722 DOI: 10.1134/s0006297919070022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This review focuses on the structure and molecular action mechanisms of chimeric antigen receptors (CARs) and major aspects of the manufacturing and clinical application of products for the CAR-T (CAR-modified T lymphocyte) therapy of hematological and solid tumors with special emphasis on the strategies for combined use of CAR-T therapy with immuno-oncological monoclonal antibodies (checkpoint inhibitors) and cytokines to boost survival, persistence, and antitumor efficacy of CAR-T therapy. The review also summarizes preclinical and clinical data on the additive effects of the combined use of CAR-T therapy with interleukins and monoclonal antibodies targeting immune checkpoints.
Collapse
Affiliation(s)
- P M Gershovich
- CJSC Biocad, St. Petersburg, 198515, Russia. .,St. Petersburg State Chemical Pharmaceutical Academy, St. Petersburg, 197376, Russia
| | - A V Karabelskii
- CJSC Biocad, St. Petersburg, 198515, Russia.,St. Petersburg State Chemical Pharmaceutical Academy, St. Petersburg, 197376, Russia
| | - A B Ulitin
- CJSC Biocad, St. Petersburg, 198515, Russia
| | - R A Ivanov
- CJSC Biocad, St. Petersburg, 198515, Russia
| |
Collapse
|
309
|
Korgaonkar N, Yadav KS. Understanding the biology and advent of physics of cancer with perspicacity in current treatment therapy. Life Sci 2019; 239:117060. [DOI: 10.1016/j.lfs.2019.117060] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 12/24/2022]
|
310
|
Targeting FAT1 Inhibits Carcinogenesis, Induces Oxidative Stress and Enhances Cisplatin Sensitivity through Deregulation of LRP5/WNT2/GSS Signaling Axis in Oral Squamous Cell Carcinoma. Cancers (Basel) 2019; 11:cancers11121883. [PMID: 31783581 PMCID: PMC6966489 DOI: 10.3390/cancers11121883] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/11/2019] [Accepted: 11/21/2019] [Indexed: 12/14/2022] Open
Abstract
FAT atypical cadherin 1 (FAT1) regulates cell-cell adhesion and extracellular matrix architecture, while acting as tumor suppressor or oncogene, context-dependently. Despite implication of FAT1 in several malignancies, its role in oral squamous cell carcinoma (OSCC) remains unclear. Herein, we document the driver-oncogene role of FAT1, and its mediation of cell-death evasion, proliferation, oncogenicity, and chemoresistance in OSCC. In-silica analyses indicate FAT1 mutations are frequent and drive head-neck SCC, with enhanced expression defining high-risk population and poor prognosis. We demonstrated aberrant FAT1 mRNA and protein expression in OSCC compared with non-cancer tissues, whereas loss-of-FAT1-function attenuates human primary SAS and metastatic HSC-3 OSCC cell viability, without affecting normal primary human gingival fibroblast cells. shFAT1 suppressed PCNA and upregulated BAX/BCL2 ratio in SAS and HSC-3 cells. Moreover, compared with wild-type cells, shFAT1 concomitantly impaired HSC-3 cell migration, invasion, and clonogenicity. Interestingly, while over-expressed FAT1 characterized cisplatin-resistance (CispR), shFAT1 synchronously re-sensitized CispR cells to cisplatin, enhanced glutathione (GSH)/GSH synthetase (GSS)-mediated oxidative stress and deregulated LRP5/WNT2 signaling. Concisely, FAT1 is an actionable driver-oncogene in OSCC and targeting FAT1 in patients with erstwhile cisplatin-resistant OSCC is therapeutically promising.
Collapse
|
311
|
Griffiths JI, Cohen AL, Jones V, Salgia R, Chang JT, Bild AH. Opportunities for improving cancer treatment using systems biology. ACTA ACUST UNITED AC 2019; 17:41-50. [PMID: 32518857 DOI: 10.1016/j.coisb.2019.10.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Current cancer therapies target a limited set of tumor features, rather than considering the tumor as a whole. Systems biology aims to reveal therapeutic targets associated with a variety of facets in an individual's tumor, such as genetic heterogeneity and its evolution, cancer cell-autonomous phenotypes, and microenvironmental signaling. These disparate characteristics can be reconciled using mathematical modeling that incorporates concepts from ecology and evolution. This provides an opportunity to predict tumor growth and response to therapy, to tailor patient-specific approaches in real time or even prospectively. Importantly, as data regarding patient tumors is often available from only limited time points during treatment, systems-based approaches can address this limitation by interpolating longitudinal events within a principled framework. This review outlines areas in medicine that could benefit from systems biology approaches to deconvolve the complexity of cancer.
Collapse
Affiliation(s)
- Jason I Griffiths
- Department of Mathematics, University of Utah, Salt Lake City, UT 84112, USA
| | - Adam L Cohen
- Huntsman Cancer Institute, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Veronica Jones
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Ravi Salgia
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Jeffrey T Chang
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Andrea H Bild
- Department of Medical Oncology, Division of Molecular Pharmacology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
312
|
Park SY, Lee DG, Jo A, Choi H, Lee JE, Jeong AJ, Leem SH, Jun W, Shim S, Ye SK, Min JK, Chung JW. Extracellular Microenvironmental Change by B16F10 Melanoma-derived Proteins Induces Cancer Stem-like Cell Properties from NIH3T3 Cells. Sci Rep 2019; 9:16757. [PMID: 31727938 PMCID: PMC6856526 DOI: 10.1038/s41598-019-53326-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 10/30/2019] [Indexed: 12/20/2022] Open
Abstract
Cancer stem-like cells (CSCs) can generate solid tumors through the properties of stem cells such as self-renewal and differentiation and they cause drug resistance, metastasis and recurrence. Therefore, establishing CSC lines is necessary to conduct various studies such as on the identification of CSC origin and specific targeted therapies. In this study, we stimulated NIH3T3 fibroblasts to exhibit the characteristics of CSCs using the whole protein lysates of B16F10 melanoma cells. As a result, we induced colony formation that displayed self-renewal and differentiation capacities through anchorage-independent culture and re-attached culture. Moreover, colonies showed drug resistance by being maintained in the G0/G1 state. Colonies expressed various CSC markers and displayed high-level drug efflux capacity. Additionally, colonies clearly demonstrated tumorigenic ability by forming a solid tumor in vivo. These results show that proteins of cancer cells could transform normal cells into CSCs by increasing expression of CSC markers. This study argues the tremendous importance of the extracellular microenvironmental effect on the generation of CSCs. It also provides a simple experimental method for deriving CSCs that could be based on the development of targeted therapy techniques.
Collapse
Affiliation(s)
- Soon Yong Park
- Department of Biological Science, Dong-A University, Busan, 49315, Republic of Korea
| | - Dong Gwang Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.,Department of Biomolecular Science, University of Science & Technology, Daejeon, 34141, Republic of Korea
| | - Ara Jo
- Department of Biological Science, Dong-A University, Busan, 49315, Republic of Korea
| | - Hyeongrok Choi
- Department of Biological Science, Dong-A University, Busan, 49315, Republic of Korea
| | - Joo Eon Lee
- Division of Drug Development and Optimization, KBIO-New Drug Development Center, Cheongju, 28160, Republic of Korea
| | - Ae Jin Jeong
- Department of Pharmacology and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Sun-Hee Leem
- Department of Biological Science, Dong-A University, Busan, 49315, Republic of Korea
| | - Woojin Jun
- Department of Food and Nutrition, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Sangin Shim
- Department of Agronomy, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Sang-Kyu Ye
- Department of Pharmacology and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Jeong-Ki Min
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea. .,Department of Biomolecular Science, University of Science & Technology, Daejeon, 34141, Republic of Korea.
| | - Jin Woong Chung
- Department of Biological Science, Dong-A University, Busan, 49315, Republic of Korea.
| |
Collapse
|
313
|
Yang H, Jiang P, Liu D, Wang HQ, Deng Q, Niu X, Lu L, Dai H, Wang H, Yang W. Matrix Metalloproteinase 11 Is a Potential Therapeutic Target in Lung Adenocarcinoma. Mol Ther Oncolytics 2019; 14:82-93. [PMID: 31024988 PMCID: PMC6477516 DOI: 10.1016/j.omto.2019.03.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 03/27/2019] [Indexed: 12/29/2022] Open
Abstract
Lung cancer is one of the leading causes of cancer-associated death, with the etiology largely unknown. The aim of this study was to identify key driver genes with therapeutic potentials in lung adenocarcinoma (LUAD). Transcriptome microarray data from four GEO datasets (GEO: GSE7670, GSE10072, GSE68465, and GSE43458) were jointly analyzed for differentially expressed genes (DEGs). Ontologic analysis showed that most of the upregulated DEGs enriched in collagen catabolic and fibril organization processes were regulated by matrix metalloproteinases (MMPs). Matrix metalloproteinase 11 (MMP11), the highest upregulated MMP family member in LUAD-transformed cells, acted in an autocrine manner and was significantly increased in sera of LUAD patients. MMP11 depletion severely impaired LUAD cell proliferation, migration, and invasion in vitro, in line with retarded tumor growth in xenograft models. Treatment of different human LUAD cell lines with anti-MMP11 antibody significantly retarded cell growth and migration. Administration of anti-MMP11 antibody at a dose of 1 μg/g body weight significantly suppressed tumor growth in xenograft models. These findings indicate that MMP11 is a key cancer driver gene in LUAD and is an appealing target for antibody therapy.
Collapse
Affiliation(s)
- Haoran Yang
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
- Cancer Hospital, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Peng Jiang
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
- Cancer Hospital, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Dongyan Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
- Cancer Hospital, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Hong-Qiang Wang
- Biological Molecular Information System Lab., Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Qingmei Deng
- Cancer Hospital, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Xiaojie Niu
- Department of Anatomy, Shanxi Medical University, Taiyuan 030024, China
| | - Li Lu
- Department of Anatomy, Shanxi Medical University, Taiyuan 030024, China
| | - Haiming Dai
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Cancer Hospital, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Hongzhi Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Cancer Hospital, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Wulin Yang
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Cancer Hospital, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
314
|
Proctor DT, Huang J, Lama S, Albakr A, Van Marle G, Sutherland GR. Tumor-associated macrophage infiltration in meningioma. Neurooncol Adv 2019; 1:vdz018. [PMID: 32642654 PMCID: PMC7212927 DOI: 10.1093/noajnl/vdz018] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Meningioma, a most common brain tumor, has a high rate of recurrence. Tumor-associated macrophages (TAMs) are the most abundant immune cell type in meningioma. TAMs display functional phenotypic diversity and may establish either an inflammatory and anti-tumoral or an immunosuppressive and pro-tumoral microenvironment. TAM subtypes present in meningioma and potential contribution to growth and recurrence is unknown. Methods Immunofluorescence staining was used to quantify M1 and M2 TAM populations in tissues obtained from 30 meningioma patients. Associations between M1 and M2 cells, M1:M2 cell ratio to tumor characteristics, WHO grade, recurrence, size, location, peri-tumoral edema, and patient demographics such as age and sex were examined. Results TAM cells accounted for ~18% of all cells in meningioma tissues. More than 80% of infiltrating TAMs were found to be of pro-tumoral M2 phenotype and correlated to tumor size (P = .0409). M1:M2 cell ratio was significantly decreased in WHO grade II, compared to grade I tumors (P = .009). Furthermore, a 2.3-fold difference in M1:M2 ratio between primary (0.14) and recurrent (0.06) tumors was observed (n = 18 and 12 respectively, P = .044). Conclusion This study is the first to confirm existence of pro-tumoral M2 TAMs in the meningioma microenvironment, emphasizing its potential role in tumor growth and recurrence.
Collapse
Affiliation(s)
- Dustin T Proctor
- Project neuroArm, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jordan Huang
- Project neuroArm, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Sanju Lama
- Project neuroArm, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Abdulrahman Albakr
- Project neuroArm, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Neurosurgery, King Saud University, Riyadh, Saudi Arabia
| | - Guido Van Marle
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Garnette R Sutherland
- Project neuroArm, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
315
|
Sverdlov ED, Chernov IP. Cancer Stem Complex, Not a Cancer Stem Cell, Is the Driver of Cancer Evolution. BIOCHEMISTRY (MOSCOW) 2019; 84:1028-1039. [DOI: 10.1134/s0006297919090050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
316
|
Wang M, Yu Z, Feng H, Wang J, Wang L, Zhang Y, Yin L, Du Y, Jiang H, Wang X, Zhou J. In situ biosynthesized gold nanoclusters inhibiting cancer development via the PI3K-AKT signaling pathway. J Mater Chem B 2019; 7:5336-5344. [PMID: 31393501 DOI: 10.1039/c9tb01070j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nanomaterials have made great breakthroughs in drug delivery. However, in previous studies, nanomaterials have been mostly used as vehicles to transport drugs into tumors. Herein, we first found that the in situ biosynthesized gold nanoparticles (Au NCs) can inhibit cancer development via the inhibition of some signaling pathways. Classical cell phenotypic assay tests and orthotropic liver tumor model both showed that the in situ biosynthesized Au NCs could inhibit tumor development. With the help of the RNA-seq analysis, we found that the in situ biosynthesized Au NCs could significantly inhibit the PI3K-AKT signaling pathway, thus effectively impeding tumor development. This facile and effective tumor targeting theranostics in vivo can effectively cure cancers in future clinical applications.
Collapse
Affiliation(s)
- Maonan Wang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Zeqian Yu
- Department of Hepatic-Biliary-Pancreatic Center, Zhongda Hospital, Southeast University, Nanjing, China. and Department of Hepatobiliary Surgery Research Institute, Southeast University, Nanjing, China
| | - Huan Feng
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Jianling Wang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Lishan Wang
- Department of Hepatic-Biliary-Pancreatic Center, Zhongda Hospital, Southeast University, Nanjing, China. and Department of Hepatobiliary Surgery Research Institute, Southeast University, Nanjing, China
| | - Yu Zhang
- School of Medicine, Southeast University, Nanjing, China
| | - Lihong Yin
- School of Public Health, Southeast University, Nanjing, China
| | - Ying Du
- School of Public Health, Southeast University, Nanjing, China
| | - Hui Jiang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Xuemei Wang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Jiahua Zhou
- Department of Hepatic-Biliary-Pancreatic Center, Zhongda Hospital, Southeast University, Nanjing, China. and Department of Hepatobiliary Surgery Research Institute, Southeast University, Nanjing, China
| |
Collapse
|
317
|
Shastri S, Chatterjee B, Thakur SS. Achievements in Cancer Research and its Therapeutics in Hundred Years. Curr Top Med Chem 2019; 19:1545-1562. [PMID: 31362690 DOI: 10.2174/1568026619666190730093034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 12/19/2022]
Abstract
Cancer research has progressed leaps and bounds over the years. This review is a brief overview of the cancer research, milestone achievements and therapeutic studies on it over the one hundred ten years which would give us an insight into how far we have come to understand and combat this fatal disease leading to millions of deaths worldwide. Modern biology has proved that cancer is a very complex disease as still we do not know precisely how it triggers. It involves several factors such as protooncogene, oncogene, kinase, tumor suppressor gene, growth factor, signalling cascade, micro RNA, immunity, environmental factors and carcinogens. However, modern technology now helps the cancer patient on the basis of acquired and established knowledge in the last hundred years to save human lives.
Collapse
Affiliation(s)
- Sravanthi Shastri
- Proteomics and Cell Signaling, Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Bhaswati Chatterjee
- National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Suman S Thakur
- Proteomics and Cell Signaling, Centre for Cellular and Molecular Biology, Hyderabad, India
| |
Collapse
|
318
|
Mazzarella L, Duso BA, Trapani D, Belli C, D'Amico P, Ferraro E, Viale G, Curigliano G. The evolving landscape of ‘next-generation’ immune checkpoint inhibitors: A review. Eur J Cancer 2019; 117:14-31. [DOI: 10.1016/j.ejca.2019.04.035] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/23/2019] [Accepted: 04/26/2019] [Indexed: 12/14/2022]
|
319
|
Burgos-Panadero R, Lucantoni F, Gamero-Sandemetrio E, Cruz-Merino LDL, Álvaro T, Noguera R. The tumour microenvironment as an integrated framework to understand cancer biology. Cancer Lett 2019; 461:112-122. [PMID: 31325528 DOI: 10.1016/j.canlet.2019.07.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/11/2019] [Accepted: 07/14/2019] [Indexed: 01/18/2023]
Abstract
Cancer cells all share the feature of being immersed in a complex environment with altered cell-cell/cell-extracellular element communication, physicochemical information, and tissue functions. The so-called tumour microenvironment (TME) is becoming recognised as a key factor in the genesis, progression and treatment of cancer lesions. Beyond genetic mutations, the existence of a malignant microenvironment forms the basis for a new perspective in cancer biology where connections at the system level are fundamental. From this standpoint, different aspects of tumour lesions such as morphology, aggressiveness, prognosis and treatment response can be considered under an integrated vision, giving rise to a new field of study and clinical management. Nowadays, somatic mutation theory is complemented with study of TME components such as the extracellular matrix, immune compartment, stromal cells, metabolism and biophysical forces. In this review we examine recent studies in this area and complement them with our own research data to propose a classification of stromal changes. Exploring these avenues and gaining insight into malignant phenotype remodelling, could reveal better ways to characterize this disease and its potential treatment.
Collapse
Affiliation(s)
- Rebeca Burgos-Panadero
- Departament of Pathology, Medical School, University of Valencia - INCLIVA Biomedical Health Research Institute, Valencia, Spain; CIBERONC, Madrid, Spain
| | - Federico Lucantoni
- Departament of Pathology, Medical School, University of Valencia - INCLIVA Biomedical Health Research Institute, Valencia, Spain
| | - Esther Gamero-Sandemetrio
- Departament of Pathology, Medical School, University of Valencia - INCLIVA Biomedical Health Research Institute, Valencia, Spain; CIBERONC, Madrid, Spain
| | | | - Tomás Álvaro
- CIBERONC, Madrid, Spain; Hospital Verge de la Cinta, Tortosa, Tarragona, Spain.
| | - Rosa Noguera
- Departament of Pathology, Medical School, University of Valencia - INCLIVA Biomedical Health Research Institute, Valencia, Spain; CIBERONC, Madrid, Spain.
| |
Collapse
|
320
|
Acute Lymphoblastic Leukaemia Cells Impair Dendritic Cell and Macrophage Differentiation: Role of BMP4. Cells 2019; 8:cells8070722. [PMID: 31337120 PMCID: PMC6679123 DOI: 10.3390/cells8070722] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/06/2019] [Accepted: 07/13/2019] [Indexed: 12/13/2022] Open
Abstract
Dendritic cells and macrophages are common components of the tumour immune microenvironment and can contribute to immune suppression in both solid and haematological cancers. The Bone Morphogenetic Protein (BMP) pathway has been reported to be involved in cancer, and more recently in leukaemia development and progression. In the present study, we analyse whether acute lymphoblastic leukaemia (ALL) cells can affect the differentiation of dendritic cells and macrophages and the involvement of BMP pathway in the process. We show that ALL cells produce BMP4 and that conditioned media from ALL cells promote the generation of dendritic cells with immunosuppressive features and skew M1-like macrophage polarization towards a less pro-inflammatory phenotype. Likewise, BMP4 overexpression in ALL cells potentiates their ability to induce immunosuppressive dendritic cells and favours the generation of M2-like macrophages with pro-tumoral features. These results suggest that BMP4 is in part responsible for the alterations in dendritic cell and macrophage differentiation produced by ALL cells.
Collapse
|
321
|
Shahriari M, Zahiri M, Abnous K, Taghdisi SM, Ramezani M, Alibolandi M. Enzyme responsive drug delivery systems in cancer treatment. J Control Release 2019; 308:172-189. [PMID: 31295542 DOI: 10.1016/j.jconrel.2019.07.004] [Citation(s) in RCA: 232] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/05/2019] [Accepted: 07/06/2019] [Indexed: 12/11/2022]
Abstract
Recent technological approaches in drug delivery have attracted scientist interest for improving therapeutic index of medicines and drug compliance. One of the powerful strategies to control the transportation of drugs is implementation of intelligent stimuli-responsive drug delivery system (DDS). In this regard, tumor tissues with unique characteristics including leaky vasculature and diverse enzyme expression profiles facilitate the development of efficient enzyme-responsive nanoscale delivery systems. Based on the stimuli nature (physical, chemical and biological), these systems can be categorized into three groups according to the nature of trigger initiating the drug release. Enzymes are substantial constituents of the biotechnology toolbox offering promising capabilities and ideal characteristics to accelerate chemical reactions. Nanoparticles which have the ability to trigger their cargo release in the presence of specific enzymes are fabricated implementing fascinating physico-chemical properties of different materials in a nanoscale dimension. In order to reduce the adverse effects of the therapeutic agents, nanocarriers can be utilized and modified with enzyme-labile linkages to provide on-demand enzyme-responsive drug release. In the current review, we give an overview of drug delivery systems which can deliver drugs to the tumor microenvironment and initiate the drug release in response to specific enzymes highly expressed in particular tumor tissues. This strategy offers a versatile platform for intelligent drug release at the site of action.
Collapse
Affiliation(s)
- Mahsa Shahriari
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahsa Zahiri
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
322
|
Tan HX, Cao ZB, He TT, Huang T, Xiang CL, Liu Y. TGFβ1 is essential for MSCs-CAFs differentiation and promotes HCT116 cells migration and invasion via JAK/STAT3 signaling. Onco Targets Ther 2019; 12:5323-5334. [PMID: 31308702 PMCID: PMC6615717 DOI: 10.2147/ott.s178618] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 04/17/2019] [Indexed: 12/12/2022] Open
Abstract
Background and purpose Colorectal cancer (CRC) frequently metastasizes to the liver, which involves the participation of multiple cytokines. Tumor microenvironment (TME) composed of cancer-associated fibroblasts (CAFs) and tumor cells acts as an essential factor in cancer metastasis. Transforming growth factor β1 (TGFβ1) is a vital cytokine involved in migration and invasion of cancer cells. However, the underlying mechanisms remain unclear. In the present study, we aimed to investigate the role and molecular mechanisms of TGFβ1 in TME. Methods The conditioned medium prepared from colorectal cancer HCT116 and HT29 cells was used to culture mesenchymal stem cells (MSCs). The differentiation of MSCs to CAFs was detected by flow cytometry. The role of TGFβ1 in colorectal cancer cells metastasis was examined by wound-healing assay and transwell assay. And the activation of the Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) signaling pathway was measured by Western blot assay. Results TGFβ1 induced the differentiation of MSCs to CAFs and improved HCT116 and HT29 cells migration and invasion. Meanwhile, TGFβ1 also upregulated the phosphorylation of STAT3 and enhanced the nuclear localization of p-STAT3, which activated JAK/STAT3 signaling pathway. Conclusion TGFβ1 induced the differentiation of MSCs into CAFs and promoted the migration and invasion of HCT116 and HT29 cells, which depended on the activation of JAK/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Hao-Xiang Tan
- Department of Gastrointestinal Surgery, Hunan Provincial People's Hospital, Changsha 410002, People's Republic of China.,Department of Gastrointestinal Surgery, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530011, People's Republic of China.,Department of Gastrointestinal Surgery, First Affiliated Hospital of Hunan Normal University, Changsha 410002, People's Republic of China
| | - Zhen-Bin Cao
- Department of Radiology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530011, People's Republic of China
| | - Ting-Ting He
- Department of Pathology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530011, People's Republic of China
| | - Tao Huang
- Department of Gastrointestinal Surgery, Hunan Provincial People's Hospital, Changsha 410002, People's Republic of China.,Department of Gastrointestinal Surgery, First Affiliated Hospital of Hunan Normal University, Changsha 410002, People's Republic of China
| | - Cai-Ling Xiang
- Department of Gastrointestinal Surgery, Hunan Provincial People's Hospital, Changsha 410002, People's Republic of China.,Department of Gastrointestinal Surgery, First Affiliated Hospital of Hunan Normal University, Changsha 410002, People's Republic of China
| | - Yu Liu
- Department of Gastrointestinal Surgery, Hunan Provincial People's Hospital, Changsha 410002, People's Republic of China.,Department of Gastrointestinal Surgery, First Affiliated Hospital of Hunan Normal University, Changsha 410002, People's Republic of China
| |
Collapse
|
323
|
pH-activated heat shock protein inhibition and radical generation enhanced NIR luminescence imaging-guided photothermal tumour ablation. Int J Pharm 2019; 566:40-45. [DOI: 10.1016/j.ijpharm.2019.05.056] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/09/2019] [Accepted: 05/22/2019] [Indexed: 02/06/2023]
|
324
|
Rossi JF, Céballos P, Lu ZY. Immune precision medicine for cancer: a novel insight based on the efficiency of immune effector cells. Cancer Commun (Lond) 2019; 39:34. [PMID: 31200766 PMCID: PMC6567551 DOI: 10.1186/s40880-019-0379-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 06/03/2019] [Indexed: 02/06/2023] Open
Abstract
Cancer cell growth is associated with immune surveillance failure. Nowadays, restoring the desired immune response against cancer cells remains a major therapeutic strategy. Due to the recent advances in biological knowledge, efficient therapeutic tools have been developed to support the best bio-clinical approaches for immune precision therapy. One of the most important successes in immune therapy is represented by the applicational use of monoclonal antibodies, particularly the use of rituximab for B-cell lymphoproliferative disorders. More recently, other monoclonal antibodies have been developed, to inhibit immune checkpoints within the tumor microenvironment that limit immune suppression, or to enhance some immune functions with immune adjuvants through different targets such as Toll-receptor agonists. The aim is to inhibit cancer proliferation by the diminishing/elimination of cancer residual cells and clinically improving the response duration with no or few adverse effects. This effect is supported by enhancing the number, functions, and activity of the immune effector cells, including the natural killer (NK) lymphocytes, NKT-lymphocytes, γδ T-lymphocytes, cytotoxic T-lymphocytes, directly or indirectly through vaccines particularly with neoantigens, and by lowering the functions of the immune suppressive cells. Beyond these new therapeutics and their personalized usage, new considerations have to be taken into account, such as epigenetic regulation particularly from microbiota, evaluation of transversal functions, particularly cellular metabolism, and consideration to the clinical consequences at the body level. The aim of this review is to discuss some practical aspects of immune therapy, giving to clinicians the concept of immune effector cells balancing between control and tolerance. Immunological precision medicine is a combination of modern biological knowledge and clinical therapeutic decisions in a global vision of the patient.
Collapse
Affiliation(s)
- Jean-François Rossi
- Institut Sainte Catherine, 84918, Avignon, France. .,Université Montpellier 1, UFR Médecine, 34396, Montpellier, France. .,Département d'Hématologie, CHU de Montpellier, 34295, Montpellier, France.
| | - Patrice Céballos
- Département d'Hématologie, CHU de Montpellier, 34295, Montpellier, France
| | - Zhao-Yang Lu
- Unité de Thérapie Cellulaire, CHU Saint-Eloi, 34295, Montpellier, France
| |
Collapse
|
325
|
Castellani C, Fedrigo M, Tavano R, Cappellini R, Fedeli C, Mognato M, Abdel-Mottaleb MMA, Lamprecht A, Tudorancea I, Porumb V, Iliescu R, Angelini A, Papini E, Dimofte G. Tumor-facing hepatocytes significantly contribute to mild hyperthermia-induced targeting of rat liver metastasis by PLGA-NPs. Int J Pharm 2019; 566:541-548. [PMID: 31173801 DOI: 10.1016/j.ijpharm.2019.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/22/2019] [Accepted: 06/03/2019] [Indexed: 11/26/2022]
Abstract
The effect of mild hyperthermia (MHT) on nanoparticle (NP) accumulation in rat model liver metastasis and the contribution of neoplastic and non-neoplastic cells were characterized. CdSe/ZnS QD-doped poly(lactic-co-glycolic acid) (PLGA) NPs (155 ± 10 nm) were delivered via the ileocolic vein to metastatic livers 15 min after localized MW irradiation (1 min, 41 °C) or in normothermia (37 °C, NT). Quantitative analysis of tissue sections by confocal fluorescence microscopy 1 h after NP injection showed no NP tumor accumulation in NT. On the contrary, MHT increased NP association with tumor, compared to normal tissue. Counterstaining of specific markers showed that the MHT effect is due to an increased NP endocytosis not only by tumor cells, but also by hepatocytes at the growing tumor edge and, to a minor extent, by tumor-associated macrophages. High-NP capturing hepatocytes, close to the tumor, may be a relevant phenomenon in MHT-induced increased targeting of NPs to liver metastasis, influencing their therapeutic efficacy.
Collapse
Affiliation(s)
- Chiara Castellani
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Italy
| | - Marny Fedrigo
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Italy
| | - Regina Tavano
- Department of Biomedical Sciences, University of Padova, Italy
| | | | - Chiara Fedeli
- Department of Biomedical Sciences, University of Padova, Italy
| | | | - Mona M A Abdel-Mottaleb
- PEPITE EA4267, Université Bourgogne Franche-Comté, F-25000 Besançon, France; Department of Pharmaceutics and Industrial Pharmacy, Ain Shams University, Cairo, Egypt
| | - Alf Lamprecht
- PEPITE EA4267, Université Bourgogne Franche-Comté, F-25000 Besançon, France; Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Germany.
| | - Ionut Tudorancea
- Department of Internal Medicine, University of Medicine and Pharmacy "Grigore T. Popa" Iasi, Romania.
| | - Vlad Porumb
- Department of Surgery, University of Medicine and Pharmacy "Grigore T. Popa" Iasi, Regional Institute of Oncology Iasi, Romania
| | - Radu Iliescu
- Department of Pharmacology, University of Medicine and Pharmacy "Grigore T. Popa" Iasi, Regional Institute of Oncology Iasi, Romania
| | - Annalisa Angelini
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Italy
| | - Emanuele Papini
- Department of Biomedical Sciences, University of Padova, Italy.
| | - Gabriel Dimofte
- Department of Internal Medicine, University of Medicine and Pharmacy "Grigore T. Popa" Iasi, Romania
| |
Collapse
|
326
|
Cancer extracellular vesicles contribute to stromal heterogeneity by inducing chemokines in cancer-associated fibroblasts. Oncogene 2019; 38:5566-5579. [PMID: 31147602 PMCID: PMC6755971 DOI: 10.1038/s41388-019-0832-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 04/12/2019] [Accepted: 04/16/2019] [Indexed: 11/19/2022]
Abstract
Cancer-associated fibroblasts (CAFs), one of the major components of a tumour microenvironment, comprise heterogeneous populations involved in tumour progression. However, it remains obscure how CAF heterogeneity is governed by cancer cells. Here, we show that cancer extracellular vesicles (EVs) induce a series of chemokines in activated fibroblasts and contribute to the formation of the heterogeneity. In a xenograft model of diffuse-type gastric cancer, we showed two distinct fibroblast subpopulations with alpha-smooth muscle actin (α-SMA) expression or chemokine expression. MicroRNAs (miRNAs) profiling of the EVs and the transfection experiment suggested that several miRNAs played a role in the induction of chemokines such as CXCL1 and CXCL8 in fibroblasts, but not for the myofibroblastic differentiation. Clinically, aberrant activation of CXCL1 and CXCL8 in CAFs correlated with poorer survival in gastric cancer patients. Thus, this link between chemokine expression in CAFs and tumour progression may provide novel targets for anticancer therapy.
Collapse
|
327
|
Anwar MA, El-Baba C, Elnaggar MH, Elkholy YO, Mottawea M, Johar D, Al Shehabi TS, Kobeissy F, Moussalem C, Massaad E, Omeis I, Darwiche N, Eid AH. Novel therapeutic strategies for spinal osteosarcomas. Semin Cancer Biol 2019; 64:83-92. [PMID: 31152785 DOI: 10.1016/j.semcancer.2019.05.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/28/2019] [Accepted: 05/28/2019] [Indexed: 12/24/2022]
Abstract
At the dawn of the third millennium, cancer has become the bane of twenty-first century man, and remains a predominant public health burden, affecting welfare and life expectancy globally. Spinal osteogenic sarcoma, a primary spinal malignant tumor, is a rare and challenging neoplastic disease to treat. After the conventional therapeutic modalities of chemotherapy, radiation and surgery have been exhausted, there is currently no available alternative therapy in managing cases of spinal osteosarcoma. The defining signatures of tumor survival are characterised by cancer cell ability to stonewall immunogenic attrition and apoptosis by various means. Some of these biomarkers, namely immune-checkpoints, have recently been exploited as druggable targets in osteosarcoma and many other different cancers. These promising strides made by the use of reinvigorated immunotherapeutic approaches may lead to significant reduction in spinal osteosarcoma disease burden and corresponding reciprocity in increase of survival rates. In this review, we provide the background to spinal osteosarcoma, and proceed to elaborate on contribution of the complex ecology within tumor microenvironment giving arise to cancerous immune escape, which is currently receiving considerable attention. We follow this section on the tumor microenvironment by a brief history of cancer immunity. Also, we draw on the current knowledge of treatment gained from incidences of osteosarcoma at other locations of the skeleton (long bones of the extremities in close proximity to the metaphyseal growth plates) to make a case for application of immunity-based tools, such as immune-checkpoint inhibitors and vaccines, and draw attention to adverse upshots of immune-checkpoint blockers as well. Finally, we describe the novel biotechnique of CRISPR/Cas9 that will assist in treatment approaches for personalized medication.
Collapse
Affiliation(s)
- M Akhtar Anwar
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon
| | - Chirine El-Baba
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Muhammed H Elnaggar
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Yasmeen O Elkholy
- Microbiology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Mohamed Mottawea
- Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Dina Johar
- Biomedical Sciences Program, Zewail University of Science and Technology, Giza, Egypt
| | | | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Charbel Moussalem
- Department of Surgery, American University of Beirut Medical Center, Beirut, Lebanon
| | - Elie Massaad
- Department of Surgery, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ibrahim Omeis
- Department of Surgery, American University of Beirut Medical Center, Beirut, Lebanon
| | - Nadine Darwiche
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon.
| | - A H Eid
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon; Department of Biomedical Sciences, Qatar University, Doha, Qatar.
| |
Collapse
|
328
|
Wang W, Saeed M, Zhou Y, Yang L, Wang D, Yu H. Non‐viral gene delivery for cancer immunotherapy. J Gene Med 2019; 21:e3092. [DOI: 10.1002/jgm.3092] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/05/2019] [Accepted: 04/09/2019] [Indexed: 12/11/2022] Open
Affiliation(s)
- Weiqi Wang
- School of PharmacyNantong University Nantong China
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai China
| | - Madiha Saeed
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai China
| | - Yao Zhou
- School of PharmacyNantong University Nantong China
| | - Lili Yang
- School of PharmacyNantong University Nantong China
| | - Dangge Wang
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai China
| | - Haijun Yu
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai China
- University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
329
|
Lin J, Xia L, Liang J, Han Y, Wang H, Oyang L, Tan S, Tian Y, Rao S, Chen X, Tang Y, Su M, Luo X, Wang Y, Wang H, Zhou Y, Liao Q. The roles of glucose metabolic reprogramming in chemo- and radio-resistance. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:218. [PMID: 31122265 PMCID: PMC6533757 DOI: 10.1186/s13046-019-1214-z] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 05/07/2019] [Indexed: 12/15/2022]
Abstract
Reprogramming of cancer metabolism is a newly recognized hallmark of malignancy. The aberrant glucose metabolism is associated with dramatically increased bioenergetics, biosynthetic, and redox demands, which is vital to maintain rapid cell proliferation, tumor progression, and resistance to chemotherapy and radiation. When the glucose metabolism of cancer is rewiring, the characters of cancer will also occur corresponding changes to regulate the chemo- and radio-resistance of cancer. The procedure is involved in the alteration of many activities, such as the aberrant DNA repairing, enhanced autophagy, oxygen-deficient environment, and increasing exosomes secretions, etc. Targeting altered metabolic pathways related with the glucose metabolism has become a promising anti-cancer strategy. This review summarizes recent progress in our understanding of glucose metabolism in chemo- and radio-resistance malignancy, and highlights potential molecular targets and their inhibitors for cancer treatment.
Collapse
Affiliation(s)
- Jinguan Lin
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Longzheng Xia
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jiaxin Liang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Yaqian Han
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Heran Wang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Linda Oyang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Shiming Tan
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Yutong Tian
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Shan Rao
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Xiaoyan Chen
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Yanyan Tang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Min Su
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Xia Luo
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Ying Wang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Hui Wang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Yujuan Zhou
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha, 410013, Hunan, China.
| | - Qianjin Liao
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
330
|
Wang WL, Guo Z, Lu Y, Shen XC, Chen T, Huang RT, Zhou B, Wen C, Liang H, Jiang BP. Receptor-Mediated and Tumor-Microenvironment Combination-Responsive Ru Nanoaggregates for Enhanced Cancer Phototheranostics. ACS APPLIED MATERIALS & INTERFACES 2019; 11:17294-17305. [PMID: 30977628 DOI: 10.1021/acsami.9b04531] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Although phototherapy has been considered as an emerging and promising technology for cancer therapy, its therapeutic specificity and efficacy are severely limited by nonspecific uptake by normal tissues, tumor hypoxia, and so on. Herein, combination-responsive strategy (CRS) is applied to develop one kind of hyaluronic acid-hybridized Ru nanoaggregates (HA-Ru NAs) for enhanced cancer phototherapy via the reasonable integration of receptor-mediated targeting (RMT) and tumor-microenvironment responsiveness (TMR). In this nanosystem, the HA component endows HA-Ru NAs with RMT characteristic to selectively recognize CD44-overexpressing cancer cells, whereas the Ru nanocomponent makes HA-Ru NAs have TMR therapy activity. Specially, the Ru nanocomponent not only has near-infrared-mediated photothermal and photodynamic functions but also can catalyze H2O2 in tumor tissue to produce O2 for the alleviation of tumor hypoxia and toxic •OH for chemodynamic therapy. Benefitting from these, HA-Ru NAs can be considered as a promising kind of CRS nanoplatforms for synergistic photothermal/photodynamic/chemodynamic therapies of cancer, which will not only effectively improve the phototherapeutic specificity and efficacy but also simplify the therapeutic nanosystems. Meanwhile, HA-Ru NAs can serve as a photoacoustic and computed tomography imaging contrast agent to monitor tumors. Such CRS nanoplatforms hold significant potential in improving therapeutic specificity and efficacy for enhanced cancer phototheranostics.
Collapse
Affiliation(s)
- Wen-Long Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science , Guangxi Normal University , Guilin 541004 , P. R. China
| | - Zhengxi Guo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science , Guangxi Normal University , Guilin 541004 , P. R. China
| | - Yu Lu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science , Guangxi Normal University , Guilin 541004 , P. R. China
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science , Guangxi Normal University , Guilin 541004 , P. R. China
| | - Ting Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science , Guangxi Normal University , Guilin 541004 , P. R. China
| | - Rong-Tao Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science , Guangxi Normal University , Guilin 541004 , P. R. China
| | - Bo Zhou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science , Guangxi Normal University , Guilin 541004 , P. R. China
| | - Changchun Wen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science , Guangxi Normal University , Guilin 541004 , P. R. China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science , Guangxi Normal University , Guilin 541004 , P. R. China
| | - Bang-Ping Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science , Guangxi Normal University , Guilin 541004 , P. R. China
| |
Collapse
|
331
|
Duan S, Wang P, Liu F, Huang H, An W, Pan S, Wang X. Novel immune-risk score of gastric cancer: A molecular prediction model combining the value of immune-risk status and chemosensitivity. Cancer Med 2019; 8:2675-2685. [PMID: 30945466 PMCID: PMC6537086 DOI: 10.1002/cam4.2077] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/12/2019] [Accepted: 02/17/2019] [Indexed: 12/21/2022] Open
Abstract
Gastric cancer is still one of the most common and deadly malignancies in the world. Not all patients could benefit from chemotherapy or chemoradiotherapy due to tumor heterogeneity. Therefore, identifying different subgroups of patients is an important trend for obtaining more effective responses. However, few molecular classifications associated with chemosensitivity are based on immune–risk status. In this study, we obtained six key immune–related genes. Using these genes, we constructed a molecular model related to immune–risk status and calculated an individual immune–risk score. The score showed great efficiency and stability in predicting prognosis and identifying different subgroups where persons could benefit from postoperative adjuvant therapy. The patients could be divided into different risk groups based on the immune–related score. For patients in the low–risk group, both postoperative chemoradiotherapy and chemotherapy could significantly improve prognosis on overall survival (OS) and disease–free survival (DFS) (DFS, P < 0.001 and P = 0.041, respectively; OS, P < 0.001, P = 0.006, respectively) and chemoradiotherapy was significantly superior than simple chemotherapy (DFS, P = 0.031; OS, P = 0.027). For patients with an intermediate–risk score, postoperative chemoradiotherapy showed a statistically significant survival advantage over no anticancer treatment (P = 0.004 and P = 0.002, respectively), while chemotherapy did not. Compared with no adjuvant treatment, neither postoperative chemoradiotherapy nor chemotherapy made significant difference for patients in the high–risk group. Combining the value of immune–risk status and chemosensitivity, the immune–risk score could not only offer us prognostic evaluation and adjuvant treatment guidance, but also improve our understanding about the binding point between chemotherapy or chemoradiotherapy and the immune system, which may be helpful for further expanding the application of immunotherapy.
Collapse
Affiliation(s)
- Shijie Duan
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Pengliang Wang
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Funan Liu
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Hanwei Huang
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Wen An
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Siwei Pan
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xin Wang
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
332
|
Marcelis L, Tousseyn T. The Tumor Microenvironment in Post-Transplant Lymphoproliferative Disorders. CANCER MICROENVIRONMENT : OFFICIAL JOURNAL OF THE INTERNATIONAL CANCER MICROENVIRONMENT SOCIETY 2019; 12:3-16. [PMID: 30680693 PMCID: PMC6529504 DOI: 10.1007/s12307-018-00219-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 12/18/2018] [Indexed: 02/07/2023]
Abstract
Post-transplant lymphoproliferative disorders (PTLDs) cover a broad spectrum of lymphoproliferative lesions arising after solid organ or allogeneic hematopoietic stem cell transplantation. The composition and function of the tumor microenvironment (TME), consisting of all non-malignant constituents of a tumor, is greatly impacted in PTLD through a complex interplay between 4 factors: 1) the graft organ causes immune stimulation through chronic antigen presentation; 2) the therapy to prevent organ rejection interferes with the immune system; 3) the oncogenic Epstein-Barr virus (EBV), present in 80% of PTLDs, has a causative role in the oncogenic transformation of lymphocytes and influences immune responses; 4) interaction with the donor-derived immune cells accompanying the graft. These factors make PTLDs an interesting model to look at cancer-microenvironment interactions and current findings can be of interest for other malignancies including solid tumors. Here we will review the current knowledge of the TME composition in PTLD with a focus on the different factors involved in PTLD development.
Collapse
Affiliation(s)
- Lukas Marcelis
- Department of Imaging and Pathology, Translational Cell and Tissue Research Lab, KU Leuven, Herestraat 49 - O&N IV, 3000, Leuven, Belgium
| | - Thomas Tousseyn
- Department of Imaging and Pathology, Translational Cell and Tissue Research Lab, KU Leuven, Herestraat 49 - O&N IV, 3000, Leuven, Belgium.
- Department of Pathology, University Hospitals UZ Leuven, 7003 24, Herestraat 49, Leuven, 3000, Belgium.
| |
Collapse
|
333
|
Wu M, Wang G, Hu W, Yao Y, Yu XF. Emerging roles and therapeutic value of exosomes in cancer metastasis. Mol Cancer 2019; 18:53. [PMID: 30925925 PMCID: PMC6441156 DOI: 10.1186/s12943-019-0964-8] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/20/2019] [Indexed: 12/13/2022] Open
Abstract
Exosomes are cell-derived vesicles of 30 to 150 nm that contain diverse proteins, nucleic acids, and lipids. These vesicles facilitate effective intercellular communication and trigger profound environmental changes. In recent years, many studies have identified diverse roles for exosomes in tumor metastasis, a major cause of cancer-related deaths; furthermore, circulating tumor-derived exosomes can drive the initiation and progression of metastasis and determine the specific target organs affected. Fortunately, our growing understanding of exosomes and relevant modification technology have provided new ideas for potential treatment of tumor metastases. Here we review recent advances concerning the role of exosomes in metastasis, focusing on their regulatory mechanisms and therapeutic targeting in advanced cancer.
Collapse
Affiliation(s)
- Miaowei Wu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China
| | - Guosheng Wang
- Inst Translat Med, School of Medicine, Zhejiang University, Hangzhou, 310029, Zhejiang, People's Republic of China
| | - Weilei Hu
- Inst Translat Med, School of Medicine, Zhejiang University, Hangzhou, 310029, Zhejiang, People's Republic of China
| | - Yihan Yao
- Department Surg Oncol, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China
| | - Xiao-Fang Yu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China.
| |
Collapse
|
334
|
Groult H, Cousin R, Chot-Plassot C, Maura M, Bridiau N, Piot JM, Maugard T, Fruitier-Arnaudin I. λ-Carrageenan Oligosaccharides of Distinct Anti-Heparanase and Anticoagulant Activities Inhibit MDA-MB-231 Breast Cancer Cell Migration. Mar Drugs 2019; 17:md17030140. [PMID: 30818840 PMCID: PMC6471403 DOI: 10.3390/md17030140] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/15/2019] [Accepted: 02/22/2019] [Indexed: 01/19/2023] Open
Abstract
In tumor development, the degradation of heparan sulfate (HS) by heparanase (HPSE) is associated with cell-surface and extracellular matrix remodeling as well as the release of HS-bound signaling molecules, allowing cancer cell migration, invasion and angiogenesis. Because of their structural similarity with HS, sulfated polysaccharides are considered a promising source of molecules to control these activities. In this study, we used a depolymerisation method for producing λ-carrageenan oligosaccharides (λ-CO), with progressive desulfation over time. These were then used to investigate the influence of polymeric chain length and degree of sulfation (DS) on their anti-HPSE activity. The effects of these two features on λ-CO anticoagulant properties were also investigated to eliminate a potential limitation on the use of a candidate λ-CO as a chemotherapeutic agent. HPSE inhibition was mainly related to the DS of λ-CO, however this correlation was not complete. On the other hand, both chain length and DS modulated λ-CO activity for factor Xa and thrombin IIa inhibition, two enzymes that are involved in the coagulation cascade, and different mechanisms of inhibition were observed. A λ-carrageenan oligosaccharide of 5.9 KDa was identified as a suitable anticancer candidate because it displayed one of the lowest anticoagulant properties among the λ-CO produced, while showing a remarkable inhibitory effect on MDA-MB-231 breast cancer cell migration.
Collapse
Affiliation(s)
- Hugo Groult
- Equipe BCBS (Biotechnologies et Chimie des Bioressources pour la Santé), Université de La Rochelle, UMR CNRS 7266 LIENSs, 17000 La Rochelle, France.
| | - Rémi Cousin
- Equipe BCBS (Biotechnologies et Chimie des Bioressources pour la Santé), Université de La Rochelle, UMR CNRS 7266 LIENSs, 17000 La Rochelle, France.
| | - Caroline Chot-Plassot
- Equipe BCBS (Biotechnologies et Chimie des Bioressources pour la Santé), Université de La Rochelle, UMR CNRS 7266 LIENSs, 17000 La Rochelle, France.
| | - Maheva Maura
- Equipe BCBS (Biotechnologies et Chimie des Bioressources pour la Santé), Université de La Rochelle, UMR CNRS 7266 LIENSs, 17000 La Rochelle, France.
| | - Nicolas Bridiau
- Equipe BCBS (Biotechnologies et Chimie des Bioressources pour la Santé), Université de La Rochelle, UMR CNRS 7266 LIENSs, 17000 La Rochelle, France.
| | - Jean-Marie Piot
- Equipe BCBS (Biotechnologies et Chimie des Bioressources pour la Santé), Université de La Rochelle, UMR CNRS 7266 LIENSs, 17000 La Rochelle, France.
| | - Thierry Maugard
- Equipe BCBS (Biotechnologies et Chimie des Bioressources pour la Santé), Université de La Rochelle, UMR CNRS 7266 LIENSs, 17000 La Rochelle, France.
| | - Ingrid Fruitier-Arnaudin
- Equipe BCBS (Biotechnologies et Chimie des Bioressources pour la Santé), Université de La Rochelle, UMR CNRS 7266 LIENSs, 17000 La Rochelle, France.
| |
Collapse
|
335
|
Limonta P, Moretti RM, Marzagalli M, Fontana F, Raimondi M, Montagnani Marelli M. Role of Endoplasmic Reticulum Stress in the Anticancer Activity of Natural Compounds. Int J Mol Sci 2019; 20:ijms20040961. [PMID: 30813301 PMCID: PMC6412802 DOI: 10.3390/ijms20040961] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/04/2019] [Accepted: 02/18/2019] [Indexed: 02/06/2023] Open
Abstract
Cancer represents a serious global health problem, and its incidence and mortality are rapidly growing worldwide. One of the main causes of the failure of an anticancer treatment is the development of drug resistance by cancer cells. Therefore, it is necessary to develop new drugs characterized by better pharmacological and toxicological profiles. Natural compounds can represent an optimal collection of bioactive molecules. Many natural compounds have been proven to possess anticancer effects in different types of tumors, but often the molecular mechanisms associated with their cytotoxicity are not completely understood. The endoplasmic reticulum (ER) is an organelle involved in multiple cellular processes. Alteration of ER homeostasis and its appropriate functioning originates a cascade of signaling events known as ER stress response or unfolded protein response (UPR). The UPR pathways involve three different sensors (protein kinase RNA(PKR)-like ER kinase (PERK), inositol requiring enzyme1α (IRE1) and activating transcription factor 6 (ATF6)) residing on the ER membranes. Although the main purpose of UPR is to restore this organelle's homeostasis, a persistent UPR can trigger cell death pathways such as apoptosis. There is a growing body of evidence showing that ER stress may play a role in the cytotoxicity of many natural compounds. In this review we present an overview of different plant-derived natural compounds, such as curcumin, resveratrol, green tea polyphenols, tocotrienols, and garcinia derivates, that exert their anticancer activity via ER stress modulation in different human cancers.
Collapse
Affiliation(s)
- Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milano, Italy.
| | - Roberta M Moretti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milano, Italy.
| | - Monica Marzagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milano, Italy.
| | - Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milano, Italy.
| | - Michela Raimondi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milano, Italy.
| | - Marina Montagnani Marelli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milano, Italy.
| |
Collapse
|
336
|
Rath B, Klameth L, Plangger A, Hochmair M, Ulsperger E, Huk I, Zeillinger R, Hamilton G. Expression of Proteolytic Enzymes by Small Cell Lung Cancer Circulating Tumor Cell Lines. Cancers (Basel) 2019; 11:cancers11010114. [PMID: 30669448 PMCID: PMC6357007 DOI: 10.3390/cancers11010114] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 12/12/2022] Open
Abstract
Small cell lung cancer (SCLC) is an aggressive type of lung cancer which disseminates vigorously and has a dismal prognosis. Metastasis of SCLC is linked to an extremely high number of circulating tumor cells (CTCs), which form chemoresistant spheroids, termed tumorospheres. Intravasation and extravasation during tumor spread requires the activity of a number of proteases to disintegrate the stroma and vascular tissue. Generation of several permanent SCLC CTC lines allowed us to screen for the expression of 35 proteases using Western blot arrays. Cell culture supernatants of two CTC lines, namely BHGc7 and 10, were analyzed for secreted proteases, including matrix metalloproteinases (MMPs), ADAM/TS, cathepsins, kallikreins, and others, and compared to proteases expressed by SCLC cell lines (GLC14, GLC16, NCI-H526 and SCLC26A). In contrast to NCI-H526 and SCLC26A, MMP-9 was highly expressed in the two CTC lines and in GLC16 derived of a relapse. Furthermore, cathepsins (S, V, X/Z/P, A and D) were highly expressed in the CTC lines, whereas ADAM/TS and kallikreins were not detectable. In conclusion, SCLC CTCs express MMP-9 and a range of cathepsins for proteolysis and, aside from tissue degradation, these enzymes are involved in cell signaling, survival, and the chemoresistance of tumor cells.
Collapse
Affiliation(s)
- Barbara Rath
- Department of Vascular Surgery, Medical University of Vienna, A-1090 Vienna, Austria.
| | - Lukas Klameth
- Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, A-1090 Vienna, Austria.
| | - Adelina Plangger
- Department of Vascular Surgery, Medical University of Vienna, A-1090 Vienna, Austria.
| | | | | | - Ihor Huk
- Department of Vascular Surgery, Medical University of Vienna, A-1090 Vienna, Austria.
| | - Robert Zeillinger
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center-Gynecological Cancer Unit, Medical University of Vienna, A-1090 Vienna, Austria.
| | - Gerhard Hamilton
- Department of Vascular Surgery, Medical University of Vienna, A-1090 Vienna, Austria.
| |
Collapse
|
337
|
Kutova OM, Guryev EL, Sokolova EA, Alzeibak R, Balalaeva IV. Targeted Delivery to Tumors: Multidirectional Strategies to Improve Treatment Efficiency. Cancers (Basel) 2019; 11:E68. [PMID: 30634580 PMCID: PMC6356537 DOI: 10.3390/cancers11010068] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/06/2019] [Accepted: 01/07/2019] [Indexed: 12/13/2022] Open
Abstract
Malignant tumors are characterized by structural and molecular peculiarities providing a possibility to directionally deliver antitumor drugs with minimal impact on healthy tissues and reduced side effects. Newly formed blood vessels in malignant lesions exhibit chaotic growth, disordered structure, irregular shape and diameter, protrusions, and blind ends, resulting in immature vasculature; the newly formed lymphatic vessels also have aberrant structure. Structural features of the tumor vasculature determine relatively easy penetration of large molecules as well as nanometer-sized particles through a blood⁻tissue barrier and their accumulation in a tumor tissue. Also, malignant cells have altered molecular profile due to significant changes in tumor cell metabolism at every level from the genome to metabolome. Recently, the tumor interaction with cells of immune system becomes the focus of particular attention, that among others findings resulted in extensive study of cells with preferential tropism to tumor. In this review we summarize the information on the diversity of currently existing approaches to targeted drug delivery to tumor, including (i) passive targeting based on the specific features of tumor vasculature, (ii) active targeting which implies a specific binding of the antitumor agent with its molecular target, and (iii) cell-mediated tumor targeting.
Collapse
Affiliation(s)
- Olga M Kutova
- The Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod 603950, Russia.
| | - Evgenii L Guryev
- The Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod 603950, Russia.
| | - Evgeniya A Sokolova
- The Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod 603950, Russia.
| | - Razan Alzeibak
- The Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod 603950, Russia.
| | - Irina V Balalaeva
- The Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod 603950, Russia.
- The Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya str., Moscow 119991, Russia.
| |
Collapse
|
338
|
Role of protein phosphatases in the cancer microenvironment. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:144-152. [DOI: 10.1016/j.bbamcr.2018.07.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/29/2018] [Accepted: 07/11/2018] [Indexed: 12/15/2022]
|
339
|
Yin Z, Jiang K, Li R, Dong C, Wang L. Multipotent mesenchymal stromal cells play critical roles in hepatocellular carcinoma initiation, progression and therapy. Mol Cancer 2018; 17:178. [PMID: 30593276 PMCID: PMC6309092 DOI: 10.1186/s12943-018-0926-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/16/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, with high morbidity, relapse and mortality rates. Multipotent mesenchymal stromal cells (MSCs) can be recruited to and become integral components of the HCC microenvironment and can influence tumor progression. This review discusses MSC migration to liver fibrosis and the HCC microenvironment, MSC involvement in HCC initiation and progression and the widespread application of MSCs in HCC-targeted therapy, thus clarifying the critical roles of MSCs in HCC.
Collapse
Affiliation(s)
- Zeli Yin
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, Liaoning, China
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, Dalian Medical University, Dalian, 116027, Liaoning, China
- Engineering Technology Research Center for Translational Medicine, Dalian Medical University, Dalian, 116027, Liaoning, China
| | - Keqiu Jiang
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, Liaoning, China
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, Dalian Medical University, Dalian, 116027, Liaoning, China
- Engineering Technology Research Center for Translational Medicine, Dalian Medical University, Dalian, 116027, Liaoning, China
| | - Rui Li
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, Liaoning, China
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, Dalian Medical University, Dalian, 116027, Liaoning, China
- Engineering Technology Research Center for Translational Medicine, Dalian Medical University, Dalian, 116027, Liaoning, China
| | - Chengyong Dong
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, Liaoning, China.
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, Dalian Medical University, Dalian, 116027, Liaoning, China.
- Engineering Technology Research Center for Translational Medicine, Dalian Medical University, Dalian, 116027, Liaoning, China.
| | - Liming Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, Liaoning, China.
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, Dalian Medical University, Dalian, 116027, Liaoning, China.
- Engineering Technology Research Center for Translational Medicine, Dalian Medical University, Dalian, 116027, Liaoning, China.
| |
Collapse
|
340
|
Yao Y, Guo Q, Cao Y, Qiu Y, Tan R, Yu Z, Zhou Y, Lu N. Artemisinin derivatives inactivate cancer-associated fibroblasts through suppressing TGF-β signaling in breast cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:282. [PMID: 30477536 PMCID: PMC6258160 DOI: 10.1186/s13046-018-0960-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/13/2018] [Indexed: 12/28/2022]
Abstract
Background Cancer-associated fibroblasts (CAFs) are activated fibroblasts associated with cancer. They have an important role in tumor growth and metastasis. Artemisinin (ART) is a sesquiterpene lactone extracted from Chinese herb qinghao, and artemether (ARM), artesunate (ARS) and dihydroartemisinin (DHA) were synthesized derivatives of artemisinin, which also have anti-malarial and anti-cancer effects such as artemisinin. Methods In this study, we investigated the in-vitro and in-vivo effects of artemisinin derivatives on inactivating cancer-associated fibroblasts and uncovered its underlying mechanism. Results We demonstrated that ARS and DHA could revert L-929-CAFs and CAFs from activated to inactivated state in vitro. Mechanically, ARS and DHA could suppress TGF-β signaling to inhibit activation of L-929-CAFs and CAFs, and decreased interaction between tumor and tumor microenvironment. The results showed that ARS and DHA could suppress CAFs-induced breast cancer growth and metastasis in the orthotopic model. Conformably, ARS and DHA suppressed TGF-β signaling to inactivate cancer-associated fibroblasts and inhibit cancer metastasis in vivo. Conclusions Artemisinin derivatives are potential therapeutic agents for the treatment of breast cancer.
Collapse
Affiliation(s)
- Yuyuan Yao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Qinglong Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Yue Cao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Yangmin Qiu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Renxiang Tan
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, 138 Xinlin Road, Nanjing, 210023, People's Republic of China
| | - Zhou Yu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Yuxin Zhou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Na Lu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
341
|
Wang Y, Zhang T, Guo L, Ren T, Yang Y. Stromal extracellular matrix is a microenvironmental cue promoting resistance to EGFR tyrosine kinase inhibitors in lung cancer cells. Int J Biochem Cell Biol 2018; 106:96-106. [PMID: 30471423 DOI: 10.1016/j.biocel.2018.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 11/01/2018] [Accepted: 11/06/2018] [Indexed: 02/07/2023]
Abstract
The acquisition of resistance to EGFR tyrosine kinase inhibitors (TKIs) remains a critical problem in lung cancer clinic, but the underlying mechanisms have remained incompletely understood. Although the TKI-induced or -selected genetic changes are known to drive resistance, resistance also occurs in tumor cells without genetic changes through poorly-characterized processes. Here, we show that the extracellular matrix (ECM) from various components of the tumor microenvironment, including neighboring tumor cells and fibroblasts, may be the driver of resistance in the absence of genetic changes. Unlike genetic changes, which may evolve during relatively long time of chronic EGFR TKI treatment to drive resistance, briefly culturing on de-cellularized ECM, or co-culturing with the ECM donor cells, immediately confers resistance to tumor cells that are otherwise sensitive to EGFR TKIs. We show evidence that collagen in the ECM may be its primary constituent driving resistance, at least partly through the collagen receptor Integrin-β1. Intriguingly, such effect of ECM and collagen is dose-dependent and reversible, suggesting a potential clinic-relevant application for targeting this effect. Collectively, our results reveal that the stromal ECM acts as a microenvironmental cue promoting EGFR TKI resistance in lung cancer cells, and targeting collagen and Integrin-β1 may be useful for treating resistance, especially the resistance without clearly-defined genetic changes, for which effective therapeutics are lacking.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Respiratory Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Ting Zhang
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Lixia Guo
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Tao Ren
- Department of Respiratory Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| | - Yanan Yang
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; Developmental Therapeutics and Cell Biology Programs, Mayo Clinic Cancer Center, Rochester, MN 55905, USA.
| |
Collapse
|
342
|
Qiu SQ, Waaijer SJH, Zwager MC, de Vries EGE, van der Vegt B, Schröder CP. Tumor-associated macrophages in breast cancer: Innocent bystander or important player? Cancer Treat Rev 2018; 70:178-189. [PMID: 30227299 DOI: 10.1016/j.ctrv.2018.08.010] [Citation(s) in RCA: 314] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 02/05/2023]
Abstract
Tumor-associated macrophages (TAMs) are important tumor-promoting cells in the breast tumor microenvironment. Preclinically TAMs stimulate breast tumor progression, including tumor cell growth, invasion and metastasis. TAMs also induce resistance to multiple types of treatment in breast cancer models. The underlying mechanisms include: induction and maintenance of tumor-promoting phenotype in TAMs, inhibition of CD8+ T cell function, degradation of extracellular matrix, stimulation of angiogenesis and inhibition of phagocytosis. Several studies reported that high TAM infiltration of breast tumors is correlated with a worse patient prognosis. Based on these findings, macrophage-targeted treatment strategies have been developed and are currently being evaluated in clinical breast cancer trials. These strategies include: inhibition of macrophage recruitment, repolarization of TAMs to an antitumor phenotype, and enhancement of macrophage-mediated tumor cell killing or phagocytosis. This review summarizes the functional aspects of TAMs and the rationale and current evidence for TAMs as a therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Si-Qi Qiu
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, PO Box 30.001, 9700 RB Groningen, The Netherlands; The Breast Center, Cancer Hospital of Shantou University Medical College, Raoping 7, 515041 Shantou, China
| | - Stijn J H Waaijer
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, PO Box 30.001, 9700 RB Groningen, The Netherlands
| | - Mieke C Zwager
- Department of Pathology, University of Groningen, University Medical Center Groningen, PO Box 30.001, 9700 RB Groningen, The Netherlands
| | - Elisabeth G E de Vries
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, PO Box 30.001, 9700 RB Groningen, The Netherlands
| | - Bert van der Vegt
- Department of Pathology, University of Groningen, University Medical Center Groningen, PO Box 30.001, 9700 RB Groningen, The Netherlands
| | - Carolien P Schröder
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, PO Box 30.001, 9700 RB Groningen, The Netherlands.
| |
Collapse
|
343
|
Fernandes C, Suares D, Yergeri MC. Tumor Microenvironment Targeted Nanotherapy. Front Pharmacol 2018; 9:1230. [PMID: 30429787 PMCID: PMC6220447 DOI: 10.3389/fphar.2018.01230] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 10/08/2018] [Indexed: 12/12/2022] Open
Abstract
Recent developments in nanotechnology have brought new approaches to cancer diagnosis and therapy. While enhanced permeability and retention effect promotes nano-chemotherapeutics extravasation, the abnormal tumor vasculature, high interstitial pressure and dense stroma structure limit homogeneous intratumoral distribution of nano-chemotherapeutics and compromise their imaging and therapeutic effect. Moreover, heterogeneous distribution of nano-chemotherapeutics in non-tumor-stroma cells damages the non-tumor cells, and interferes with tumor-stroma crosstalk. This can lead not only to inhibition of tumor progression, but can also paradoxically induce acquired resistance and facilitate tumor cell proliferation and metastasis. Overall, the tumor microenvironment plays a vital role in regulating nano-chemotherapeutics distribution and their biological effects. In this review, the barriers in tumor microenvironment, its consequential effects on nano-chemotherapeutics, considerations to improve nano-chemotherapeutics delivery and combinatory strategies to overcome acquired resistance induced by tumor microenvironment have been summarized. The various strategies viz., nanotechnology based approach as well as ligand-mediated, redox-responsive, and enzyme-mediated based combinatorial nanoapproaches have been discussed in this review.
Collapse
Affiliation(s)
| | | | - Mayur C Yergeri
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies - NMIMS, Mumbai, India
| |
Collapse
|
344
|
Abstract
Vascular remodeling defines cancer growth and aggressiveness. Although cancer cells produce pro-angiogenic signals, the fate of angiogenesis critically depends on the cancer microenvironment. Composition of the extracellular matrix (ECM) and tumor inflammation determine whether a cancer will remain dormant, will be recognized by the immune system and eliminated, or whether the tumor will develop and lead to the spread and metastasis of cancer cells. Thrombospondins (TSPs), a family of ECM proteins that has long been associated with the regulation of angiogenesis and cancer, regulate multiple physiological processes that determine cancer growth and spreading, from angiogenesis to inflammation, metabolic changes, and properties of ECM. Here, we sought to review publications that describe various functions of TSPs that link these proteins to regulation of cancer growth by modulating multiple physiological and pathological events that prevent or support tumor development. In addition to its direct effects on angiogenesis, TSPs have important roles in regulation of inflammation, immunity, ECM properties and composition, and glucose and insulin metabolism. Furthermore, TSPs have distinct roles as regulators of remodeling in tissues and tumors, such that the pathways activated by a single TSP can interact and influence each other. The complex nature of TSP interactions and functions, including their different cell- and tissue-specific effects, may lead to confusing results and controversial conclusions when taken out of the context of interdisciplinary and holistic approaches. However, studies of TSP functions and roles in different systems of the organism offer an integrative view of tumor remodeling and a potential for finding therapeutic targets that would modulate multiple complementary processes associated with cancer growth.
Collapse
Affiliation(s)
| | - Santoshi Muppala
- Department of Molecular Cardiology, Cleveland Clinic, Cleveland, 44195, USA
| | - Jasmine Gajeton
- Department of Molecular Cardiology, Cleveland Clinic, Cleveland, 44195, USA
| |
Collapse
|
345
|
Li X, Huang F, Xu X, Hu S. Polyclonal Rabbit Anti-Cancer-Associated Fibroblasts Globulins Induce Cancer Cells Apoptosis and Inhibit Tumor Growth. Int J Biol Sci 2018; 14:1621-1629. [PMID: 30416376 PMCID: PMC6216025 DOI: 10.7150/ijbs.26520] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 08/18/2018] [Indexed: 02/07/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) constitute a major component of the tumor microenvironment. CAFs regulated the growth and development, invasion and metastasis of primary tumors, as well as response to treatment. Recent studies indicated that monoclonal antibody therapies had limited success, thus more effective polyclonal antibodies (Poly Abs) is urgently needed. Poly Abs is a possible alternative because they target multiple antigens simultaneously. In this report, we prepared Poly Abs by immunizing rabbits with the bFGF-activated fibroblasts. The Poly Abs inhibited the cancer cells proliferation as revealed by MTT analysis. The Poly Abs induced apoptosis as indicated by flow cytometric analysis, and microscopic observation of apoptotic changes in morphology. Compared with the control IgG, Poly Abs significantly inhibited tumor cells migration as indicated by wound healing and transwell analysis in vitro, and lung metastasis analysis in vivo. Serial intravenous injections of Poly Abs inhibited tumor growth in mice bearing murine CT26 colon carcinoma. Ki67 analysis indicated that Poly Abs significantly inhibited tumor cells proliferation, as compared to control Ig G treatments. Our findings suggested that Poly Abs was an effective agent for apoptosis induction, migration and metastasis inhibition. The Poly Abs may be useful as a safe anticancer agent for cancer immunotherapy in the future.
Collapse
Affiliation(s)
- Xiuying Li
- Medical Faculty, Kunming University of Science and Technology, Kunming, China
| | - Fengchang Huang
- Department of Oncology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiaoyu Xu
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing 400715, China
| | - Shuenqin Hu
- Department of Gynecology and Obstetrics, the First Affiliated Hospital of Kunming, Medical University, Kunming, China
| |
Collapse
|
346
|
Sverdlov E. Missed Druggable Cancer Hallmark: Cancer-Stroma Symbiotic Crosstalk as Paradigm and Hypothesis for Cancer Therapy. Bioessays 2018; 40:e1800079. [DOI: 10.1002/bies.201800079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/15/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Eugene Sverdlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences; Ulitsa Miklukho-Maklaya, 16/10 117997 Moscow Russia
| |
Collapse
|
347
|
Turk M, Naumenko V, Mahoney DJ, Jenne CN. Tracking Cell Recruitment and Behavior within the Tumor Microenvironment Using Advanced Intravital Imaging Approaches. Cells 2018; 7:cells7070069. [PMID: 29970845 PMCID: PMC6071013 DOI: 10.3390/cells7070069] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/18/2018] [Accepted: 06/29/2018] [Indexed: 12/15/2022] Open
Abstract
Recent advances in imaging technology have made it possible to track cellular recruitment and behavior within the vasculature of living animals in real-time. Using approaches such as resonant scanning confocal and multiphoton intravital microscopy (IVM), we are now able to observe cells within the intact tumor microenvironment of a mouse. We are able to follow these cells for extended periods of time (hours) and can characterize how specific cell types (T cells, neutrophils, monocytes) interact with the tumor vasculature and cancer cells. This approach provides greater insight into specific cellular behaviors and cell–cell interactions than conventional techniques such as histology and flow cytometry. In this report, we describe the surgical preparation of animals to expose the tumor and both resonant scanning confocal and multiphoton imaging approaches used to track leukocyte recruitment, adhesion, and behavior within the tumor microenvironment. We present techniques for the measurement and quantification of leukocyte behavior within the bloodstream and tumor interstitium. The use of IVM to study leukocyte behavior within the tumor microenvironment provides key information not attainable with other approaches, that will help shape the development of better, more effective anticancer drugs and therapeutic approaches.
Collapse
Affiliation(s)
- Madison Turk
- Department of Microbiology, Immunology and Infectious Diseases, Faculty of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
| | - Victor Naumenko
- Department of Microbiology, Immunology and Infectious Diseases, Faculty of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
- National University of Science and Technology "MISIS", Leninskiy Prospect 4, 119991 Moscow, Russia.
| | - Douglas J Mahoney
- Department of Microbiology, Immunology and Infectious Diseases, Faculty of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
- Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada.
- Arnie Charbonneau Cancer Institute, Calgary, AB T2N 4N1, Canada.
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
| | - Craig N Jenne
- Department of Microbiology, Immunology and Infectious Diseases, Faculty of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
- Department of Critical Care Medicine, Faculty of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
348
|
Uehara I, Tanaka N. Role of p53 in the Regulation of the Inflammatory Tumor Microenvironment and Tumor Suppression. Cancers (Basel) 2018; 10:cancers10070219. [PMID: 29954119 PMCID: PMC6071291 DOI: 10.3390/cancers10070219] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/18/2018] [Accepted: 06/22/2018] [Indexed: 12/20/2022] Open
Abstract
p53 has functional roles in tumor suppression as a guardian of the genome, surveillant of oncogenic cell transformation, and as recently demonstrated, a regulator of intracellular metabolism. Accumulating evidence has shown that the tumor microenvironment, accompanied by inflammation and tissue remodeling, is important for cancer proliferation, metastasis, and maintenance of cancer stem cells (CSCs) that self-renew and generate the diverse cells comprising the tumor. Furthermore, p53 has been demonstrated to inhibit inflammatory responses, and functional loss of p53 causes excessive inflammatory reactions. Moreover, the generation and maintenance of CSCs are supported by the inflammatory tumor microenvironment. Considering that the functions of p53 inhibit reprogramming of somatic cells to stem cells, p53 may have a major role in the inflammatory microenvironment as a tumor suppressor. Here, we review our current understanding of the mechanisms underlying the roles of p53 in regulation of the inflammatory microenvironment, tumor microenvironment, and tumor suppression.
Collapse
Affiliation(s)
- Ikuno Uehara
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, 1-396 Kosugi-cho, Nakahara-ku, Kawasaki 211-8533, Japan.
| | - Nobuyuki Tanaka
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, 1-396 Kosugi-cho, Nakahara-ku, Kawasaki 211-8533, Japan.
| |
Collapse
|
349
|
Bartoschek M, Pietras K. PDGF family function and prognostic value in tumor biology. Biochem Biophys Res Commun 2018; 503:984-990. [PMID: 29932922 DOI: 10.1016/j.bbrc.2018.06.106] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 06/19/2018] [Indexed: 01/27/2023]
Abstract
The development and progression of a tumor depends on the close interaction of malignant cells and the supportive and suppressive tumor microenvironment. Paracrine signaling enables tumor cells to shape the surrounding tissue in order to decrease recognition by the immune system, attract blood vessels to fuel growth, change metabolic programs, and induce wound healing programs. In this study, we investigate the role of the platelet-derived growth factor (PDGF) family members PDGFA, PDGFB, PDGFC and PDGFD and their cognate tyrosine kinase receptors PDGFRA and PDGFRB, using publicly available data from The Cancer Genome Atlas and the Human Protein Atlas. Large scale analysis of expression correlation in RNA sequencing data from 7616 samples derived from 16 tumor types, revealed conserved functional programs in PDGF signaling in the majority of solid tumor types. Besides the well-known effects of PDGF signaling in mesenchymal cells, our analyses revealed a potential role of PDGF signaling in the composition of the immune microenvironment. We furthermore derived gene signatures with increased prognostic value for each PDGF family member. This study emphasizes the potential to impinge on specific paracrine signaling events to interfere with the crosstalk between malignant cells and their microenvironment.
Collapse
Affiliation(s)
- Michael Bartoschek
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Medicon Village, Scheelevägen 8, 22381, Lund, Sweden
| | - Kristian Pietras
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Medicon Village, Scheelevägen 8, 22381, Lund, Sweden.
| |
Collapse
|
350
|
Pan Y, Kupper TS. Metabolic Reprogramming and Longevity of Tissue-Resident Memory T Cells. Front Immunol 2018; 9:1347. [PMID: 29967608 PMCID: PMC6016524 DOI: 10.3389/fimmu.2018.01347] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/31/2018] [Indexed: 12/31/2022] Open
Abstract
Tissue-resident memory T cells (TRM) persist in peripheral tissues for long periods of time in the absence of antigenic stimulation. Upon re-encounter with cognate antigen, TRM trigger an immediate immune response at the local tissue microenvironment and provide the first line of host defense. TRM have been reported to play significant roles in host antimicrobial infection, cancer immunotherapy, and pathogenesis of a number of human autoimmune diseases, such as psoriasis, vitiligo, and atopic dermatitis. TRM display a distinct gene transcriptome with unique gene expression profiles related to cellular metabolism that is different from naive T cells (TN), central memory T cells (TCM), and effector memory T cells (TEM). Skin CD8+ TRM upregulate expression of genes associated with lipid uptake and metabolism and utilize mitochondria fatty acid β-oxidation to support their long-term survival (longevity) and function. In this review, we will summarize the recent progresses in the metabolic programming of TRM and will also discuss the potential to target the unique metabolic pathways of TRM to treat TRM-mediated diseases.
Collapse
Affiliation(s)
- Youdong Pan
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Thomas S Kupper
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|