301
|
Moore SW, Lai Wing Sun K, Xie F, Barker PA, Conti M, Kennedy TE. Soluble adenylyl cyclase is not required for axon guidance to netrin-1. J Neurosci 2008; 28:3920-4. [PMID: 18400890 PMCID: PMC6670467 DOI: 10.1523/jneurosci.0547-08.2008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Accepted: 02/27/2008] [Indexed: 11/21/2022] Open
Abstract
During development, axons are directed to their targets by extracellular guidance cues. The axonal response to the guidance cue netrin-1 is profoundly influenced by the concentration of cAMP within the growth cone. In some cases, cAMP affects the sensitivity of the growth cone to netrin-1, whereas in others it changes the response to netrin-1 from attraction to repulsion. The effects of cAMP on netrin-1 action are well accepted, but the critical issue of whether cAMP production is activated by a netrin-1 induced signaling cascade remains uncertain. A previous report has suggested that axon guidance in response to netrin-1 requires cAMP production mediated by soluble adenyl cyclase (sAC). We have used genetic, molecular and biochemical strategies to assess this issue. Surprisingly, we found only extremely weak expression of sAC in embryonic neurons and determined that, under conditions where netrin-1 directs axonal pathfinding, exposure to netrin-1 does not alter cAMP levels. Furthermore, although netrin-1-deficient mice exhibit major axon guidance defects, we show that pathfinding is normal in sAC-null mice. Therefore, although cAMP can alter the response of axons to netrin-1, we conclude that netrin-1 does not alter cAMP levels in axons attracted by this cue, and that sAC is not required for axon attraction to netrin-1.
Collapse
Affiliation(s)
- Simon W. Moore
- Centre for Neuronal Survival, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada H3A 2B4, and
| | - Karen Lai Wing Sun
- Centre for Neuronal Survival, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada H3A 2B4, and
| | - Fang Xie
- Division of Reproductive Biology, Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, California 94305-5317
| | - Philip A. Barker
- Centre for Neuronal Survival, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada H3A 2B4, and
| | - Marco Conti
- Division of Reproductive Biology, Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, California 94305-5317
| | - Timothy E. Kennedy
- Centre for Neuronal Survival, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada H3A 2B4, and
| |
Collapse
|
302
|
Mardones P, Medina JF, Elferink RPJO. Activation of cyclic AMP Signaling in Ae2-deficient mouse fibroblasts. J Biol Chem 2008; 283:12146-53. [PMID: 18319251 DOI: 10.1074/jbc.m710590200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Anion exchanger 2 (AE2, SLC4A2) is a ubiquitously expressed membrane solute carrier that regulates intracellular pH (pH(i)) by exchanging cytosolic bicarbonate for extracellular chloride. We used fibroblasts from Ae2-deficient (Ae2(a,b)(-/-)) mice to study the effects of an alkaline shift in resting intracellular pH (pH(i)) on the activation of cAMP signaling and gene expression. Ae2(a,b)(-/-) fibroblasts show increased pH(i) (by 0.22 +/- 0.03 unit) compared with wild type cells at extracellular pH (pH(o)) 7.4 and 37 degrees C. This shift in resting pH(i) is associated with an up-regulation of bicarbonate-activated soluble adenylyl cyclase expression, increased cAMP production, Creb phosphorylation, inducible cAMP early repressor 1 mRNA expression, and impaired activation of c-Fos transcription by forskolin. These results highlight the importance of bicarbonate transport via Ae2 in maintaining pH(i) homeostasis in cultured mouse fibroblasts and unveil the role of cAMP in the cellular response to chronic alkalization, which putatively includes an inducible cAMP early repressor 1-mediated attenuation of phosphorylated Creb activity.
Collapse
Affiliation(s)
- Pablo Mardones
- Academic Medical Center Liver Center, Academic Medical Center, University of Amsterdam, 1105 BK, Amsterdam, The Netherlands
| | | | | |
Collapse
|
303
|
Affiliation(s)
- U. Benjamin Kaupp
- Forschungszentrum Jülich, Institut für Neurowissenschaften und Biophysik 1, D-52425 Jülich, Germany;
| | - Nachiket D. Kashikar
- Forschungszentrum Jülich, Institut für Neurowissenschaften und Biophysik 1, D-52425 Jülich, Germany;
| | - Ingo Weyand
- Forschungszentrum Jülich, Institut für Neurowissenschaften und Biophysik 1, D-52425 Jülich, Germany;
| |
Collapse
|
304
|
Mitchell LA, Nixon B, Baker MA, Aitken RJ. Investigation of the role of SRC in capacitation-associated tyrosine phosphorylation of human spermatozoa. ACTA ACUST UNITED AC 2008; 14:235-43. [DOI: 10.1093/molehr/gan007] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
305
|
Edwards SE, Buffone MG, Knee GR, Rossato M, Bonanni G, Masiero S, Ferasin S, Gerton GL, Moss SB, Williams CJ. Effects of extracellular adenosine 5'-triphosphate on human sperm motility. Reprod Sci 2008; 14:655-66. [PMID: 18000227 DOI: 10.1177/1933719107306227] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Extracellular adenosine 5'-triphosphate (ATP) previously has been shown to increase the fertilization percentage in human in vitro fertilization (IVF) performed for male factor infertility. The objective of this study is to determine the effects of extracellular adenosine 5'-triphosphate (ATPe) on human sperm function by examining its effects on end points of sperm capacitation. Sperm obtained from healthy volunteers with normal semen parameters, asthenozoospermic men, and cryopreserved samples were incubated in medium with or without 2.5 mM ATPe. The effects of ATPe on acrosomal exocytosis, protein tyrosine phosphorylation, and sperm motility parameters were quantified. Although ATPe did not affect acrosomal exocytosis or protein tyrosine phosphorylation in sperm from healthy donors, it significantly altered several motility parameters, with the largest effects manifested in increased curvilinear velocity and percentage hyperactivation. ATPe similarly affected sperm selected for poor motility and thawed cryopreserved sperm but to a lesser extent than its effects on sperm with normal motility. ATPe increased straight-line velocity and linearity of sperm obtained from asthenozoospermic men. Human sperm motility characteristics are altered by ATPe; this finding may explain its previously reported beneficial effect on human IVF. These results suggest that ATPe could constitute a new therapeutic modality in the treatment of male infertility.
Collapse
Affiliation(s)
- Scott E Edwards
- Center for Research on Reproduction & Women's Health, Department of Obstetrics & Gynecology, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
306
|
Creighton J, Zhu B, Alexeyev M, Stevens T. Spectrin-anchored phosphodiesterase 4D4 restricts cAMP from disrupting microtubules and inducing endothelial cell gap formation. J Cell Sci 2007; 121:110-9. [PMID: 18073242 DOI: 10.1242/jcs.011692] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dynamic cAMP fluctuations that are restricted to a sub-plasma-membrane domain strengthen endothelial barrier integrity. Phosphodiesterases (PDEs) localize within this domain where they limit cAMP diffusion into the bulk cytosolic compartment; however, the molecular identity of PDEs responsible for endothelial cell membrane cAMP compartmentation remain poorly understood. Our present findings reveal that the D4 splice variant of the PDE4 phosphodiesterase family - PDE4D4 - is expressed in pulmonary microvascular endothelial cells, and is found in plasma membrane fractions. PDE4D4 interacts with alpha II spectrin within this membrane domain. Although constitutive PDE4D4 activity limits cAMP access to the bulk cytosol, inhibiting its activity permits cAMP to access a cytosolic domain that is rich in microtubules, where it promotes protein kinase A (PKA) phosphorylation of tau at Ser214. Such phosphorylation reorganizes microtubules and induces interendothelial cell gap formation. Thus, spectrin-anchored PDE4D4 shapes the physiological response to cAMP by directing it to barrier-enhancing effectors while limiting PKA-mediated microtubule reorganization.
Collapse
Affiliation(s)
- Judy Creighton
- Center for Lung Biology, The University of South Alabama College of Medicine, Mobile, AL 36688, USA
| | | | | | | |
Collapse
|
307
|
Carlson AE, Hille B, Babcock DF. External Ca2+ acts upstream of adenylyl cyclase SACY in the bicarbonate signaled activation of sperm motility. Dev Biol 2007; 312:183-92. [PMID: 17950270 PMCID: PMC2259292 DOI: 10.1016/j.ydbio.2007.09.017] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 09/06/2007] [Accepted: 09/10/2007] [Indexed: 12/18/2022]
Abstract
The HCO3(-) anion activates sperm motility, an important early step in capacitation, by increasing flagellar beat frequency through a pathway that requires the atypical adenylyl cyclase SACY and the sperm-specific C alpha2 catalytic subunit of PKA. Here we show that the accelerating action of HCO3(-) also requires the continued presence of external Ca2+ (EC50 approximately 0.5 mM), and find that Ca2+ can be replaced by Sr2+ but not by Mn2+. Ca2+ is required for HCO3(-) to elevate cAMP, but not for cAMP-AM to increase beat frequency, indicating that external Ca2+ acts before rather than after stimulation of SACY by HCO3(-). With external Ca2+ present, HCO3(-) does not alter cytosolic or near-membrane [Ca2+]. Removal of external Ca2+ initiates a slow decline in intracellular [Ca2+] and rapid block of the HCO3(-)-evoked acceleration that is not relieved upon increasing internal [Ca2+] by rapid photolysis of caged Ca2+. We also find that the rapid (t(1/2) approximately 10 s) accelerating action of HCO3(-) is slowed more than three-fold by the carbonic anhydrase inhibitor acetazolamide. It is unaltered by the broad spectrum anion transport inhibitor SITS, and is not accompanied by detectable changes in intracellular pH. We propose that external Ca2+ binds an unidentified extracellular protein that is required for HCO3(-) to engage cAMP-mediated activation of motility.
Collapse
Affiliation(s)
- Anne E. Carlson
- Department of Physiology and Biophysics, Box 357290, University of Washington, Seattle, WA 98195 USA
| | - Bertil Hille
- Department of Physiology and Biophysics, Box 357290, University of Washington, Seattle, WA 98195 USA
| | - Donner F. Babcock
- Department of Physiology and Biophysics, Box 357290, University of Washington, Seattle, WA 98195 USA
| |
Collapse
|
308
|
Schmid A, Sutto Z, Nlend MC, Horvath G, Schmid N, Buck J, Levin LR, Conner GE, Fregien N, Salathe M. Soluble adenylyl cyclase is localized to cilia and contributes to ciliary beat frequency regulation via production of cAMP. ACTA ACUST UNITED AC 2007; 130:99-109. [PMID: 17591988 PMCID: PMC2154360 DOI: 10.1085/jgp.200709784] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ciliated airway epithelial cells are subject to sustained changes in intracellular CO(2)/HCO(3)(-) during exacerbations of airway diseases, but the role of CO(2)/HCO(3)(-)-sensitive soluble adenylyl cyclase (sAC) in ciliary beat regulation is unknown. We now show not only sAC expression in human airway epithelia (by RT-PCR, Western blotting, and immunofluorescence) but also its specific localization to the axoneme (Western blotting and immunofluorescence). Real time estimations of [cAMP] changes in ciliated cells, using FRET between fluorescently tagged PKA subunits (expressed under the foxj1 promoter solely in ciliated cells), revealed CO(2)/HCO(3)(-)-mediated cAMP production. This cAMP production was specifically blocked by sAC inhibitors but not by transmembrane adenylyl cyclase (tmAC) inhibitors. In addition, this cAMP production stimulated ciliary beat frequency (CBF) independently of intracellular pH because PKA and sAC inhibitors were uniquely able to block CO(2)/HCO(3)(-)-mediated changes in CBF (while tmAC inhibitors had no effect). Thus, sAC is localized to motile airway cilia and it contributes to the regulation of human airway CBF. In addition, CO(2)/HCO(3)(-) increases indeed reversibly stimulate intracellular cAMP production by sAC in intact cells.
Collapse
Affiliation(s)
- Andreas Schmid
- Division of Pulmonary and Critical Care, University of Miami, Miami, FL 33136, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
309
|
Vadnais ML, Galantino-Homer HL, Althouse GC. Current concepts of molecular events during bovine and porcine spermatozoa capacitation. ACTA ACUST UNITED AC 2007; 53:109-23. [PMID: 17612869 DOI: 10.1080/01485010701329386] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Spermatozoa are required to undergo the processes of capacitation before they obtain fertilizing ability. The molecular changes of capacitation are still not fully understood. However, it is accepted that capacitation is a sequential process involving numerous physiological changes including destabilization of the plasma membrane, alterations of intracellular ion concentrations and membrane potential, and protein phosphorylation. There are no known morphological changes that occur to the spermatozoon during capacitation. The purpose of this review is to summarize current evidence on the molecular aspects of capacitation both in vivo and in vitro in bovine and porcine spermatozoa. For the purpose of this review, the process of sperm capacitation will encompass maturational events that occur following ejaculation up to binding to the zona pellucida, that triggers acrosomal exocytosis and initiates fertilization.
Collapse
Affiliation(s)
- Melissa L Vadnais
- Department of Urologic Surgery, University of Minnesota, Minneapolis, MN, USA
| | | | | |
Collapse
|
310
|
Harris T, Marquez B, Suarez S, Schimenti J. Sperm Motility Defects and Infertility in Male Mice with a Mutation in Nsun7, a Member of the Sun Domain-Containing Family of Putative RNA Methyltransferases1. Biol Reprod 2007; 77:376-82. [PMID: 17442852 DOI: 10.1095/biolreprod.106.058669] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Poor sperm quality is the major cause of infertility in humans. Other than sex-linked factors, the genetic basis for male infertility is poorly defined, largely due to practical difficulties in studying the inheritance of this trait in humans. As an alternative, we have conducted forward genetic screens in mice to generate relevant models. We report on the identification and characterization of a chemically-induced mutation, Ste5Jcs1, which causes affected male mice to be sterile or subfertile. Mutant sperm exhibited depressed progressive motility associated with a rigid flagellar midpiece (but not principal piece) segment, which could not be rescued by treatment with agents that stimulate cAMP or calcium signaling pathways. Overall mutant sperm ultrastructure appeared normal, including the axoneme, although the midpiece mitochondrial sheath showed abnormal electron density patterns. Positional cloning of Ste5Jcs1 led to the identification of a mutation in a novel gene called Nsun7, which encodes a protein with a Sun domain that is homologous to tRNA and rRNA cytosine methyltransferases. Therefore, Ste5Jcs1 mutation uncovers a previously unrecognized biological process in sperm that underscores the functional compartmentalization of the midpiece and principal piece of the flagellum.
Collapse
Affiliation(s)
- Tanya Harris
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
311
|
Beltrán C, Vacquier VD, Moy G, Chen Y, Buck J, Levin LR, Darszon A. Particulate and soluble adenylyl cyclases participate in the sperm acrosome reaction. Biochem Biophys Res Commun 2007; 358:1128-35. [PMID: 17524362 PMCID: PMC3644950 DOI: 10.1016/j.bbrc.2007.05.061] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Accepted: 05/10/2007] [Indexed: 12/01/2022]
Abstract
cAMP is important in sea urchin sperm signaling, yet the molecular nature of the adenylyl cyclases (ACs) involved remained unknown. These cells were recently shown to contain an ortholog of the mammalian soluble adenylyl cyclase (sAC). Here, we show that sAC is present in the sperm head and as in mammals is stimulated by bicarbonate. The acrosome reaction (AR), a process essential for fertilization, is influenced by the bicarbonate concentration in seawater. By using functional assays and immunofluorescence techniques we document that sea urchin sperm also express orthologs of multiple isoforms of transmembrane ACs (tmACs). Our findings employing selective inhibitors for each class of AC indicate that both sAC and tmACs participate in the sperm acrosome reaction.
Collapse
Affiliation(s)
- Carmen Beltrán
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos CP 62250, Mexico.
| | | | | | | | | | | | | |
Collapse
|
312
|
Florman HM, Jungnickel MK, Sutton KA. What can we learn about fertilization from cystic fibrosis? Proc Natl Acad Sci U S A 2007; 104:11123-4. [PMID: 17595298 PMCID: PMC2040861 DOI: 10.1073/pnas.0703626104] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Harvey M Florman
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | | | | |
Collapse
|
313
|
Wang D, Hu J, Bobulescu IA, Quill TA, McLeroy P, Moe OW, Garbers DL. A sperm-specific Na+/H+ exchanger (sNHE) is critical for expression and in vivo bicarbonate regulation of the soluble adenylyl cyclase (sAC). Proc Natl Acad Sci U S A 2007; 104:9325-30. [PMID: 17517652 PMCID: PMC1890493 DOI: 10.1073/pnas.0611296104] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Indexed: 02/04/2023] Open
Abstract
We previously identified a sperm-specific Na(+)/H(+) exchanger (sNHE) principally localized to the flagellum. Disruption of the sNHE gene in mice resulted in absolute male infertility associated with a complete loss of sperm motility. Here, we show that the sNHE-null spermatozoa fail to develop the cAMP-dependent protein tyrosine phosphorylation that coincides with the functional maturation occurring upon incubation in capacitating conditions in vitro. Both the sperm motility defect and the lack of induced protein tyrosine phosphorylation are rescued by the addition of cell-permeable cAMP analogs, suggesting that cAMP metabolism is impaired in spermatozoa lacking sNHE. Our analyses of the bicarbonate-dependent soluble adenylyl cyclase (sAC) signaling pathway in sNHE-null sperm cells reveal that sNHE is required for the expression of full-length sAC, and that it is important for the bicarbonate stimulation of sAC activity in spermatozoa. Furthermore, both codependent expression and coimmunoprecipitation experiments indicate that sNHE and sAC associate with each other. Thus, these two proteins appear to be components of a signaling complex at the sperm flagellar plasma membrane. We propose that the formation of this complex efficiently modulates intracellular pH and bicarbonate levels through the rapid and effective control of sAC and sNHE activities to facilitate sperm motility regulation.
Collapse
Affiliation(s)
- Dan Wang
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9051, USA.
| | | | | | | | | | | | | |
Collapse
|
314
|
Beltrán C, Galindo BE, Rodríguez-Miranda E, Sánchez D. Signal transduction mechanisms regulating ion fluxes in the sea urchin sperm. ACTA ACUST UNITED AC 2007. [DOI: 10.1002/sita.200600129] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
315
|
Publicover S, Harper CV, Barratt C. [Ca2+]i signalling in sperm — making the most of what you've got. Nat Cell Biol 2007; 9:235-42. [PMID: 17330112 DOI: 10.1038/ncb0307-235] [Citation(s) in RCA: 206] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Thanks to a worrying decrease in male fertility, understanding how sperm 'work' is a matter both of interest and great importance. Sperm of all animals detect various environmental cues. The 'behavioural' and physiological responses of sperm must be specific, appropriate and correctly timed. Strangely, in a cell with few organelles and minimal cytoplasmic volume, internal Ca(2+) concentration, [Ca(2+)](i), regulates almost all these activities. How does such a simple cell achieve this - and is it as simple as it seems?
Collapse
Affiliation(s)
- Stephen Publicover
- Stephen Publicover is in the School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK.
| | | | | |
Collapse
|
316
|
Marquez B, Ignotz G, Suarez SS. Contributions of extracellular and intracellular Ca2+ to regulation of sperm motility: Release of intracellular stores can hyperactivate CatSper1 and CatSper2 null sperm. Dev Biol 2006; 303:214-21. [PMID: 17174296 PMCID: PMC1885980 DOI: 10.1016/j.ydbio.2006.11.007] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2006] [Revised: 11/02/2006] [Accepted: 11/03/2006] [Indexed: 11/25/2022]
Abstract
In order to fertilize, mammalian sperm must hyperactivate. Hyperactivation is triggered by increased flagellar Ca(2+), which switches flagellar beating from a symmetrical to an asymmetrical pattern by increasing bending to one side. Thimerosal, which releases Ca(2+) from internal stores, induced hyperactivation in mouse sperm within seconds, even when extracellular Ca(2+) was buffered with BAPTA to approximately 30 nM. In sperm from CatSper1 or CatSper2 null mice, which lack functional flagellar alkaline-activated calcium currents, 50 microM thimerosal raised the flagellar bend amplitudes from abnormally low levels to normal pre-hyperactivated levels and, in 20-40% of sperm, induced hyperactivation. Addition of 1 mM Ni(2+) diminished the response. This suggests that intracellular Ca(2+) is abnormally low in the null sperm flagella. When intracellular Ca(2+) was reduced by BAPTA-AM in wild-type sperm, they exhibited flagellar beat patterns more closely resembling those of null sperm. Altogether, these results indicate that extracellular Ca(2+) is required to supplement store-released Ca(2+) to produce maximal and sustained hyperactivation and that CatSper1 and CatSper2 are key elements of the major Ca(2+) entry pathways that support not only hyperactivated motility but possibly also normal pre-hyperactivated motility.
Collapse
Affiliation(s)
| | | | - Susan S. Suarez
- To whom correspondence should be addressed. Telephone: (607) 253-3589. Fax: (607) 253-3541. E-mail:
| |
Collapse
|
317
|
Darszon A, Acevedo JJ, Galindo BE, Hernández-González EO, Nishigaki T, Treviño CL, Wood C, Beltrán C. Sperm channel diversity and functional multiplicity. Reproduction 2006; 131:977-88. [PMID: 16735537 DOI: 10.1530/rep.1.00612] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ion channels are extraordinarily efficient machines that move ions in diversely controlled manners, allowing cells to rapidly exchange information with the outside world and with other cells. Communication is the currency of fertilization, as it is of most fundamental cell signaling events. Ion channels are deeply involved in the dialogue between sperm, its surroundings, and the egg. How sperm swim, find the egg and fertilize it depend on ion permeability changes modulated by environmental cues and components of the egg outer layer. Different ion channels distinctly localized in these tiny, amazing cells perform specific decoding functions that shape the sophisticated behavior of sperm. It is not surprising that certain sperm ion channels are turning out to be unique. New strategies to characterize sperm ion transport have opened exciting possibilities to dissect sperm-egg signaling and unveil novel contraception targets.
Collapse
Affiliation(s)
- Alberto Darszon
- Department of Genetics of Development and Molecular Physiology, Institute of Biotechnology, UNAM, Cuernavaca, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
318
|
Wu KY, Zippin JH, Huron DR, Kamenetsky M, Hengst U, Buck J, Levin LR, Jaffrey SR. Soluble adenylyl cyclase is required for netrin-1 signaling in nerve growth cones. Nat Neurosci 2006; 9:1257-64. [PMID: 16964251 PMCID: PMC3081654 DOI: 10.1038/nn1767] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Accepted: 08/15/2006] [Indexed: 11/09/2022]
Abstract
Growth cones at the tips of nascent and regenerating axons direct axon elongation. Netrin-1, a secreted molecule that promotes axon outgrowth and regulates axon pathfinding, elevates cyclic AMP (cAMP) levels in growth cones and regulates growth cone morphology and axonal outgrowth. These morphological effects depend on the intracellular levels of cAMP. However, the specific pathways that regulate cAMP levels in response to netrin-1 signaling are unclear. Here we show that 'soluble' adenylyl cyclase (sAC), an atypical calcium-regulated cAMP-generating enzyme previously implicated in sperm maturation, is expressed in developing rat axons and generates cAMP in response to netrin-1. Overexpression of sAC results in axonal outgrowth and growth cone elaboration, whereas inhibition of sAC blocks netrin-1-induced axon outgrowth and growth cone elaboration. Taken together, these results indicate that netrin-1 signals through sAC-generated cAMP, and identify a fundamental role for sAC in axonal development.
Collapse
Affiliation(s)
- Karen Y Wu
- Department of Pharmacology, Weill Medical College, Cornell University, New York, New York 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
319
|
Nomura M, Vacquier VD. Proteins associated with soluble adenylyl cyclase in sea urchin sperm flagella. ACTA ACUST UNITED AC 2006; 63:582-90. [PMID: 16847896 DOI: 10.1002/cm.20147] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Adenylyl cyclases (ACs) synthesize cAMP and are present in cells as transmembrane AC and soluble AC (sAC). In sperm, the cAMP produced regulates ion channels and it also activates protein kinase-A that in turn phosphorylates specific axonemal proteins to activate flagellar motility. In mammalian sperm, sAC localizes to the midpiece of flagella, whereas in sea urchin sperm sAC is along the entire flagellum. Here we show that in sea urchin sperm, sAC is complexed with proteins of the plasma membrane and axoneme. Immunoprecipitation shows that a minimum of 10 proteins is tightly associated with sAC. Mass spectrometry of peptides derived from these proteins shows them to be: axonemal dynein heavy chains 7 and 9, sperm specific Na+/H+ exchanger, cyclic nucleotide-gated ion channel, sperm specific creatine kinase, membrane bound guanylyl cyclase, cyclic GMP specific phosphodiesterase 5A, the receptor for the egg peptide speract, and alpha- and beta-tubulins. The sAC-associated proteins could be important in linking membrane signal transduction to energy utilisation in the regulation of flagellar motility.
Collapse
Affiliation(s)
- Mamoru Nomura
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093-0202, USA.
| | | |
Collapse
|
320
|
Kamenetsky M, Middelhaufe S, Bank EM, Levin LR, Buck J, Steegborn C. Molecular details of cAMP generation in mammalian cells: a tale of two systems. J Mol Biol 2006; 362:623-39. [PMID: 16934836 PMCID: PMC3662476 DOI: 10.1016/j.jmb.2006.07.045] [Citation(s) in RCA: 246] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Revised: 07/15/2006] [Accepted: 07/20/2006] [Indexed: 01/05/2023]
Abstract
The second messenger cAMP has been extensively studied for half a century, but the plethora of regulatory mechanisms controlling cAMP synthesis in mammalian cells is just beginning to be revealed. In mammalian cells, cAMP is produced by two evolutionary related families of adenylyl cyclases, soluble adenylyl cyclases (sAC) and transmembrane adenylyl cyclases (tmAC). These two enzyme families serve distinct physiological functions. They share a conserved overall architecture in their catalytic domains and a common catalytic mechanism, but they differ in their sub-cellular localizations and responses to various regulators. The major regulators of tmACs are heterotrimeric G proteins, which transduce extracellular signals via G protein-coupled receptors. sAC enzymes, in contrast, are regulated by the intracellular signaling molecules bicarbonate and calcium. Here, we discuss and compare the biochemical, structural and regulatory characteristics of the two mammalian AC families. This comparison reveals the mechanisms underlying their different properties but also illustrates many unifying themes for these evolutionary related signaling enzymes.
Collapse
Affiliation(s)
- Margarita Kamenetsky
- Department of Pharmacology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Sabine Middelhaufe
- Department of Physiological Chemistry, Ruhr-University, Bochum, Universitätsstraße
| | - Erin M. Bank
- Department of Pharmacology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Lonny R. Levin
- Department of Pharmacology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10021, USA
- Corresponding authors: ;
| | - Jochen Buck
- Department of Pharmacology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Clemens Steegborn
- Department of Physiological Chemistry, Ruhr-University, Bochum, Universitätsstraße
- Corresponding authors: ;
| |
Collapse
|
321
|
Baker MA, Hetherington L, Aitken RJ. Identification of SRC as a key PKA-stimulated tyrosine kinase involved in the capacitation-associated hyperactivation of murine spermatozoa. J Cell Sci 2006; 119:3182-92. [PMID: 16835269 DOI: 10.1242/jcs.03055] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fertilization of the mammalian oocyte depends on the ability of spermatozoa to undergo a process known as capacitation as they ascend the female reproductive tract. A fundamental feature of this process is a marked increase in tyrosine phosphorylation by an unusual protein kinase A (PKA)-mediated pathway. To date, the identity of the intermediate PKA-activated tyrosine kinase driving capacitation is still unresolved. In this study, we have identified SRC as a candidate intermediate kinase centrally involved in the control of sperm capacitation. Consistent with this conclusion, the SRC kinase inhibitor SU6656 was shown to suppress both tyrosine phosphorylation and hyperactivation in murine spermatozoa. Moreover, SRC co-immunoprecipitated with PKA and this interaction was found to lead to an activating phosphorylation of SRC at position Y416. We have also used difference-in-2D-gel-electrophoresis (DIGE) in combination with mass spectrometry to identify a number of SRC substrates that become phosphorylated during capacitation including enolase, HSP90 and tubulin. Our data further suggest that the activation of SRC during capacitation is negatively controlled by C-terminal SRC kinase. The latter was localized to the acrosome and flagellum of murine spermatozoa by immunocytochemistry, whereas capacitation was associated with an inactivating serine phosphosphorylation of this inhibitory kinase.
Collapse
Affiliation(s)
- Mark A Baker
- The ARC Centre of Excellence in Biotechnology and Development, Reproductive Science Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | | | | |
Collapse
|
322
|
Chaloupka JA, Bullock SA, Iourgenko V, Levin LR, Buck J. Autoinhibitory regulation of soluble adenylyl cyclase. Mol Reprod Dev 2006; 73:361-8. [PMID: 16250004 PMCID: PMC3644951 DOI: 10.1002/mrd.20409] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Soluble adenylyl cyclase is an evolutionarily conserved bicarbonate sensor that plays a crucial role in cAMP dependent processes that occur during mammalian fertilization. sAC protein is expressed at the highest levels in male germ cells, and is found to occur as one of two known isoforms: a truncated protein (sAC(t)) that consists almost exclusively of the two conserved catalytic domains (C1 and C2), and a full-length form (sAC(fl)) that contains an additional noncatalytic C-terminal region. Several studies suggested sAC(t) was more active than sAC(fl). We now demonstrate that the specific activity of sAC(t) is at least 10-fold higher than the specific activity of sAC(fl). Using deletion analysis and a novel genetic screen to identify activating mutations, we uncovered an autoinhibitory region just C-terminal to the C2 domain. Kinetic analysis of purified recombinant sAC revealed this autoinhibitory domain functions to lower the enzyme's V(max) without altering its affinity for substrate or regulation by any of the known modulators of sAC activity. Our results identify an additional regulatory mechanism specific to the sAC(fl) isoform.
Collapse
Affiliation(s)
| | | | | | - Lonny R. Levin
- Correspondence to: Lonny R. Levin, Department of Pharmacology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021.
| | | |
Collapse
|
323
|
Xie F, Garcia MA, Carlson AE, Schuh SM, Babcock DF, Jaiswal BS, Gossen JA, Esposito G, van Duin M, Conti M. Soluble adenylyl cyclase (sAC) is indispensable for sperm function and fertilization. Dev Biol 2006; 296:353-62. [PMID: 16842770 DOI: 10.1016/j.ydbio.2006.05.038] [Citation(s) in RCA: 187] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Revised: 05/25/2006] [Accepted: 05/31/2006] [Indexed: 11/30/2022]
Abstract
We previously demonstrated that male mice deficient in the soluble adenylyl cyclase (sAC) are sterile and produce spermatozoa with deficits in progressive motility and are unable to fertilize zona-intact eggs. Here, analyses of sAC(-/-) spermatozoa provide additional insights into the functions linked to cAMP signaling. Adenylyl cyclase activity and cAMP content are greatly diminished in crude preparations of sAC(-/-) spermatozoa and are undetectable after sperm purification. HCO(3)(-) is unable to rapidly accelerate the flagellar beat or facilitate evoked Ca(2+) entry into sAC(-/-) spermatozoa. Moreover, the delayed HCO(3)(-)-dependent increases in protein tyrosine phosphorylation and hyperactivated motility, which occur late in capacitation of wild-type spermatozoa, do not develop in sAC(-/-) spermatozoa. However, sAC(-/-) sperm fertilize zona-free oocytes, indicating that gamete fusion does not require sAC. Although ATP levels are significantly reduced in sAC(-/-) sperm, cAMP-AM ester increases flagellar beat frequency, progressive motility, and alters the pattern of tyrosine phosphorylated proteins. These results indicate that sAC and cAMP coordinate cellular energy balance in wild-type sperm and that the ATP generating machinery is not operating normally in sAC(-/-) spermatozoa. These findings demonstrate that sAC plays a critical role in cAMP signaling in spermatozoa and that defective cAMP production prevents engagement of multiple components of capacitation resulting in male infertility.
Collapse
Affiliation(s)
- Fang Xie
- Division of Reproductive Biology, Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
324
|
Stessin AM, Zippin JH, Kamenetsky M, Hess KC, Buck J, Levin LR. Soluble adenylyl cyclase mediates nerve growth factor-induced activation of Rap1. J Biol Chem 2006; 281:17253-17258. [PMID: 16627466 PMCID: PMC3092367 DOI: 10.1074/jbc.m603500200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nerve growth factor (NGF) and the ubiquitous second messenger cyclic AMP (cAMP) are both implicated in neuronal differentiation. Multiple studies indicate that NGF signals to at least a subset of its targets via cAMP, but the link between NGF and cAMP has remained elusive. Here, we have described the use of small molecule inhibitors to differentiate between the two known sources of cAMP in mammalian cells, bicarbonate- and calcium-responsive soluble adenylyl cyclase (sAC) and G protein-regulated transmembrane adenylyl cyclases. These inhibitors, along with sAC-specific small interfering RNA, reveal that sAC is uniquely responsible for the NGF-elicited rise in cAMP and is essential for the NGF-induced activation of the small G protein Rap1 in PC12 cells. In contrast and as expected, transmembrane adenylyl cyclase-generated cAMP is responsible for Rap1 activation by the G protein-coupled receptor ligand PACAP (pituitary adenylyl cyclase-activating peptide). These results identify sAC as a mediator of NGF signaling and reveal the existence of distinct pathways leading to cAMP-dependent signal transduction.
Collapse
Affiliation(s)
- Alexander M Stessin
- Department of Pharmacology, New York, New York 10021; Tri-institutional M.D./Ph.D. Program, Weill Medical College of Cornell University, New York, New York 10021
| | - Jonathan H Zippin
- Department of Pharmacology, New York, New York 10021; Tri-institutional M.D./Ph.D. Program, Weill Medical College of Cornell University, New York, New York 10021
| | | | | | - Jochen Buck
- Department of Pharmacology, New York, New York 10021.
| | - Lonny R Levin
- Department of Pharmacology, New York, New York 10021
| |
Collapse
|
325
|
Gunaratne HJ, Nomura M, Moy GW, Vacquier VD. A sodium bicarbonate transporter from sea urchin spermatozoa. Gene 2006; 375:37-43. [PMID: 16603323 DOI: 10.1016/j.gene.2006.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Revised: 01/10/2006] [Accepted: 02/01/2006] [Indexed: 01/08/2023]
Abstract
Bicarbonate (HCO3-) transporters play crucial roles in cell-signaling pathways and are essential for cell viability. Here we describe the first cloning and localization of a HCO3- transporter from sperm of the sea urchin, Strongylocentrotus purpuratus. The deduced protein is 1214 amino acids and has a calculated molecular mass of 135 kDa. The annotated protein coding region of the transporter gene consists of 24 exons. The most similar human protein is the Na+/HCO3- cotransporter-2 (NBC2), which has 53% identity and 68% similarity to the sea urchin protein. The sea urchin protein shares the major structural features of HCO3- transporters, including 13 transmembrane segments, a DIDS (4,4-diiodothiocyanatostilbene-2, 2-disulfonic acid) binding motif and N-linked glycosylation sites. It has longer N- and C-terminal cytoplasmic domains compared to human HCO3- transporters. The sea urchin protein possesses a relatively long 3rd extracellular loop with four conserved cysteine residues. This is characteristic for Na+/HCO3- cotransporters, but not for anion exchangers, suggesting that the sea urchin protein is a Na+/HCO3- cotransporter. It is therefore designated as Sp-NBC. A neighbor-joining tree shows that Sp-NBC branches closer to the electroneutral type of HCO3- transporters. Western immunoblots and immunoflourescence show that Sp-NBC is concentrated in the flagellar plasma membrane, suggesting a role in motility regulation.
Collapse
Affiliation(s)
- Herath Jayantha Gunaratne
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093-0202, USA.
| | | | | | | |
Collapse
|
326
|
Mogensen EG, Janbon G, Chaloupka J, Steegborn C, Fu MS, Moyrand F, Klengel T, Pearson DS, Geeves MA, Buck J, Levin LR, Mühlschlegel FA. Cryptococcus neoformans senses CO2 through the carbonic anhydrase Can2 and the adenylyl cyclase Cac1. EUKARYOTIC CELL 2006; 5:103-11. [PMID: 16400172 PMCID: PMC1360268 DOI: 10.1128/ec.5.1.103-111.2006] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cryptococcus neoformans, a fungal pathogen of humans, causes fatal meningitis in immunocompromised patients. Its virulence is mainly determined by the elaboration of a polysaccharide capsule surrounding its cell wall. During its life, C. neoformans is confronted with and responds to dramatic variations in CO2 concentrations; one important morphological change triggered by the shift from its natural habitat (0.033% CO2) to infected hosts (5% CO2) is the induction of capsule biosynthesis. In cells, CO2 is hydrated to bicarbonate in a spontaneous reaction that is accelerated by carbonic anhydrases. Here we show that C. neoformans contains two beta-class carbonic anhydrases, Can1 and Can2. We further demonstrate that CAN2, but not CAN1, is abundantly expressed and essential for the growth of C. neoformans in its natural environment, where CO2 concentrations are limiting. Structural studies reveal that Can2 forms a homodimer in solution. Our data reveal Can2 to be the main carbonic anhydrase and suggest a physiological role for bicarbonate during C. neoformans growth. Bicarbonate directly activates the C. neoformans Cac1 adenylyl cyclase required for capsule synthesis. We show that this specific activation is optimal at physiological pH.
Collapse
|
327
|
Turner RM. Moving to the beat: a review of mammalian sperm motility regulation. Reprod Fertil Dev 2006; 18:25-38. [PMID: 16478600 DOI: 10.1071/rd05120] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2005] [Accepted: 01/21/2005] [Indexed: 01/18/2023] Open
Abstract
Because it is generally accepted that a high percentage of poorly motile or immotile sperm will adversely affect male fertility, analysis of sperm motility is a central part of the evaluation of male fertility. In spite of its importance to fertility, poor sperm motility remains only a description of a pathology whose underlying cause is typically poorly understood. The present review is designed to bring the clinician up to date with the most current understanding of the mechanisms that regulate sperm motility and to raise questions about how aberrations in these mechanisms could be the underlying causes of this pathology.
Collapse
Affiliation(s)
- Regina M Turner
- Department of Clinical Studies, Center for Animal Transgenesis and Germ Cell Research, University of Pennsylvania School of Veterinary Medicine, New Bolton Center, Kennett Square, PA 19348, USA.
| |
Collapse
|
328
|
Schuh SM, Carlson AE, McKnight GS, Conti M, Hille B, Babcock DF. Signaling pathways for modulation of mouse sperm motility by adenosine and catecholamine agonists. Biol Reprod 2005; 74:492-500. [PMID: 16291925 DOI: 10.1095/biolreprod.105.047837] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Capacitation of mammalian sperm, including alterations in flagellar motility, is presumably modulated by chemical signals encountered in the female reproductive tract. This work investigates signaling pathways for adenosine and catecholamine agonists that stimulate sperm kinetic activity. We show that 2-chloro-2'-deoxyadenosine and isoproterenol robustly accelerate flagellar beat frequency with EC50s near 10 and 0.05 microM, respectively. The several-fold acceleration is maximal by 60 sec. Although extracellular Ca2+ is required for agonist action on the flagellar beat, agonist treatment does not elevate sperm cytosolic [Ca2+] but does increase cAMP content. Acceleration does not require the conventional transmembrane adenylyl cyclase ADCY3, since it persists in sperm of ADCY3 knockout mice and in wild-type sperm in the presence of the inhibitors of conventional adenylyl cyclases SQ-22536, MDL-12330A, or 2', 5'-dideoxyadenosine. In contrast, the acceleration by these agents is absent in sperm that lack the predominant atypical adenylyl cyclase, SACY. Responses to these agonists are also absent in sperm from mice lacking the sperm-specific Calpha2 catalytic subunit of protein kinase A (PRKACA). Agonist responses also are strongly suppressed in wild-type sperm by the protein kinase inhibitor H-89. These results show that adenosine and catecholamine analogs activate sperm motility by mechanisms that require extracellular Ca2+, the atypical sperm adenylyl cyclase, cAMP, and protein kinase A.
Collapse
Affiliation(s)
- Sonya M Schuh
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | |
Collapse
|
329
|
Han H, Stessin A, Roberts J, Hess K, Gautam N, Kamenetsky M, Lou O, Hyde E, Nathan N, Muller WA, Buck J, Levin LR, Nathan C. Calcium-sensing soluble adenylyl cyclase mediates TNF signal transduction in human neutrophils. ACTA ACUST UNITED AC 2005; 202:353-61. [PMID: 16043520 PMCID: PMC2213086 DOI: 10.1084/jem.20050778] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Through chemical screening, we identified a pyrazolone that reversibly blocked the activation of phagocyte oxidase (phox) in human neutrophils in response to tumor necrosis factor (TNF) or formylated peptide. The pyrazolone spared activation of phox by phorbol ester or bacteria, bacterial killing, TNF-induced granule exocytosis and phox assembly, and endothelial transmigration. We traced the pyrazolone's mechanism of action to inhibition of TNF-induced intracellular Ca2+ elevations, and identified a nontransmembrane ("soluble") adenylyl cyclase (sAC) in neutrophils as a Ca2+-sensing source of cAMP. A sAC inhibitor mimicked the pyrazolone's effect on phox. Both compounds blocked TNF-induced activation of Rap1A, a phox-associated guanosine triphosphatase that is regulated by cAMP. Thus, TNF turns on phox through a Ca2+-triggered, sAC-dependent process that may involve activation of Rap1A. This pathway may offer opportunities to suppress oxidative damage during inflammation without blocking antimicrobial function.
Collapse
Affiliation(s)
- Hyunsil Han
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|