301
|
Galluzzi L, Baehrecke EH, Ballabio A, Boya P, Bravo-San Pedro JM, Cecconi F, Choi AM, Chu CT, Codogno P, Colombo MI, Cuervo AM, Debnath J, Deretic V, Dikic I, Eskelinen EL, Fimia GM, Fulda S, Gewirtz DA, Green DR, Hansen M, Harper JW, Jäättelä M, Johansen T, Juhasz G, Kimmelman AC, Kraft C, Ktistakis NT, Kumar S, Levine B, Lopez-Otin C, Madeo F, Martens S, Martinez J, Melendez A, Mizushima N, Münz C, Murphy LO, Penninger JM, Piacentini M, Reggiori F, Rubinsztein DC, Ryan KM, Santambrogio L, Scorrano L, Simon AK, Simon HU, Simonsen A, Tavernarakis N, Tooze SA, Yoshimori T, Yuan J, Yue Z, Zhong Q, Kroemer G. Molecular definitions of autophagy and related processes. EMBO J 2017; 36:1811-1836. [PMID: 28596378 PMCID: PMC5494474 DOI: 10.15252/embj.201796697] [Citation(s) in RCA: 1222] [Impact Index Per Article: 152.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/21/2017] [Accepted: 03/22/2017] [Indexed: 12/15/2022] Open
Abstract
Over the past two decades, the molecular machinery that underlies autophagic responses has been characterized with ever increasing precision in multiple model organisms. Moreover, it has become clear that autophagy and autophagy-related processes have profound implications for human pathophysiology. However, considerable confusion persists about the use of appropriate terms to indicate specific types of autophagy and some components of the autophagy machinery, which may have detrimental effects on the expansion of the field. Driven by the overt recognition of such a potential obstacle, a panel of leading experts in the field attempts here to define several autophagy-related terms based on specific biochemical features. The ultimate objective of this collaborative exchange is to formulate recommendations that facilitate the dissemination of knowledge within and outside the field of autophagy research.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Université Paris Descartes/Paris V, Paris, France
| | - Eric H Baehrecke
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Medical Genetics, Department of Pediatrics, Federico II University, Naples, Italy
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Patricia Boya
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - José Manuel Bravo-San Pedro
- Université Paris Descartes/Paris V, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- INSERM, U1138, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
| | - Francesco Cecconi
- Department of Biology, University of Tor Vergata, Rome, Italy
- Unit of Cell Stress and Survival, Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Augustine M Choi
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Charleen T Chu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Patrice Codogno
- Université Paris Descartes/Paris V, Paris, France
- Institut Necker-Enfants Malades (INEM), Paris, France
- INSERM, U1151, Paris, France
- CNRS, UMR8253, Paris, France
| | - Maria Isabel Colombo
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología (IHEM)-CONICET, Mendoza, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jayanta Debnath
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Vojo Deretic
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Ivan Dikic
- Institute of Biochemistry II, School of Medicine, Goethe University Frankfurt, Frankfurt, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt Main, Germany
- Department of Immunology and Medical Genetics, University of Split School of Medicine, Split, Croatia
| | | | - Gian Maria Fimia
- National Institute for Infectious Diseases "L. Spallanzani" IRCCS, Rome, Italy
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Frankfurt, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David A Gewirtz
- Department of Pharmacology and Toxicology and Medicine, Virginia Commonwealth University, Richmond, VA, USA
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Malene Hansen
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Marja Jäättelä
- Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Terje Johansen
- Molecular Cancer Research Group, Institute of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Gabor Juhasz
- Department of Anatomy, Cell and Developmental Biology, Eotvos Lorand University, Budapest, Hungary
- Institute of Genetics, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Alec C Kimmelman
- Department of Radiation Oncology, Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY, USA
| | - Claudine Kraft
- Max F. Perutz Laboratories, Department of Biochemistry and Cell Biology, Vienna Biocenter, University of Vienna, Vienna, Austria
| | | | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, Australia
| | - Beth Levine
- Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute (HHMI), Dallas, TX, USA
| | - Carlos Lopez-Otin
- Department de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
- Centro de Investigación en Red de Cáncer, Oviedo, Spain
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Sascha Martens
- Max F. Perutz Laboratories, Department of Biochemistry and Cell Biology, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Jennifer Martinez
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Alicia Melendez
- Department of Biology, Queens College, Queens, NY, USA
- Graduate Center, City University of New York, New York, NY, USA
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zurich, Switzerland
| | - Leon O Murphy
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Campus Vienna BioCentre, Vienna, Austria
| | - Mauro Piacentini
- Department of Biology, University of Tor Vergata, Rome, Italy
- National Institute for Infectious Diseases "L. Spallanzani" IRCCS, Rome, Italy
| | - Fulvio Reggiori
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Kevin M Ryan
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Laura Santambrogio
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Luca Scorrano
- Department of Biology, University of Padova, Padova, Italy
- Venetian Institute of Molecular Medicine, Padova, Italy
| | - Anna Katharina Simon
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Anne Simonsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Sharon A Tooze
- Molecular Cell Biology of Autophagy Laboratory, The Francis Crick Institute, London, UK
| | - Tamotsu Yoshimori
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences Osaka University, Osaka, Japan
| | - Junying Yuan
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Ludwig Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Zhenyu Yue
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Qing Zhong
- Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Guido Kroemer
- Université Paris Descartes/Paris V, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- INSERM, U1138, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- Department of Women's and Children's Health, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
- Pôle de Biologie, Hopitâl Européen George Pompidou, AP-HP, Paris, France
| |
Collapse
|
302
|
Anding AL, Baehrecke EH. Cleaning House: Selective Autophagy of Organelles. Dev Cell 2017; 41:10-22. [PMID: 28399394 DOI: 10.1016/j.devcel.2017.02.016] [Citation(s) in RCA: 449] [Impact Index Per Article: 56.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 12/12/2016] [Accepted: 02/16/2017] [Indexed: 10/19/2022]
Abstract
The selective clearance of organelles by autophagy is critical for the regulation of cellular homeostasis in organisms from yeast to humans. Removal of damaged organelles clears the cell of potentially toxic byproducts and enables reuse of organelle components for bioenergetics. Thus, defects in organelle clearance may be detrimental to the health of the cells, contributing to cancer, neurodegeneration, and inflammatory diseases. Organelle-specific autophagy can clear mitochondria, peroxisomes, lysosomes, ER, chloroplasts, and the nucleus. Here, we review our understanding of the mechanisms that regulate the clearance of organelles by autophagy and highlight gaps in our knowledge of these processes.
Collapse
Affiliation(s)
- Allyson L Anding
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Eric H Baehrecke
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
303
|
Fujiwara Y, Wada K, Kabuta T. Lysosomal degradation of intracellular nucleic acids-multiple autophagic pathways. J Biochem 2017; 161:145-154. [PMID: 28039390 DOI: 10.1093/jb/mvw085] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 10/20/2016] [Indexed: 12/26/2022] Open
Abstract
Cell metabolism can be considered as a process of serial construction and destruction of cellular components, both of which must be regulated accurately. In eukaryotic cells, a variety of cellular components are actively delivered into lysosomes/vacuoles, specialized compartments for hydrolysis of macromolecules. Such processes of 'self-eating' are called autophagy. Despite a wide variety of lysosomal/vacuolar hydrolases, much of the interest has been focused on the proteolytic functions of autophagy and less attention has been devoted to the degradation of other macromolecules such as nucleic acids. In this review, we focus on delivery and degradation of endogenous nucleic acids by autophagic systems, and discuss their molecular mechanisms and physiological/pathophysiological roles.
Collapse
Affiliation(s)
- Yuuki Fujiwara
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Keiji Wada
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Tomohiro Kabuta
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| |
Collapse
|
304
|
Glynn SE. Multifunctional Mitochondrial AAA Proteases. Front Mol Biosci 2017; 4:34. [PMID: 28589125 PMCID: PMC5438985 DOI: 10.3389/fmolb.2017.00034] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/08/2017] [Indexed: 11/28/2022] Open
Abstract
Mitochondria perform numerous functions necessary for the survival of eukaryotic cells. These activities are coordinated by a diverse complement of proteins encoded in both the nuclear and mitochondrial genomes that must be properly organized and maintained. Misregulation of mitochondrial proteostasis impairs organellar function and can result in the development of severe human diseases. ATP-driven AAA+ proteins play crucial roles in preserving mitochondrial activity by removing and remodeling protein molecules in accordance with the needs of the cell. Two mitochondrial AAA proteases, i-AAA and m-AAA, are anchored to either face of the mitochondrial inner membrane, where they engage and process an array of substrates to impact protein biogenesis, quality control, and the regulation of key metabolic pathways. The functionality of these proteases is extended through multiple substrate-dependent modes of action, including complete degradation, partial processing, or dislocation from the membrane without proteolysis. This review discusses recent advances made toward elucidating the mechanisms of substrate recognition, handling, and degradation that allow these versatile proteases to control diverse activities in this multifunctional organelle.
Collapse
Affiliation(s)
- Steven E Glynn
- Department of Biochemistry and Cell Biology, Stony Brook UniversityStony Brook, NY, United States
| |
Collapse
|
305
|
Abstract
Mitochondrial autophagy (mitophagy) is a mitochondrial quality control mechanism that selectively removes damaged mitochondria via autophagic degradation. Autophagic adaptor/receptor proteins contribute to the selective degradation of damaged mitochondria by autophagy. A part of them containing both ubiquitin binding domains and Atg8 interacting motif (AIM)/LC3 interacting region (LIR) motifs, which bind to the autophagy-related protein 8 (Atg8) family (LC3 and GABARAP family), lead ubiquitylated (damaged) mitochondria to selective removal. On the other hand, some specific outer mitochondrial membrane-anchored proteins containing AIM/LIR motif function as another type of autophagy adaptor/receptor proteins. Here I briefly summarize mechanisms of mitophagy and its related proteins.
Collapse
|
306
|
Xu G, Li Z, Xiao J, Li F, Ye W, Zhao H, Zhou Q, Zhong X. Expression pattern and functional analysis of fundc1 in rare minnow (Gobiocypris rarus). Gene 2017; 626:149-157. [PMID: 28495578 DOI: 10.1016/j.gene.2017.05.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/15/2017] [Accepted: 05/04/2017] [Indexed: 10/19/2022]
Abstract
Fundc1 is a mitochondrial outer membrane protein and plays important roles in mitochondria fission and hypoxia-induced mitophagy in mammalian cells. However, there is no relevant report of fundc1 in fish. In the present study, we cloned a 942bp fundc1 cDNA from rare minnow. The cDNA, designated as Grfundc1 cDNA, contains an open reading frame (ORF) of 459bp which encodes a polypeptide of 152 amino acid residues. Comparisons of deduced amino acid sequences demonstrated that Grfundc1 was highly homologous with those of other vertebrates. RT-PCR and real time PCR detection revealed that the transcripts of Grfundc1 were not detectable in the unfertilized eggs and had high levels at blastula and gastrula stages. Whole mount in situ hybridization analysis observed that Grfundc1 was ubiquitously expressed at early stage and later riched in specific regions, such as brain, branchial arch, eye and somite during embryogenesis. Grfundc1 was expressed in all the tissues of rare minnow adult, including brain, liver, gill, eyes, heart, kidney, intestine, muscle, testis and ovary. The expression of Grfundc1 in the brain, gill, heart and eye of rare minnow adult was significantly down-regulated by hypoxia. Similar hypoxic response was observed in the rare minnow embryos at 48hpf following hypoxia exposure. Functional analysis showed that knockdown of Grfundc1 significantly caused defects in the body axis and dorsal neural tissues of rare minnow embryos. These results indicate that Grfundc1 may play important roles in embryogenesis in fish.
Collapse
Affiliation(s)
- Gongyu Xu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Zhenzhen Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Jinwen Xiao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Fangqing Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Weiyuan Ye
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Haobin Zhao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Qingchun Zhou
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Xueping Zhong
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China.
| |
Collapse
|
307
|
Abstract
In most patients with chronic heart failure (HF), levels of circulating cytokines are elevated and the elevated cytokine levels correlate with the severity of HF and prognosis. Various stresses induce subcellular component abnormalities, such as mitochondrial damage. Damaged mitochondria induce accumulation of reactive oxygen species and apoptogenic proteins, and subcellular inflammation. The vicious cycle of subcellular component abnormalities, inflammatory cell infiltration and neurohumoral activation induces cardiomyocyte injury and death, and cardiac fibrosis, resulting in cardiac dysfunction and HF. Quality control mechanisms at both the protein and organelle levels, such as elimination of apoptogenic proteins and damaged mitochondria, maintain cellular homeostasis. An imbalance between protein synthesis and degradation is likely to result in cellular dysfunction and disease. Three major protein degradation systems have been identified, namely the cysteine protease system, autophagy, and the ubiquitin proteasome system. Autophagy was initially believed to be a non-selective process. However, recent studies have described the process of selective mitochondrial autophagy, known as mitophagy. Elimination of damaged mitochondria by autophagy is important for maintenance of cellular homeostasis. DNA and RNA degradation systems also play a critical role in regulating inflammation and maintaining cellular homeostasis mediated by damaged DNA clearance and post-transcriptional regulation, respectively. This review discusses some recent advances in understanding the role of sterile inflammation and degradation systems in HF.
Collapse
Affiliation(s)
- Kazuhiko Nishida
- Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence
| | - Kinya Otsu
- Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence
| |
Collapse
|
308
|
Phosphorylation of the mitochondrial autophagy receptor Nix enhances its interaction with LC3 proteins. Sci Rep 2017; 7:1131. [PMID: 28442745 PMCID: PMC5430633 DOI: 10.1038/s41598-017-01258-6] [Citation(s) in RCA: 220] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 03/27/2017] [Indexed: 12/24/2022] Open
Abstract
The mitophagy receptor Nix interacts with LC3/GABARAP proteins, targeting mitochondria into autophagosomes for degradation. Here we present evidence for phosphorylation-driven regulation of the Nix:LC3B interaction. Isothermal titration calorimetry and NMR indicate a ~100 fold enhanced affinity of the serine 34/35-phosphorylated Nix LC3-interacting region (LIR) to LC3B and formation of a very rigid complex compared to the non-phosphorylated sequence. Moreover, the crystal structure of LC3B in complex with the Nix LIR peptide containing glutamic acids as phosphomimetic residues and NMR experiments revealed that LIR phosphorylation stabilizes the Nix:LC3B complex via formation of two additional hydrogen bonds between phosphorylated serines of Nix LIR and Arg11, Lys49 and Lys51 in LC3B. Substitution of Lys51 to Ala in LC3B abrogates binding of a phosphomimetic Nix mutant. Functionally, serine 34/35 phosphorylation enhances autophagosome recruitment to mitochondria in HeLa cells. Together, this study provides cellular, biochemical and biophysical evidence that phosphorylation of the LIR domain of Nix enhances mitophagy receptor engagement.
Collapse
|
309
|
Tamada H, Kiryu-Seo S, Hosokawa H, Ohta K, Ishihara N, Nomura M, Mihara K, Nakamura KI, Kiyama H. Three-dimensional analysis of somatic mitochondrial dynamics in fission-deficient injured motor neurons using FIB/SEM. J Comp Neurol 2017; 525:2535-2548. [DOI: 10.1002/cne.24213] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 03/10/2017] [Accepted: 03/13/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Hiromi Tamada
- Department of Functional Anatomy & Neuroscience; Nagoya University, Graduate School of Medicine; 65 Tsurumai-cho Showa-ku Nagoya 466-8550 Japan
- Japan Society for the Promotion of Science; Tokyo 102-8472 Japan
| | - Sumiko Kiryu-Seo
- Department of Functional Anatomy & Neuroscience; Nagoya University, Graduate School of Medicine; 65 Tsurumai-cho Showa-ku Nagoya 466-8550 Japan
| | - Hiroki Hosokawa
- Department of Functional Anatomy & Neuroscience; Nagoya University, Graduate School of Medicine; 65 Tsurumai-cho Showa-ku Nagoya 466-8550 Japan
| | - Keisuke Ohta
- Department of Anatomy; Kurume University School of Medicine; Fukuoka 830-0011 Japan
| | - Naotada Ishihara
- Department of Protein Biochemistry Institute of Life Science; Kurume University; Kurume 839-0864 Japan
| | - Masatoshi Nomura
- Department of Medicine and Bioregulatory Science; Kyushu University; Fukuoka 812-8382 Japan
| | - Katsuyoshi Mihara
- Department of Molecular Biology, Graduate School of Medical Science; Kyushu University; Fukuoka 812-8382 Japan
| | - Kei-ichiro Nakamura
- Department of Anatomy; Kurume University School of Medicine; Fukuoka 830-0011 Japan
| | - Hiroshi Kiyama
- Department of Functional Anatomy & Neuroscience; Nagoya University, Graduate School of Medicine; 65 Tsurumai-cho Showa-ku Nagoya 466-8550 Japan
| |
Collapse
|
310
|
Eisenberg-Bord M, Schuldiner M. Mitochatting - If only we could be a fly on the cell wall. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1469-1480. [PMID: 28433686 DOI: 10.1016/j.bbamcr.2017.04.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 04/12/2017] [Accepted: 04/18/2017] [Indexed: 12/24/2022]
Abstract
Mitochondria, cellular metabolic hubs, perform many essential processes and are required for the production of metabolites such as ATP, iron-sulfur clusters, heme, amino acids and nucleotides. To fulfill their multiple roles, mitochondria must communicate with all other organelles to exchange small molecules, ions and lipids. Since mitochondria are largely excluded from vesicular trafficking routes, they heavily rely on membrane contact sites. Contact sites are areas of close proximity between organelles that allow efficient transfer of molecules, saving the need for slow and untargeted diffusion through the cytosol. More globally, multiple metabolic pathways require coordination between mitochondria and additional organelles and mitochondrial activity affects all other cellular entities and vice versa. Therefore, uncovering the different means of mitochondrial communication will allow us a better understanding of mitochondria and may illuminate disease processes that occur in the absence of proper cross-talk. In this review we focus on how mitochondria interact with all other organelles and emphasize how this communication is essential for mitochondrial and cellular homeostasis. This article is part of a Special Issue entitled: Membrane Contact Sites edited by Christian Ungermann and Benoit Kornmann.
Collapse
Affiliation(s)
- Michal Eisenberg-Bord
- Department of Molecular Genetics, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, 7610001 Rehovot, Israel.
| |
Collapse
|
311
|
Bhujabal Z, Birgisdottir ÅB, Sjøttem E, Brenne HB, Øvervatn A, Habisov S, Kirkin V, Lamark T, Johansen T. FKBP8 recruits LC3A to mediate Parkin-independent mitophagy. EMBO Rep 2017; 18:947-961. [PMID: 28381481 DOI: 10.15252/embr.201643147] [Citation(s) in RCA: 326] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 03/07/2017] [Accepted: 03/10/2017] [Indexed: 11/09/2022] Open
Abstract
Mitophagy, the selective removal of damaged or excess mitochondria by autophagy, is an important process in cellular homeostasis. The outer mitochondrial membrane (OMM) proteins NIX, BNIP3, FUNDC1, and Bcl2-L13 recruit ATG8 proteins (LC3/GABARAP) to mitochondria during mitophagy. FKBP8 (also known as FKBP38), a unique member of the FK506-binding protein (FKBP) family, is similarly anchored in the OMM and acts as a multifunctional adaptor with anti-apoptotic activity. In a yeast two-hybrid screen, we identified FKBP8 as an ATG8-interacting protein. Here, we map an N-terminal LC3-interacting region (LIR) motif in FKBP8 that binds strongly to LC3A both in vitro and in vivo FKBP8 efficiently recruits lipidated LC3A to damaged mitochondria in a LIR-dependent manner. The mitophagy receptors BNIP3 and NIX in contrast are unable to mediate an efficient recruitment of LC3A even after mitochondrial damage. Co-expression of FKBP8 with LC3A profoundly induces Parkin-independent mitophagy. Strikingly, even when acting as a mitophagy receptor, FKBP8 avoids degradation by escaping from mitochondria. In summary, this study identifies novel roles for FKBP8 and LC3A, which act together to induce mitophagy.
Collapse
Affiliation(s)
- Zambarlal Bhujabal
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø -The Arctic University of Norway, Tromsø, Norway
| | - Åsa B Birgisdottir
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø -The Arctic University of Norway, Tromsø, Norway
| | - Eva Sjøttem
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø -The Arctic University of Norway, Tromsø, Norway
| | - Hanne B Brenne
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø -The Arctic University of Norway, Tromsø, Norway
| | - Aud Øvervatn
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø -The Arctic University of Norway, Tromsø, Norway
| | | | | | - Trond Lamark
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø -The Arctic University of Norway, Tromsø, Norway
| | - Terje Johansen
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø -The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
312
|
|
313
|
Abstract
Mitochondrial autophagy (mitophagy) is a process that selectively degrades mitochondria via autophagy. Recent studies have shown that mitophagy plays an important role in mitochondrial homeostasis by degrading damaged or excess mitochondria. The budding yeast Saccharomyces cerevisiae is a powerful model organism that has been employed to study several biological phenomena. Recently, there has been significant progress in the understanding of mitophagy in yeast following the identification of Atg32, a mitochondrial outer membrane receptor protein for mitophagy. In this chapter, we describe protocols to study mitophagy in yeast via a genome-wide screen for mitophagy-deficient mutants using fluorescence microscopy and immunoblotting.
Collapse
|
314
|
Molecular Biology Digest of Cell Mitophagy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 332:233-258. [PMID: 28526134 DOI: 10.1016/bs.ircmb.2016.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The homeostasis of eukaryotic cells relies on efficient mitochondrial function. The control of mitochondrial quality is framed by the combination of distinct but interdependent mechanisms spanning biogenesis, regulation of dynamic network, and finely tuned degradation either through ubiquitin-proteasome system or autophagy (mitophagy). There is continuous evolution on the pathways orchestrating the mitochondrial response to stress signals and the organelle adaptation to quality control during acute and subtle dysfunctions. Notably, it remains indeed ill-defined whether active mitophagy leads to cell survival or death by defective mitochondrial degradation. Above all, uncharted is whether and how pharmacologically tackle these mechanisms may lead to conceive novel therapeutic strategies for treating conditions associated with the defective mitochondria. Here, we attempt to provide a chronological and comprehensive overview of the determining discoveries, which have led to the current knowledge of mitophagy.
Collapse
|
315
|
Karavaeva IE, Golyshev SA, Smirnova EA, Sokolov SS, Severin FF, Knorre DA. Mitochondrial depolarization in yeast zygotes inhibits clonal expansion of selfish mtDNA. J Cell Sci 2017; 130:1274-1284. [PMID: 28193734 DOI: 10.1242/jcs.197269] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 02/09/2017] [Indexed: 12/15/2022] Open
Abstract
Non-identical copies of mitochondrial DNA (mtDNA) compete with each other within a cell and the ultimate variant of mtDNA present depends on their relative replication rates. Using yeast Saccharomyces cerevisiae cells as a model, we studied the effects of mitochondrial inhibitors on the competition between wild-type mtDNA and mutant selfish mtDNA in heteroplasmic zygotes. We found that decreasing mitochondrial transmembrane potential by adding uncouplers or valinomycin changes the competition outcomes in favor of the wild-type mtDNA. This effect was significantly lower in cells with disrupted mitochondria fission or repression of the autophagy-related genes ATG8, ATG32 or ATG33, implying that heteroplasmic zygotes activate mitochondrial degradation in response to the depolarization. Moreover, the rate of mitochondrially targeted GFP turnover was higher in zygotes treated with uncoupler than in haploid cells or untreated zygotes. Finally, we showed that vacuoles of zygotes with uncoupler-activated autophagy contained DNA. Taken together, our data demonstrate that mitochondrial depolarization inhibits clonal expansion of selfish mtDNA and this effect depends on mitochondrial fission and autophagy. These observations suggest an activation of mitochondria quality control mechanisms in heteroplasmic yeast zygotes.
Collapse
Affiliation(s)
- Iuliia E Karavaeva
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Leninskiye Gory 1-73, Moscow 119991, Russia
| | - Sergey A Golyshev
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Leninskiye Gory 1-40, Moscow 119991, Russia
| | - Ekaterina A Smirnova
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Leninskiye Gory 1-40, Moscow 119991, Russia
| | - Svyatoslav S Sokolov
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Leninskiye Gory 1-40, Moscow 119991, Russia
| | - Fedor F Severin
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Leninskiye Gory 1-40, Moscow 119991, Russia
| | - Dmitry A Knorre
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Leninskiye Gory 1-40, Moscow 119991, Russia
| |
Collapse
|
316
|
Chen Z, Liu L, Cheng Q, Li Y, Wu H, Zhang W, Wang Y, Sehgal SA, Siraj S, Wang X, Wang J, Zhu Y, Chen Q. Mitochondrial E3 ligase MARCH5 regulates FUNDC1 to fine-tune hypoxic mitophagy. EMBO Rep 2017; 18:495-509. [PMID: 28104734 DOI: 10.15252/embr.201643309] [Citation(s) in RCA: 226] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/14/2016] [Accepted: 12/20/2016] [Indexed: 11/09/2022] Open
Abstract
Mitophagy is an essential process for mitochondrial quality control and turnover. It is activated by two distinct pathways, one dependent on ubiquitin and the other dependent on receptors including FUNDC1. It is not clear whether these pathways coordinate to mediate mitophagy in response to stresses, or how mitophagy receptors sense stress signals to activate mitophagy. We find that the mitochondrial E3 ligase MARCH5, but not Parkin, plays a role in regulating hypoxia-induced mitophagy by ubiquitylating and degrading FUNDC1. MARCH5 directly interacts with FUNDC1 to mediate its ubiquitylation at lysine 119 for subsequent degradation. Degradation of FUNDC1 by MARCH5 expression desensitizes mitochondria to hypoxia-induced mitophagy, whereas knockdown of endogenous MARCH5 significantly inhibits FUNDC1 degradation and enhances mitochondrial sensitivity toward mitophagy-inducing stresses. Our findings reveal a feedback regulatory mechanism to control the protein levels of a mitochondrial receptor to fine-tune mitochondrial quality.
Collapse
Affiliation(s)
- Ziheng Chen
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lei Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qi Cheng
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yanjun Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hao Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Weilin Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yueying Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Sheikh Arslan Sehgal
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Department of Biosciences, COMSATS Institute of Information Technology, Sahiwal, Pakistan
| | - Sami Siraj
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Xiaohui Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jun Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yushan Zhu
- Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, China
| | - Quan Chen
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China .,University of Chinese Academy of Sciences, Beijing, China.,Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
317
|
Ma M, Burd CG, Chi RJ. Distinct complexes of yeast Snx4 family SNX-BARs mediate retrograde trafficking of Snc1 and Atg27. Traffic 2017; 18:134-144. [PMID: 28026081 DOI: 10.1111/tra.12462] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 12/06/2016] [Accepted: 12/06/2016] [Indexed: 12/31/2022]
Abstract
The yeast SNX4 sub-family of sorting nexin containing a Bin-Amphiphysin-Rvs domain (SNX-BAR) proteins, Snx4/Atg24, Snx41 and Atg20/Snx42, are required for endocytic recycling and selective autophagy. Here, we show that Snx4 forms 2 functionally distinct heterodimers: Snx4-Atg20 and Snx4-Snx41. Each heterodimer coats an endosome-derived tubule that mediates retrograde sorting of distinct cargo; the v-SNARE, Snc1, is a cargo of the Snx4-Atg20 pathway, and Snx4-Snx41 mediates retrograde sorting of Atg27, an integral membrane protein implicated in selective autophagy. Live cell imaging of individual endosomes shows that Snx4 and the Vps5-Vps17 retromer SNX-BAR heterodimer operate concurrently on a maturing endosome. Consistent with this, the yeast dynamin family protein, Vps1, which was previously shown to promote fission of retromer-coated tubules, promotes fission of Snx4-Atg20 coated tubules. The results indicate that the yeast SNX-BAR proteins coat 3 distinct types of endosome-derived carriers that mediate endosome-to-Golgi retrograde trafficking.
Collapse
Affiliation(s)
- Mengxiao Ma
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut
| | - Christopher G Burd
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut
| | - Richard J Chi
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina
| |
Collapse
|
318
|
Abstract
LC3/GABARAP proteins (LC3/GABARAPs) are mammalian orthologues of yeast Atg8, small ubiquitin (Ub)-like proteins (UBLs) whose covalent attachment to lipid membranes is crucial for the growth and closure of the double membrane vesicle called the autophagosome. In the past decade, it was demonstrated that Atg8/LC3/GABARAPs are also required for autophagic degradation of cargos in a selective fashion. Cargo selectivity is ensured by receptor proteins, such as p62/SQSTM1, NBR1, Cue5, Atg19, NIX, Atg32, NCOA4, and FAM134B, which simultaneously bind Atg8/LC3/GABARAPs and the cargo together, thereby linking the core autophagic machinery to the target structure: a protein, an organelle, or a pathogen. LC3-interacting regions (LIRs) are short linear motifs within selective autophagy receptors and some other structural and signaling proteins (e.g., ULK1, ATG13, FIP200, and Dvl2), which mediate binding to Atg8/LC3/GABARAPs. Identification and characterization of LIR-containing proteins have provided important insights into the biology of the autophagy pathway, and studying their interactions with the core autophagy machinery represents a growing area of autophagy research. Here, we present protocols for the identification of LIR-containing proteins, i.e., by yeast-two-hybrid screening, glutathione S-transferase (GST) pulldown experiments, and peptide arrays. The use of two-dimensional peptide arrays also represents a powerful method to identify the residues of the LIR motif that are critical for binding. We also describe a biophysical method for studying interactions between Atg8/LC3/GABARAP and LIR-containing proteins and a protocol for preparation and purification of LIR peptides.
Collapse
|
319
|
Ryabovol VV, Minibayeva FV. Molecular Mechanisms of Autophagy in Plants: Role of ATG8 Proteins in Formation and Functioning of Autophagosomes. BIOCHEMISTRY (MOSCOW) 2017; 81:348-63. [PMID: 27293092 DOI: 10.1134/s0006297916040052] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Autophagy is an efficient way of degradation and removal of unwanted or damaged intracellular components in plant cells. It plays an important role in recycling of intracellular structures (during starvation, removal of cell components formed during plant development or damaged by various stress factors) and in programmed cell death. Morphologically, autophagy is characterized by the formation of double-membrane vesicles called autophagosomes, which are essential for the isolation and degradation of cytoplasmic components. Among autophagic (ATG) proteins, ATG8 from the ubiquitin-like protein family plays a key role in autophagosome formation. ATG8 is also involved in selective autophagy, fusion of autophagosome with the vacuole, and some other intracellular processes not associated with autophagy. In contrast to yeasts that carry a single ATG8 gene, plants have multigene ATG8 families. The reason for such great ATG8 diversity in plants remains unclear. It is also unknown whether all members of the ATG8 family are involved in the formation and functioning of autophagosomes. To answer these questions, the identification of the structure and the possible functions of plant proteins from ATG8 family is required. In this review, we analyze the structures of ATG8 proteins from plants and their homologs from yeast and animal cells, interactions of ATG8 proteins with functional ligands, and involvement of ATG8 proteins in different metabolic processes in eukaryotes.
Collapse
Affiliation(s)
- V V Ryabovol
- Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, Kazan, 420111, Russia
| | | |
Collapse
|
320
|
Yamasaki A, Noda NN. Structural Biology of the Cvt Pathway. J Mol Biol 2017; 429:531-542. [PMID: 28077284 DOI: 10.1016/j.jmb.2017.01.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/31/2016] [Accepted: 01/03/2017] [Indexed: 12/13/2022]
Abstract
Macroautophagy is a degradation process in which autophagosomes are generated to isolate and transport various materials, including damaged organelles and protein aggregates, as cargos to the lysosomes or vacuoles. Bulk autophagy is one of the two types of macroautophagy, which is triggered by starvation and targets non-specific cargos. The second type, that is, selective autophagy, identifies and preferentially degrades specific cargos via receptor recognition. Cytoplasm-to-vacuole targeting (Cvt) is a selective autophagy pathway that specifically transports vacuolar hydrolases into the vacuole in budding yeast cells and has been extensively studied as a model of selective autophagy. In the present review, we focused on the Cvt pathway, especially on the recent structural insights into cargo assembly, receptor recognition, and recruitment mechanisms of the Cvt machinery. Elucidating the Cvt pathway would help in understanding the basic molecular mechanisms of various types of selective autophagy.
Collapse
Affiliation(s)
- Akinori Yamasaki
- Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Research Foundation, Tokyo 141-0021, Japan
| | - Nobuo N Noda
- Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Research Foundation, Tokyo 141-0021, Japan.
| |
Collapse
|
321
|
Abstract
The dysregulation of autophagy is implicated in many pathological disorders including infections, aging, neurodegenerative diseases, and cancer. Autophagy can be precisely controlled both transcriptionally and translationally. Accumulating evidences show that the autophagy response is regulated by microRNAs, which therefore becomes subject area of interest in recent years. Herein, we give a brief introduction of the recent advancement in the regulation of microRNA on autophagy, and then we focus on the microRNA regulation of the mitophagy receptor, NIX. Finally, we present the methodology on how to study it in detail.
Collapse
|
322
|
Abstract
Elimination of damaged or surplus mitochondria is crucial to maintain cellular integrity and an energy supply-demand balance. Mitophagy serves to selectively catabolize mitochondria in a manner dependent on autophagy, and contributes to mitochondrial quality and quantity control. This degradation system is highly conserved among eukaryotes including the budding yeast, Saccharomyces cerevisiae. Therefore, analyses of mitophagy using yeast have the potential to provide insights into the common mechanisms of mitophagy. Here, we introduce experimental approaches with fluorescence microscopy and western blotting to validate mitophagy in yeast. The former is useful to visualize transport of mitochondria to the vacuole, a lytic compartment, and formation of mitochondria-containing autophagosomes. The latter allows us to quantify mitochondria degradation.
Collapse
Affiliation(s)
- Akinori Eiyama
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Koji Okamoto
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
323
|
Gómez-Sánchez R, Sánchez-Wandelmer J, Reggiori F. Monitoring the Formation of Autophagosomal Precursor Structures in Yeast Saccharomyces cerevisiae. Methods Enzymol 2017; 588:323-365. [DOI: 10.1016/bs.mie.2016.09.085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
324
|
Abstract
Mitophagy, which is the degradation of mitochondria via selective autophagic machinery, is thought to be involved in regulating the mass and function of mitochondria. Methods for detection of mitophagy have been reported for several fungal cells including some budding yeast, methylotrophic yeast, and filamentous fungi. Mitophagy in Saccharomyces cerevisiae is activated under nitrogen-poor conditions; however, the regulatory mechanism of mitophagy in most fungi has not been elucidated. Here we describe methods to monitor mitophagy in the pathogenic yeast Candida glabrata under iron-depleted conditions but not under nitrogen starvation. This observation may provide some clues to elucidate the physiological roles of mitophagy in eukaryotes.
Collapse
|
325
|
Mitophagy as a stress response in mammalian cells and in respiring S. cerevisiae. Biochem Soc Trans 2016; 44:541-5. [PMID: 27068967 DOI: 10.1042/bst20150278] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Indexed: 11/17/2022]
Abstract
The degradation of malfunctioning or superfluous mitochondria in the lysosome/vacuole is an important housekeeping function in respiring eukaryotic cells. This clearance is thought to occur by a specific form of autophagic degradation called mitophagy, and plays a role in physiological homoeostasis as well as in the progression of late-onset diseases. Although the mechanism of bulk degradation by macroautophagy is relatively well established, the selective autophagic degradation of mitochondria has only recently begun to receive significant attention. In this mini-review, we introduce mitophagy as a form of mitochondrial quality control and proceed to provide specific examples from yeast and mammalian systems. We then discuss the relationship of mitophagy to mitochondrial stress, and provide a broad mechanistic overview of the process with an emphasis on evolutionarily conserved pathways.
Collapse
|
326
|
Chen M, Chen Z, Wang Y, Tan Z, Zhu C, Li Y, Han Z, Chen L, Gao R, Liu L, Chen Q. Mitophagy receptor FUNDC1 regulates mitochondrial dynamics and mitophagy. Autophagy 2016; 12:689-702. [PMID: 27050458 DOI: 10.1080/15548627.2016.1151580] [Citation(s) in RCA: 416] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mitochondrial fragmentation due to imbalanced fission and fusion of mitochondria is a prerequisite for mitophagy, however, the exact "coupling" of mitochondrial dynamics and mitophagy remains unclear. We have previously identified that FUNDC1 recruits MAP1LC3B/LC3B (LC3) through its LC3-interacting region (LIR) motif to initiate mitophagy in mammalian cells. Here, we show that FUNDC1 interacts with both DNM1L/DRP1 and OPA1 to coordinate mitochondrial fission or fusion and mitophagy. OPA1 interacted with FUNDC1 via its Lys70 (K70) residue, and mutation of K70 to Ala (A), but not to Arg (R), abolished the interaction and promoted mitochondrial fission and mitophagy. Mitochondrial stress such as selenite or FCCP treatment caused the disassembly of the FUNDC1-OPA1 complex while enhancing DNM1L recruitment to the mitochondria. Furthermore, we observed that dephosphorylation of FUNDC1 under stress conditions promotes the dissociation of FUNDC1 from OPA1 and association with DNM1L. Our data suggest that FUNDC1 regulates both mitochondrial fission or fusion and mitophagy and mediates the "coupling" across the double membrane for mitochondrial dynamics and quality control.
Collapse
Affiliation(s)
- Ming Chen
- a State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,b University of Chinese Academy of Sciences , Beijing , China
| | - Ziheng Chen
- a State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,b University of Chinese Academy of Sciences , Beijing , China
| | - Yueying Wang
- a State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,b University of Chinese Academy of Sciences , Beijing , China
| | - Zheng Tan
- a State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,b University of Chinese Academy of Sciences , Beijing , China
| | - Chongzhuo Zhu
- a State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,b University of Chinese Academy of Sciences , Beijing , China
| | - Yanjun Li
- a State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,b University of Chinese Academy of Sciences , Beijing , China
| | - Zhe Han
- c State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University , Tianjin , China
| | - Linbo Chen
- c State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University , Tianjin , China
| | - Ruize Gao
- c State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University , Tianjin , China
| | - Lei Liu
- a State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,b University of Chinese Academy of Sciences , Beijing , China
| | - Quan Chen
- a State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,b University of Chinese Academy of Sciences , Beijing , China.,c State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University , Tianjin , China
| |
Collapse
|
327
|
Yokota H, Gomi K, Shintani T. Induction of autophagy by phosphate starvation in an Atg11-dependent manner in Saccharomyces cerevisiae. Biochem Biophys Res Commun 2016; 483:522-527. [PMID: 28013049 DOI: 10.1016/j.bbrc.2016.12.112] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 12/17/2016] [Indexed: 02/02/2023]
Abstract
Upon nutrient starvation, eukaryotic cells exploit autophagy to reconstruct cellular components. Although autophagy is induced by depletion of various nutrients such as nitrogen, carbon, amino acids, and sulfur in yeast, it was previously ambiguous whether phosphate depletion could trigger the induction of autophagy. Here, we showed that phosphate depletion induced autophagy in Saccharomyces cerevisiae, albeit to a lesser extent than nitrogen starvation. It is known that rapid inactivation of the target of rapamycin complex 1 (TORC1) signaling pathway contributes to Atg13 dephosphorylation, which is one of the cues for autophagy induction. We found that phosphate starvation caused Atg13 dephosphorylation with slower kinetics than nitrogen starvation, suggesting that poor autophagic activity during phosphate starvation was associated with slower inactivation of the TORC1 pathway. Phosphate starvation-induced autophagy requires Atg11, an adaptor protein for selective autophagy, but not its cargo recognition domain. These results suggested that Atg11 plays important roles in low-level nonselective autophagy.
Collapse
Affiliation(s)
- Hiroto Yokota
- Department of Bioindustrial Informatics and Genomics, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Katsuya Gomi
- Department of Bioindustrial Informatics and Genomics, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Takahiro Shintani
- Department of Bioindustrial Informatics and Genomics, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan.
| |
Collapse
|
328
|
Zhang W, Ren H, Xu C, Zhu C, Wu H, Liu D, Wang J, Liu L, Li W, Ma Q, Du L, Zheng M, Zhang C, Liu J, Chen Q. Hypoxic mitophagy regulates mitochondrial quality and platelet activation and determines severity of I/R heart injury. eLife 2016; 5. [PMID: 27995894 PMCID: PMC5214169 DOI: 10.7554/elife.21407] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/18/2016] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial dysfunction underlies many prevalent diseases including heart disease arising from acute ischemia/reperfusion (I/R) injury. Here, we demonstrate that mitophagy, which selectively removes damaged or unwanted mitochondria, regulated mitochondrial quality and quantity in vivo. Hypoxia induced extensive mitochondrial degradation in a FUNDC1-dependent manner in platelets, and this was blocked by in vivo administration of a cell-penetrating peptide encompassing the LIR motif of FUNDC1 only in wild-type mice. Genetic ablation of Fundc1 impaired mitochondrial quality and increased mitochondrial mass in platelets and rendered the platelets insensitive to hypoxia and the peptide. Moreover, hypoxic mitophagy in platelets protected the heart from worsening of I/R injury. This represents a new mechanism of the hypoxic preconditioning effect which reduces I/R injury. Our results demonstrate a critical role of mitophagy in mitochondrial quality control and platelet activation, and suggest that manipulation of mitophagy by hypoxia or pharmacological approaches may be a novel strategy for cardioprotection.
Collapse
Affiliation(s)
- Weilin Zhang
- The State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - He Ren
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, China
| | - Chunling Xu
- Department of Physiology, Peking University School of Basic Medical Sciences, Peking University, Beijing, China
| | - Chongzhuo Zhu
- The State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hao Wu
- The State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Dong Liu
- The State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jun Wang
- The State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lei Liu
- The State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wei Li
- Center for Medical Genetics, Beijing Children's Hospital, Capital Medical University, Beijing, China.,Beijing Pediatric Research Institute, Beijing, China.,MOE Key Laboratory of Major Diseases in Children, Beijing, China
| | - Qi Ma
- The State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, China
| | - Lei Du
- The State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ming Zheng
- Department of Physiology, Peking University School of Basic Medical Sciences, Peking University, Beijing, China
| | - Chuanmao Zhang
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, China
| | - Junling Liu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiaotong University, Shanghai, China
| | - Quan Chen
- The State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
329
|
Vlahakis A, Lopez Muniozguren N, Powers T. Calcium channel regulator Mid1 links TORC2-mediated changes in mitochondrial respiration to autophagy. J Cell Biol 2016; 215:779-788. [PMID: 27899413 PMCID: PMC5166500 DOI: 10.1083/jcb.201605030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 09/02/2016] [Accepted: 11/08/2016] [Indexed: 01/03/2023] Open
Abstract
Autophagy is a catabolic process that recycles cytoplasmic contents and is crucial for cell survival during stress. The target of rapamycin (TOR) kinase regulates autophagy as part of two distinct protein complexes, TORC1 and TORC2. TORC1 negatively regulates autophagy according to nitrogen availability. In contrast, TORC2 functions as a positive regulator of autophagy during amino acid starvation, via its target kinase Ypk1, by repressing the activity of the calcium-dependent phosphatase calcineurin and promoting the general amino acid control (GAAC) response. Precisely how TORC2-Ypk1 signaling regulates calcineurin within this pathway remains unknown. Here we demonstrate that activation of calcineurin requires Mid1, an endoplasmic reticulum-localized calcium channel regulatory protein implicated in the oxidative stress response. We find that normal mitochondrial respiration is perturbed in TORC2-Ypk1-deficient cells, which results in the accumulation of mitochondrial-derived reactive oxygen species that signal to Mid1 to activate calcineurin, thereby inhibiting the GAAC response and autophagy. These findings describe a novel pathway involving TORC2, mitochondrial oxidative stress, and calcium homeostasis for autophagy regulation.
Collapse
Affiliation(s)
- Ariadne Vlahakis
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, CA 95616
| | - Nerea Lopez Muniozguren
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, CA 95616
| | - Ted Powers
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, CA 95616
| |
Collapse
|
330
|
Levchenko M, Lorenzi I, Dudek J. The Degradation Pathway of the Mitophagy Receptor Atg32 Is Re-Routed by a Posttranslational Modification. PLoS One 2016; 11:e0168518. [PMID: 27992522 PMCID: PMC5161373 DOI: 10.1371/journal.pone.0168518] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 12/01/2016] [Indexed: 12/19/2022] Open
Abstract
The outer mitochondrial membrane protein Atg32 is the central receptor for mitophagy, the mitochondria-specific form of autophagy. Atg32 is an unstable protein, and is rapidly degraded under conditions in which mitophagy is not induced. Here we show that Atg32 undergoes a posttranslational modification upon induction of mitophagy. The modification is dependent on the core autophagic machinery, including Atg8, and on the mitophagy-specific adaptor protein Atg11. The modified Atg32 is targeted to the vacuole where it becomes stabilized when vacuolar proteases are deficient. Interestingly, we find that this degradation pathway differs from the degradation pathway of non-modified Atg32, which neither involves vacuolar proteases, nor the proteasome. These analyses reveal that a posttranslational modification discriminates a form of Atg32 targeting mitochondria for mitophagy from that, which escapes mitophagy by rapid degradation.
Collapse
Affiliation(s)
- Mariia Levchenko
- Department of Cellular Biochemistry, Georg-August University, Göttingen, Germany
| | - Isotta Lorenzi
- Department of Cellular Biochemistry, Georg-August University, Göttingen, Germany
| | - Jan Dudek
- Department of Cellular Biochemistry, Georg-August University, Göttingen, Germany
| |
Collapse
|
331
|
Abstract
Martin Graef highlights Yamashita et al.’s finding that mitophagy can occur independently of the canonical mitochondrial fission apparatus. Whether or not mitophagy depends on prior mitochondrial fragmentation by the canonical mitochondrial division machinery is controversial. In this issue, Yamashita et al. (2016. J. Cell Biol.https://doi.org/10.1083/jcb.201605093) report that mitochondrial fragments start to bud and divide from mitochondrial tubules when in tight association with forming autophagosomes, but independently of the mitochondrial division factor Drp1/Dnm1.
Collapse
Affiliation(s)
- Martin Graef
- Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany .,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
332
|
Yamashita SI, Jin X, Furukawa K, Hamasaki M, Nezu A, Otera H, Saigusa T, Yoshimori T, Sakai Y, Mihara K, Kanki T. Mitochondrial division occurs concurrently with autophagosome formation but independently of Drp1 during mitophagy. J Cell Biol 2016; 215:649-665. [PMID: 27903607 PMCID: PMC5147001 DOI: 10.1083/jcb.201605093] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/02/2016] [Accepted: 10/26/2016] [Indexed: 01/14/2023] Open
Abstract
Mitophagy is thought to play an important role in mitochondrial quality control. Mitochondrial division is believed to occur first, and autophagosome formation subsequently occurs to enwrap mitochondria as a process of mitophagy. However, there has not been any temporal analysis of mitochondrial division and autophagosome formation in mitophagy. Therefore, the relationships among these processes remain unclear. We show that the mitochondrial division factor Dnm1 in yeast or Drp1 in mammalian cells is dispensable for mitophagy. Autophagosome formation factors, such as FIP200, ATG14, and WIPIs, were essential for the mitochondrial division for mitophagy. Live-cell imaging showed that isolation membranes formed on the mitochondria. A small portion of the mitochondria then divided from parental mitochondria simultaneously with the extension of isolation membranes and autophagosome formation. These findings suggest the presence of a mitophagy process in which mitochondrial division for mitophagy is accomplished together with autophagosome formation.
Collapse
Affiliation(s)
- Shun-Ichi Yamashita
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Xiulian Jin
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Kentaro Furukawa
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Maho Hamasaki
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Akiko Nezu
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Hidenori Otera
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Tetsu Saigusa
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Tamotsu Yoshimori
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Yasuyoshi Sakai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Katsuyoshi Mihara
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Tomotake Kanki
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| |
Collapse
|
333
|
Belgareh-Touzé N, Cavellini L, Cohen MM. Ubiquitination of ERMES components by the E3 ligase Rsp5 is involved in mitophagy. Autophagy 2016; 13:114-132. [PMID: 27846375 PMCID: PMC5240830 DOI: 10.1080/15548627.2016.1252889] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Mitochondria are dynamic organelles that undergo permanent fission and fusion events. These processes play an essential role in maintaining normal cellular function. In the yeast Saccharomyces cerevisiae, the endoplasmic reticulum-mitochondrial encounter structure (ERMES) is a marker of sites of mitochondrial division, but it is also involved in a plethora of other mitochondrial functions. However, it remains unclear how these different functions are regulated. We show here that Mdm34 and Mdm12, 2 components of ERMES, are ubiquitinated by the E3 ligase Rsp5. This ubiquitination is not involved in mitochondrial dynamics or in the distribution and turnover of ERMES. Nevertheless, the ubiquitination of Mdm34 and Mdm12 was required for efficient mitophagy. We thus report here the first identification of ubiquitinated substrates participating in yeast mitophagy.
Collapse
Affiliation(s)
- Naïma Belgareh-Touzé
- a UMR8226, CNRS/UPMC, Sorbonne Université, Institut de Biologie Physico-Chimique , Paris , France
| | - Laetitia Cavellini
- a UMR8226, CNRS/UPMC, Sorbonne Université, Institut de Biologie Physico-Chimique , Paris , France
| | - Mickael M Cohen
- a UMR8226, CNRS/UPMC, Sorbonne Université, Institut de Biologie Physico-Chimique , Paris , France
| |
Collapse
|
334
|
Abstract
Autophagy is a process tightly regulated by various autophagy-related proteins. It is generally classified into non-selective and selective autophagy. Whereas non-selective autophagy is triggered when the cell is under starvation, selective autophagy is involved in eliminating dysfunctional organelles, misfolded and/or ubiquitylated proteins, and intracellular pathogens. These components are recognized by autophagy receptors and delivered to phagophores. Several selective autophagy receptors have been identified and characterized. They usually have some common domains, such as LC3-interacting- region (LIR) motif, a specific cargo interacting (ubiquitin-dependent or ubiquitin-independent) domain. Recently, structural data of these autophagy receptors has been described, which provides an insight of their function in the selective autophagic process. In this review, we summarize the most up-to-date findings about the structure-function of autophagy receptors that regulates selective autophagy.
Collapse
Affiliation(s)
- Byeong-Won Kim
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Do Hoon Kwon
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Hyun Kyu Song
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| |
Collapse
|
335
|
Liu Y, Lin J, Zhang M, Chen K, Yang S, Wang Q, Yang H, Xie S, Zhou Y, Zhang X, Chen F, Yang Y. PINK1 is required for timely cell-type specific mitochondrial clearance during Drosophila midgut metamorphosis. Dev Biol 2016; 419:357-372. [DOI: 10.1016/j.ydbio.2016.08.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 08/23/2016] [Accepted: 08/25/2016] [Indexed: 12/22/2022]
|
336
|
Wu H, Wei H, Sehgal SA, Liu L, Chen Q. Mitophagy receptors sense stress signals and couple mitochondrial dynamic machinery for mitochondrial quality control. Free Radic Biol Med 2016; 100:199-209. [PMID: 27036363 DOI: 10.1016/j.freeradbiomed.2016.03.030] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/25/2016] [Accepted: 03/25/2016] [Indexed: 12/11/2022]
Abstract
Mitochondria are essential organelles for many fundamental cellular processes, including energy production, fatty acid β-oxidation, metabolite synthesis, iron and calcium homeostasis, and programmed cell death. Mitochondrial quality thus influences not only individual cell functions but also whole body metabolism. Dysregulated mitochondrial quality control is closely associated with the progression of aging related diseases, such as cancers and neurodegenerative disorders. Mitochondrial quality is monitored at the protein, organelle and sub-organelle levels. The critical issues are how stresses such as bioenergetic stress, oxidative stress and proteotoxic stress, are sensed and how the mitochondrial events are coordinated. Recently, several receptors were identified to mediate selective mitophagy, which is essential for mitochondrial quality control in yeast and mammalian cells. It is emerging that these receptors sense distinct stress signals and couple mitophagy machineries with mitochondrial fission/fusion machineries for mitochondrial quality control. Herein, we will review recent advances in receptors mediated mitophagy and mitochondrial dynamics for mitochondrial quality control, with attempt to have an integrative view on the molecular mechanisms for mitochondrial quality control.
Collapse
Affiliation(s)
- Hao Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Huifang Wei
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Sheikh Arslan Sehgal
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Department of Biosciences, COMSATS Institute of Information Technology, Sahiwal, Pakistan
| | - Lei Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Quan Chen
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, China.
| |
Collapse
|
337
|
Antón Z, Landajuela A, Hervás JH, Montes LR, Hernández-Tiedra S, Velasco G, Goñi FM, Alonso A. Human Atg8-cardiolipin interactions in mitophagy: Specific properties of LC3B, GABARAPL2 and GABARAP. Autophagy 2016; 12:2386-2403. [PMID: 27764541 DOI: 10.1080/15548627.2016.1240856] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The phospholipid cardiolipin (CL) has been proposed to play a role in selective mitochondrial autophagy, or mitophagy. CL externalization to the outer mitochondrial membrane would act as a signal for the human Atg8 ortholog subfamily, MAP1LC3 (LC3). The latter would mediate both mitochondrial recognition and autophagosome formation, ultimately leading to removal of damaged mitochondria. We have applied quantitative biophysical techniques to the study of CL interaction with various Atg8 human orthologs, namely LC3B, GABARAPL2 and GABARAP. We have found that LC3B interacts preferentially with CL over other di-anionic lipids, that CL-LC3B binding occurs with positive cooperativity, and that the CL-LC3B interaction relies only partially on electrostatic forces. CL-induced increased membrane fluidity appears also as an important factor helping LC3B to bind CL. The LC3B C terminus remains exposed to the hydrophilic environment after protein binding to CL-enriched membranes. In intact U87MG human glioblastoma cells rotenone-induced autophagy leads to LC3B translocation to mitochondria and subsequent delivery of mitochondria to lysosomes. We have also observed that GABARAP, but not GABARAPL2, interacts with CL in vitro. However neither GABARAP nor GABARAPL2 were translocated to mitochondria in rotenone-treated U87MG cells. Thus the various human Atg8 orthologs might play specific roles in different autophagic processes.
Collapse
Affiliation(s)
- Zuriñe Antón
- a Instituto Biofisika (CSIC, UPV/EHU) and Departamento de Bioquímica y Biología Molecular , Universidad del País Vasco , Bilbao , Spain
| | - Ane Landajuela
- a Instituto Biofisika (CSIC, UPV/EHU) and Departamento de Bioquímica y Biología Molecular , Universidad del País Vasco , Bilbao , Spain
| | - Javier H Hervás
- a Instituto Biofisika (CSIC, UPV/EHU) and Departamento de Bioquímica y Biología Molecular , Universidad del País Vasco , Bilbao , Spain
| | - L Ruth Montes
- a Instituto Biofisika (CSIC, UPV/EHU) and Departamento de Bioquímica y Biología Molecular , Universidad del País Vasco , Bilbao , Spain
| | - Sonia Hernández-Tiedra
- b Departamento de Bioquímica y Biología Molecular I , Universidad Complutense , Madrid , Spain.,c Instituto de Investigaciones Sanitarias San Carlos (IdISSC) , Madrid , Spain
| | - Guillermo Velasco
- b Departamento de Bioquímica y Biología Molecular I , Universidad Complutense , Madrid , Spain.,c Instituto de Investigaciones Sanitarias San Carlos (IdISSC) , Madrid , Spain
| | - Felix M Goñi
- a Instituto Biofisika (CSIC, UPV/EHU) and Departamento de Bioquímica y Biología Molecular , Universidad del País Vasco , Bilbao , Spain
| | - Alicia Alonso
- a Instituto Biofisika (CSIC, UPV/EHU) and Departamento de Bioquímica y Biología Molecular , Universidad del País Vasco , Bilbao , Spain
| |
Collapse
|
338
|
Structural insights into the recognition of phosphorylated FUNDC1 by LC3B in mitophagy. Protein Cell 2016; 8:25-38. [PMID: 27757847 PMCID: PMC5233613 DOI: 10.1007/s13238-016-0328-8] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/12/2016] [Indexed: 01/09/2023] Open
Abstract
Mitophagy is an essential intracellular process that eliminates dysfunctional mitochondria and maintains cellular homeostasis. Mitophagy is regulated by the post-translational modification of mitophagy receptors. Fun14 domain-containing protein 1 (FUNDC1) was reported to be a new receptor for hypoxia-induced mitophagy in mammalian cells and interact with microtubule-associated protein light chain 3 beta (LC3B) through its LC3 interaction region (LIR). Moreover, the phosphorylation modification of FUNDC1 affects its binding affinity for LC3B and regulates selective mitophagy. However, the structural basis of this regulation mechanism remains unclear. Here, we present the crystal structure of LC3B in complex with a FUNDC1 LIR peptide phosphorylated at Ser17 (pS17), demonstrating the key residues of LC3B for the specific recognition of the phosphorylated or dephosphorylated FUNDC1. Intriguingly, the side chain of LC3B Lys49 shifts remarkably and forms a hydrogen bond and electrostatic interaction with the phosphate group of FUNDC1 pS17. Alternatively, phosphorylated Tyr18 (pY18) and Ser13 (pS13) in FUNDC1 significantly obstruct their interaction with the hydrophobic pocket and Arg10 of LC3B, respectively. Structural observations are further validated by mutation and isothermal titration calorimetry (ITC) assays. Therefore, our structural and biochemical results reveal a working model for the specific recognition of FUNDC1 by LC3B and imply that the reversible phosphorylation modification of mitophagy receptors may be a switch for selective mitophagy.
Collapse
|
339
|
Zhao D, Liu XM, Yu ZQ, Sun LL, Xiong X, Dong MQ, Du LL. Atg20- and Atg24-family proteins promote organelle autophagy in fission yeast. J Cell Sci 2016; 129:4289-4304. [PMID: 27737912 DOI: 10.1242/jcs.194373] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 10/06/2016] [Indexed: 12/17/2022] Open
Abstract
Autophagy cargos include not only soluble cytosolic materials but also bulky organelles, such as ER and mitochondria. In budding yeast, two proteins that contain the PX domain and the BAR domain, Atg20 and Atg24 (also known as Snx42 and Snx4, respectively) are required for organelle autophagy and contribute to general autophagy in a way that can be masked by compensatory mechanisms. It remains unclear why these proteins are important for organelle autophagy. Here, we show that in a distantly related fungal organism, the fission yeast Schizosaccharomyces pombe, autophagy of ER and mitochondria is induced by nitrogen starvation and is promoted by three Atg20- and Atg24-family proteins - Atg20, Atg24 and SPBC1711.11 (named here as Atg24b). These proteins localize at the pre-autophagosomal structure, or phagophore assembly site (PAS), during starvation. S. pombe Atg24 forms a homo-oligomer and acts redundantly with Atg20 and Atg24b, and the latter two proteins can form a hetero-oligomer. The organelle autophagy defect caused by the loss of these proteins is associated with a reduction of autophagosome size and a decrease in Atg8 accumulation at the PAS. These results provide new insights into the autophagic function of Atg20- and Atg24-family proteins.
Collapse
Affiliation(s)
- Dan Zhao
- PTN Graduate Program, School of Life Sciences, Peking University, Beijing 100871, China.,National Institute of Biological Sciences, Beijing 102206, China
| | - Xiao-Man Liu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Zhong-Qiu Yu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Ling-Ling Sun
- National Institute of Biological Sciences, Beijing 102206, China
| | | | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing 102206, China
| | - Li-Lin Du
- National Institute of Biological Sciences, Beijing 102206, China
| |
Collapse
|
340
|
Li W, Chen M, Wang E, Hu L, Hawkesford MJ, Zhong L, Chen Z, Xu Z, Li L, Zhou Y, Guo C, Ma Y. Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice. BMC Genomics 2016; 17:797. [PMID: 27733118 PMCID: PMC5062844 DOI: 10.1186/s12864-016-3113-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 09/23/2016] [Indexed: 01/07/2023] Open
Abstract
Background Autophagy is a cellular degradation process that is highly evolutionarily-conserved in yeast, plants, and animals. In plants, autophagy plays important roles in regulating intracellular degradation and recycling of amino acids in response to nutrient starvation, senescence, and other environmental stresses. Foxtail millet (Setaria italica) has strong resistance to stresses and has been proposed as an ideal material for use in the study of the physiological mechanisms of abiotic stress tolerance in plants. Although the genome sequence of foxtail millet (Setaria italica) is available, the characteristics and functions of abiotic stress-related genes remain largely unknown for this species. Results A total of 37 putative ATG (autophagy-associated genes) genes in the foxtail millet genome were identified. Gene duplication analysis revealed that both segmental and tandem duplication events have played significant roles in the expansion of the ATG gene family in foxtail millet. Comparative synteny mapping between the genomes of foxtail millet and rice suggested that the ATG genes in both species have common ancestors, as their ATG genes were primarily located in similar syntenic regions. Gene expression analysis revealed the induced expression of 31 SiATG genes by one or more phytohormone treatments, 26 SiATG genes by drought, salt and cold, 24 SiATG genes by darkness and 25 SiATG genes by nitrogen starvation. Results of qRT-PCR showing that among 37 SiATG genes, the expression level of SiATG8a was the highest after nitrogen starvation treatment 24 h, suggesting its potential role in tolerance to nutrient starvation. Moreover, the heterologous expression of SiATG8a in rice improved nitrogen starvation tolerance. Compared to wild type rice, the transgenic rice performed better and had higher aboveground total nitrogen content when the plants were grown under nitrogen starvation conditions. Conclusions Our results deepen understanding about the characteristics and functions of ATG genes in foxtail millet and also identify promising new genetic resources that should be of use in future efforts to develop varieties of foxtail millet and other crop species that have resistance to nitrogen deficiency stress. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3113-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Weiwei Li
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang, 150025, China
| | - Ming Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Erhui Wang
- College of Life Sciences, Northwest A&F University, Yangling, Shanxi, 712100, China
| | - Liqin Hu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Malcolm J Hawkesford
- Plant Biology and Crop Science Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Li Zhong
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Zhu Chen
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230000, China
| | - Zhaoshi Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Liancheng Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Yongbin Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Changhong Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang, 150025, China.
| | - Youzhi Ma
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China.
| |
Collapse
|
341
|
Identification of Yeast Mutants Exhibiting Altered Sensitivity to Valinomycin and Nigericin Demonstrate Pleiotropic Effects of Ionophores on Cellular Processes. PLoS One 2016; 11:e0164175. [PMID: 27711131 PMCID: PMC5053447 DOI: 10.1371/journal.pone.0164175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 09/21/2016] [Indexed: 01/04/2023] Open
Abstract
Ionophores such as valinomycin and nigericin are potent tools for studying the impact of ion perturbance on cellular functions. To obtain a broader picture about molecular components involved in mediating the effects of these drugs on yeast cells under respiratory growth conditions, we performed a screening of the haploid deletion mutant library covering the Saccharomyces cerevisiae nonessential genes. We identified nearly 130 genes whose absence leads either to resistance or to hypersensitivity to valinomycin and/or nigericin. The processes affected by their protein products range from mitochondrial functions through ribosome biogenesis and telomere maintenance to vacuolar biogenesis and stress response. Comparison of the results with independent screenings performed by our and other laboratories demonstrates that although mitochondria might represent the main target for both ionophores, cellular response to the drugs is very complex and involves an intricate network of proteins connecting mitochondria, vacuoles, and other membrane compartments.
Collapse
|
342
|
Abstract
Many vital metabolic pathways take place in mitochondria, but some of the associated processes generate toxic substances including reactive oxygen species that can damage proteins and DNA. Therefore, it is critical to maintain normally functioning mitochondria to achieve proper cellular homeostasis. Along these lines, mitochondrial dysfunction is associated with numerous diseases, and mitochondria quality control is essential for cell survival. The maintenance of functioning mitochondria is particularly important in aging cells, and there is a strong relationship between cellular aging and dysfunctional mitochondria. The best characterized pathway that is responsible for the elimination of damaged mitochondria is mitophagy, a selective type of autophagy. In yeast, mitophagy requires the mitochondrial protein Atg32 to serve as a receptor for recognition and sequestration by a phagophore. Although conventional mitophagy has been extensively studied, recent research suggests that an unconventional pathway, which is independent of Atg32, contributes to the removal of mitochondria.
Collapse
Affiliation(s)
- Zhiyuan Yao
- a Life Sciences Institute and Department of Molecular , Cellular and Developmental Biology , University of Michigan , Ann Arbor , MI , USA
| | - Daniel J Klionsky
- a Life Sciences Institute and Department of Molecular , Cellular and Developmental Biology , University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|
343
|
Waliullah TM, Yeasmin AM, Kaneko A, Koike N, Terasawa M, Totsuka T, Ushimaru T. Rim15 and Sch9 kinases are involved in induction of autophagic degradation of ribosomes in budding yeast. Biosci Biotechnol Biochem 2016; 81:307-310. [PMID: 27659307 DOI: 10.1080/09168451.2016.1234928] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Autophagic degradation of ribosomes is promoted by nutrient starvation and inactivation of target of rapamycin complex 1 (TORC1). Here we show that selective autophagic degradation of ribosomes (called ribophagy) after TORC1 inactivation requires the specific autophagy receptor Atg11. Rim15 protein kinase upregulated ribophagy, while it downregulated non-selective degradation of ribosomes.
Collapse
Affiliation(s)
| | - Akter Mst Yeasmin
- a Graduate School of Science and Technology , Shizuoka University , Shizuoka , Japan
| | - Atsuki Kaneko
- b Department of Science, Graduate School of Integrated Science and Technology , Shizuoka University , Shizuoka , Japan
| | - Naoki Koike
- b Department of Science, Graduate School of Integrated Science and Technology , Shizuoka University , Shizuoka , Japan
| | - Mashu Terasawa
- c Faculty of Science , Shizuoka University , Shizuoka , Japan
| | - Takaya Totsuka
- c Faculty of Science , Shizuoka University , Shizuoka , Japan
| | - Takashi Ushimaru
- a Graduate School of Science and Technology , Shizuoka University , Shizuoka , Japan.,b Department of Science, Graduate School of Integrated Science and Technology , Shizuoka University , Shizuoka , Japan.,c Faculty of Science , Shizuoka University , Shizuoka , Japan
| |
Collapse
|
344
|
Abstract
Apart from energy transformation, mitochondria play important signaling roles. In
yeast, mitochondrial signaling relies on several molecular cascades. However, it
is not clear how a cell detects a particular mitochondrial malfunction. The
problem is that there are many possible manifestations of mitochondrial
dysfunction. For example, exposure to the specific antibiotics can either
decrease (inhibitors of respiratory chain) or increase (inhibitors of
ATP-synthase) mitochondrial transmembrane potential. Moreover, even in the
absence of the dysfunctions, a cell needs feedback from mitochondria to
coordinate mitochondrial biogenesis and/or removal by mitophagy during the
division cycle. To cope with the complexity, only a limited set of compounds is
monitored by yeast cells to estimate mitochondrial functionality. The known
examples of such compounds are ATP, reactive oxygen species, intermediates of
amino acids synthesis, short peptides, Fe-S clusters and heme, and also the
precursor proteins which fail to be imported by mitochondria. On one hand, the
levels of these molecules depend not only on mitochondria. On the other hand,
these substances are recognized by the cytosolic sensors which transmit the
signals to the nucleus leading to general, as opposed to mitochondria-specific,
transcriptional response. Therefore, we argue that both ways of
mitochondria-to-nucleus communication in yeast are mostly (if not completely)
unspecific, are mediated by the cytosolic signaling machinery and strongly
depend on cellular metabolic state.
Collapse
Affiliation(s)
- Dmitry A Knorre
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Leninskiye Gory 1-40, Moscow 119991, Russia
| | - Svyatoslav S Sokolov
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Leninskiye Gory 1-40, Moscow 119991, Russia
| | - Anna N Zyrina
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Leninskiye Gory 1-73, Moscow 119991, Russia
| | - Fedor F Severin
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Leninskiye Gory 1-40, Moscow 119991, Russia. ; Institute of Mitoengineering, Moscow State University, Leninskiye Gory 1, Moscow 119991, Russia
| |
Collapse
|
345
|
Kuang Y, Ma K, Zhou C, Ding P, Zhu Y, Chen Q, Xia B. Structural basis for the phosphorylation of FUNDC1 LIR as a molecular switch of mitophagy. Autophagy 2016; 12:2363-2373. [PMID: 27653272 DOI: 10.1080/15548627.2016.1238552] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Mitophagy is a fundamental process that determines mitochondrial quality and homeostasis. Several mitophagy receptors, including the newly identified FUNDC1, mediate selective removal of damaged or superfluous mitochondria through their specific interaction with LC3. However, the precise mechanism by which this interaction is regulated to initiate mitophagy is not understood. Here, we report the solution structure of LC3 in complex with a peptide containing the FUNDC1 LC3-interacting region (LIR) motif. The structure reveals a noncanonical LC3-LIR binding conformation, in which the third LIR residue (Val20) is also inserted into the hydrophobic pocket of LC3, together with the conserved residues Tyr18 and Leu21. This enables Tyr18 to be positioned near Asp19 of LC3, and thus phosphorylation of Tyr18 significantly weakens the binding affinity due to electrostatic repulsion. Functional analysis revealed that mitochondrial targeting of the LIR-containing cytosolic portion of FUNDC1 is necessary and sufficient to initiate mitophagy when Tyr18 is unphosphorylated, even in the absence of mitochondrial fragmentation. Thus, we demonstrated that phosphorylation of Tyr18 of FUNDC1 serves as a molecular switch for mitophagy. This may represent a novel target for therapeutic intervention.
Collapse
Affiliation(s)
- Yao Kuang
- a Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, School of Life Sciences, Peking University , Beijing , China
| | - Kaili Ma
- b State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University , Tianjin , China
| | - Changqian Zhou
- b State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University , Tianjin , China
| | - Pengfei Ding
- a Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, School of Life Sciences, Peking University , Beijing , China
| | - Yushan Zhu
- b State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University , Tianjin , China
| | - Quan Chen
- b State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University , Tianjin , China.,c State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| | - Bin Xia
- a Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, School of Life Sciences, Peking University , Beijing , China
| |
Collapse
|
346
|
Rüb C, Wilkening A, Voos W. Mitochondrial quality control by the Pink1/Parkin system. Cell Tissue Res 2016; 367:111-123. [PMID: 27586587 DOI: 10.1007/s00441-016-2485-8] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/05/2016] [Indexed: 02/08/2023]
Abstract
Mitochondrial dysfunction represents a prominent pathological feature in many neurodegenerative diseases, particularly in Parkinson's disease (PD). Mutations in the genes encoding the proteins Pink1 and Parkin have been identified as genetic risk factors in familiar cases of PD. Research during the last decade has identified both proteins as crucial components of an organellar quality control system that contributes to the maintenance of mitochondrial function in healthy cells. The Pink1/Parkin system acts as a sensor for mitochondrial quality and is activated, in particular, after the loss of the electric potential across the inner mitochondrial membrane. Pink1 molecules accumulate at the surface of damaged mitochondria to recruit and activate Parkin, which, in turn, elicits a signaling pathway eventually leading to the autophagic removal of the damaged organelles. This review summarizes recent advances in our knowledge of the functional role of the Pink1/Parkin system in preventing the accumulation of damaged mitochondria by mitophagy.
Collapse
Affiliation(s)
- Cornelia Rüb
- Institut für Biochemie und Molekularbiologie (IBMB), Universität Bonn, Nussallee 11, 53115, Bonn, Germany
| | - Anne Wilkening
- Institut für Biochemie und Molekularbiologie (IBMB), Universität Bonn, Nussallee 11, 53115, Bonn, Germany
| | - Wolfgang Voos
- Institut für Biochemie und Molekularbiologie (IBMB), Universität Bonn, Nussallee 11, 53115, Bonn, Germany.
| |
Collapse
|
347
|
Bai T, Wang F, Zheng Y, Liang Q, Wang Y, Kong J, Cai L. Myocardial redox status, mitophagy and cardioprotection: a potential way to amend diabetic heart? Clin Sci (Lond) 2016; 130:1511-1521. [PMID: 27433024 DOI: 10.1042/cs20160168] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/18/2016] [Indexed: 12/25/2022]
Abstract
Diabetic cardiomyopathy (DCM) is one of the major cardiovascular complications in diabetes that increase the mortality of diabetic patients. Mechanisms underlying DCM have not been fully elucidated, hindering targeted design of effective strategies to delay or treat DCM. Mitochondrial dysfunction is recognized as the driving force for the pathogenesis of DCM; therefore, maintaining cardiac mitochondrial quality is crucial for DCM prevention. Mitophagy is the process by which cells degrade abnormal or superfluous mitochondria in order to correct mitochondrial dysfunction, improve mitochondrial quality and maintain cardiac homoeostasis. Although the roles of mitophagy in various cardiomyopathies have been suggested, it remains largely unknown how the process is regulated and whether it is altered in the diabetic heart. In this review, we summarize currently available studies that investigate mitophagy in the heart, including its pathways, features and protective roles in several situations, including DCM. Due to limited data about mitophagy in diabetic hearts, future studies are required to gain a deeper understanding of the regulatory mechanisms of mitophagy in the heart and to develop mitophagy-based strategies for protecting the heart from diabetic injury.
Collapse
Affiliation(s)
- Tao Bai
- Departments of Cardiovascular Center and Geriatric Medicine, the first Hospital of Jilin University, Changchun 130021, China Kosair Children's Hospital Research Institute, the Departments of Pediatrics, Radiation Oncology, the University of Louisville, Louisville, KY 40202, U.S.A
| | - Fan Wang
- Department of Internal Medicine, People's Hospital of Jilin Province, Changchun 130021, Jilin, China
| | - Yang Zheng
- Departments of Cardiovascular Center and Geriatric Medicine, the first Hospital of Jilin University, Changchun 130021, China
| | - Qiangrong Liang
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, U.S.A
| | - Yuehui Wang
- Departments of Cardiovascular Center and Geriatric Medicine, the first Hospital of Jilin University, Changchun 130021, China
| | - Jian Kong
- Departments of Cardiovascular Center and Geriatric Medicine, the first Hospital of Jilin University, Changchun 130021, China
| | - Lu Cai
- Kosair Children's Hospital Research Institute, the Departments of Pediatrics, Radiation Oncology, the University of Louisville, Louisville, KY 40202, U.S.A.
| |
Collapse
|
348
|
Farré JC, Subramani S. Mechanistic insights into selective autophagy pathways: lessons from yeast. Nat Rev Mol Cell Biol 2016; 17:537-52. [PMID: 27381245 PMCID: PMC5549613 DOI: 10.1038/nrm.2016.74] [Citation(s) in RCA: 300] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Autophagy has burgeoned rapidly as a field of study because of its evolutionary conservation, the diversity of intracellular cargoes degraded and recycled by this machinery, the mechanisms involved, as well as its physiological relevance to human health and disease. This self-eating process was initially viewed as a non-selective mechanism used by eukaryotic cells to degrade and recycle macromolecules in response to stress; we now know that various cellular constituents, as well as pathogens, can also undergo selective autophagy. In contrast to non-selective autophagy, selective autophagy pathways rely on a plethora of selective autophagy receptors (SARs) that recognize and direct intracellular protein aggregates, organelles and pathogens for specific degradation. Although SARs themselves are not highly conserved, their modes of action and the signalling cascades that activate and regulate them are. Recent yeast studies have provided novel mechanistic insights into selective autophagy pathways, revealing principles of how various cargoes can be marked and targeted for selective degradation.
Collapse
Affiliation(s)
- Jean-Claude Farré
- University of California, 3326 Bonner Hall, 9500 Gilman Drive, San Diego, La Jolla, California 92093-0322, USA
| | - Suresh Subramani
- University of California, 3326 Bonner Hall, 9500 Gilman Drive, San Diego, La Jolla, California 92093-0322, USA
| |
Collapse
|
349
|
Guo X, Sun X, Hu D, Wang YJ, Fujioka H, Vyas R, Chakrapani S, Joshi AU, Luo Y, Mochly-Rosen D, Qi X. VCP recruitment to mitochondria causes mitophagy impairment and neurodegeneration in models of Huntington's disease. Nat Commun 2016; 7:12646. [PMID: 27561680 PMCID: PMC5007466 DOI: 10.1038/ncomms12646] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 07/20/2016] [Indexed: 02/06/2023] Open
Abstract
Mutant Huntingtin (mtHtt) causes neurodegeneration in Huntington's disease (HD) by evoking defects in the mitochondria, but the underlying mechanisms remains elusive. Our proteomic analysis identifies valosin-containing protein (VCP) as an mtHtt-binding protein on the mitochondria. Here we show that VCP is selectively translocated to the mitochondria, where it is bound to mtHtt in various HD models. Mitochondria-accumulated VCP elicits excessive mitophagy, causing neuronal cell death. Blocking mtHtt/VCP mitochondrial interaction with a peptide, HV-3, abolishes VCP translocation to the mitochondria, corrects excessive mitophagy and reduces cell death in HD mouse- and patient-derived cells and HD transgenic mouse brains. Treatment with HV-3 reduces behavioural and neuropathological phenotypes of HD in both fragment- and full-length mtHtt transgenic mice. Our findings demonstrate a causal role of mtHtt-induced VCP mitochondrial accumulation in HD pathogenesis and suggest that the peptide HV-3 might be a useful tool for developing new therapeutics to treat HD.
Collapse
Affiliation(s)
- Xing Guo
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - XiaoYan Sun
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Di Hu
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Ya-Juan Wang
- Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Hisashi Fujioka
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Rajan Vyas
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Sudha Chakrapani
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Amit Umesh Joshi
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94043, USA
| | - Yu Luo
- Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94043, USA
| | - Xin Qi
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
- Center for Mitochondrial Disease, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| |
Collapse
|
350
|
Abstract
Mitochondrial antiviral signalling protein (MAVS) acts as a critical adaptor protein to transduce antiviral signalling by physically interacting with activated RIG-I and MDA5 receptors. MAVS executes its functions at the outer membrane of mitochondria to regulate downstream antiviral signalling, indicating that the mitochondria provides a functional platform for innate antiviral signalling transduction. However, little is known about whether and how MAVS-mediated antiviral signalling contributes to mitochondrial homeostasis. Here we show that the activation of MAVS is sufficient to induce autophagic signalling, which may mediate the turnover of the damaged mitochondria. Importantly, we find MAVS directly interacts with LC3 through its LC3-binding motif ‘YxxI’, suggesting that MAVS might act as an autophagy receptor to mediate mitochondrial turnover upon excessive activation of RLR signalling. Furthermore, we provide evidence that both MAVS self-aggregation and its interaction with TRAF2/6 proteins are important for MAVS-mediated mitochondrial turnover. Collectively, our findings suggest that MAVS acts as a potential receptor for mitochondria-associated autophagic signalling to maintain mitochondrial homeostasis.
Collapse
|