301
|
García-Rubio ML, Pérez-Calero C, Barroso SI, Tumini E, Herrera-Moyano E, Rosado IV, Aguilera A. The Fanconi Anemia Pathway Protects Genome Integrity from R-loops. PLoS Genet 2015; 11:e1005674. [PMID: 26584049 PMCID: PMC4652862 DOI: 10.1371/journal.pgen.1005674] [Citation(s) in RCA: 224] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/26/2015] [Indexed: 11/19/2022] Open
Abstract
Co-transcriptional RNA-DNA hybrids (R loops) cause genome instability. To prevent harmful R loop accumulation, cells have evolved specific eukaryotic factors, one being the BRCA2 double-strand break repair protein. As BRCA2 also protects stalled replication forks and is the FANCD1 member of the Fanconi Anemia (FA) pathway, we investigated the FA role in R loop-dependent genome instability. Using human and murine cells defective in FANCD2 or FANCA and primary bone marrow cells from FANCD2 deficient mice, we show that the FA pathway removes R loops, and that many DNA breaks accumulated in FA cells are R loop-dependent. Importantly, FANCD2 foci in untreated and MMC-treated cells are largely R loop dependent, suggesting that the FA functions at R loop-containing sites. We conclude that co-transcriptional R loops and R loop-mediated DNA damage greatly contribute to genome instability and that one major function of the FA pathway is to protect cells from R loops. R loops are co-transcriptional RNA-DNA hybrids that can have a physiological role in transcription and replication, but also may be a major threat to genome stability. To avoid the deleterious effects of R loops, specific factors prevent their formation or facilitate their removal. The double-strand break repair factor BRCA2 is among those that prevent R-loop accumulation. As BRCA2 also protects stalled replication forks and is the FANCD1 member of the Fanconi Anemia (FA) pathway, we studied the role of this pathway in preventing R loop accumulation and R loop-dependent genome instability. Using human and murine cells defective in FANCD2 or FANCA and primary bone marrow cells derived from FANCD2 deficient mice, we show that the FA pathway removes R loops and that many DNA breaks accumulated in FA cells are R loop-dependent. Importantly, FANCD2 foci accumulation is largely R loop-dependent, suggesting that the FA functions at R loop-containing sites. The FA pathway is primarily known as a DNA interstrand crosslinks (ICLs) repair pathway. Our findings reveal a novel function of the FA pathway in preventing R loop-mediated DNA damage, providing new clues to understand the relevance of R-loops as a natural source of genome instability and the way they are processed.
Collapse
Affiliation(s)
- María L. García-Rubio
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla, Seville, Spain
| | - Carmen Pérez-Calero
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla, Seville, Spain
| | - Sonia I. Barroso
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla, Seville, Spain
| | - Emanuela Tumini
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla, Seville, Spain
| | - Emilia Herrera-Moyano
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla, Seville, Spain
| | - Iván V. Rosado
- Instituto de Biomedicina de Sevilla-Hospital Virgen del Rocío, Seville, Spain
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla, Seville, Spain
- * E-mail:
| |
Collapse
|
302
|
Chen PB, Chen HV, Acharya D, Rando OJ, Fazzio TG. R loops regulate promoter-proximal chromatin architecture and cellular differentiation. Nat Struct Mol Biol 2015; 22:999-1007. [PMID: 26551076 PMCID: PMC4677832 DOI: 10.1038/nsmb.3122] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 10/09/2015] [Indexed: 12/11/2022]
Abstract
Numerous chromatin-remodeling factors are regulated by interactions with RNA, although the contexts and functions of RNA binding are poorly understood. Here we show that R-loops, RNA:DNA hybrids consisting of nascent transcripts hybridized to template DNA, modulate the binding of two key chromatin regulatory complexes, Tip60–p400 and polycomb repressive complex 2 (PRC2) in mouse embryonic stem cells (ESCs). Like PRC2, the Tip60–p400 histone acetyltransferase complex binds to nascent transcripts, but unlike PRC2, transcription promotes chromatin binding by Tip60–p400. Interestingly, we observed higher Tip60–p400 and lower PRC2 levels at genes marked by promoter-proximal R-loops. Furthermore, disruption of R-loops broadly reduced Tip60–p400 and increased PRC2 occupancy genome-wide. Consistent with these alterations, ESCs with reduced R-loops exhibited impaired differentiation. These results show that R-loops act both positively and negatively to modulate the recruitment of key pluripotency regulators.
Collapse
Affiliation(s)
- Poshen B Chen
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Hsiuyi V Chen
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Diwash Acharya
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Oliver J Rando
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Thomas G Fazzio
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
303
|
Yadav P, Owiti N, Kim N. The role of topoisomerase I in suppressing genome instability associated with a highly transcribed guanine-rich sequence is not restricted to preventing RNA:DNA hybrid accumulation. Nucleic Acids Res 2015; 44:718-29. [PMID: 26527723 PMCID: PMC4737143 DOI: 10.1093/nar/gkv1152] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/19/2015] [Indexed: 11/21/2022] Open
Abstract
Highly transcribed guanine-run containing sequences, in Saccharomyces cerevisiae, become unstable when topoisomerase I (Top1) is disrupted. Topological changes, such as the formation of extended RNA:DNA hybrids or R-loops or non-canonical DNA structures including G-quadruplexes has been proposed as the major underlying cause of the transcription-linked genome instability. Here, we report that R-loop accumulation at a guanine-rich sequence, which is capable of assembling into the four-stranded G4 DNA structure, is dependent on the level and the orientation of transcription. In the absence of Top1 or RNase Hs, R-loops accumulated to substantially higher extent when guanine-runs were located on the non-transcribed strand. This coincides with the orientation where higher genome instability was observed. However, we further report that there are significant differences between the disruption of RNase Hs and Top1 in regards to the orientation-specific elevation in genome instability at the guanine-rich sequence. Additionally, genome instability in Top1-deficient yeasts is not completely suppressed by removal of negative supercoils and further aggravated by expression of mutant Top1. Together, our data provide a strong support for a function of Top1 in suppressing genome instability at the guanine-run containing sequence that goes beyond preventing the transcription-associated RNA:DNA hybrid formation.
Collapse
Affiliation(s)
- Puja Yadav
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Norah Owiti
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Nayun Kim
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
304
|
Schwab RA, Nieminuszczy J, Shah F, Langton J, Lopez Martinez D, Liang CC, Cohn MA, Gibbons RJ, Deans AJ, Niedzwiedz W. The Fanconi Anemia Pathway Maintains Genome Stability by Coordinating Replication and Transcription. Mol Cell 2015; 60:351-61. [PMID: 26593718 PMCID: PMC4644232 DOI: 10.1016/j.molcel.2015.09.012] [Citation(s) in RCA: 278] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/20/2015] [Accepted: 09/16/2015] [Indexed: 01/27/2023]
Abstract
DNA replication stress can cause chromosomal instability and tumor progression. One key pathway that counteracts replication stress and promotes faithful DNA replication consists of the Fanconi anemia (FA) proteins. However, how these proteins limit replication stress remains largely elusive. Here we show that conflicts between replication and transcription activate the FA pathway. Inhibition of transcription or enzymatic degradation of transcription-associated R-loops (DNA:RNA hybrids) suppresses replication fork arrest and DNA damage occurring in the absence of a functional FA pathway. Furthermore, we show that simple aldehydes, known to cause leukemia in FA-deficient mice, induce DNA:RNA hybrids in FA-depleted cells. Finally, we demonstrate that the molecular mechanism by which the FA pathway limits R-loop accumulation requires FANCM translocase activity. Failure to activate a response to physiologically occurring DNA:RNA hybrids may critically contribute to the heightened cancer predisposition and bone marrow failure of individuals with mutated FA proteins. Replication and transcription collisions cause genome instability in FA A functional FA pathway protects cells from unscheduled accumulation of R-loops Transcription inhibition or R-loop removal restores normal replication in FA cells FANCM resolves R-loops via its translocase activity
Collapse
Affiliation(s)
- Rebekka A Schwab
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Jadwiga Nieminuszczy
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Fenil Shah
- Genome Stability Unit, St. Vincent's Institute, Fitzroy, VIC 3065, Australia
| | - Jamie Langton
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | | | - Chih-Chao Liang
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Martin A Cohn
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Richard J Gibbons
- Medical Research Council Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Andrew J Deans
- Genome Stability Unit, St. Vincent's Institute, Fitzroy, VIC 3065, Australia
| | - Wojciech Niedzwiedz
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK.
| |
Collapse
|
305
|
Santos-Pereira JM, Aguilera A. R loops: new modulators of genome dynamics and function. Nat Rev Genet 2015; 16:583-97. [PMID: 26370899 DOI: 10.1038/nrg3961] [Citation(s) in RCA: 553] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
R loops are nucleic acid structures composed of an RNA-DNA hybrid and a displaced single-stranded DNA. Recently, evidence has emerged that R loops occur more often in the genome and have greater physiological relevance, including roles in transcription and chromatin structure, than was previously predicted. Importantly, however, R loops are also a major threat to genome stability. For this reason, several DNA and RNA metabolism factors prevent R-loop formation in cells. Dysfunction of these factors causes R-loop accumulation, which leads to replication stress, genome instability, chromatin alterations or gene silencing, phenomena that are frequently associated with cancer and a number of genetic diseases. We review the current knowledge of the mechanisms controlling R loops and their putative relationship with disease.
Collapse
Affiliation(s)
- José M Santos-Pereira
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla, Av. Américo Vespucio s/n, Seville 41092, Spain
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla, Av. Américo Vespucio s/n, Seville 41092, Spain
| |
Collapse
|
306
|
Structures and Functions of the Multiple KOW Domains of Transcription Elongation Factor Spt5. Mol Cell Biol 2015. [PMID: 26217010 DOI: 10.1128/mcb.00520-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The eukaryotic Spt4-Spt5 heterodimer forms a higher-order complex with RNA polymerase II (and I) to regulate transcription elongation. Extensive genetic and functional data have revealed diverse roles of Spt4-Spt5 in coupling elongation with chromatin modification and RNA-processing pathways. A mechanistic understanding of the diverse functions of Spt4-Spt5 is hampered by challenges in resolving the distribution of functions among its structural domains, including the five KOW domains in Spt5, and a lack of their high-resolution structures. We present high-resolution crystallographic results demonstrating that distinct structures are formed by the first through third KOW domains (KOW1-Linker1 [K1L1] and KOW2-KOW3) of Saccharomyces cerevisiae Spt5. The structure reveals that K1L1 displays a positively charged patch (PCP) on its surface, which binds nucleic acids in vitro, as shown in biochemical assays, and is important for in vivo function, as shown in growth assays. Furthermore, assays in yeast have shown that the PCP has a function that partially overlaps that of Spt4. Synthesis of our results with previous evidence suggests a model in which Spt4 and the K1L1 domain of Spt5 form functionally overlapping interactions with nucleic acids upstream of the transcription bubble, and this mechanism may confer robustness on processes associated with transcription elongation.
Collapse
|
307
|
Abstract
Homology-dependent exchange of genetic information between DNA molecules has a profound impact on the maintenance of genome integrity by facilitating error-free DNA repair, replication, and chromosome segregation during cell division as well as programmed cell developmental events. This chapter will focus on homologous mitotic recombination in budding yeast Saccharomyces cerevisiae. However, there is an important link between mitotic and meiotic recombination (covered in the forthcoming chapter by Hunter et al. 2015) and many of the functions are evolutionarily conserved. Here we will discuss several models that have been proposed to explain the mechanism of mitotic recombination, the genes and proteins involved in various pathways, the genetic and physical assays used to discover and study these genes, and the roles of many of these proteins inside the cell.
Collapse
|
308
|
Tresini M, Warmerdam DO, Kolovos P, Snijder L, Vrouwe MG, Demmers JA, van IJcken WF, Grosveld FG, Medema RH, Hoeijmakers JH, Mullenders LH, Vermeulen W, Marteijn JA. The core spliceosome as target and effector of non-canonical ATM signalling. Nature 2015; 523:53-8. [PMID: 26106861 PMCID: PMC4501432 DOI: 10.1038/nature14512] [Citation(s) in RCA: 201] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 05/11/2015] [Indexed: 01/19/2023]
Abstract
In response to DNA damage, tissue homoeostasis is ensured by protein networks promoting DNA repair, cell cycle arrest or apoptosis. DNA damage response signalling pathways coordinate these processes, partly by propagating gene-expression-modulating signals. DNA damage influences not only the abundance of messenger RNAs, but also their coding information through alternative splicing. Here we show that transcription-blocking DNA lesions promote chromatin displacement of late-stage spliceosomes and initiate a positive feedback loop centred on the signalling kinase ATM. We propose that initial spliceosome displacement and subsequent R-loop formation is triggered by pausing of RNA polymerase at DNA lesions. In turn, R-loops activate ATM, which signals to impede spliceosome organization further and augment ultraviolet-irradiation-triggered alternative splicing at the genome-wide level. Our findings define R-loop-dependent ATM activation by transcription-blocking lesions as an important event in the DNA damage response of non-replicating cells, and highlight a key role for spliceosome displacement in this process.
Collapse
Affiliation(s)
- Maria Tresini
- Department of Genetics, Cancer Genomics Netherlands, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Daniël O. Warmerdam
- Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Petros Kolovos
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Loes Snijder
- Department of Genetics, Cancer Genomics Netherlands, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mischa G. Vrouwe
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeroen A.A. Demmers
- Center for Biomics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Frank G. Grosveld
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - René H. Medema
- Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jan H.J. Hoeijmakers
- Department of Genetics, Cancer Genomics Netherlands, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Leon H.F. Mullenders
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Wim Vermeulen
- Department of Genetics, Cancer Genomics Netherlands, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jurgen A. Marteijn
- Department of Genetics, Cancer Genomics Netherlands, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
309
|
Dvořáčková M, Fojtová M, Fajkus J. Chromatin dynamics of plant telomeres and ribosomal genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:18-37. [PMID: 25752316 DOI: 10.1111/tpj.12822] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/03/2015] [Accepted: 03/03/2015] [Indexed: 05/03/2023]
Abstract
Telomeres and genes encoding 45S ribosomal RNA (rDNA) are frequently located adjacent to each other on eukaryotic chromosomes. Although their primary roles are different, they show striking similarities with respect to their features and additional functions. Both genome domains have remarkably dynamic chromatin structures. Both are hypersensitive to dysfunctional histone chaperones, responding at the genomic and epigenomic levels. Both generate non-coding transcripts that, in addition to their epigenetic roles, may induce gross chromosomal rearrangements. Both give rise to chromosomal fragile sites, as their replication is intrinsically problematic. However, at the same time, both are essential for maintenance of genomic stability and integrity. Here we discuss the structural and functional inter-connectivity of telomeres and rDNA, with a focus on recent results obtained in plants.
Collapse
Affiliation(s)
- Martina Dvořáčková
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Kamenice 5, 62500, Brno, Czech Republic
- Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265, Brno, Czech Republic
| | - Miloslava Fojtová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Kamenice 5, 62500, Brno, Czech Republic
- Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265, Brno, Czech Republic
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Kamenice 5, 62500, Brno, Czech Republic
- Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265, Brno, Czech Republic
| |
Collapse
|
310
|
Wickramasinghe VO, Laskey RA. Control of mammalian gene expression by selective mRNA export. Nat Rev Mol Cell Biol 2015; 16:431-42. [PMID: 26081607 DOI: 10.1038/nrm4010] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nuclear export of mRNAs is a crucial step in the regulation of gene expression, linking transcription in the nucleus to translation in the cytoplasm. Although important components of the mRNA export machinery are well characterized, such as transcription-export complexes TREX and TREX-2, recent work has shown that, in some instances, mammalian mRNA export can be selective and can regulate crucial biological processes such as DNA repair, gene expression, maintenance of pluripotency, haematopoiesis, proliferation and cell survival. Such findings show that mRNA export is an unexpected, yet potentially important, mechanism for the control of gene expression and of the mammalian transcriptome.
Collapse
Affiliation(s)
- Vihandha O Wickramasinghe
- Medical Research Centre (MRC) Cancer Unit, Hutchison/MRC Research Centre, Box 197, Biomedical Campus, Cambridge CB2 0XZ, UK
| | - Ronald A Laskey
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| |
Collapse
|
311
|
Macheret M, Halazonetis TD. DNA replication stress as a hallmark of cancer. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2015; 10:425-48. [PMID: 25621662 DOI: 10.1146/annurev-pathol-012414-040424] [Citation(s) in RCA: 547] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human cancers share properties referred to as hallmarks, among which sustained proliferation, escape from apoptosis, and genomic instability are the most pervasive. The sustained proliferation hallmark can be explained by mutations in oncogenes and tumor suppressors that regulate cell growth, whereas the escape from apoptosis hallmark can be explained by mutations in the TP53, ATM, or MDM2 genes. A model to explain the presence of the three hallmarks listed above, as well as the patterns of genomic instability observed in human cancers, proposes that the genes driving cell proliferation induce DNA replication stress, which, in turn, generates genomic instability and selects for escape from apoptosis. Here, we review the data that support this model, as well as the mechanisms by which oncogenes induce replication stress. Further, we argue that DNA replication stress should be considered as a hallmark of cancer because it likely drives cancer development and is very prevalent.
Collapse
Affiliation(s)
- Morgane Macheret
- Department of Molecular Biology, University of Geneva, 1205 Geneva, Switzerland;
| | | |
Collapse
|
312
|
Petzold C, Marceau AH, Miller KH, Marqusee S, Keck JL. Interaction with Single-stranded DNA-binding Protein Stimulates Escherichia coli Ribonuclease HI Enzymatic Activity. J Biol Chem 2015; 290:14626-36. [PMID: 25903123 PMCID: PMC4505529 DOI: 10.1074/jbc.m115.655134] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 04/16/2015] [Indexed: 12/21/2022] Open
Abstract
Single-stranded (ss) DNA-binding proteins (SSBs) bind and protect ssDNA intermediates formed during replication, recombination, and repair reactions. SSBs also directly interact with many different genome maintenance proteins to stimulate their enzymatic activities and/or mediate their proper cellular localization. We have identified an interaction formed between Escherichia coli SSB and ribonuclease HI (RNase HI), an enzyme that hydrolyzes RNA in RNA/DNA hybrids. The RNase HI·SSB complex forms by RNase HI binding the intrinsically disordered C terminus of SSB (SSB-Ct), a mode of interaction that is shared among all SSB interaction partners examined to date. Residues that comprise the SSB-Ct binding site are conserved among bacterial RNase HI enzymes, suggesting that RNase HI·SSB complexes are present in many bacterial species and that retaining the interaction is important for its cellular function. A steady-state kinetic analysis shows that interaction with SSB stimulates RNase HI activity by lowering the reaction Km. SSB or RNase HI protein variants that disrupt complex formation nullify this effect. Collectively our findings identify a direct RNase HI/SSB interaction that could play a role in targeting RNase HI activity to RNA/DNA hybrid substrates within the genome.
Collapse
Affiliation(s)
- Christine Petzold
- From the Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706 and
| | - Aimee H Marceau
- From the Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706 and
| | - Katherine H Miller
- California Institute for Quantitative Biosciences, QB3 and Department of Molecular and Cell Biology, University of California, Berkeley, California 94720
| | - Susan Marqusee
- California Institute for Quantitative Biosciences, QB3 and Department of Molecular and Cell Biology, University of California, Berkeley, California 94720
| | - James L Keck
- From the Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706 and
| |
Collapse
|
313
|
Sollier J, Cimprich KA. Breaking bad: R-loops and genome integrity. Trends Cell Biol 2015; 25:514-22. [PMID: 26045257 DOI: 10.1016/j.tcb.2015.05.003] [Citation(s) in RCA: 272] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 11/18/2022]
Abstract
R-loops, nucleic acid structures consisting of an RNA-DNA hybrid and displaced single-stranded (ss) DNA, are ubiquitous in organisms from bacteria to mammals. First described in bacteria where they initiate DNA replication, it now appears that R-loops regulate diverse cellular processes such as gene expression, immunoglobulin (Ig) class switching, and DNA repair. Changes in R-loop regulation induce DNA damage and genome instability, and recently it was shown that R-loops are associated with neurodegenerative disorders. We discuss recent developments in the field; in particular, the regulation and effects of R-loops in cells, their effect on genomic and epigenomic stability, and their potential contribution to the origin of diseases including cancer and neurodegenerative disorders.
Collapse
Affiliation(s)
- Julie Sollier
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Karlene A Cimprich
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
314
|
Replication stress in Mammalian cells and its consequences for mitosis. Genes (Basel) 2015; 6:267-98. [PMID: 26010955 PMCID: PMC4488665 DOI: 10.3390/genes6020267] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 05/15/2015] [Accepted: 05/18/2015] [Indexed: 12/23/2022] Open
Abstract
The faithful transmission of genetic information to daughter cells is central to maintaining genomic stability and relies on the accurate and complete duplication of genetic material during each cell cycle. However, the genome is routinely exposed to endogenous and exogenous stresses that can impede the progression of replication. Such replication stress can be an early cause of cancer or initiate senescence. Replication stress, which primarily occurs during S phase, results in consequences during mitosis, jeopardizing chromosome segregation and, in turn, genomic stability. The traces of replication stress can be detected in the daughter cells during G1 phase. Alterations in mitosis occur in two types: 1) local alterations that correspond to breaks, rearrangements, intertwined DNA molecules or non-separated sister chromatids that are confined to the region of the replication dysfunction; 2) genome-wide chromosome segregation resulting from centrosome amplification (although centrosomes do not contain DNA), which amplifies the local replication stress to the entire genome. Here, we discuss the endogenous causes of replication perturbations, the mechanisms of replication fork restart and the consequences for mitosis, chromosome segregation and genomic stability.
Collapse
|
315
|
Costantino L, Koshland D. The Yin and Yang of R-loop biology. Curr Opin Cell Biol 2015; 34:39-45. [PMID: 25938907 DOI: 10.1016/j.ceb.2015.04.008] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/25/2015] [Accepted: 04/15/2015] [Indexed: 01/22/2023]
Abstract
RNA performs diverse functions in cells, directing translation, modulating transcription and catalyzing enzymatic reactions. Remarkably RNA can also anneal to its genomic template co- or post-transcriptionally to generate an RNA-DNA hybrid and a displaced single-stranded DNA. These unusual nucleic acid structures are called R-loops. Studies in the last decades concentrated on the detrimental effects of R-loop formation, particularly on genome stability. In fact, R-loops are thought to play a role in several human diseases like cancer and neurodegenerative syndromes. But recent data has revealed that R-loops can also have a positive impact on cell processes, like regulating gene expression, chromosome structure and DNA repair. Here we summarize our current understanding of the formation and dissolution of R-loops, and discuss their negative and positive impact on genome structure and function.
Collapse
Affiliation(s)
- Lorenzo Costantino
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, CA 94720, United States
| | - Douglas Koshland
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, CA 94720, United States.
| |
Collapse
|
316
|
Abstract
The immunoglobulin diversification processes of somatic hypermutation and class switch recombination critically rely on transcription-coupled targeting of activation-induced cytidine deaminase (AID) to Ig loci in activated B lymphocytes. AID catalyzes deamination of cytidine deoxynucleotides on exposed single-stranded DNA. In addition to driving immunoglobulin diversity, promiscuous targeting of AID mutagenic activity poses a deleterious threat to genomic stability. Recent genome-wide studies have uncovered pervasive AID activity throughout the B cell genome. It is increasingly apparent that AID activity is frequently targeted to genomic loci undergoing early transcription termination where RNA exosome promotes the resolution of stalled transcription complexes via cotranscriptional RNA degradation mechanisms. Here, we review aspects and consequences of eukaryotic transcription that lead to early termination, RNA exosome recruitment, and ultimately targeting of AID mutagenic activity.
Collapse
Affiliation(s)
- Evangelos Pefanis
- Department of Microbiology & Immunology, College of Physicians and Surgeons, Columbia University, New York, USA.
| | - Uttiya Basu
- Department of Microbiology & Immunology, College of Physicians and Surgeons, Columbia University, New York, USA.
| |
Collapse
|
317
|
Abstract
Innate immune sensing of nucleic acids provides resistance against viral infection and is important in the aetiology of autoimmune diseases. AGS (Aicardi-Goutières syndrome) is a monogenic autoinflammatory disorder mimicking in utero viral infection of the brain. Phenotypically and immunologically, it also exhibits similarities to SLE (systemic lupus erythaematosus). Three of the six genes identified to date encode components of the ribonuclease H2 complex. As all six encode enzymes involved in nucleic acid metabolism, it is thought that pathogenesis involves the accumulation of nucleic acids to stimulate an inappropriate innate immune response. Given that AGS is a monogenic disorder with a defined molecular basis, we use it as a model for common autoimmune disease to investigate cellular processes and molecular pathways responsible for nucleic-acid-mediated autoimmunity. These investigations have also provided fundamental insights into the biological roles of the RNase H2 endonuclease enzyme. In the present article, we describe how human RNase H2 and its role in AGS were first identified, and give an overview of subsequent structural, biochemical, cellular and developmental studies of this enzyme. These investigations have culminated in establishing this enzyme as a key genome-surveillance enzyme required for mammalian genome stability.
Collapse
|
318
|
Abstract
Approximately 40 human diseases are associated with expansion of repeat sequences. These expansions can reside within coding or non-coding parts of the genes, affecting the host gene function. The presence of such expansions results in the production of toxic RNA and/or protein or causes transcriptional repression and silencing of the host gene. Although the molecular mechanisms of expansion diseases are not well understood, mounting evidence suggests that transcription through expanded repeats plays an essential role in disease pathology. The presence of an expansion can affect RNA polymerase transcription, leading to dysregulation of transcription-associated processes, such as RNA splicing, formation of RNA/DNA hybrids (R-loops), production of antisense, short non-coding and bidirectional RNA transcripts. In the present review, we summarize current advances in this field and discuss possible roles of transcriptional defects in disease pathology.
Collapse
|
319
|
Lombraña R, Almeida R, Álvarez A, Gómez M. R-loops and initiation of DNA replication in human cells: a missing link? Front Genet 2015; 6:158. [PMID: 25972891 PMCID: PMC4412123 DOI: 10.3389/fgene.2015.00158] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 04/08/2015] [Indexed: 11/13/2022] Open
Abstract
The unanticipated widespread occurrence of stable hybrid DNA/RNA structures (R-loops) in human cells and the increasing evidence of their involvement in several human malignancies have invigorated the research on R-loop biology in recent years. Here we propose that physiological R-loop formation at CpG island promoters can contribute to DNA replication origin specification at these regions, the most efficient replication initiation sites in mammalian cells. Quite likely, this occurs by the strand-displacement reaction activating the formation of G-quadruplex structures that target the origin recognition complex (ORC) in the single-stranded conformation. In agreement with this, we found that R-loops co-localize with the ORC within the same CpG island region in a significant fraction of these efficient replication origins, precisely at the position displaying the highest density of G4 motifs. This scenario builds on the connection between transcription and replication in human cells and suggests that R-loop dysregulation at CpG island promoter-origins might contribute to the phenotype of DNA replication abnormalities and loss of genome integrity detected in cancer cells.
Collapse
Affiliation(s)
- Rodrigo Lombraña
- Functional Organization of the Genome Group, Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid , Madrid, Spain
| | - Ricardo Almeida
- Functional Organization of the Genome Group, Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid , Madrid, Spain
| | - Alba Álvarez
- Functional Organization of the Genome Group, Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid , Madrid, Spain
| | - María Gómez
- Functional Organization of the Genome Group, Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid , Madrid, Spain
| |
Collapse
|
320
|
Hatchi E, Skourti-Stathaki K, Ventz S, Pinello L, Yen A, Kamieniarz-Gdula K, Dimitrov S, Pathania S, McKinney KM, Eaton ML, Kellis M, Hill SJ, Parmigiani G, Proudfoot NJ, Livingston DM. BRCA1 recruitment to transcriptional pause sites is required for R-loop-driven DNA damage repair. Mol Cell 2015; 57:636-647. [PMID: 25699710 PMCID: PMC4351672 DOI: 10.1016/j.molcel.2015.01.011] [Citation(s) in RCA: 345] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 11/21/2014] [Accepted: 01/05/2015] [Indexed: 11/07/2022]
Abstract
The mechanisms contributing to transcription-associated genomic instability are both complex and incompletely understood. Although R-loops are normal transcriptional intermediates, they are also associated with genomic instability. Here, we show that BRCA1 is recruited to R-loops that form normally over a subset of transcription termination regions. There it mediates the recruitment of a specific, physiological binding partner, senataxin (SETX). Disruption of this complex led to R-loop-driven DNA damage at those loci as reflected by adjacent γ-H2AX accumulation and ssDNA breaks within the untranscribed strand of relevant R-loop structures. Genome-wide analysis revealed widespread BRCA1 binding enrichment at R-loop-rich termination regions (TRs) of actively transcribed genes. Strikingly, within some of these genes in BRCA1 null breast tumors, there are specific insertion/deletion mutations located close to R-loop-mediated BRCA1 binding sites within TRs. Thus, BRCA1/SETX complexes support a DNA repair mechanism that addresses R-loop-based DNA damage at transcriptional pause sites. Endogenous BRCA1 and senataxin (SETX) interact in a BRCA1-driven process BRCA1/SETX complexes are recruited to R-loop-associated termination regions (TRs) BRCA1/SETX complexes suppress transcriptional DNA damage arising at nearby R-loops BRCA1 breast cancers reveal indel mutations near BRCA1 TR binding regions
Collapse
Affiliation(s)
- Elodie Hatchi
- Department of Genetics, Harvard Medical School, Boston, MA 02215, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA.
| | | | - Steffen Ventz
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA
| | - Luca Pinello
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA
| | - Angela Yen
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Computer Science and Artificial Intelligence Laboratory (CSAIL), MIT, Cambridge, MA 02139, USA
| | | | - Stoil Dimitrov
- Department of Genetics, Harvard Medical School, Boston, MA 02215, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Shailja Pathania
- Department of Genetics, Harvard Medical School, Boston, MA 02215, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Kristine M McKinney
- Department of Genetics, Harvard Medical School, Boston, MA 02215, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Matthew L Eaton
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Computer Science and Artificial Intelligence Laboratory (CSAIL), MIT, Cambridge, MA 02139, USA
| | - Manolis Kellis
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Computer Science and Artificial Intelligence Laboratory (CSAIL), MIT, Cambridge, MA 02139, USA
| | - Sarah J Hill
- Department of Genetics, Harvard Medical School, Boston, MA 02215, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Giovanni Parmigiani
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA
| | | | - David M Livingston
- Department of Genetics, Harvard Medical School, Boston, MA 02215, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA.
| |
Collapse
|
321
|
Role for RNA:DNA hybrids in origin-independent replication priming in a eukaryotic system. Proc Natl Acad Sci U S A 2015; 112:5779-84. [PMID: 25902524 DOI: 10.1073/pnas.1501769112] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA replication initiates at defined replication origins along eukaryotic chromosomes, ensuring complete genome duplication within a single S-phase. A key feature of replication origins is their ability to control the onset of DNA synthesis mediated by DNA polymerase-α and its intrinsic RNA primase activity. Here, we describe a novel origin-independent replication process that is mediated by transcription. RNA polymerase I transcription constraints lead to persistent RNA:DNA hybrids (R-loops) that prime replication in the ribosomal DNA locus. Our results suggest that eukaryotic genomes have developed tools to prevent R-loop-mediated replication events that potentially contribute to copy number variation, particularly relevant to carcinogenesis.
Collapse
|
322
|
Cusanelli E, Chartrand P. Telomeric repeat-containing RNA TERRA: a noncoding RNA connecting telomere biology to genome integrity. Front Genet 2015; 6:143. [PMID: 25926849 PMCID: PMC4396414 DOI: 10.3389/fgene.2015.00143] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 03/25/2015] [Indexed: 12/15/2022] Open
Abstract
Telomeres are dynamic nucleoprotein structures that protect the ends of chromosomes from degradation and activation of DNA damage response. For this reason, telomeres are essential to genome integrity. Chromosome ends are enriched in heterochromatic marks and proper organization of telomeric chromatin is important to telomere stability. Despite their heterochromatic state, telomeres are transcribed giving rise to long noncoding RNAs (lncRNA) called TERRA (telomeric repeat-containing RNA). TERRA molecules play critical roles in telomere biology, including regulation of telomerase activity and heterochromatin formation at chromosome ends. Emerging evidence indicate that TERRA transcripts form DNA-RNA hybrids at chromosome ends which can promote homologous recombination among telomeres, delaying cellular senescence and sustaining genome instability. Intriguingly, TERRA RNA-telomeric DNA hybrids are involved in telomere length homeostasis of telomerase-negative cancer cells. Furthermore, TERRA transcripts play a role in the DNA damage response (DDR) triggered by dysfunctional telomeres. We discuss here recent developments on TERRA's role in telomere biology and genome integrity, and its implication in cancer.
Collapse
Affiliation(s)
- Emilio Cusanelli
- Max F. Perutz Laboratories, Department of Chromosome Biology, University of Vienna Vienna, Austria
| | - Pascal Chartrand
- Department of Biochemistry and Molecular Medicine, Université de Montréal Montréal, QC, Canada
| |
Collapse
|
323
|
Decoding mechanisms by which silent codon changes influence protein biogenesis and function. Int J Biochem Cell Biol 2015; 64:58-74. [PMID: 25817479 DOI: 10.1016/j.biocel.2015.03.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 03/02/2015] [Accepted: 03/14/2015] [Indexed: 02/07/2023]
Abstract
SCOPE Synonymous codon usage has been a focus of investigation since the discovery of the genetic code and its redundancy. The occurrences of synonymous codons vary between species and within genes of the same genome, known as codon usage bias. Today, bioinformatics and experimental data allow us to compose a global view of the mechanisms by which the redundancy of the genetic code contributes to the complexity of biological systems from affecting survival in prokaryotes, to fine tuning the structure and function of proteins in higher eukaryotes. Studies analyzing the consequences of synonymous codon changes in different organisms have revealed that they impact nucleic acid stability, protein levels, structure and function without altering amino acid sequence. As such, synonymous mutations inevitably contribute to the pathogenesis of complex human diseases. Yet, fundamental questions remain unresolved regarding the impact of silent mutations in human disorders. In the present review we describe developments in this area concentrating on mechanisms by which synonymous mutations may affect protein function and human health. PURPOSE This synopsis illustrates the significance of synonymous mutations in disease pathogenesis. We review the different steps of gene expression affected by silent mutations, and assess the benefits and possible harmful effects of codon optimization applied in the development of therapeutic biologics. PHYSIOLOGICAL AND MEDICAL RELEVANCE Understanding mechanisms by which synonymous mutations contribute to complex diseases such as cancer, neurodegeneration and genetic disorders, including the limitations of codon-optimized biologics, provides insight concerning interpretation of silent variants and future molecular therapies.
Collapse
|
324
|
Meinel DM, Sträßer K. Co-transcriptional mRNP formation is coordinated within a molecular mRNP packaging station in S. cerevisiae. Bioessays 2015; 37:666-77. [PMID: 25801414 PMCID: PMC5054900 DOI: 10.1002/bies.201400220] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In eukaryotes, the messenger RNA (mRNA), the blueprint of a protein‐coding gene, is processed and packaged into a messenger ribonucleoprotein particle (mRNP) by mRNA‐binding proteins in the nucleus. The steps of mRNP formation – transcription, processing, packaging, and the orchestrated release of the export‐competent mRNP from the site of transcription for nuclear mRNA export – are tightly coupled to ensure a highly efficient and regulated process. The importance of highly accurate nuclear mRNP formation is illustrated by the fact that mutations in components of this pathway lead to cellular inviability or to severe diseases in metazoans. We hypothesize that efficient mRNP formation is realized by a molecular mRNP packaging station, which is built by several recruitment platforms and coordinates the individual steps of mRNP formation.
Collapse
Affiliation(s)
- Dominik M Meinel
- Bavarian Health and Food Safety Authority, Oberschleißheim, Germany
| | - Katja Sträßer
- Institute of Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
325
|
Yadav P, Harcy V, Argueso JL, Dominska M, Jinks-Robertson S, Kim N. Topoisomerase I plays a critical role in suppressing genome instability at a highly transcribed G-quadruplex-forming sequence. PLoS Genet 2014; 10:e1004839. [PMID: 25473964 PMCID: PMC4256205 DOI: 10.1371/journal.pgen.1004839] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 10/20/2014] [Indexed: 11/18/2022] Open
Abstract
G-quadruplex or G4 DNA is a non-B secondary DNA structure that comprises a stacked array of guanine-quartets. Cellular processes such as transcription and replication can be hindered by unresolved DNA secondary structures potentially endangering genome maintenance. As G4-forming sequences are highly frequent throughout eukaryotic genomes, it is important to define what factors contribute to a G4 motif becoming a hotspot of genome instability. Using a genetic assay in Saccharomyces cerevisiae, we previously demonstrated that a potential G4-forming sequence derived from a guanine-run containing immunoglobulin switch Mu (Sμ) region becomes highly unstable when actively transcribed. Here we describe assays designed to survey spontaneous genome rearrangements initiated at the Sμ sequence in the context of large genomic areas. We demonstrate that, in the absence of Top1, a G4 DNA-forming sequence becomes a strong hotspot of gross chromosomal rearrangements and loss of heterozygosity associated with mitotic recombination within the ∼20 kb or ∼100 kb regions of yeast chromosome V or III, respectively. Transcription confers a critical strand bias since genome rearrangements at the G4-forming Sμ are elevated only when the guanine-runs are located on the non-transcribed strand. The direction of replication and transcription, when in a head-on orientation, further contribute to the elevated genome instability at a potential G4 DNA-forming sequence. The implications of our identification of Top1 as a critical factor in suppression of instability associated with potential G4 DNA-forming sequences are discussed. Genome instability is not evenly distributed, but rather is highly elevated at certain genomic loci containing DNA sequences that can fold into non-canonical secondary structures. The four-stranded G-quadruplex or G4 DNA is one such DNA structure capable of instigating transcription and/or replication obstruction and subsequent genome instability. In this study, we used a reporter system to quantitatively measure the level of genome instability occurring at a G4 DNA motif integrated into the yeast genome. We showed that the disruption of Topoisomerase I function significantly elevated various types of genome instability at the highly transcribed G4 motif generating loss of heterozygosity and copy number alterations (deletions and duplications), both of which are frequently observed in cancer genomes.
Collapse
Affiliation(s)
- Puja Yadav
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Victoria Harcy
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Juan Lucas Argueso
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Margaret Dominska
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Sue Jinks-Robertson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Nayun Kim
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
326
|
Felipe-Abrio I, Lafuente-Barquero J, García-Rubio ML, Aguilera A. RNA polymerase II contributes to preventing transcription-mediated replication fork stalls. EMBO J 2014; 34:236-50. [PMID: 25452497 DOI: 10.15252/embj.201488544] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Transcription is a major contributor to genome instability. A main cause of transcription-associated instability relies on the capacity of transcription to stall replication. However, we know little of the possible role, if any, of the RNA polymerase (RNAP) in this process. Here, we analyzed 4 specific yeast RNAPII mutants that show different phenotypes of genetic instability including hyper-recombination, DNA damage sensitivity and/or a strong dependency on double-strand break repair functions for viability. Three specific alleles of the RNAPII core, rpb1-1, rpb1-S751F and rpb9∆, cause a defect in replication fork progression, compensated for by additional origin firing, as the main action responsible for instability. The transcription elongation defects of rpb1-S751F and rpb9∆ plus our observation that rpb1-1 causes RNAPII retention on chromatin suggest that RNAPII could participate in facilitating fork progression upon a transcription-replication encounter. Our results imply that the RNAPII or ancillary factors actively help prevent transcription-associated genome instability.
Collapse
Affiliation(s)
- Irene Felipe-Abrio
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla, Seville, Spain
| | - Juan Lafuente-Barquero
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla, Seville, Spain
| | - María L García-Rubio
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla, Seville, Spain
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
327
|
Sollier J, Stork CT, García-Rubio ML, Paulsen RD, Aguilera A, Cimprich KA. Transcription-coupled nucleotide excision repair factors promote R-loop-induced genome instability. Mol Cell 2014; 56:777-85. [PMID: 25435140 DOI: 10.1016/j.molcel.2014.10.020] [Citation(s) in RCA: 431] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/07/2014] [Accepted: 10/22/2014] [Indexed: 11/19/2022]
Abstract
R-loops, consisting of an RNA-DNA hybrid and displaced single-stranded DNA, are physiological structures that regulate various cellular processes occurring on chromatin. Intriguingly, changes in R-loop dynamics have also been associated with DNA damage accumulation and genome instability; however, the mechanisms underlying R-loop-induced DNA damage remain unknown. Here we demonstrate in human cells that R-loops induced by the absence of diverse RNA processing factors, including the RNA/DNA helicases Aquarius (AQR) and Senataxin (SETX), or by the inhibition of topoisomerase I, are actively processed into DNA double-strand breaks (DSBs) by the nucleotide excision repair endonucleases XPF and XPG. Surprisingly, DSB formation requires the transcription-coupled nucleotide excision repair (TC-NER) factor Cockayne syndrome group B (CSB), but not the global genome repair protein XPC. These findings reveal an unexpected and potentially deleterious role for TC-NER factors in driving R-loop-induced DNA damage and genome instability.
Collapse
Affiliation(s)
- Julie Sollier
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Caroline Townsend Stork
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - María L García-Rubio
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla, Avenida Américo Vespucio, 41092 Seville, Spain
| | - Renee D Paulsen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla, Avenida Américo Vespucio, 41092 Seville, Spain
| | - Karlene A Cimprich
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
328
|
Deyle DR, Hansen RS, Cornea AM, Li LB, Burt AA, Alexander IE, Sandstrom RS, Stamatoyannopoulos JA, Wei CL, Russell DW. A genome-wide map of adeno-associated virus-mediated human gene targeting. Nat Struct Mol Biol 2014; 21:969-75. [PMID: 25282150 PMCID: PMC4405182 DOI: 10.1038/nsmb.2895] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 08/27/2014] [Indexed: 02/03/2023]
Abstract
To determine which genomic features promote homologous recombination, we created a genome-wide map of gene targeting sites. We used an adeno-associated virus vector to target identical loci introduced as transcriptionally active retroviral vectors. A comparison of ~2,000 targeted and untargeted sites showed that targeting occurred throughout the human genome and was not influenced by the presence of nearby CpG islands, sequence repeats or DNase I-hypersensitive sites. Targeted sites were preferentially located within transcription units, especially when the target loci were transcribed in the opposite orientation to their surrounding chromosomal genes. We determined the impact of DNA replication by mapping replication forks, which revealed a preference for recombination at target loci transcribed toward an incoming fork. Our results constitute the first genome-wide screen of gene targeting in mammalian cells and demonstrate a strong recombinogenic effect of colliding polymerases.
Collapse
Affiliation(s)
- David R Deyle
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - R Scott Hansen
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Anda M Cornea
- Department of Molecular and Cellular Biology, University of Washington, Seattle, Washington, USA
| | - Li B Li
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Amber A Burt
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Ian E Alexander
- Gene Therapy Research Unit, Children's Medical Research Institute, Westmead, New South Wales, Australia
| | - Richard S Sandstrom
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | | | - Chia-Lin Wei
- Genomic Technologies Department, Joint Genome Institute, Walnut Creek, California, USA
| | - David W Russell
- 1] Department of Medicine, University of Washington, Seattle, Washington, USA. [2] Department of Biochemistry, University of Washington, Seattle, Washington, USA
| |
Collapse
|
329
|
Chinnam M, Wang Y, Zhang X, Gold DL, Khoury T, Nikitin AY, Foster BA, Li Y, Bshara W, Morrison CD, Payne Ondracek RD, Mohler JL, Goodrich DW. The Thoc1 ribonucleoprotein and prostate cancer progression. J Natl Cancer Inst 2014; 106:dju306. [PMID: 25296641 DOI: 10.1093/jnci/dju306] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The majority of newly diagnosed prostate cancers will remain indolent, but distinguishing between aggressive and indolent disease is imprecise. This has led to the important clinical problem of overtreatment. THOC1 encodes a nuclear ribonucleoprotein whose expression is higher in some cancers than in normal tissue. The hypothesis that THOC1 may be a functionally relevant biomarker that can improve the identification of aggressive prostate cancer has not been tested. METHODS THOC1 protein immunostaining was evaluated in a retrospective collection of more than 700 human prostate cancer specimens and the results associated with clinical variables and outcome. Thoc1 was conditionally deleted in an autochthonous mouse model (n = 22 or 23 per genotype) to test whether it is required for prostate cancer progression. All statistical tests were two-sided. RESULTS THOC1 protein immunostaining increases with higher Gleason score and more advanced Tumor/Node/Metastasis stage. Time to biochemical recurrence is statistically significantly shorter for cancers with high THOC1 protein (log-rank P = .002, and it remains statistically significantly associated with biochemical recurrence after adjusting for Gleason score, clinical stage, and prostate-specific antigen levels (hazard ratio = 1.61, 95% confidence interval = 1.03 to 2.51, P = .04). Thoc1 deletion prevents prostate cancer progression in mice, but has little effect on normal tissue. Prostate cancer cells deprived of Thoc1 show gene expression defects that compromise cell growth. CONCLUSIONS Thoc1 is required to support the unique gene expression requirements of aggressive prostate cancer in mice. In humans, high THOC1 protein immunostaining associates with prostate cancer aggressiveness and recurrence. Thus, THOC1 protein is a functionally relevant molecular marker that may improve the identification of aggressive prostate cancers, potentially reducing overtreatment.
Collapse
Affiliation(s)
- Meenalakshmi Chinnam
- Department of Pharmacology & Therapeutics (MC, YW, XZ, BAF, DWG), Department of Biostatistics (DLG), Department of Pathology (TK, WB, CDM), Department of Cancer Prevention and Population Science (RDPO), Department of Urology (JLM), Roswell Park Cancer Institute, Buffalo, NY; Department of Biomedical Sciences, Cornell University, Ithaca, NY (AYN); Department of Pathology, Virginia Commonwealth University, Richmond, VA (YL). Current affiliation: MedImmune LLC, Gaitherburg, MD
| | - Yanqing Wang
- Department of Pharmacology & Therapeutics (MC, YW, XZ, BAF, DWG), Department of Biostatistics (DLG), Department of Pathology (TK, WB, CDM), Department of Cancer Prevention and Population Science (RDPO), Department of Urology (JLM), Roswell Park Cancer Institute, Buffalo, NY; Department of Biomedical Sciences, Cornell University, Ithaca, NY (AYN); Department of Pathology, Virginia Commonwealth University, Richmond, VA (YL). Current affiliation: MedImmune LLC, Gaitherburg, MD
| | - Xiaojing Zhang
- Department of Pharmacology & Therapeutics (MC, YW, XZ, BAF, DWG), Department of Biostatistics (DLG), Department of Pathology (TK, WB, CDM), Department of Cancer Prevention and Population Science (RDPO), Department of Urology (JLM), Roswell Park Cancer Institute, Buffalo, NY; Department of Biomedical Sciences, Cornell University, Ithaca, NY (AYN); Department of Pathology, Virginia Commonwealth University, Richmond, VA (YL). Current affiliation: MedImmune LLC, Gaitherburg, MD
| | - David L Gold
- Current affiliation: MedImmune LLC, Gaitherburg, MD
| | - Thaer Khoury
- Department of Pharmacology & Therapeutics (MC, YW, XZ, BAF, DWG), Department of Biostatistics (DLG), Department of Pathology (TK, WB, CDM), Department of Cancer Prevention and Population Science (RDPO), Department of Urology (JLM), Roswell Park Cancer Institute, Buffalo, NY; Department of Biomedical Sciences, Cornell University, Ithaca, NY (AYN); Department of Pathology, Virginia Commonwealth University, Richmond, VA (YL). Current affiliation: MedImmune LLC, Gaitherburg, MD
| | - Alexander Yu Nikitin
- Department of Pharmacology & Therapeutics (MC, YW, XZ, BAF, DWG), Department of Biostatistics (DLG), Department of Pathology (TK, WB, CDM), Department of Cancer Prevention and Population Science (RDPO), Department of Urology (JLM), Roswell Park Cancer Institute, Buffalo, NY; Department of Biomedical Sciences, Cornell University, Ithaca, NY (AYN); Department of Pathology, Virginia Commonwealth University, Richmond, VA (YL). Current affiliation: MedImmune LLC, Gaitherburg, MD
| | - Barbara A Foster
- Department of Pharmacology & Therapeutics (MC, YW, XZ, BAF, DWG), Department of Biostatistics (DLG), Department of Pathology (TK, WB, CDM), Department of Cancer Prevention and Population Science (RDPO), Department of Urology (JLM), Roswell Park Cancer Institute, Buffalo, NY; Department of Biomedical Sciences, Cornell University, Ithaca, NY (AYN); Department of Pathology, Virginia Commonwealth University, Richmond, VA (YL). Current affiliation: MedImmune LLC, Gaitherburg, MD
| | - Yanping Li
- Department of Pharmacology & Therapeutics (MC, YW, XZ, BAF, DWG), Department of Biostatistics (DLG), Department of Pathology (TK, WB, CDM), Department of Cancer Prevention and Population Science (RDPO), Department of Urology (JLM), Roswell Park Cancer Institute, Buffalo, NY; Department of Biomedical Sciences, Cornell University, Ithaca, NY (AYN); Department of Pathology, Virginia Commonwealth University, Richmond, VA (YL). Current affiliation: MedImmune LLC, Gaitherburg, MD
| | - Wiam Bshara
- Department of Pharmacology & Therapeutics (MC, YW, XZ, BAF, DWG), Department of Biostatistics (DLG), Department of Pathology (TK, WB, CDM), Department of Cancer Prevention and Population Science (RDPO), Department of Urology (JLM), Roswell Park Cancer Institute, Buffalo, NY; Department of Biomedical Sciences, Cornell University, Ithaca, NY (AYN); Department of Pathology, Virginia Commonwealth University, Richmond, VA (YL). Current affiliation: MedImmune LLC, Gaitherburg, MD
| | - Carl D Morrison
- Department of Pharmacology & Therapeutics (MC, YW, XZ, BAF, DWG), Department of Biostatistics (DLG), Department of Pathology (TK, WB, CDM), Department of Cancer Prevention and Population Science (RDPO), Department of Urology (JLM), Roswell Park Cancer Institute, Buffalo, NY; Department of Biomedical Sciences, Cornell University, Ithaca, NY (AYN); Department of Pathology, Virginia Commonwealth University, Richmond, VA (YL). Current affiliation: MedImmune LLC, Gaitherburg, MD
| | - Rochelle D Payne Ondracek
- Department of Pharmacology & Therapeutics (MC, YW, XZ, BAF, DWG), Department of Biostatistics (DLG), Department of Pathology (TK, WB, CDM), Department of Cancer Prevention and Population Science (RDPO), Department of Urology (JLM), Roswell Park Cancer Institute, Buffalo, NY; Department of Biomedical Sciences, Cornell University, Ithaca, NY (AYN); Department of Pathology, Virginia Commonwealth University, Richmond, VA (YL). Current affiliation: MedImmune LLC, Gaitherburg, MD
| | - James L Mohler
- Department of Pharmacology & Therapeutics (MC, YW, XZ, BAF, DWG), Department of Biostatistics (DLG), Department of Pathology (TK, WB, CDM), Department of Cancer Prevention and Population Science (RDPO), Department of Urology (JLM), Roswell Park Cancer Institute, Buffalo, NY; Department of Biomedical Sciences, Cornell University, Ithaca, NY (AYN); Department of Pathology, Virginia Commonwealth University, Richmond, VA (YL). Current affiliation: MedImmune LLC, Gaitherburg, MD
| | - David W Goodrich
- Department of Pharmacology & Therapeutics (MC, YW, XZ, BAF, DWG), Department of Biostatistics (DLG), Department of Pathology (TK, WB, CDM), Department of Cancer Prevention and Population Science (RDPO), Department of Urology (JLM), Roswell Park Cancer Institute, Buffalo, NY; Department of Biomedical Sciences, Cornell University, Ithaca, NY (AYN); Department of Pathology, Virginia Commonwealth University, Richmond, VA (YL). Current affiliation: MedImmune LLC, Gaitherburg, MD.
| |
Collapse
|
330
|
Santos-Pereira JM, García-Rubio ML, González-Aguilera C, Luna R, Aguilera A. A genome-wide function of THSC/TREX-2 at active genes prevents transcription-replication collisions. Nucleic Acids Res 2014; 42:12000-14. [PMID: 25294824 PMCID: PMC4231764 DOI: 10.1093/nar/gku906] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The THSC/TREX-2 complex of Saccharomyces cerevisiae mediates the anchoring of transcribed genes to the nuclear pore, linking transcription elongation with mRNA export and genome stability, as shown for specific reporters. However, it is still unknown whether the function of TREX-2 is global and the reason for its relevant role in genome integrity. Here, by studying two TREX-2 representative subunits, Thp1 and Sac3, we show that TREX-2 has a genome-wide role in gene expression. Both proteins show similar distributions along the genome, with a gradient disposition at active genes that increases towards the 3′ end. Thp1 and Sac3 have a relevant impact on the expression of long, G+C-rich and highly transcribed genes. Interestingly, replication impairment detected by the genome-wide accumulation of the replicative Rrm3 helicase is increased preferentially at highly expressed genes in the thp1Δ and sac3Δ mutants analyzed. Therefore, our work provides evidence of a function of TREX-2 at the genome-wide level and suggests a role for TREX-2 in preventing transcription–replication conflicts, as a source of genome instability derived from a defective messenger ribonucleoprotein particle (mRNP) biogenesis.
Collapse
Affiliation(s)
- José M Santos-Pereira
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC, 41092 Seville, Spain
| | - María L García-Rubio
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC, 41092 Seville, Spain
| | - Cristina González-Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC, 41092 Seville, Spain
| | - Rosa Luna
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC, 41092 Seville, Spain
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC, 41092 Seville, Spain
| |
Collapse
|
331
|
Lecona E, Fernández-Capetillo O. Replication stress and cancer: it takes two to tango. Exp Cell Res 2014; 329:26-34. [PMID: 25257608 DOI: 10.1016/j.yexcr.2014.09.019] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 09/05/2014] [Accepted: 09/15/2014] [Indexed: 12/24/2022]
Abstract
Problems arising during DNA replication require the activation of the ATR-CHK1 pathway to ensure the stabilization and repair of the forks, and to prevent the entry into mitosis with unreplicated genomes. Whereas the pathway is essential at the cellular level, limiting its activity is particularly detrimental for some cancer cells. Here we review the links between replication stress (RS) and cancer, which provide a rationale for the use of ATR and Chk1 inhibitors in chemotherapy. First, we describe how the activation of oncogene-induced RS promotes genome rearrangements and chromosome instability, both of which could potentially fuel carcinogenesis. Next, we review the various pathways that contribute to the suppression of RS, and how mutations in these components lead to increased cancer incidence and/or accelerated ageing. Finally, we summarize the evidence showing that tumors with high levels of RS are dependent on a proficient RS-response, and therefore vulnerable to ATR or Chk1 inhibitors.
Collapse
Affiliation(s)
- Emilio Lecona
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), C/ Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Oscar Fernández-Capetillo
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), C/ Melchor Fernández Almagro 3, 28029 Madrid, Spain.
| |
Collapse
|
332
|
Roles for Pbp1 and caloric restriction in genome and lifespan maintenance via suppression of RNA-DNA hybrids. Dev Cell 2014; 30:177-91. [PMID: 25073155 DOI: 10.1016/j.devcel.2014.05.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 03/13/2014] [Accepted: 05/13/2014] [Indexed: 12/31/2022]
Abstract
Intergenic transcription within repetitive loci such as the ribosomal DNA (rDNA) repeats of yeast commonly triggers aberrant recombination. Major mechanisms suppressing aberrant rDNA recombination rely on chromatin silencing or RNAPII repression at intergenic spacers within the repeats. We find ancient processes operating at rDNA intergenic spacers and other loci to maintain genome stability via repression of RNA-DNA hybrids. The yeast Ataxin-2 protein Pbp1 binds noncoding RNA, suppresses RNA-DNA hybrids, and prevents aberrant rDNA recombination. Repression of RNA-DNA hybrids in Pbp1-deficient cells through RNaseH overexpression, deletion of the G4DNA-stabilizing Stm1, or caloric restriction operating via RNaseH/Pif1 restores rDNA stability. Pbp1 also limits hybrids at non-rDNA G4DNA loci including telomeres. Moreover, cells lacking Pbp1 have a short replicative lifespan that is extended upon hybrid suppression. Thus, we find roles for Pbp1 in genome maintenance and reveal that caloric restriction counteracts Pbp1 deficiencies by engaging RNaseH and Pif1.
Collapse
|
333
|
Abstract
R-loops are cellular structures composed of an RNA/DNA hybrid, which is formed when the RNA hybridises to a complementary DNA strand and a displaced single-stranded DNA. R-loops have been detected in various organisms from bacteria to mammals and play crucial roles in regulating gene expression, DNA and histone modifications, immunoglobulin class switch recombination, DNA replication, and genome stability. Recent evidence suggests that R-loops are also involved in molecular mechanisms of neurological diseases and cancer. In addition, mutations in factors implicated in R-loop biology, such as RNase H and SETX (senataxin), lead to devastating human neurodegenerative disorders, highlighting the importance of correctly regulating the level of R-loops in human cells. In this review we summarise current advances in this field, with a particular focus on diseases associated with dysregulation of R-loop structures. We also discuss potential therapeutic approaches for such diseases and highlight future research directions.
Collapse
Affiliation(s)
- Matthias Groh
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Natalia Gromak
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
334
|
Skourti-Stathaki K, Proudfoot NJ. A double-edged sword: R loops as threats to genome integrity and powerful regulators of gene expression. Genes Dev 2014; 28:1384-96. [PMID: 24990962 PMCID: PMC4083084 DOI: 10.1101/gad.242990.114] [Citation(s) in RCA: 407] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
R loops are three-stranded nucleic acid structures that comprise nascent RNA hybridized with the DNA template, leaving the nontemplate DNA single-stranded. These structures form naturally during transcription even though their persistent formation can have deleterious effects on genome integrity. Interestingly, an increasing number of studies also suggest that R loops function as potential gene expression regulators. Here, Skourti-Stathaki and Proudfoot review the most recent findings about R loops, highlighting their opposite roles in cellular fitness. R loops are three-stranded nucleic acid structures that comprise nascent RNA hybridized with the DNA template, leaving the nontemplate DNA single-stranded. R loops form naturally during transcription even though their persistent formation can be a risky outcome with deleterious effects on genome integrity. On the other hand, over the last few years, an increasingly strong case has been built for R loops as potential regulators of gene expression. Therefore, understanding their function and regulation under these opposite situations is essential to fully characterize the mechanisms that control genome integrity and gene expression. Here we review recent findings about these interesting structures that highlight their opposite roles in cellular fitness.
Collapse
Affiliation(s)
| | - Nicholas J Proudfoot
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| |
Collapse
|
335
|
Reddy K, Schmidt MHM, Geist JM, Thakkar NP, Panigrahi GB, Wang YH, Pearson CE. Processing of double-R-loops in (CAG)·(CTG) and C9orf72 (GGGGCC)·(GGCCCC) repeats causes instability. Nucleic Acids Res 2014; 42:10473-87. [PMID: 25147206 PMCID: PMC4176329 DOI: 10.1093/nar/gku658] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
R-loops, transcriptionally-induced RNA:DNA hybrids, occurring at repeat tracts (CTG)n, (CAG)n, (CGG)n, (CCG)n and (GAA)n, are associated with diseases including myotonic dystrophy, Huntington's disease, fragile X and Friedreich's ataxia. Many of these repeats are bidirectionally transcribed, allowing for single- and double-R-loop configurations, where either or both DNA strands may be RNA-bound. R-loops can trigger repeat instability at (CTG)·(CAG) repeats, but the mechanism of this is unclear. We demonstrate R-loop-mediated instability through processing of R-loops by HeLa and human neuron-like cell extracts. Double-R-loops induced greater instability than single-R-loops. Pre-treatment with RNase H only partially suppressed instability, supporting a model in which R-loops directly generate instability by aberrant processing, or via slipped-DNA formation upon RNA removal and its subsequent aberrant processing. Slipped-DNAs were observed to form following removal of the RNA from R-loops. Since transcriptionally-induced R-loops can occur in the absence of DNA replication, R-loop processing may be a source of repeat instability in the brain. Double-R-loop formation and processing to instability was extended to the expanded C9orf72 (GGGGCC)·(GGCCCC) repeats, known to cause amyotrophic lateral sclerosis and frontotemporal dementia, providing the first suggestion through which these repeats may become unstable. These findings provide a mechanistic basis for R-loop-mediated instability at disease-associated repeats.
Collapse
Affiliation(s)
- Kaalak Reddy
- Department of Genetics, The Hospital for Sick Children, Peter Gilgan Centre for Research & Learning, 686 Bay Street, Toronto, Ontario M5G 0A4, Canada Program of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 0A4, Canada
| | - Monika H M Schmidt
- Department of Genetics, The Hospital for Sick Children, Peter Gilgan Centre for Research & Learning, 686 Bay Street, Toronto, Ontario M5G 0A4, Canada Program of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 0A4, Canada
| | - Jaimie M Geist
- Department of Genetics, The Hospital for Sick Children, Peter Gilgan Centre for Research & Learning, 686 Bay Street, Toronto, Ontario M5G 0A4, Canada Department of Biology, Laurentian University, Sudbury, Ontario P3E 2C6, Canada
| | - Neha P Thakkar
- Department of Genetics, The Hospital for Sick Children, Peter Gilgan Centre for Research & Learning, 686 Bay Street, Toronto, Ontario M5G 0A4, Canada Program of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 0A4, Canada
| | - Gagan B Panigrahi
- Department of Genetics, The Hospital for Sick Children, Peter Gilgan Centre for Research & Learning, 686 Bay Street, Toronto, Ontario M5G 0A4, Canada Program of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 0A4, Canada
| | - Yuh-Hwa Wang
- Department of Biochemistry & Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Christopher E Pearson
- Department of Genetics, The Hospital for Sick Children, Peter Gilgan Centre for Research & Learning, 686 Bay Street, Toronto, Ontario M5G 0A4, Canada Program of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 0A4, Canada
| |
Collapse
|
336
|
Mehta A, Haber JE. Sources of DNA double-strand breaks and models of recombinational DNA repair. Cold Spring Harb Perspect Biol 2014; 6:a016428. [PMID: 25104768 PMCID: PMC4142968 DOI: 10.1101/cshperspect.a016428] [Citation(s) in RCA: 511] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
DNA is subject to many endogenous and exogenous insults that impair DNA replication and proper chromosome segregation. DNA double-strand breaks (DSBs) are one of the most toxic of these lesions and must be repaired to preserve chromosomal integrity. Eukaryotes are equipped with several different, but related, repair mechanisms involving homologous recombination, including single-strand annealing, gene conversion, and break-induced replication. In this review, we highlight the chief sources of DSBs and crucial requirements for each of these repair processes, as well as the methods to identify and study intermediate steps in DSB repair by homologous recombination.
Collapse
Affiliation(s)
- Anuja Mehta
- Rosenstiel Basic Medical Sciences Research Center, MS029 Rosenstiel Center, Brandeis University, Waltham, Massachusetts 02454-9110
| | - James E Haber
- Rosenstiel Basic Medical Sciences Research Center, MS029 Rosenstiel Center, Brandeis University, Waltham, Massachusetts 02454-9110
| |
Collapse
|
337
|
Aguilera A, Gaillard H. Transcription and recombination: when RNA meets DNA. Cold Spring Harb Perspect Biol 2014; 6:6/8/a016543. [PMID: 25085910 DOI: 10.1101/cshperspect.a016543] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A particularly relevant phenomenon in cell physiology and proliferation is the fact that spontaneous mitotic recombination is strongly enhanced by transcription. The most accepted view is that transcription increases the occurrence of double-strand breaks and/or single-stranded DNA gaps that are repaired by recombination. Most breaks would arise as a consequence of the impact that transcription has on replication fork progression, provoking its stalling and/or breakage. Here, we discuss the mechanisms responsible for the cross talk between transcription and recombination, with emphasis on (1) the transcription-replication conflicts as the main source of recombinogenic DNA breaks, and (2) the formation of cotranscriptional R-loops as a major cause of such breaks. The new emerging questions and perspectives are discussed on the basis of the interference between transcription and replication, as well as the way RNA influences genome dynamics.
Collapse
Affiliation(s)
- Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla, 41092 Seville, Spain
| | - Hélène Gaillard
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla, 41092 Seville, Spain
| |
Collapse
|
338
|
Poulsen JB, Sanderson LE, Agerschou ED, Dedic E, Boesen T, Brodersen DE. Structural characterization of the Saccharomyces cerevisiae THO complex by small-angle X-ray scattering. PLoS One 2014; 9:e103470. [PMID: 25062267 PMCID: PMC4111604 DOI: 10.1371/journal.pone.0103470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 07/03/2014] [Indexed: 11/17/2022] Open
Abstract
The THO complex participates during eukaryotic mRNA biogenesis in coupling transcription to formation and nuclear export of translation-competent messenger ribonucleoprotein particles. In Saccharomyces cerevisiae, THO has been defined as a heteropentamer composed of the Tho2p, Hpr1p, Tex1p, Mft1p, and Thp2p subunits and the overall three-dimensional shape of the complex has been established by negative stain electron microscopy. Here, we use small-angle X-ray scattering measured for isolated THO components (Mft1p and Thp2p) as well as THO subcomplexes (Mft1p-Thp2p and Mft1p-Thp2p-Tho2p) to construct structural building blocks that allow positioning of each subunit within the complex. To accomplish this, the individual envelopes determined for Mft1p and Thp2p are first fitted inside those of the Mft1p-Thp2p and Mft1p-Thp2p-Tho2p complexes. Next, the ternary complex structure is placed in the context of the five-component electron microscopy structure. Our model reveals not only the position of each protein in the THO complex relative to each other, but also shows that the pentamer is likely somewhat larger than what was observed by electron microscopy.
Collapse
Affiliation(s)
| | | | | | - Emil Dedic
- Centre for mRNP Biogenesis and Metabolism, Aarhus University, Aarhus, Denmark
| | - Thomas Boesen
- Pumpkin - Centre for Membrane Pumps in Cells and Disease, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Ditlev E. Brodersen
- Centre for mRNP Biogenesis and Metabolism, Aarhus University, Aarhus, Denmark
| |
Collapse
|
339
|
Hamperl S, Cimprich KA. The contribution of co-transcriptional RNA:DNA hybrid structures to DNA damage and genome instability. DNA Repair (Amst) 2014; 19:84-94. [PMID: 24746923 PMCID: PMC4051866 DOI: 10.1016/j.dnarep.2014.03.023] [Citation(s) in RCA: 200] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Accurate DNA replication and DNA repair are crucial for the maintenance of genome stability, and it is generally accepted that failure of these processes is a major source of DNA damage in cells. Intriguingly, recent evidence suggests that DNA damage is more likely to occur at genomic loci with high transcriptional activity. Furthermore, loss of certain RNA processing factors in eukaryotic cells is associated with increased formation of co-transcriptional RNA:DNA hybrid structures known as R-loops, resulting in double-strand breaks (DSBs) and DNA damage. However, the molecular mechanisms by which R-loop structures ultimately lead to DNA breaks and genome instability is not well understood. In this review, we summarize the current knowledge about the formation, recognition and processing of RNA:DNA hybrids, and discuss possible mechanisms by which these structures contribute to DNA damage and genome instability in the cell.
Collapse
Affiliation(s)
- Stephan Hamperl
- Department of Chemical, Systems Biology, Stanford University School of Medicine, 318 Campus Drive, Stanford, CA 94305-5441, USA
| | - Karlene A Cimprich
- Department of Chemical, Systems Biology, Stanford University School of Medicine, 318 Campus Drive, Stanford, CA 94305-5441, USA.
| |
Collapse
|
340
|
Bhatia V, Barroso SI, García-Rubio ML, Tumini E, Herrera-Moyano E, Aguilera A. BRCA2 prevents R-loop accumulation and associates with TREX-2 mRNA export factor PCID2. Nature 2014; 511:362-5. [DOI: 10.1038/nature13374] [Citation(s) in RCA: 359] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 04/08/2014] [Indexed: 12/23/2022]
|
341
|
Pitzonka L, Ullas S, Chinnam M, Povinelli BJ, Fisher DT, Golding M, Appenheimer MM, Nemeth MJ, Evans S, Goodrich DW. The Thoc1 encoded ribonucleoprotein is required for myeloid progenitor cell homeostasis in the adult mouse. PLoS One 2014; 9:e97628. [PMID: 24830368 PMCID: PMC4022742 DOI: 10.1371/journal.pone.0097628] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/22/2014] [Indexed: 12/15/2022] Open
Abstract
Co-transcriptionally assembled ribonucleoprotein (RNP) complexes are critical for RNA processing and nuclear export. RNPs have been hypothesized to contribute to the regulation of coordinated gene expression, and defects in RNP biogenesis contribute to genome instability and disease. Despite the large number of RNPs and the importance of the molecular processes they mediate, the requirements for individual RNP complexes in mammalian development and tissue homeostasis are not well characterized. THO is an evolutionarily conserved, nuclear RNP complex that physically links nascent transcripts with the nuclear export apparatus. THO is essential for early mouse embryonic development, limiting characterization of the requirements for THO in adult tissues. To address this shortcoming, a mouse strain has been generated allowing inducible deletion of the Thoc1 gene which encodes an essential protein subunit of THO. Bone marrow reconstitution was used to generate mice in which Thoc1 deletion could be induced specifically in the hematopoietic system. We find that granulocyte macrophage progenitors have a cell autonomous requirement for Thoc1 to maintain cell growth and viability. Lymphoid lineages are not detectably affected by Thoc1 loss under the homeostatic conditions tested. Myeloid lineages may be more sensitive to Thoc1 loss due to their relatively high rate of proliferation and turnover.
Collapse
Affiliation(s)
- Laura Pitzonka
- Department of Pharmacology & Therapeutics, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Sumana Ullas
- Department of Pharmacology & Therapeutics, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Meenalakshmi Chinnam
- Department of Pharmacology & Therapeutics, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Benjamin J. Povinelli
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Daniel T. Fisher
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Michelle Golding
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Michelle M. Appenheimer
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Michael J. Nemeth
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Sharon Evans
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - David W. Goodrich
- Department of Pharmacology & Therapeutics, Roswell Park Cancer Institute, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
342
|
Backofen R, Vogel T. Biological and bioinformatical approaches to study crosstalk of long-non-coding RNAs and chromatin-modifying proteins. Cell Tissue Res 2014; 356:507-26. [PMID: 24820400 DOI: 10.1007/s00441-014-1885-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 03/27/2014] [Indexed: 02/04/2023]
Abstract
Long-non-coding RNA (lncRNA) regulates gene expression through transcriptional and epigenetic regulation as well as alternative splicing in the nucleus. In addition, regulation is achieved at the levels of mRNA translation, storage and degradation in the cytoplasm. During recent years, several studies have described the interaction of lncRNAs with enzymes that confer so-called epigenetic modifications, such as DNA methylation, histone modifications and chromatin structure or remodelling. LncRNA interaction with chromatin-modifying enzymes (CME) is an emerging field that confers another layer of complexity in transcriptional regulation. Given that CME-lncRNA interactions have been identified in many biological processes, ranging from development to disease, comprehensive understanding of underlying mechanisms is important to inspire basic and translational research in the future. In this review, we highlight recent findings to extend our understanding about the functional interdependencies between lncRNAs and CMEs that activate or repress gene expression. We focus on recent highlights of molecular and functional roles for CME-lncRNAs and provide an interdisciplinary overview of recent technical and methodological developments that have improved biological and bioinformatical approaches for detection and functional studies of CME-lncRNA interaction.
Collapse
Affiliation(s)
- Rolf Backofen
- Institute of Computer Science, Albert-Ludwigs-University, Freiburg, Germany
| | | |
Collapse
|
343
|
Magdalou I, Lopez BS, Pasero P, Lambert SAE. The causes of replication stress and their consequences on genome stability and cell fate. Semin Cell Dev Biol 2014; 30:154-64. [PMID: 24818779 DOI: 10.1016/j.semcdb.2014.04.035] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 04/29/2014] [Indexed: 01/28/2023]
Abstract
Alterations of the dynamics of DNA replication cause genome instability. These alterations known as "replication stress" have emerged as a major source of genomic instability in pre-neoplasic lesions, contributing to cancer development. The concept of replication stress covers a wide variety of events that distort the temporal and spatial DNA replication program. These events have endogenous or exogenous origins and impact globally or locally on the dynamics of DNA replication. They may arise within a short window of time (acute stress) or during each S phase (chronic stress). Here, we review the known situations in which the dynamics of DNA replication is distorted. We have united them in four main categories: (i) inadequate firing of replication origins (deficiency or excess), (ii) obstacles to fork progression, (iii) conflicts between replication and transcription and (iv) DNA replication under inappropriate metabolic conditions (unbalanced DNA replication). Because the DNA replication program is a process tightly regulated by many factors, replication stress often appears as a cascade of events. A local stress may prevent the completion of DNA replication at a single locus and subsequently compromise chromosome segregation in mitosis and therefore have a global effect on genome integrity. Finally, we discuss how replication stress drives genome instability and to what extent it is relevant to cancer biology.
Collapse
Affiliation(s)
- Indiana Magdalou
- Université Paris Sud, CNRS, UMR 8200 and Institut de Cancérologie Gustave Roussy, équipe labélisée «LIGUE 2014», Villejuif, France
| | - Bernard S Lopez
- Université Paris Sud, CNRS, UMR 8200 and Institut de Cancérologie Gustave Roussy, équipe labélisée «LIGUE 2014», Villejuif, France
| | - Philippe Pasero
- Institute of Human Genetics, CNRS UPR 1142, équipe labélisée LIGUE contre le Cancer, 141 rue de la Cardonille, 34396 Montpellier, France
| | - Sarah A E Lambert
- Institut Curie, centre de recherche, CNRS UMR338, Bat 110, centre universitaire, 91405 Orsay, France.
| |
Collapse
|
344
|
Danilova N, Bibikova E, Covey TM, Nathanson D, Dimitrova E, Konto Y, Lindgren A, Glader B, Radu CG, Sakamoto KM, Lin S. The role of the DNA damage response in zebrafish and cellular models of Diamond Blackfan anemia. Dis Model Mech 2014; 7:895-905. [PMID: 24812435 PMCID: PMC4073278 DOI: 10.1242/dmm.015495] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Ribosomal biogenesis involves the processing of pre-ribosomal RNA. A deficiency of some ribosomal proteins (RPs) impairs processing and causes Diamond Blackfan anemia (DBA), which is associated with anemia, congenital malformations and cancer. p53 mediates many features of DBA, but the mechanism of p53 activation remains unclear. Another hallmark of DBA is the upregulation of adenosine deaminase (ADA), indicating changes in nucleotide metabolism. In RP-deficient zebrafish, we found activation of both nucleotide catabolism and biosynthesis, which is consistent with the need to break and replace the faulty ribosomal RNA. We also found upregulation of deoxynucleotide triphosphate (dNTP) synthesis - a typical response to replication stress and DNA damage. Both RP-deficient zebrafish and human hematopoietic cells showed activation of the ATR/ATM-CHK1/CHK2/p53 pathway. Other features of RP deficiency included an imbalanced dNTP pool, ATP depletion and AMPK activation. Replication stress and DNA damage in cultured cells in non-DBA models can be decreased by exogenous nucleosides. Therefore, we treated RP-deficient zebrafish embryos with exogenous nucleosides and observed decreased activation of p53 and AMPK, reduced apoptosis, and rescue of hematopoiesis. Our data suggest that the DNA damage response contributes to p53 activation in cellular and zebrafish models of DBA. Furthermore, the rescue of RP-deficient zebrafish with exogenous nucleosides suggests that nucleoside supplements could be beneficial in the treatment of DBA.
Collapse
Affiliation(s)
- Nadia Danilova
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA 90095, USA.
| | - Elena Bibikova
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305-5208, USA
| | - Todd M Covey
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305-5208, USA
| | - David Nathanson
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| | - Elizabeth Dimitrova
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| | - Yoan Konto
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305-5208, USA
| | - Anne Lindgren
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Bertil Glader
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305-5208, USA
| | - Caius G Radu
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| | - Kathleen M Sakamoto
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305-5208, USA
| | - Shuo Lin
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
345
|
Mechanisms of genome instability induced by RNA-processing defects. Trends Genet 2014; 30:245-53. [PMID: 24794811 DOI: 10.1016/j.tig.2014.03.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 03/25/2014] [Accepted: 03/26/2014] [Indexed: 12/20/2022]
Abstract
The role of normal transcription and RNA processing in maintaining genome integrity is becoming increasingly appreciated in organisms ranging from bacteria to humans. Several mutations in RNA biogenesis factors have been implicated in human cancers, but the mechanisms and potential connections to tumor genome instability are not clear. Here, we discuss how RNA-processing defects could destabilize genomes through mutagenic R-loop structures and by altering expression of genes required for genome stability. A compelling body of evidence now suggests that researchers should be directly testing these mechanisms in models of human cancer.
Collapse
|
346
|
Jackson BR, Noerenberg M, Whitehouse A. A novel mechanism inducing genome instability in Kaposi's sarcoma-associated herpesvirus infected cells. PLoS Pathog 2014; 10:e1004098. [PMID: 24788796 PMCID: PMC4006916 DOI: 10.1371/journal.ppat.1004098] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 03/13/2014] [Indexed: 01/05/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic herpesvirus associated with multiple AIDS-related malignancies. Like other herpesviruses, KSHV has a biphasic life cycle and both the lytic and latent phases are required for tumorigenesis. Evidence suggests that KSHV lytic replication can cause genome instability in KSHV-infected cells, although no mechanism has thus far been described. A surprising link has recently been suggested between mRNA export, genome instability and cancer development. Notably, aberrations in the cellular transcription and export complex (hTREX) proteins have been identified in high-grade tumours and these defects contribute to genome instability. We have previously shown that the lytically expressed KSHV ORF57 protein interacts with the complete hTREX complex; therefore, we investigated the possible intriguing link between ORF57, hTREX and KSHV-induced genome instability. Herein, we show that lytically active KSHV infected cells induce a DNA damage response and, importantly, we demonstrate directly that this is due to DNA strand breaks. Furthermore, we show that sequestration of the hTREX complex by the KSHV ORF57 protein leads to this double strand break response and significant DNA damage. Moreover, we describe a novel mechanism showing that the genetic instability observed is a consequence of R-loop formation. Importantly, the link between hTREX sequestration and DNA damage may be a common feature in herpesvirus infection, as a similar phenotype was observed with the herpes simplex virus 1 (HSV-1) ICP27 protein. Our data provide a model of R-loop induced DNA damage in KSHV infected cells and describes a novel system for studying genome instability caused by aberrant hTREX. The hallmarks of cancer comprise the essential elements that permit the formation and development of human tumours. Genome instability is an enabling characteristic that allows the progression of tumorigenesis through genetic mutation and therefore, understanding the molecular causes of genome instability in all cancers is essential for development of therapeutics. The Kaposi's sarcoma-associated herpesvirus (KSHV) is an important human pathogen that causes multiple AIDS-related cancers. Recent studies have shown that during KSHV infection, cells show an increase in a double-strand DNA break marker, signifying a severe form of genome instability. Herein, we show that KSHV infection does cause DNA strand breaks. Moreover, we describe a novel molecular mechanism for genome instability involving the KSHV ORF57 protein interacting with the mRNA export complex, hTREX. We demonstrate that over-expression of ORF57 results in the formation of RNA:DNA hybrids, or R-loops, that lead to an increase in genome instability. DNA strand breaks have been previously reported in herpes simplex, cytomegalovirus and Epstein-Barr virus infected cells. Therefore, as this work describes for the first time the mechanism of R-loop induced genome instability involving a conserved herpesvirus protein, it may have far-reaching implications for other viral RNA export factors.
Collapse
Affiliation(s)
- Brian R Jackson
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Marko Noerenberg
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Adrian Whitehouse
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
347
|
Groh M, Lufino MMP, Wade-Martins R, Gromak N. R-loops associated with triplet repeat expansions promote gene silencing in Friedreich ataxia and fragile X syndrome. PLoS Genet 2014; 10:e1004318. [PMID: 24787137 PMCID: PMC4006715 DOI: 10.1371/journal.pgen.1004318] [Citation(s) in RCA: 262] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 03/06/2014] [Indexed: 12/14/2022] Open
Abstract
Friedreich ataxia (FRDA) and Fragile X syndrome (FXS) are among 40 diseases associated with expansion of repeated sequences (TREDs). Although their molecular pathology is not well understood, formation of repressive chromatin and unusual DNA structures over repeat regions were proposed to play a role. Our study now shows that RNA/DNA hybrids (R-loops) form in patient cells on expanded repeats of endogenous FXN and FMR1 genes, associated with FRDA and FXS. These transcription-dependent R-loops are stable, co-localise with repressive H3K9me2 chromatin mark and impede RNA Polymerase II transcription in patient cells. We investigated the interplay between repressive chromatin marks and R-loops on the FXN gene. We show that decrease in repressive H3K9me2 chromatin mark has no effect on R-loop levels. Importantly, increasing R-loop levels by treatment with DNA topoisomerase inhibitor camptothecin leads to up-regulation of repressive chromatin marks, resulting in FXN transcriptional silencing. This provides a direct molecular link between R-loops and the pathology of TREDs, suggesting that R-loops act as an initial trigger to promote FXN and FMR1 silencing. Thus R-loops represent a common feature of nucleotide expansion disorders and provide a new target for therapeutic interventions.
Collapse
Affiliation(s)
- Matthias Groh
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Michele M. P. Lufino
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Richard Wade-Martins
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Natalia Gromak
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
348
|
Abstract
While primordial life is thought to have been RNA-based (Cech, Cold Spring Harbor Perspect. Biol. 4 (2012) a006742), all living organisms store genetic information in DNA, which is chemically more stable. Distinctions between the RNA and DNA worlds and our views of "DNA" synthesis continue to evolve as new details emerge on the incorporation, repair and biological effects of ribonucleotides in DNA genomes of organisms from bacteria through humans.
Collapse
Affiliation(s)
- Jessica S Williams
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, United States
| | - Thomas A Kunkel
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, United States.
| |
Collapse
|
349
|
Loomis EW, Sanz LA, Chédin F, Hagerman PJ. Transcription-associated R-loop formation across the human FMR1 CGG-repeat region. PLoS Genet 2014; 10:e1004294. [PMID: 24743386 PMCID: PMC3990486 DOI: 10.1371/journal.pgen.1004294] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 02/21/2014] [Indexed: 11/24/2022] Open
Abstract
Expansion of a trinucleotide (CGG) repeat element within the 5′ untranslated region (5′UTR) of the human FMR1 gene is responsible for a number of heritable disorders operating through distinct pathogenic mechanisms: gene silencing for fragile X syndrome (>200 CGG) and RNA toxic gain-of-function for FXTAS (∼55–200 CGG). Existing models have focused almost exclusively on post-transcriptional mechanisms, but co-transcriptional processes could also contribute to the molecular dysfunction of FMR1. We have observed that transcription through the GC-rich FMR1 5′UTR region favors R-loop formation, with the nascent (G-rich) RNA forming a stable RNA:DNA hybrid with the template DNA strand, thereby displacing the non-template DNA strand. Using DNA:RNA (hybrid) immunoprecipitation (DRIP) of genomic DNA from cultured human dermal fibroblasts with both normal (∼30 CGG repeats) and premutation (55<CGG<200 repeats) alleles, we provide evidence for FMR1 R-loop formation in human genomic DNA. Using a doxycycline (DOX)-inducible episomal system in which both the CGG-repeat and transcription frequency can be varied, we further show that R-loop formation increases with higher expression levels. Finally, non-denaturing bisulfite mapping of the displaced single-stranded DNA confirmed R-loop formation at the endogenous FMR1 locus and further indicated that R-loops formed over CGG repeats may be prone to structural complexities, including hairpin formation, not commonly associated with other R-loops. These observations introduce a new molecular feature of the FMR1 gene that is directly affected by CGG-repeat expansion and is likely to be involved in the associated cellular dysfunction. Expansion of a CGG-repeat element within the human FMR1 gene is responsible for multiple human diseases, including fragile X syndrome and fragile X-associated tremor/ataxia syndrome (FXTAS). These diseases occur in separate ranges of repeat length and are characterized by profoundly different molecular mechanisms. Fragile X syndrome results from FMR1 gene silencing, whereas FXTAS is associated with an increase in transcription and toxicity of the CGG-repeat-containing mRNA. This study introduces a previously unknown molecular feature of the FMR1 locus, namely the co-transcriptional formation of three-stranded R-loop structures upon re-annealing of the nascent FMR1 transcript to the template DNA strand. R-loops are involved in the normal function of human CpG island promoters in that they contribute to protecting these sequences from DNA methylation. However, excessive R-loop formation can lead to activation of the DNA damage response and result in genomic instability. We used antibody recognition and chemical single-stranded DNA footprinting to show that R-loops form at the FMR1 locus with increasing frequency and greater structural complexity as the CGG-repeat length increases. This discovery provides a missing piece of both the complex FMR1 molecular puzzle and the diseases resulting from CGG-repeat expansion.
Collapse
Affiliation(s)
- Erick W. Loomis
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, California, United States of America
| | - Lionel A. Sanz
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, California, United States of America
- The Genome Center, University of California, Davis, Davis, California, United States of America
| | - Frédéric Chédin
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, California, United States of America
- The Genome Center, University of California, Davis, Davis, California, United States of America
| | - Paul J. Hagerman
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, California, United States of America
- MIND Institute, University of California, Davis, Health System, Sacramento, California, United States of America
- * E-mail:
| |
Collapse
|
350
|
Chan YA, Aristizabal MJ, Lu PYT, Luo Z, Hamza A, Kobor MS, Stirling PC, Hieter P. Genome-wide profiling of yeast DNA:RNA hybrid prone sites with DRIP-chip. PLoS Genet 2014; 10:e1004288. [PMID: 24743342 PMCID: PMC3990523 DOI: 10.1371/journal.pgen.1004288] [Citation(s) in RCA: 184] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 02/21/2014] [Indexed: 12/17/2022] Open
Abstract
DNA:RNA hybrid formation is emerging as a significant cause of genome instability in biological systems ranging from bacteria to mammals. Here we describe the genome-wide distribution of DNA:RNA hybrid prone loci in Saccharomyces cerevisiae by DNA:RNA immunoprecipitation (DRIP) followed by hybridization on tiling microarray. These profiles show that DNA:RNA hybrids preferentially accumulated at rDNA, Ty1 and Ty2 transposons, telomeric repeat regions and a subset of open reading frames (ORFs). The latter are generally highly transcribed and have high GC content. Interestingly, significant DNA:RNA hybrid enrichment was also detected at genes associated with antisense transcripts. The expression of antisense-associated genes was also significantly altered upon overexpression of RNase H, which degrades the RNA in hybrids. Finally, we uncover mutant-specific differences in the DRIP profiles of a Sen1 helicase mutant, RNase H deletion mutant and Hpr1 THO complex mutant compared to wild type, suggesting different roles for these proteins in DNA:RNA hybrid biology. Our profiles of DNA:RNA hybrid prone loci provide a resource for understanding the properties of hybrid-forming regions in vivo, extend our knowledge of hybrid-mitigating enzymes, and contribute to models of antisense-mediated gene regulation. A summary of this paper was presented at the 26th International Conference on Yeast Genetics and Molecular Biology, August 2013.
Collapse
Affiliation(s)
- Yujia A. Chan
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| | - Maria J. Aristizabal
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Vancouver, Canada
| | - Phoebe Y. T. Lu
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Vancouver, Canada
| | - Zongli Luo
- Wine Research Centre, University of British Columbia, Vancouver, Canada
| | - Akil Hamza
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| | - Michael S. Kobor
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Vancouver, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Peter C. Stirling
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, Canada
- * E-mail: (PCS); (PH)
| | - Philip Hieter
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
- * E-mail: (PCS); (PH)
| |
Collapse
|