301
|
Thompson J, Lepikhova T, Teixido-Travesa N, Whitehead MA, Palvimo JJ, Jänne OA. Small carboxyl-terminal domain phosphatase 2 attenuates androgen-dependent transcription. EMBO J 2006; 25:2757-67. [PMID: 16724108 PMCID: PMC1500849 DOI: 10.1038/sj.emboj.7601161] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Accepted: 05/02/2006] [Indexed: 01/08/2023] Open
Abstract
Small carboxyl-terminal domain (CTD) phosphatase 2 (SCP2) was identified and verified as a protein that interacts with the androgen receptor (AR). Ectopic expression of SCP2 or two other family members, SCP1 and SCP3, attenuated AR transcriptional activity in LNCaP cells and were recruited in an androgen- and AR-dependent fashion onto the prostate-specific antigen (PSA) promoter. Silencing SCP2 and SCP1 by short hairpin RNAs increased androgen-dependent transcription of the PSA gene and augmented AR loading onto the PSA promoter and enhancer. SCP2 also attenuated glucocorticoid receptor (GR) function, and its silencing increased dexamethasone-mediated PSA mRNA accumulation and GR loading onto the PSA enhancer in LNCaP 1F5 cells. SCP2 silencing was accompanied by augmented recruitment and earlier cycling of RNA polymerase II on the promoter. Ser 5 phosphorylation of the RNA polymerase II CTD, a process necessary for initiation of transcription elongation, occurred significantly earlier in SCP2-silenced than parental LNCaP cells. Collectively, our results suggest that SCP2 is involved in promoter clearance during steroid-activated transcription.
Collapse
Affiliation(s)
- James Thompson
- Institute of Biomedicine (Physiology), Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Tatyana Lepikhova
- Institute of Biomedicine (Physiology), Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Neus Teixido-Travesa
- Institute of Biomedicine (Physiology), Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Maria A Whitehead
- Institute of Biomedicine (Physiology), Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Jorma J Palvimo
- Institute of Biomedicine (Physiology), Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
- Department of Medical Biochemistry, University of Kuopio, Kuopio, Finland
| | - Olli A Jänne
- Institute of Biomedicine (Physiology), Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
- Department of Clinical Chemistry, Helsinki University Central Hospital, Helsinki, Finland
| |
Collapse
|
302
|
Schwabish MA, Struhl K. Asf1 mediates histone eviction and deposition during elongation by RNA polymerase II. Mol Cell 2006; 22:415-22. [PMID: 16678113 DOI: 10.1016/j.molcel.2006.03.014] [Citation(s) in RCA: 197] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Revised: 02/23/2006] [Accepted: 03/08/2006] [Indexed: 11/29/2022]
Abstract
Histones are rapidly evicted and deposited during transcription by RNA polymerase (Pol) II, but a factor that mediates histone eviction in vivo has not yet been identified. Here, we show that the histone chaperone Asf1 associates with promoters and coding regions of transcriptionally active genes. Asf1 mediates histone H3, but not H2B, eviction and deposition during Pol II elongation, suggesting that nucleosome assembly and disassembly occur in a stepwise fashion. Lastly, Asf1 inhibits internal initiation from cryptic promoters within coding regions. These results strongly suggest that Asf1 functions as an elongation factor to disassemble and reassemble histones during Pol II elongation.
Collapse
Affiliation(s)
- Marc A Schwabish
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
303
|
Qiu H, Hu C, Wong CM, Hinnebusch AG. The Spt4p subunit of yeast DSIF stimulates association of the Paf1 complex with elongating RNA polymerase II. Mol Cell Biol 2006; 26:3135-48. [PMID: 16581788 PMCID: PMC1446970 DOI: 10.1128/mcb.26.8.3135-3148.2006] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Paf1 complex (Paf1C) interacts with RNA polymerase II (Pol II) and promotes histone methylation of transcribed coding sequences, but the mechanism of Paf1C recruitment is unknown. We show that Paf1C is not recruited directly by the activator Gcn4p but is dependent on preinitiation complex assembly and Ser5 carboxy-terminal domain phosphorylation for optimal association with ARG1 coding sequences. Importantly, Spt4p is required for Paf1C occupancy at ARG1 (and other genes) and for Paf1C association with Ser5-phosphorylated Pol II in cell extracts, whereas Spt4p-Pol II association is independent of Paf1C. Since spt4Delta does not reduce levels of Pol II at ARG1, Ser5 phosphorylation, or Paf1C expression, it appears that Spt4p (or its partner in DSIF, Spt5p) provides a platform on Pol II for recruiting Paf1C following Ser5 phosphorylation and promoter clearance. spt4Delta reduces trimethylation of Lys4 on histone H3, demonstrating a new role for yeast DSIF in promoting a Paf1C-dependent function in elongation.
Collapse
Affiliation(s)
- Hongfang Qiu
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bldg. 6A/Rm. B1A-13, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
304
|
Morillo-Huesca M, Vanti M, Chávez S. A simple in vivo assay for measuring the efficiency of gene length-dependent processes in yeast mRNA biogenesis. FEBS J 2006; 273:756-69. [PMID: 16441662 DOI: 10.1111/j.1742-4658.2005.05108.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have developed a simple reporter assay useful for detection and analysis of mutations and agents influencing mRNA biogenesis in a gene length-dependent manner. We have shown that two transcription units sharing the same promoter, terminator and open reading frame, but differing in the length of their 3'-untranslated regions, are differentially influenced by mutations affecting factors that play a role in transcription elongation or RNA processing all along the transcription units. In contrast, those mutations impairing the initial steps of transcription, but not affecting later steps of mRNA biogenesis, influence equally the expression of the reporters, independently of the length of their 3'-untranslated regions. The ratio between the product levels of the two transcription units is an optimal parameter with which to estimate the efficiency of gene length-dependent processes in mRNA biogenesis. The presence of a phosphatase-encoding open reading frame in the two transcription units makes it very easy to calculate this ratio in any mutant or physiological condition. Interestingly, using this assay, we have shown that mutations in components of the SAGA complex affect the level of mRNA in a transcript length-dependent fashion, suggesting a role for SAGA in transcription elongation. The use of this assay allows the identification and/or characterization of new mutants and drugs affecting transcription elongation and other related processes.
Collapse
|
305
|
Malagon F, Kireeva ML, Shafer BK, Lubkowska L, Kashlev M, Strathern JN. Mutations in the Saccharomyces cerevisiae RPB1 gene conferring hypersensitivity to 6-azauracil. Genetics 2006; 172:2201-9. [PMID: 16510790 PMCID: PMC1456368 DOI: 10.1534/genetics.105.052415] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Accepted: 01/30/2006] [Indexed: 12/28/2022] Open
Abstract
RNA polymerase II (RNAPII) in eukaryotic cells drives transcription of most messenger RNAs. RNAPII core enzyme is composed of 12 polypeptides where Rpb1 is the largest subunit. To further understand the mechanisms of RNAPII transcription, we isolated and characterized novel point mutants of RPB1 that are sensitive to the nucleotide-depleting drug 6-azauracil (6AU). In this work we reisolated the rpo21-24/rpb1-E1230K allele, which reduces the interaction of RNAPII-TFIIS, and identified five new point mutations in RPB1 that cause hypersensitivity to 6AU. The novel mutants affect highly conserved residues of Rpb1 and have differential genetic and biochemical effects. Three of the mutations affect the "lid" and "rudder," two small loops suggested by structural studies to play a central role in the separation of the RNA-DNA hybrids. Most interestingly, two mutations affecting the catalytic center (rpb1-N488D) and the homology box G (rpb1-E1103G) have strong opposite effects on the intrinsic in vitro polymerization rate of RNAPII. Moreover, the synthetic interactions of these mutants with soh1, spt4, and dst1 suggest differential in vivo effects.
Collapse
Affiliation(s)
- Francisco Malagon
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA
| | | | | | | | | | | |
Collapse
|
306
|
Laribee RN, Krogan NJ, Xiao T, Shibata Y, Hughes TR, Greenblatt JF, Strahl BD. BUR kinase selectively regulates H3 K4 trimethylation and H2B ubiquitylation through recruitment of the PAF elongation complex. Curr Biol 2006; 15:1487-93. [PMID: 16040246 DOI: 10.1016/j.cub.2005.07.028] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Revised: 07/04/2005] [Accepted: 07/06/2005] [Indexed: 11/25/2022]
Abstract
Histone-lysine methylation is linked to transcriptional regulation and the control of epigenetic inheritance. Lysine residues can be mono-, di-, or trimethylated, and it has been suggested that each methylation state of a given lysine may impart a unique biological function. In yeast, histone H3 lysine 4 (K4) is mono-, di-, and trimethylated by the Set1 histone methyltransferase. Previous studies show that Set1 associates with RNA polymerase II and demarcates transcriptionally active genes with K4 trimethylation. To determine whether K4 trimethylation might be selectively regulated, we screened a library of yeast deletion mutants associated with transcriptional regulation and chromatin function. We identified BUR2, a cyclin for the Bur1/2 (BUR) cyclin-dependent protein kinase, as a specific regulator of K4 trimethylation. Surprisingly, BUR also regulated H2B monoubiquitylation, whereas other K4 methylation states and H3 lysine 79 (K79) methylation were unaffected. Synthetic genetic array (SGA) and transcription microarray analyses of a BUR2 mutant revealed that BUR is functionally similar to the PAF, Rad6, and Set1 complexes. These data suggest that BUR acts upstream of these factors to control their function. In support, we show that recruitment of the PAF elongation complex to genes is significantly impaired in a BUR2 deletion. Our data reveal a novel function for the BUR kinase in transcriptional regulation through the selective control of histone modifications.
Collapse
Affiliation(s)
- R Nicholas Laribee
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | |
Collapse
|
307
|
Sheldon KE, Mauger DM, Arndt KM. A Requirement for the Saccharomyces cerevisiae Paf1 complex in snoRNA 3' end formation. Mol Cell 2006; 20:225-36. [PMID: 16246725 PMCID: PMC1839845 DOI: 10.1016/j.molcel.2005.08.026] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Revised: 07/25/2005] [Accepted: 08/24/2005] [Indexed: 11/23/2022]
Abstract
RNA synthesis and processing are coordinated by proteins that associate with RNA polymerase II (pol II) during transcription elongation. The yeast Paf1 complex interacts with RNA pol II and mediates histone modifications during elongation. To elucidate the functions of this complex, we isolated missense mutations in the gene encoding the Rtf1 subunit and used them to identify functionally interacting proteins. We identified NAB3 as a dosage suppressor of rtf1. Nab3, together with Nrd1, directs 3' end formation of nonpolyadenylated RNA pol II transcripts, such as snoRNAs. Deletion of Paf1, but not the Set1, Set2, or Dot1 histone methyltransferases, causes accumulation of snoRNA transcripts that are extended at their 3' ends. The Paf1 complex associates with and facilitates Nrd1 recruitment to the SNR47 gene, suggesting a direct involvement in 3' end formation. Our results reveal a posttranscriptional function for the Paf1 complex, which appears unrelated to its role in histone methylation.
Collapse
|
308
|
Van Driessche B, Coddens S, Van Mullem V, Vandenhaute J. Glucose deprivation mediates interaction between CTDK-I and Snf1 in Saccharomyces cerevisiae. FEBS Lett 2005; 579:5318-24. [PMID: 16182287 DOI: 10.1016/j.febslet.2005.08.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2005] [Revised: 08/18/2005] [Accepted: 08/30/2005] [Indexed: 11/18/2022]
Abstract
Ctk1 is a kinase involved in transcriptional control. We show in the two-hybrid system that Ctk1 interacts with Snf1, a kinase regulating glucose-dependent genes. Co-purification experiments confirmed the two-hybrid interaction but only when cells were grown at low glucose concentrations. Deletion of Ctk1 or its associated partners, Ctk2 and Ctk3, conferred synthetic lethality with null mutants of Snf1 or Snf1-associated proteins. Northern blot analysis suggested that Ctk1 and Snf1 act together in vivo to regulate GSY2. These findings support the view that Ctk1 interacts with Snf1 in a functional module involved in the cellular response to glucose limitation.
Collapse
|
309
|
Esteller M, Almouzni G. How epigenetics integrates nuclear functions. Workshop on epigenetics and chromatin: transcriptional regulation and beyond. EMBO Rep 2005; 6:624-8. [PMID: 15976819 PMCID: PMC1369115 DOI: 10.1038/sj.embor.7400456] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Accepted: 05/17/2005] [Indexed: 11/09/2022] Open
Affiliation(s)
- Manel Esteller
- Cancer Epigenetics Laboratory, Spanish National Cancer Centre (CNIO), Melchor Fernandez Almagro 3, 28029 Madrid, Spain.
| | | |
Collapse
|
310
|
Grasser KD. Emerging role for transcript elongation in plant development. TRENDS IN PLANT SCIENCE 2005; 10:484-90. [PMID: 16150628 DOI: 10.1016/j.tplants.2005.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Revised: 08/04/2005] [Accepted: 08/24/2005] [Indexed: 05/04/2023]
Abstract
Transcript elongation by RNA polymerase II (RNAPII), once regarded as the simple extension of the initiated mRNA, is a complex and highly regulated phase of the transcription cycle. Many factors have been identified that contribute to the dynamic control of the elongation stage of transcription. There are elongation factors that modulate the activity of RNAPII and other factors that facilitate the transcription through chromatin. Recent studies of mutants defective in elongation factors have revealed the importance of proper transcript elongation for the development of higher eukaryotes. Here, the essentials of transcript elongation are briefly summarized to discuss its role in developmental processes.
Collapse
Affiliation(s)
- Klaus D Grasser
- Department of Life Sciences, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, Denmark.
| |
Collapse
|
311
|
Abstract
Transcription is coupled with the concomitant assembly of RNA-binding proteins to the nascent mRNA to generate a stable and export-competent mRNP particle. RNA-binding factors recruited at active transcription sites specify the processing, nuclear export, subcellular localization, translation and stability of the mRNA. The assembly of the mRNP particle starts with the association of the cap-binding protein complex followed by the splicing-dependent assembly of the exon-junction complex in intron-containing genes and by the binding of RNA-export adaptor proteins. New findings suggest that mRNP assembly is a genetically controlled process that plays a key role in gene expression and other cellular processes, including the maintenance of genome integrity.
Collapse
Affiliation(s)
- Andrés Aguilera
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avd. Reina Mercedes 6, 41012 Sevilla, Spain.
| |
Collapse
|
312
|
Zhang L, Schroeder S, Fong N, Bentley DL. Altered nucleosome occupancy and histone H3K4 methylation in response to 'transcriptional stress'. EMBO J 2005; 24:2379-90. [PMID: 15944735 PMCID: PMC1173152 DOI: 10.1038/sj.emboj.7600711] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Accepted: 05/18/2005] [Indexed: 11/09/2022] Open
Abstract
We report that under 'transcriptional stress' in budding yeast, when most pol II activity is acutely inhibited, rapid deposition of nucleosomes occurs within genes, particularly at 3' positions. Whereas histone H3K4 trimethylation normally marks 5' ends of highly transcribed genes, under 'transcriptional stress' induced by 6-azauracil (6-AU) and inactivation of pol II, TFIIE or CTD kinases Kin28 and Ctk1, this mark shifted to the 3' end of the TEF1 gene. H3K4Me3 at 3' positions was dynamic and could be rapidly removed when transcription recovered. Set1 and Chd1 are required for H3K4 trimethylation at 3' positions when transcription is inhibited by 6-AU. Furthermore, Deltachd1 suppressed the growth defect of Deltaset1. We suggest that a 'transcriptional stress' signal sensed through Set1, Chd1, and possibly other factors, causes H3K4 hypermethylation of newly deposited nucleosomes at downstream positions within a gene. This response identifies a new role for H3K4 trimethylation at the 3' end of the gene, as a chromatin mark associated with impaired pol II transcription.
Collapse
Affiliation(s)
- Lian Zhang
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, UCHSC at Fitzsimons, Aurora, CO, USA
| | - Stephanie Schroeder
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, UCHSC at Fitzsimons, Aurora, CO, USA
| | - Nova Fong
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, UCHSC at Fitzsimons, Aurora, CO, USA
| | - David L Bentley
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, UCHSC at Fitzsimons, Aurora, CO, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, UCHSC at Fitzsimons, Mail Stop 8101, PO Box 6511, Aurora, CO 80045, USA. Tel.: +1 303 724 3238; Fax: +1 303 724 3215; E-mail:
| |
Collapse
|
313
|
Luna R, Jimeno S, Marín M, Huertas P, García-Rubio M, Aguilera A. Interdependence between Transcription and mRNP Processing and Export, and Its Impact on Genetic Stability. Mol Cell 2005; 18:711-22. [PMID: 15949445 DOI: 10.1016/j.molcel.2005.05.001] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2004] [Revised: 03/22/2005] [Accepted: 05/04/2005] [Indexed: 10/25/2022]
Abstract
The conserved eukaryotic THO-TREX complex acts at the interface between transcription and mRNA export and affects transcription-associated recombination. To investigate the interdependence of nuclear mRNA processes and their impact on genomic integrity, we analyzed transcript accumulation and recombination of 40 selected mutants covering representative steps of the biogenesis and export of the messenger ribonucleoprotein particle (mRNP). None of the mutants analyzed shared the strong transcript-accumulation defect and hyperrecombination of THO mutants. Nevertheless, mutants in 3' end cleavage/polyadenylation, nuclear exosome, and mRNA export showed a weak but significant effect on recombination and transcript accumulation. Mutants of the nuclear exosome (rrp6) and 3' end processing factors (rna14 and rna15) showed inefficient transcription elongation and genetic interactions with THO. The results suggest a tight interdependence among mRNP biogenesis steps and transcription and an unexpected effect of the nuclear exosome and the cleavage/polyadenylation factors on transcription elongation and genetic integrity.
Collapse
Affiliation(s)
- Rosa Luna
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Spain
| | | | | | | | | | | |
Collapse
|