301
|
Um JW, Chung KC. Functional modulation of parkin through physical interaction with SUMO-1. J Neurosci Res 2007; 84:1543-54. [PMID: 16955485 DOI: 10.1002/jnr.21041] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Parkinson disease (PD) is the second most common neurodegenerative disorder and is characterized by the extensive and progressive loss of dopaminergic neurons in the CNS substantia nigra pars compacta region. Mutations in the parkin gene, which encodes for E3 ubiquitin ligase, have been implicated in autosomal recessive juvenile parkinsonism, an early-onset and common familial form of PD. Although several parkin substrates have already been identified, the molecular mechanism underlying the regulation of enzymatic activity of parkin has yet to be clarified. In a previous study, we demonstrated that RanBP2 becomes a new target for parkin E3 ubiquitin ligase and is processed via parkin-mediated ubiquitination and subsequent proteasomal degradation. RanBP2, which is localized in the cytoplasmic filament of the nuclear pore complex, belongs to the small ubiquitin-related modifier (SUMO) E3 ligase family. Here we show that parkin appears to bind selectively to the SUMO-1 in vivo and in vitro. Moreover, the physical association of SUMO-1 with parkin results in an increase in the nuclear transport of parkin as well as its self-ubiquitination. Our findings suggest that the E3 ubiquitin ligase activity of parkin and its intracellular localization may be modulated through the SUMO-1 association.
Collapse
Affiliation(s)
- Ji Won Um
- Department of Biology, College of Science, Yonsei University, Seoul, Korea
| | | |
Collapse
|
302
|
Goswami SK, Maulik N, Das DK. Ischemia-reperfusion and cardioprotection: a delicate balance between reactive oxygen species generation and redox homeostasis. Ann Med 2007; 39:275-89. [PMID: 17558599 DOI: 10.1080/07853890701374677] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Ischemia-reperfusion injury of the myocardium has long been a subject of intense research. Cardiac preconditioning, an associated phenomenon, has also been critically investigated over the past two decades. Although the biochemistry of ischemia-reperfusion and its association with oxidative metabolism has long been established, recent studies have further revealed a more intricate role of a number of reactive oxygen-nitrogen species in those processes. Emerging evidence suggests that an elaborate network of enzymes (and other biomolecules) dedicated to the generation, utilization, and diminution of reactive oxygen-nitrogen species maintains the redox homeostasis in the myocardium, and any perturbation of its status has distinctive effects. It thus appears that while excessive generation of reactive species leads to cellular injury, their regulated generation may cause transient and reversible modifications of cellular proteins leading the transmission of intracellular signals with specific effects. Taken together, generation of reactive oxygen-nitrogen species in the myocardium plays a nodal role in mediating both ischemic injury and cardioprotection.
Collapse
Affiliation(s)
- Shyamal K Goswami
- Cardiovascular Research Center, University of Connecticut School of Medicine, Farmington, CT 06030-1110, USA
| | | | | |
Collapse
|
303
|
Park SW, Hu X, Gupta P, Lin YP, Ha SG, Wei LN. SUMOylation of Tr2 orphan receptor involves Pml and fine-tunes Oct4 expression in stem cells. Nat Struct Mol Biol 2006; 14:68-75. [PMID: 17187077 DOI: 10.1038/nsmb1185] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2006] [Accepted: 11/29/2006] [Indexed: 11/08/2022]
Abstract
The Tr2 orphan nuclear receptor can be SUMOylated, resulting in the replacement of coregulators recruited to the regulatory region of its endogenous target gene, Oct4. UnSUMOylated Tr2 activates Oct4, enhancing embryonal carcinoma-cell proliferation, and is localized to the promyelocytic leukemia (Pml) nuclear bodies. When its abundance is elevated, Tr2 is SUMOylated at Lys238 and seems to be released from the nuclear bodies to act as a repressor. SUMOylation of Tr2 induces an exchange of its coregulators: corepressor Rip140 replaces coactivator Pcaf, which switches Tr2 from an activator to a repressor. This involves dynamic partitioning of Tr2 into Pml-containing and Pml-free pools. These results support a model where SUMOylation-dependent partitioning and differential coregulator recruitment contribute to the maintenance of a homeostatic supply of activating, as opposed to repressive, Tr2, thus fine-tuning Oct4 expression and regulating stem-cell proliferation.
Collapse
Affiliation(s)
- Sung Wook Park
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | |
Collapse
|
304
|
Yoo CY, Miura K, Jin JB, Lee J, Park HC, Salt DE, Yun DJ, Bressan RA, Hasegawa PM. SIZ1 small ubiquitin-like modifier E3 ligase facilitates basal thermotolerance in Arabidopsis independent of salicylic acid. PLANT PHYSIOLOGY 2006; 142:1548-58. [PMID: 17041025 PMCID: PMC1676064 DOI: 10.1104/pp.106.088831] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Small ubiquitin-like modifier (SUMO) conjugation/deconjugation to heat shock transcription factors regulates DNA binding of the peptides and activation of heat shock protein gene expression that modulates thermal adaptation in metazoans. SIZ1 is a SUMO E3 ligase that facilitates SUMO conjugation to substrate target proteins (sumoylation) in Arabidopsis (Arabidopsis thaliana). siz1 T-DNA insertional mutations (siz1-2 and siz1-3; Miura et al., 2005) cause basal, but not acquired, thermosensitivity that occurs in conjunction with hyperaccumulation of salicylic acid (SA). NahG encodes a salicylate hydroxylase, and expression in siz1-2 seedlings reduces endogenous SA accumulation to that of wild-type levels and further increases thermosensitivity. High temperature induces SUMO1/2 conjugation to peptides in wild type but to a substantially lesser degree in siz1 mutants. However, heat shock-induced expression of genes, including heat shock proteins, ascorbate peroxidase 1 and 2, is similar in siz1 and wild-type seedlings. Together, these results indicate that SIZ1 and, by inference, sumoylation facilitate basal thermotolerance through processes that are SA independent.
Collapse
Affiliation(s)
- Chan Yul Yoo
- Center for Plant Environmental Stress Physiology, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
305
|
Spickett CM, Pitt AR, Morrice N, Kolch W. Proteomic analysis of phosphorylation, oxidation and nitrosylation in signal transduction. BIOCHIMICA ET BIOPHYSICA ACTA 2006; 1764:1823-41. [PMID: 17070740 DOI: 10.1016/j.bbapap.2006.09.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Revised: 09/20/2006] [Accepted: 09/21/2006] [Indexed: 12/28/2022]
Abstract
Signal transduction pathways control cell fate, survival and function. They are organized as intricate biochemical networks which enable biochemical protein activities, crosstalk and subcellular localization to be integrated and tuned to produce highly specific biological responses in a robust and reproducible manner. Post translational Modifications (PTMs) play major roles in regulating these processes through a wide variety of mechanisms that include changes in protein activities, interactions, and subcellular localizations. Determining and analyzing PTMs poses enormous challenges. Recent progress in mass spectrometry (MS) based proteomics have enhanced our capability to map and identify many PTMs. Here we review the current state of proteomic PTM analysis relevant for signal transduction research, focusing on two areas: phosphorylation, which is well established as a widespread key regulator of signal transduction; and oxidative modifications, which from being primarily viewed as protein damage now start to emerge as important regulatory mechanisms.
Collapse
|
306
|
Roscic A, Möller A, Calzado MA, Renner F, Wimmer VC, Gresko E, Lüdi KS, Schmitz ML. Phosphorylation-dependent control of Pc2 SUMO E3 ligase activity by its substrate protein HIPK2. Mol Cell 2006; 24:77-89. [PMID: 17018294 DOI: 10.1016/j.molcel.2006.08.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Revised: 07/04/2006] [Accepted: 08/04/2006] [Indexed: 11/24/2022]
Abstract
Sumoylation serves to control key cellular functions, but the regulation of SUMO E3 ligase activity is largely unknown. Here we show that the polycomb group protein Pc2 binds to and colocalizes with homeodomain interacting protein kinase 2 (HIPK2) and serves as a SUMO E3 ligase for this kinase. DNA damage-induced HIPK2 directly phosphorylates Pc2 at multiple sites, which in turn controls Pc2 sumoylation and intranuclear localization. Inducible phosphorylation of Pc2 at threonine 495 is required for its ability to increase HIPK2 sumoylation in response to DNA damage, thereby establishing an autoregulatory feedback loop between a SUMO substrate and its cognate E3 ligase. Sumoylation enhances the ability of HIPK2 to mediate transcriptional repression, thus providing a mechanistic link for DNA damage-induced transcriptional silencing.
Collapse
Affiliation(s)
- Ana Roscic
- Institute of Biochemistry, Medical Faculty, Friedrichstrasse 24, Justus-Liebig-University, D-35392 Giessen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
307
|
Jones MC, Fusi L, Higham JH, Abdel-Hafiz H, Horwitz KB, Lam EWF, Brosens JJ. Regulation of the SUMO pathway sensitizes differentiating human endometrial stromal cells to progesterone. Proc Natl Acad Sci U S A 2006; 103:16272-7. [PMID: 17053081 PMCID: PMC1637572 DOI: 10.1073/pnas.0603002103] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
cAMP is required for differentiation of human endometrial stromal cells (HESCs) into decidual cells in response to progesterone, although the underlying mechanism is not well understood. We now demonstrate that cAMP signaling attenuates ligand-dependent sumoylation of the progesterone receptor (PR) in HESCs. In fact, decidualization is associated with global hyposumoylation and redistribution of small ubiquitin-like modifier (SUMO)-1 conjugates into distinct nuclear foci. This altered pattern of global sumoylation was not attributable to impaired maturation of SUMO-1 precursor or altered expression of E1 (SAE1/SEA2) or E2 (Ubc9) enzymes but coincided with profound changes in the expression of E3 ligases and SUMO-specific proteases. Down-regulation of several members of the protein inhibitors of activated STAT (PIAS) family upon decidualization pointed toward a role of these E3 ligases in PR sumoylation. We demonstrate that PIAS1 interacts with the PR and serves as its E3 SUMO ligase upon activation of the receptor. Furthermore, we show that silencing of PIAS1 not only enhances PR-dependent transcription but also induces expression of prolactin, a decidual marker gene, in progestin-treated HESCs without the need of simultaneous activation of the cAMP pathway. Our findings demonstrate how dynamic changes in the SUMO pathway mediated by cAMP signaling determine the endometrial response to progesterone.
Collapse
Affiliation(s)
| | - Luca Fusi
- *Institute of Reproductive and Developmental Biology, and
| | - Jenny H. Higham
- Department of Obstetrics and Gynecology, Imperial College London, St Mary's Hospital, London W2 1PG, United Kingdom; and
| | - Hany Abdel-Hafiz
- Division of Endocrinology, Department of Medicine, University of Colorado Health Science Center, Denver, CO 80045
| | - Kathryn B. Horwitz
- Division of Endocrinology, Department of Medicine, University of Colorado Health Science Center, Denver, CO 80045
| | - Eric W.-F. Lam
- Cancer Research-UK Laboratories, Department of Oncology, Imperial College London, Hammersmith Campus, London W12 0NN, United Kingdom
| | - Jan J. Brosens
- *Institute of Reproductive and Developmental Biology, and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
308
|
Tsatmali M, Walcott EC, Makarenkova H, Crossin KL. Reactive oxygen species modulate the differentiation of neurons in clonal cortical cultures. Mol Cell Neurosci 2006; 33:345-57. [PMID: 17000118 PMCID: PMC1797198 DOI: 10.1016/j.mcn.2006.08.005] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Revised: 08/08/2006] [Accepted: 08/17/2006] [Indexed: 10/24/2022] Open
Abstract
Reactive oxygen species (ROS) are important regulators of intracellular signaling. We examined the expression of ROS during rat brain development and explored their role in differentiation using cortical cultures. High levels of ROS were found in newborn neurons. Neurons produced ROS, not connected with cell death, throughout embryogenesis and postnatal stages. By P20, ROS-producing cells were found only in neurogenic regions. Cells with low levels of ROS, isolated from E15 brains by FACS, differentiated into neurons, oligodendrocytes, and astrocytes in clonal cultures. Neurons produced high ROS early in culture and later differentiated into two types: large pyramidal-like neurons that fired no or only a single action potential and smaller neurons that expressed nuclear calretinin and fired repeated action potentials. Antioxidant treatment did not alter neuron number but increased the ratio of small to large neurons. These findings suggest that modulation of ROS levels influences multiple aspects of neuronal differentiation.
Collapse
Affiliation(s)
- Marina Tsatmali
- Department of Neurobiology, SBR-14, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Elisabeth C. Walcott
- The Neurosciences Institute, 10640 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Helen Makarenkova
- The Neurosciences Institute, 10640 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Kathryn L. Crossin
- Department of Neurobiology, SBR-14, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
- *Corresponding Author: Fax: 858 784 2646., E-mail address: (K.L. Crossin)
| |
Collapse
|
309
|
Havens CG, Ho A, Yoshioka N, Dowdy SF. Regulation of late G1/S phase transition and APC Cdh1 by reactive oxygen species. Mol Cell Biol 2006; 26:4701-11. [PMID: 16738333 PMCID: PMC1489138 DOI: 10.1128/mcb.00303-06] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Proliferating cells have a higher metabolic rate than quiescent cells. To investigate the role of metabolism in cell cycle progression, we examined cell size, mitochondrial mass, and reactive oxygen species (ROS) levels in highly synchronized cell populations progressing from early G1 to S phase. We found that ROS steadily increased, compared to cell size and mitochondrial mass, through the cell cycle. Since ROS has been shown to influence cell proliferation and transformation, we hypothesized that ROS could contribute to cell cycle progression. Antioxidant treatment of cells induced a late-G1-phase cell cycle arrest characterized by continued cellular growth, active cyclin D-Cdk4/6 and active cyclin E-Cdk2 kinases, and inactive hyperphosphorylated pRb. However, antioxidant-treated cells failed to accumulate cyclin A protein, a requisite step for initiation of DNA synthesis. Further examination revealed that cyclin A continued to be ubiquitinated by the anaphase promoting complex (APC) and to be degraded by the proteasome. This antioxidant arrest could be rescued by overexpression of Emi1, an APC inhibitor. These observations reveal an intrinsic late-G1-phase checkpoint, after transition across the growth factor-dependent G1 restriction point, that links increased steady-state levels of endogenous ROS and cell cycle progression through continued activity of APC in association with Cdh1.
Collapse
Affiliation(s)
- Courtney G Havens
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, University of California-San Diego, School of Medicine, 9500 Gilman Dr., La Jolla, CA 92093-0686, USA
| | | | | | | |
Collapse
|
310
|
Abstract
Post-translational modifiers of the SUMO (Small Ubiquitin-related Modifier) family have emerged as key regulators of protein function and fate. While the past few years have seen an enormous increase in knowledge on SUMO enzymes, substrates, and consequences of modification, regulation of SUMO conjugation is far from being understood. This brief review will provide an overview on recent advances concerning (i) the interplay between sumoylation and other post-translational modifications at the level of individual targets and (ii) global regulation of SUMO conjugation and deconjugation.
Collapse
Affiliation(s)
- Guillaume Bossis
- Institut de Génétique Moléculaire de Montpellier, CNRS, 1919 route de Mende, 34293 - Montpellier Cedex 05, France
- Dept. of Biochemie I, University Goettingen, Humboldt Allee 23, 37073 Goettingen, Germany
| | - Frauke Melchior
- Dept. of Biochemie I, University Goettingen, Humboldt Allee 23, 37073 Goettingen, Germany
| |
Collapse
|
311
|
Abstract
The p53 tumour suppressor protein is regulated by ubiquitin-mediated proteasomal degradation. In normal cells p53 is constitutively ubiquitylated by the Mdm2 ubiquitin ligase. When the p53 response is activated by stress signals p53 levels rise due to inhibition of this degradative pathway. Here we show that p53 is modified by the small ubiquitin-like protein SUMO-1 at a single site, K386, in the C-terminus of the protein. Modification in vitro requires only SUMO-1, the SUMO-1 activating enzyme and ubc9. SUMO-1 and ubiquitin modification do not compete for the same lysine acceptor sites in p53. Overexpression of SUMO-1 activates the transcriptional activity of wild-type p53, but not K386R p53 where the SUMO-1 acceptor site has been mutated. The SUMO-1 modification pathway therefore acts as a potential regulator of the p53 response and may represent a novel target for the development of therapeutically useful modulators of the p53 response.
Collapse
|