301
|
Escherichia coli noncoding RNAs can affect gene expression and physiology of Caenorhabditis elegans. Nat Commun 2013; 3:1073. [PMID: 23011127 PMCID: PMC3658002 DOI: 10.1038/ncomms2071] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 08/16/2012] [Indexed: 12/26/2022] Open
Abstract
Food and other environmental factors affect gene expression and behaviour of animals. Differences in bacterial food affect the behaviour and longevity of Caenorhabditis elegans. However, no research has been carried out to investigate whether bacteria could utilize endogenous RNAs to affect C. elegans physiology. Here we show that two Escherichia coli endogenous noncoding RNAs, OxyS and DsrA, impact on the physiology of C. elegans. OxyS downregulates che-2, leading to impairment in C. elegans chemosensory behaviour and DsrA suppresses diacylglycerol lipase gene F42G9.6, leading to a decrease in longevity. We also examine some genes in the C. elegans RNA interference pathway for their possible involvement in the effects of OxyS and DsrA. Other bacteria, such as Bacillus mycoides, may also utilize its noncoding RNAs to interfere with gene expression in C. elegans. Our results demonstrate that E. coli noncoding RNAs can regulate gene expression and physiological conditions of C. elegans and indicate that noncoding RNAs might have interspecies ecological roles. It is known that differences in the bacterial food of Caenorhabditis elegans can alter their behaviour. In this study, bacteria expressing two different noncoding RNAs alter the chemosensory and longevity of C. elegans, suggesting a role in modulating C. elegans physiology.
Collapse
|
302
|
Shi Z, Montgomery TA, Qi Y, Ruvkun G. High-throughput sequencing reveals extraordinary fluidity of miRNA, piRNA, and siRNA pathways in nematodes. Genome Res 2013; 23:497-508. [PMID: 23363624 PMCID: PMC3589538 DOI: 10.1101/gr.149112.112] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The nematode Caenorhabditis elegans contains each of the broad classes of eukaryotic small RNAs, including microRNAs (miRNAs), endogenous small-interfering RNAs (endo-siRNAs), and piwi-interacting RNAs (piRNAs). To better understand the evolution of these regulatory RNAs, we deep-sequenced small RNAs from C. elegans and three closely related nematodes: C. briggsae, C. remanei, and C. brenneri. The results reveal a fluid landscape of small RNA pathways with essentially no conservation of individual sequences aside from a subset of miRNAs. We identified 54 miRNA families that are conserved in each of the four species, as well as numerous miRNAs that are species-specific or shared between only two or three species. Despite a lack of conservation of individual piRNAs and siRNAs, many of the features of each pathway are conserved between the different species. We show that the genomic distribution of 26G siRNAs and the tendency for piRNAs to cluster is conserved between C. briggsae and C. elegans. We also show that, in each species, 26G siRNAs trigger stage-specific secondary siRNA formation. piRNAs in each species also trigger secondary siRNA formation from targets containing up to three mismatches. Finally, we show that the production of male- and female-specific piRNAs is conserved in all four species, suggesting distinct roles for piRNAs in male and female germlines.
Collapse
Affiliation(s)
- Zhen Shi
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | |
Collapse
|
303
|
Claycomb JM. Caenorhabditis elegans small RNA pathways make their mark on chromatin. DNA Cell Biol 2013; 31 Suppl 1:S17-33. [PMID: 23046453 DOI: 10.1089/dna.2012.1611] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Endogenous small-RNA-mediated gene silencing pathways are generally recognized for their functions in halting gene expression by the degradation of a transcript or by translational inhibition. However, another important mode of gene regulation by small RNAs is mediated at the level of chromatin modulation. Over the past decade a great deal of progress on understanding the molecular mechanisms by which small RNAs can influence chromatin has been made for fungi, ciliated protozoans, and plants, while less is known about the functions and consequences of such chromatin-directed small RNA pathways in animals. Several recent studies in the nematode Caenorhabditis elegans have provided mechanistic insights into small RNA pathways that impact chromatin throughout development. The "worm" has been instrumental in uncovering the mechanisms of RNA interference and remains a powerful system for dissecting the molecular means by which small RNA pathways impact chromatin in animals. This review summarizes our current knowledge of the various chromatin-directed small RNA pathways in C. elegans and provides insights for future study.
Collapse
Affiliation(s)
- Julie M Claycomb
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
304
|
Ishizu H, Siomi H, Siomi MC. Biology of PIWI-interacting RNAs: new insights into biogenesis and function inside and outside of germlines. Genes Dev 2013; 26:2361-73. [PMID: 23124062 DOI: 10.1101/gad.203786.112] [Citation(s) in RCA: 253] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PIWI-interacting RNAs (piRNAs) are endogenous small noncoding RNAs that act as guardians of the genome, protecting it from invasive transposable elements in the germline. Animals lacking piRNA functions show defects in gametogenesis and exhibit sterility. Their descendants are also predisposed to inheriting mutations. Thus, the piRNA pathway has evolved to repress transposons post-transcriptionally and/or transcriptionally. A growing number of studies on piRNAs have investigated piRNA-mediated gene silencing, including piRNA biogenesis. However, piRNAs remain the most enigmatic among all of the silencing-inducing small RNAs because of their complexity and uniqueness. Although piRNAs have been previously suggested to be germline-specific, recent studies have shown that piRNAs also play crucial roles in nongonadal cells. Furthermore, piRNAs have also recently been shown to have roles in multigenerational epigenetic phenomena in worms. The purpose of this review is to highlight new piRNA factors and novel insights in the piRNA world.
Collapse
Affiliation(s)
- Hirotsugu Ishizu
- Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
305
|
|
306
|
Van Wynsberghe PM, Maine EM. Epigenetic control of germline development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 757:373-403. [PMID: 22872484 DOI: 10.1007/978-1-4614-4015-4_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Dynamic regulation of histone modifications and small noncoding RNAs is observed throughout the development of the C. elegans germ line. Histone modifications are differentially regulated in the mitotic vs meiotic germ line, on X chromosomes vs autosomes and on paired chromosomes vs unpaired chromosomes. Small RNAs function in transposon silencing and developmental gene regulation. Histone modifications and small RNAs produced in the germ line can be inherited and impact embryonic development. Disruption of histone-modifying enzymes or small RNA machinery in the germ line can result in sterility due to degeneration of the germ line and/or an inability to produce functional gametes.
Collapse
|
307
|
Ageing and the small, non-coding RNA world. Ageing Res Rev 2013; 12:429-35. [PMID: 22504407 DOI: 10.1016/j.arr.2012.03.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 03/12/2012] [Accepted: 03/29/2012] [Indexed: 01/09/2023]
Abstract
MicroRNAs, a class of small, non-coding RNAs, are now widely known for their importance in many aspects of biology. These small regulatory RNAs have critical functions in diverse biological events, including development and disease. Recent findings show that microRNAs are essential for lifespan determination in the model organisms, Caenorhabditis elegans and Drosophila, suggesting that microRNAs are also involved in the complex process of ageing. Further, short RNA fragments derived from longer parental RNAs, such as transfer RNA cleavage fragments, have now emerged as a novel class of regulatory RNAs that inhibit translation in response to stress. In addition, the RNA editing pathway is likely to act in the double-stranded RNA-mediated silencing machinery to suppress unfavorable RNA interference activity in the ageing process. These multiple, redundant layers in gene regulatory networks may make it possible to both stably and flexibly regulate genetic pathways in ensuring robustness of developmental and ageing processes.
Collapse
|
308
|
Abstract
One of the most important and evolutionarily conserved strategies to control gene expression in higher metazoa is posttranscriptional regulation via small regulatory RNAs such as microRNAs (miRNAs), endogenous small interfering RNAs (endo-siRNAs), and piwi-interacting RNAs (piRNAs). Primordial germ cells, which are defined by their totipotent potential and noted for their dependence on posttranscriptional regulation by RNA-binding proteins, rely on these small regulatory RNAs for virtually every aspect of their development, including specification, migration, and differentiation into competent gametes. Here, we review current knowledge of the roles miRNAs, endo-siRNAs, and piRNAs play at all stages of germline development in various organisms, focusing on studies in the mouse.
Collapse
Affiliation(s)
- Matthew S Cook
- Department of Urology, University of California, San Francisco, California, USA.
| | | |
Collapse
|
309
|
Abstract
The significance of noncoding RNAs in animal biology is being increasingly recognized. The nematode Caenorhabditis elegans has an extensive system of short RNAs that includes microRNAs, piRNAs, and endogenous siRNAs, which regulate development, control life span, provide resistance to viruses and transposons, and monitor gene duplications. Progress in our understanding of short RNAs was stimulated by the discovery of RNA interference, a phenomenon of sequence-specific gene silencing induced by exogenous double-stranded RNA, at the turn of the twenty-first century. This chapter provides a broad overview of the exogenous and endogenous RNAi processes in C. elegans and describes recent advances in genetic, genomic, and molecular analyses of nematode's short RNAs and proteins involved in the RNAi-related pathways.
Collapse
Affiliation(s)
- Alla Grishok
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, USA.
| |
Collapse
|
310
|
Gu W, Lee HC, Chaves D, Youngman EM, Pazour GJ, Conte D, Mello CC. CapSeq and CIP-TAP identify Pol II start sites and reveal capped small RNAs as C. elegans piRNA precursors. Cell 2012; 151:1488-500. [PMID: 23260138 PMCID: PMC3581324 DOI: 10.1016/j.cell.2012.11.023] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Revised: 10/21/2012] [Accepted: 11/14/2012] [Indexed: 11/29/2022]
Abstract
Piwi-interacting (pi) RNAs are germline-expressed small RNAs linked to epigenetic programming. C. elegans piRNAs are thought to be transcribed as independent gene-like loci. To test this idea and to identify potential transcription start (TS) sites for piRNA precursors, we developed CapSeq, an efficient enzymatic method for 5' anchored RNA profiling. Using CapSeq, we identify candidate TS sites, defined by 70-90 nt sequence tags, for >50% of annotated Pol II loci. Surprisingly, however, these CapSeq tags failed to identify the overwhelming majority of piRNA loci. Instead, we show that the likely piRNA precursors are ∼26 nt capped small (cs) RNAs that initiate precisely 2 nt upstream of mature piRNAs and that piRNA processing or stability requires a U at the csRNA +3 position. Finally, we identify a heretofore unrecognized class of piRNAs processed from csRNAs that are expressed at promoters genome wide, nearly doubling the number of piRNAs available for genome surveillance.
Collapse
Affiliation(s)
- Weifeng Gu
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| | - Heng-Chi Lee
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| | - Daniel Chaves
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| | - Elaine M Youngman
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| | - Gregory J Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| | - Darryl Conte
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| | - Craig C Mello
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA
- Howard Hughes Medical Institute, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| |
Collapse
|
311
|
Voronina E. The diverse functions of germline P-granules in Caenorhabditis elegans. Mol Reprod Dev 2012; 80:624-31. [PMID: 23150384 DOI: 10.1002/mrd.22136] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 11/05/2012] [Indexed: 12/14/2022]
Abstract
P-granules are conserved cytoplasmic organelles, similar to nuage, that are present in Caenorhabditis elegans germ cells. Based on the prevailing sterility phenotype of the component mutants, P-granules have been seen as regulators of germ cell development and function. Yet, specific germline defects resulting from P-granule failure vary, depending on which component(s) are inactivated, at which stage of development, as well as on the presence of stress factors during animal culture. This review discusses the unifying themes in many P-granule functions, with the main focus on their role as organizing centers nucleating RNA regulation in the germ cell cytoplasm.
Collapse
Affiliation(s)
- Ekaterina Voronina
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812, USA.
| |
Collapse
|
312
|
Gao M, Arkov AL. Next generation organelles: structure and role of germ granules in the germline. Mol Reprod Dev 2012; 80:610-23. [PMID: 23011946 DOI: 10.1002/mrd.22115] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 09/14/2012] [Indexed: 12/20/2022]
Abstract
Germ cells belong to a unique class of stem cells that gives rise to eggs and sperm, and ultimately to an entire organism after gamete fusion. In many organisms, germ cells contain electron-dense structures that are also known as nuage or germ granules. Although germ granules were discovered more than 100 years ago, their composition, structure, assembly, and function are not fully understood. Germ granules contain non-coding RNAs, mRNAs, and proteins required for germline development. Here we review recent studies that highlight the importance of several protein families in germ granule assembly and function, including germ granule inducers, which initiate the granule formation, and downstream components, such as RNA helicases and Tudor domain-Piwi protein-piRNA complexes. Assembly of these components into one granule is likely to result in a highly efficient molecular machine that ensures translational control and protects germline DNA from mutations caused by mobile genetic elements. Furthermore, recent studies have shown that different somatic cells, including stem cells and neurons, produce germ granule components that play a crucial role in stem cell maintenance and memory formation, indicating a much more diverse functional repertoire for these organelles than previously thought.
Collapse
Affiliation(s)
- Ming Gao
- Department of Biological Sciences, Murray State University, Murray, Kentucky 42071, USA
| | | |
Collapse
|
313
|
Suzuki R, Honda S, Kirino Y. PIWI Expression and Function in Cancer. Front Genet 2012; 3:204. [PMID: 23087701 PMCID: PMC3472457 DOI: 10.3389/fgene.2012.00204] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 09/23/2012] [Indexed: 12/13/2022] Open
Abstract
PIWI proteins, a subclade of the Argonaute family proteins, are expressed predominantly in the germline and bind to PIWI-interacting RNAs (piRNAs), which are 25–31 nucleotides in length. The PIWI/piRNA pathway plays critical roles in germline development by regulating transposons and other targets to maintain genome integrity. While the functions of PIWI in the germline have been extensively investigated, recent studies have accumulated evidence that the human PIWI proteins, HIWI and HILI, are aberrantly expressed in a variety of cancers. This review summarizes our knowledge of PIWI expression in cancer and discusses its possible role in tumorigenesis.
Collapse
Affiliation(s)
- Ryusuke Suzuki
- Department of Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center Los Angeles, CA, USA
| | | | | |
Collapse
|
314
|
Bagijn MP, Goldstein LD, Sapetschnig A, Weick EM, Bouasker S, Lehrbach NJ, Simard MJ, Miska EA. Function, targets, and evolution of Caenorhabditis elegans piRNAs. Science 2012; 337:574-578. [PMID: 22700655 PMCID: PMC3951736 DOI: 10.1126/science.1220952] [Citation(s) in RCA: 277] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Piwi-interacting RNAs (piRNAs) are small RNAs required to maintain germline integrity and fertility, but their mechanism of action is poorly understood. Here we demonstrate that Caenorhabditis elegans piRNAs silence transcripts in trans through imperfectly complementary sites. Target silencing is independent of Piwi endonuclease activity or "slicing." Instead, piRNAs initiate a localized secondary endogenous small interfering RNA (endo-siRNA) response. Endogenous protein-coding gene and transposon transcripts exhibit Piwi-dependent endo-siRNAs at sites complementary to piRNAs and are derepressed in Piwi mutants. Genomic loci of piRNA biogenesis are depleted of protein-coding genes and tend to overlap the start and end of transposons in sense and antisense, respectively. Our data suggest that nematode piRNA clusters are evolving to generate piRNAs against active mobile elements. Thus, piRNAs provide heritable, sequence-specific triggers for RNA interference in C. elegans.
Collapse
Affiliation(s)
- Marloes P. Bagijn
- Gurdon Institute and Department of Biochemistry, University of Cambridge, The Henry Wellcome Building of Cancer and Developmental Biology, Tennis Court Rd, Cambridge CB2 1QN, UK
| | - Leonard D. Goldstein
- Gurdon Institute and Department of Biochemistry, University of Cambridge, The Henry Wellcome Building of Cancer and Developmental Biology, Tennis Court Rd, Cambridge CB2 1QN, UK
| | - Alexandra Sapetschnig
- Gurdon Institute and Department of Biochemistry, University of Cambridge, The Henry Wellcome Building of Cancer and Developmental Biology, Tennis Court Rd, Cambridge CB2 1QN, UK
| | - Eva-Maria Weick
- Gurdon Institute and Department of Biochemistry, University of Cambridge, The Henry Wellcome Building of Cancer and Developmental Biology, Tennis Court Rd, Cambridge CB2 1QN, UK
| | - Samir Bouasker
- Laval University Cancer Research Centre, Hôtel-Dieu de Québec (CHUQ), Quebec City, Québec G1R 2J6, Canada
| | - Nicolas J. Lehrbach
- Gurdon Institute and Department of Biochemistry, University of Cambridge, The Henry Wellcome Building of Cancer and Developmental Biology, Tennis Court Rd, Cambridge CB2 1QN, UK
| | - Martin J. Simard
- Laval University Cancer Research Centre, Hôtel-Dieu de Québec (CHUQ), Quebec City, Québec G1R 2J6, Canada
| | - Eric A. Miska
- Gurdon Institute and Department of Biochemistry, University of Cambridge, The Henry Wellcome Building of Cancer and Developmental Biology, Tennis Court Rd, Cambridge CB2 1QN, UK
| |
Collapse
|
315
|
CSR-1 RNAi pathway positively regulates histone expression in C. elegans. EMBO J 2012; 31:3821-32. [PMID: 22863779 DOI: 10.1038/emboj.2012.216] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 07/13/2012] [Indexed: 02/08/2023] Open
Abstract
Endogenous small interfering RNAs (endo-siRNAs) have been discovered in many organisms, including mammals. In C. elegans, depletion of germline-enriched endo-siRNAs found in complex with the CSR-1 Argonaute protein causes sterility and defects in chromosome segregation in early embryos. We discovered that knockdown of either csr-1, the RNA-dependent RNA polymerase (RdRP) ego-1, or the dicer-related helicase drh-3, leads to defects in histone mRNA processing, resulting in severe depletion of core histone proteins. The maturation of replication-dependent histone mRNAs, unlike that of other mRNAs, requires processing of their 3'UTRs through an endonucleolytic cleavage guided by the U7 snRNA, which is lacking in C. elegans. We found that CSR-1-bound antisense endo-siRNAs match histone mRNAs and mRNA precursors. Consistently, we demonstrate that CSR-1 directly binds to histone mRNA in an ego-1-dependent manner using biotinylated 2'-O-methyl RNA oligonucleotides. Moreover, we demonstrate that increasing the dosage of histone genes rescues the lethality associated with depletion of CSR-1 and EGO-1. These results support a positive and direct effect of RNAi on histone gene expression.
Collapse
|
316
|
Warf MB, Shepherd BA, Johnson WE, Bass BL. Effects of ADARs on small RNA processing pathways in C. elegans. Genome Res 2012; 22:1488-98. [PMID: 22673872 PMCID: PMC3409262 DOI: 10.1101/gr.134841.111] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 04/02/2012] [Indexed: 11/24/2022]
Abstract
Adenosine deaminases that act on RNA (ADARs) are RNA editing enzymes that convert adenosine to inosine in double-stranded RNA (dsRNA). To evaluate effects of ADARs on small RNAs that derive from dsRNA precursors, we performed deep-sequencing, comparing small RNAs from wild-type and ADAR mutant Caenorhabditis elegans. While editing in small RNAs was rare, at least 40% of microRNAs had altered levels in at least one ADAR mutant strain, and miRNAs with significantly altered levels had mRNA targets with correspondingly affected levels. About 40% of siRNAs derived from endogenous genes (endo-siRNAs) also had altered levels in at least one mutant strain, including 63% of Dicer-dependent endo-siRNAs. The 26G class of endo-siRNAs was significantly affected by ADARs, and many altered 26G loci had intronic reads and histone modifications associated with transcriptional silencing. Our data indicate that ADARs, through both direct and indirect mechanisms, are important for maintaining wild-type levels of many small RNAs in C. elegans.
Collapse
Affiliation(s)
- M. Bryan Warf
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Brent A. Shepherd
- Department of Statistics, Brigham Young University, Provo, Utah 84602, USA
| | - W. Evan Johnson
- Department of Medicine, Boston University, Boston, Massachusetts 02118, USA
| | - Brenda L. Bass
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
317
|
Luteijn MJ, van Bergeijk P, Kaaij LJT, Almeida MV, Roovers EF, Berezikov E, Ketting RF. Extremely stable Piwi-induced gene silencing in Caenorhabditis elegans. EMBO J 2012; 31:3422-30. [PMID: 22850670 DOI: 10.1038/emboj.2012.213] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 07/12/2012] [Indexed: 11/09/2022] Open
Abstract
In recent years, the Piwi pathway has been shown to regulate the silencing of mobile genetic elements. However, we know little about how Piwi pathways impose silencing and even less about trans-generational stability of Piwi-induced silencing. We demonstrate that the Caenorhabditis elegans Piwi protein PRG-1 can initiate an extremely stable form of gene silencing on a transgenic, single-copy target. This type of silencing is faithfully maintained over tens of generations in the absence of a functional Piwi pathway. Interestingly, RNAi can also trigger permanent gene silencing of a single-copy transgene and the phenomenon will be collectively referred to as RNA-induced epigenetic silencing (RNAe). RNAe can act in trans and is dependent on endogenous RNAi factors. The involvement of factors known to act in nuclear RNAi and the fact that RNAe is accompanied by repressive chromatin marks indicate that RNAe includes a transcriptional silencing component. Our results demonstrate that, at least in C. elegans, the Piwi pathway can impose a state of gene silencing that borders on 'permanently silent'. Such a property may be more widely conserved among Piwi pathways in different animals.
Collapse
Affiliation(s)
- Maartje J Luteijn
- Hubrecht Institute-KNAW and University Medical Centre Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
318
|
Billi AC, Freeberg MA, Kim JK. piRNAs and siRNAs collaborate in Caenorhabditis elegans genome defense. Genome Biol 2012; 13:164. [PMID: 22818087 PMCID: PMC3491375 DOI: 10.1186/gb-2012-13-7-164] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Caenorhabditis elegans piRNAs promote genome surveillance by triggering siRNA-mediated silencing of nonself DNA in competition with licensing programs that support endogenous gene expression.
Collapse
|
319
|
Cecere G, Zheng GXY, Mansisidor AR, Klymko KE, Grishok A. Promoters recognized by forkhead proteins exist for individual 21U-RNAs. Mol Cell 2012; 47:734-45. [PMID: 22819322 DOI: 10.1016/j.molcel.2012.06.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 05/09/2012] [Accepted: 06/01/2012] [Indexed: 12/29/2022]
Abstract
C. elegans 21U-RNAs are equivalent to the piRNAs discovered in other metazoans and have important roles in gametogenesis and transposon control. The biogenesis and molecular function of 21U-RNAs and piRNAs are poorly understood. Here, we demonstrate that transcription of each 21U-RNA is regulated separately through a conserved upstream DNA motif. We use genomic analysis to show that this motif is associated with low nucleosome occupancy, a characteristic of many promoters that drive expression of protein-coding genes, and that RNA polymerase II is localized to this nucleosome-depleted region. We establish that the most conserved 8-mer sequence in the upstream region of 21U-RNAs, CTGTTTCA, is absolutely required for their individual expression. Furthermore, we demonstrate that the 8-mer is specifically recognized by Forkhead family (FKH) transcription factors and that 21U-RNA expression is diminished in several FKH mutants. Our results suggest that thousands of small noncoding transcription units are regulated by FKH proteins.
Collapse
Affiliation(s)
- Germano Cecere
- Department of Biochemistry and Molecular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
320
|
Differential impact of the HEN1 homolog HENN-1 on 21U and 26G RNAs in the germline of Caenorhabditis elegans. PLoS Genet 2012; 8:e1002702. [PMID: 22829772 PMCID: PMC3400576 DOI: 10.1371/journal.pgen.1002702] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 02/21/2012] [Indexed: 02/07/2023] Open
Abstract
RNA interference (RNAi)–related pathways affect gene activity by sequence-specific recruitment of Ago proteins to mRNA target molecules. The sequence specificity of this process stems from small RNA (sRNA) co-factors bound by the Ago protein. Stability of sRNA molecules in some pathways is in part regulated by Hen1-mediated methylation of their 3′ ends. Here we describe the effects of the Caenorhabditis elegans HEN1 RNA–methyl-transferase homolog, HENN-1, on the different RNAi pathways in this nematode. We reveal differential effects of HENN-1 on the two pathways that are known to employ methylated sRNA molecules: the 26G and 21U pathways. Surprisingly, in the germline, stability of 21U RNAs, the C. elegans piRNAs, is only mildly affected by loss of methylation; and introduction of artificial 21U target RNA does not further destabilize non-methylated 21U RNAs. In contrast, most 26G RNAs display reduced stability and respond to loss of HENN-1 by displaying increased 3′-uridylation frequencies. Within the 26G RNA class, we find that specifically ERGO-1–bound 26G RNAs are modified by HENN-1, while ALG-3/ALG-4–bound 26G RNAs are not. Global gene expression analysis of henn-1 mutants reveals mild effects, including down-regulation of many germline-expressed genes. Our data suggest that, apart from direct effects of reduced 26G RNA levels of henn-1 on gene expression, most effects on global gene expression are indirect. These studies further refine our understanding of endogenous RNAi in C. elegans and the roles for Hen1 like enzymes in these pathways. Small RNAs (sRNAs) have been shown to be potent regulators of gene expression in many different systems. They act by providing sequence specificity to Argonaute (Ago) proteins that in turn affect the expression and/or stability of mRNAs, or affect chromatin structures through recognition of nascent transcripts. Stability of sRNAs can be regulated by methylation of their 3′ end. This modification prevents addition of uridine residues that can destabilize the sRNA. The enzyme that catalyzes the methylation of sRNAs has been identified in Arabidopsis: HEN1. We describe studies on the C. elegans homolog of Hen1, henn-1. Our findings show that HENN-1 protein does not stably associate with the Ago proteins binding methylated sRNAs, but that HENN-1 does localize to subcellular regions known to host these factors. We find that the two known methylated sRNA species in C. elegans (21U and 26G) respond differently to loss of henn-1. While HENN-1 is required for 26G RNA stability in the germline, it has limited impact on 21U RNAs. In addition, we demonstrate that only ERGO-1–bound 26G RNAs are methylated, while those bound by ALG-3/4, are not. Our findings further refine the general understanding of 21U and 26G RNA pathways and identify two separable effects of HENN-1 on these RNAi–related mechanisms.
Collapse
|
321
|
Lee HC, Gu W, Shirayama M, Youngman E, Conte D, Mello CC. C. elegans piRNAs mediate the genome-wide surveillance of germline transcripts. Cell 2012; 150:78-87. [PMID: 22738724 DOI: 10.1016/j.cell.2012.06.016] [Citation(s) in RCA: 293] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 06/15/2012] [Accepted: 06/15/2012] [Indexed: 12/12/2022]
Abstract
Piwi Argonautes and Piwi-interacting RNAs (piRNAs) mediate genome defense by targeting transposons. However, many piRNA species lack obvious sequence complementarity to transposons or other loci; only one C. elegans transposon is a known piRNA target. Here, we show that, in mutants lacking the Piwi Argonaute PRG-1 (and consequently its associated piRNAs/21U-RNAs), many silent loci in the germline exhibit increased levels of mRNA expression with a concomitant depletion of RNA-dependent RNA polymerase (RdRP)-derived secondary small RNAs termed 22G-RNAs. Sequences depleted of 22G-RNAs are proximal to potential target sites that base pair imperfectly but extensively to 21U-RNAs. We show that PRG-1 is required to initiate, but not to maintain, silencing of transgenes engineered to contain complementarity to endogenous 21U-RNAs. Our findings support a model in which C. elegans piRNAs utilize their enormous repertoire of targeting capacity to scan the germline transcriptome for foreign sequences, while endogenous germline-expressed genes are actively protected from piRNA-induced silencing.
Collapse
Affiliation(s)
- Heng-Chi Lee
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| | | | | | | | | | | |
Collapse
|
322
|
Ashe A, Sapetschnig A, Weick EM, Mitchell J, Bagijn MP, Cording AC, Doebley AL, Goldstein LD, Lehrbach NJ, Le Pen J, Pintacuda G, Sakaguchi A, Sarkies P, Ahmed S, Miska EA. piRNAs can trigger a multigenerational epigenetic memory in the germline of C. elegans. Cell 2012; 150:88-99. [PMID: 22738725 PMCID: PMC3464430 DOI: 10.1016/j.cell.2012.06.018] [Citation(s) in RCA: 530] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 06/18/2012] [Accepted: 06/18/2012] [Indexed: 11/23/2022]
Abstract
Transgenerational effects have wide-ranging implications for human health, biological adaptation, and evolution; however, their mechanisms and biology remain poorly understood. Here, we demonstrate that a germline nuclear small RNA/chromatin pathway can maintain stable inheritance for many generations when triggered by a piRNA-dependent foreign RNA response in C. elegans. Using forward genetic screens and candidate approaches, we find that a core set of nuclear RNAi and chromatin factors is required for multigenerational inheritance of environmental RNAi and piRNA silencing. These include a germline-specific nuclear Argonaute HRDE1/WAGO-9, a HP1 ortholog HPL-2, and two putative histone methyltransferases, SET-25 and SET-32. piRNAs can trigger highly stable long-term silencing lasting at least 20 generations. Once established, this long-term memory becomes independent of the piRNA trigger but remains dependent on the nuclear RNAi/chromatin pathway. Our data present a multigenerational epigenetic inheritance mechanism induced by piRNAs.
Collapse
Affiliation(s)
- Alyson Ashe
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
323
|
Shirayama M, Seth M, Lee HC, Gu W, Ishidate T, Conte D, Mello CC. piRNAs initiate an epigenetic memory of nonself RNA in the C. elegans germline. Cell 2012; 150:65-77. [PMID: 22738726 PMCID: PMC3597741 DOI: 10.1016/j.cell.2012.06.015] [Citation(s) in RCA: 444] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 06/15/2012] [Accepted: 06/15/2012] [Indexed: 10/28/2022]
Abstract
Organisms employ a fascinating array of strategies to silence invasive nucleic acids such as transposons and viruses. Although evidence exists for several pathways that detect foreign sequences, including pathways that sense copy number, unpaired DNA, or aberrant RNA (e.g., dsRNA), in many cases, the mechanisms used to distinguish "self" from "nonself" nucleic acids remain mysterious. Here, we describe an RNA-induced epigenetic silencing pathway that permanently silences single-copy transgenes. We show that the Piwi Argonaute PRG-1 and its genomically encoded piRNA cofactors initiate permanent silencing, and maintenance depends on chromatin factors and the WAGO Argonaute pathway. Our findings support a model in which PRG-1 scans for foreign sequences and two other Argonaute pathways serve as epigenetic memories of "self" and "nonself" RNAs. These findings suggest how organisms can utilize RNAi-related mechanisms to detect foreign sequences not by any molecular signature, but by comparing the foreign sequence to a memory of previous gene expression.
Collapse
Affiliation(s)
- Masaki Shirayama
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| | | | | | | | | | | | | |
Collapse
|
324
|
Phillips CM, Montgomery TA, Breen PC, Ruvkun G. MUT-16 promotes formation of perinuclear mutator foci required for RNA silencing in the C. elegans germline. Genes Dev 2012; 26:1433-44. [PMID: 22713602 DOI: 10.1101/gad.193904.112] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RNA silencing can be initiated by endogenous or exogenously delivered siRNAs. In Caenorhabditis elegans, RNA silencing guided by primary siRNAs is inefficient and therefore requires an siRNA amplification step involving RNA-dependent RNA polymerases (RdRPs). Many factors involved in RNA silencing localize to protein- and RNA-rich nuclear pore-associated P granules in the germline, where they are thought to surveil mRNAs as they exit the nucleus. Mutator class genes are required for siRNA-mediated RNA silencing in both germline and somatic cells, but their specific roles and relationship to other siRNA factors are unclear. Here we show that each of the six mutator proteins localizes to punctate foci at the periphery of germline nuclei. The Mutator foci are adjacent to P granules but are not dependent on core P-granule components or other RNAi pathway factors for their formation or stability. The glutamine/asparagine (Q/N)-rich protein MUT-16 is specifically required for the formation of a protein complex containing the mutator proteins, and in its absence, Mutator foci fail to form at the nuclear periphery. The RdRP RRF-1 colocalizes with MUT-16 at Mutator foci, suggesting a role for Mutator foci in siRNA amplification. Furthermore, we demonstrate that genes that yield high levels of siRNAs, indicative of multiple rounds of siRNA amplification, are disproportionally affected in mut-16 mutants compared with genes that yield low levels of siRNAs. We propose that the mutator proteins and RRF-1 constitute an RNA processing compartment required for siRNA amplification and RNA silencing.
Collapse
Affiliation(s)
- Carolyn M Phillips
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | |
Collapse
|
325
|
Abstract
Thousands of long noncoding RNAs (lncRNAs) have been found in vertebrate animals, a few of which have known biological roles. To better understand the genomics and features of lncRNAs in invertebrates, we used available RNA-seq, poly(A)-site, and ribosome-mapping data to identify lncRNAs of Caenorhabditis elegans. We found 170 long intervening ncRNAs (lincRNAs), which had single- or multiexonic structures that did not overlap protein-coding transcripts, and about sixty antisense lncRNAs (ancRNAs), which were complementary to protein-coding transcripts. Compared to protein-coding genes, the lncRNA genes tended to be expressed in a stage-dependent manner. Approximately 25% of the newly identified lincRNAs showed little signal for sequence conservation and mapped antisense to clusters of endogenous siRNAs, as would be expected if they serve as templates and targets for these siRNAs. The other 75% tended to be more conserved and included lincRNAs with intriguing expression and sequence features associating them with processes such as dauer formation, male identity, sperm formation, and interaction with sperm-specific mRNAs. Our study provides a glimpse into the lncRNA content of a nonvertebrate animal and a resource for future studies of lncRNA function.
Collapse
Affiliation(s)
- Jin-Wu Nam
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | | |
Collapse
|
326
|
Yang H, Zhang Y, Vallandingham J, Li H, Li H, Florens L, Mak HY. The RDE-10/RDE-11 complex triggers RNAi-induced mRNA degradation by association with target mRNA in C. elegans. Genes Dev 2012; 26:846-56. [PMID: 22508728 DOI: 10.1101/gad.180679.111] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The molecular mechanisms for target mRNA degradation in Caenorhabditis elegans undergoing RNAi are not fully understood. Using a combination of genetic, proteomic, and biochemical approaches, we report a divergent RDE-10/RDE-11 complex that is required for RNAi in C. elegans. Genetic analysis indicates that the RDE-10/RDE-11 complex acts in parallel to nuclear RNAi. Association of the complex with target mRNA is dependent on RDE-1 but not RRF-1, suggesting that target mRNA recognition depends on primary but not secondary siRNA. Furthermore, RDE-11 is required for mRNA degradation subsequent to target engagement. Deep sequencing reveals a fivefold decrease in secondary siRNA abundance in rde-10 and rde-11 mutant animals, while primary siRNA and microRNA biogenesis is normal. Therefore, the RDE-10/RDE-11 complex is critical for amplifying the exogenous RNAi response. Our work uncovers an essential output of the RNAi pathway in C. elegans.
Collapse
Affiliation(s)
- Huan Yang
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | | | | | | | | | | |
Collapse
|
327
|
Sengupta MS, Boag PR. Germ granules and the control of mRNA translation. IUBMB Life 2012; 64:586-94. [DOI: 10.1002/iub.1039] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 03/17/2012] [Indexed: 12/18/2022]
|
328
|
Zhang C, Montgomery TA, Fischer SEJ, Garcia SMDA, Riedel CG, Fahlgren N, Sullivan CM, Carrington JC, Ruvkun G. The Caenorhabditis elegans RDE-10/RDE-11 complex regulates RNAi by promoting secondary siRNA amplification. Curr Biol 2012; 22:881-90. [PMID: 22542102 DOI: 10.1016/j.cub.2012.04.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 03/22/2012] [Accepted: 04/05/2012] [Indexed: 01/07/2023]
Abstract
BACKGROUND In nematodes, plants, and fungi, RNAi is remarkably potent and persistent due to the amplification of initial silencing signals by RNA-dependent RNA polymerases (RdRPs). In Caenorhabditis elegans (C. elegans), the interaction between the RNA-induced silencing complex (RISC) loaded with primary small interfering RNAs (siRNAs) and the target messenger RNA (mRNA) leads to the recruitment of RdRPs and synthesis of secondary siRNAs using the target mRNA as the template. The mechanism and genetic requirements for secondary siRNA accumulation are not well understood. RESULTS From a forward genetic screen for C. elegans genes required for RNAi, we identified rde-10, and through proteomic analysis of RDE-10-interacting proteins, we identified a protein complex containing the new RNAi factor RDE-11, the known RNAi factors RSD-2 and ERGO-1, and other candidate RNAi factors. The RNAi defective genes rde-10 and rde-11 encode a novel protein and a RING-type zinc finger domain protein, respectively. Mutations in rde-10 and rde-11 genes cause dosage-sensitive RNAi deficiencies: these mutants are resistant to low dosage but sensitive to high dosage of double-stranded RNAs. We assessed the roles of rde-10, rde-11, and other dosage-sensitive RNAi-defective genes rsd-2, rsd-6, and haf-6 in both exogenous and endogenous small RNA pathways using high-throughput sequencing and qRT-PCR. These genes are required for the accumulation of secondary siRNAs in both exogenous and endogenous RNAi pathways. CONCLUSIONS The RDE-10/RDE-11 complex is essential for the amplification of RNAi in C. elegans by promoting secondary siRNA accumulation.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
329
|
Montgomery TA, Rim YS, Zhang C, Dowen RH, Phillips CM, Fischer SEJ, Ruvkun G. PIWI associated siRNAs and piRNAs specifically require the Caenorhabditis elegans HEN1 ortholog henn-1. PLoS Genet 2012; 8:e1002616. [PMID: 22536158 PMCID: PMC3334881 DOI: 10.1371/journal.pgen.1002616] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 02/03/2012] [Indexed: 12/29/2022] Open
Abstract
Small RNAs--including piRNAs, miRNAs, and endogenous siRNAs--bind Argonaute proteins to form RNA silencing complexes that target coding genes, transposons, and aberrant RNAs. To assess the requirements for endogenous siRNA formation and activity in Caenorhabditis elegans, we developed a GFP-based sensor for the endogenous siRNA 22G siR-1, one of a set of abundant siRNAs processed from a precursor RNA mapping to the X chromosome, the X-cluster. Silencing of the sensor is also dependent on the partially complementary, unlinked 26G siR-O7 siRNA. We show that 26G siR-O7 acts in trans to initiate 22G siRNA formation from the X-cluster. The presence of several mispairs between 26G siR-O7 and the X-cluster mRNA, as well as mutagenesis of the siRNA sensor, indicates that siRNA target recognition is permissive to a degree of mispairing. From a candidate reverse genetic screen, we identified several factors required for 22G siR-1 activity, including the chromatin factors mes-4 and gfl-1, the Argonaute ergo-1, and the 3' methyltransferase henn-1. Quantitative RT-PCR of small RNAs in a henn-1 mutant and deep sequencing of methylated small RNAs indicate that siRNAs and piRNAs that associate with PIWI clade Argonautes are methylated by HENN-1, while siRNAs and miRNAs that associate with non-PIWI clade Argonautes are not. Thus, PIWI-class Argonaute proteins are specifically adapted to associate with methylated small RNAs in C. elegans.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gary Ruvkun
- Department of Molecular Biology, Massachusetts General Hospital, Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
330
|
The Caenorhabditis elegans HEN1 ortholog, HENN-1, methylates and stabilizes select subclasses of germline small RNAs. PLoS Genet 2012; 8:e1002617. [PMID: 22548001 PMCID: PMC3330095 DOI: 10.1371/journal.pgen.1002617] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 02/03/2012] [Indexed: 01/01/2023] Open
Abstract
Small RNAs regulate diverse biological processes by directing effector proteins called Argonautes to silence complementary mRNAs. Maturation of some classes of small RNAs involves terminal 2'-O-methylation to prevent degradation. This modification is catalyzed by members of the conserved HEN1 RNA methyltransferase family. In animals, Piwi-interacting RNAs (piRNAs) and some endogenous and exogenous small interfering RNAs (siRNAs) are methylated, whereas microRNAs are not. However, the mechanisms that determine animal HEN1 substrate specificity have yet to be fully resolved. In Caenorhabditis elegans, a HEN1 ortholog has not been studied, but there is evidence for methylation of piRNAs and some endogenous siRNAs. Here, we report that the worm HEN1 ortholog, HENN-1 (HEN of Nematode), is required for methylation of C. elegans small RNAs. Our results indicate that piRNAs are universally methylated by HENN-1. In contrast, 26G RNAs, a class of primary endogenous siRNAs, are methylated in female germline and embryo, but not in male germline. Intriguingly, the methylation pattern of 26G RNAs correlates with the expression of distinct male and female germline Argonautes. Moreover, loss of the female germline Argonaute results in loss of 26G RNA methylation altogether. These findings support a model wherein methylation status of a metazoan small RNA is dictated by the Argonaute to which it binds. Loss of henn-1 results in phenotypes that reflect destabilization of substrate small RNAs: dysregulation of target mRNAs, impaired fertility, and enhanced somatic RNAi. Additionally, the henn-1 mutant shows a weakened response to RNAi knockdown of germline genes, suggesting that HENN-1 may also function in canonical RNAi. Together, our results indicate a broad role for HENN-1 in both endogenous and exogenous gene silencing pathways and provide further insight into the mechanisms of HEN1 substrate discrimination and the diversity within the Argonaute family.
Collapse
|
331
|
Xue Z, Yuan H, Guo J, Liu Y. Reconstitution of an Argonaute-dependent small RNA biogenesis pathway reveals a handover mechanism involving the RNA exosome and the exonuclease QIP. Mol Cell 2012; 46:299-310. [PMID: 22516970 DOI: 10.1016/j.molcel.2012.03.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 02/10/2012] [Accepted: 03/16/2012] [Indexed: 01/09/2023]
Abstract
Argonaute proteins are required for the biogenesis of some small RNAs (sRNAs), including the PIWI-interacting RNAs and some microRNAs. How Argonautes mediate maturation of sRNAs independent of their slicer activity is not clear. The maturation of the Neurospora microRNA-like sRNA, milR-1, requires the Argonaute protein QDE-2, Dicer, and QIP. Here, we reconstitute this Argonaute-dependent sRNA biogenesis pathway in vitro and discover that the RNA exosome is also required for milR-1 production. Our results demonstrate that QDE-2 mediates milR-1 maturation by recruiting exosome and QIP and by determining the size of milR-1. The exonuclease QIP first separates the QDE-2-bound pre-milR-1 duplex and then mediates 3' to 5' trimming and maturation of pre-milRNA together with exosome using a handover mechanism. In addition, exosome is also important for the decay of sRNAs. Together, our results establish a biochemical mechanism of an Argonaute-dependent sRNA biogenesis pathway and critical roles of exosome in sRNA processing.
Collapse
Affiliation(s)
- Zhihong Xue
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | |
Collapse
|
332
|
Small non-coding RNAs mount a silent revolution in gene expression. Curr Opin Cell Biol 2012; 24:333-40. [PMID: 22464106 DOI: 10.1016/j.ceb.2012.03.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Revised: 02/07/2012] [Accepted: 03/08/2012] [Indexed: 11/22/2022]
Abstract
During the past decade, it has become evident that small non-coding RNAs (ncRNAs) participate in widespread and essential regulatory mechanisms in most eukaryotic cells. Novel classes of small RNAs, their biogenesis pathways and cellular effects are continuously being described, and new properties of already established ncRNAs are still being discovered. As the list of small RNA molecules and their roles becomes more and more extensive, one can get lost in the midst of new information. In this review, we attempt to bring order to the small ncRNA transcriptome by covering some of the major milestones of recent years. We go through many of the new properties that have been attributed to already familiar RNA molecules, and introduce some of the more recent novel classes of tiny ncRNAs.
Collapse
|
333
|
Song X, Li P, Zhai J, Zhou M, Ma L, Liu B, Jeong DH, Nakano M, Cao S, Liu C, Chu C, Wang XJ, Green PJ, Meyers BC, Cao X. Roles of DCL4 and DCL3b in rice phased small RNA biogenesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:462-74. [PMID: 21973320 DOI: 10.1111/j.1365-313x.2011.04805.x] [Citation(s) in RCA: 232] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Higher plants have evolved multiple proteins in the RNase III family to produce and regulate different classes of small RNAs with specialized molecular functions. In rice (Oryza sativa), numerous genomic clusters are targeted by one of two microRNAs (miRNAs), miR2118 and miR2275, to produce secondary small interfering RNAs (siRNAs) of either 21 or 24 nucleotides in a phased manner. The biogenesis requirements or the functions of the phased small RNAs are completely unknown. Here we examine the rice Dicer-Like (DCL) family, including OsDCL1, -3a, -3b and -4. By deep sequencing of small RNAs from different tissues of the wild type and osdcl4-1, we revealed that the processing of 21-nucleotide siRNAs, including trans-acting siRNAs (tasiRNA) and over 1000 phased small RNA loci, was largely dependent on OsDCL4. Surprisingly, the processing of 24-nucleotide phased small RNA requires the DCL3 homolog OsDCL3b rather than OsDCL3a, suggesting functional divergence within DCL3 family. RNA ligase-mediated 5' rapid amplification of cDNA ends and parallel analysis of RNA ends (PARE)/degradome analysis confirmed that most of the 21- and 24-nucleotide phased small RNA clusters were initiated from the target sites of miR2118 and miR2275, respectively. Furthermore, the accumulation of the two triggering miRNAs requires OsDCL1 activity. Finally, we show that phased small RNAs are preferentially produced in the male reproductive organs and are likely to be conserved in monocots. Our results revealed significant roles of OsDCL4, OsDCL3b and OsDCL1 in the 21- and 24-nucleotide phased small RNA biogenesis pathway in rice.
Collapse
Affiliation(s)
- Xianwei Song
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
334
|
Gu SG, Pak J, Guang S, Maniar JM, Kennedy S, Fire A. Amplification of siRNA in Caenorhabditis elegans generates a transgenerational sequence-targeted histone H3 lysine 9 methylation footprint. Nat Genet 2012; 44:157-64. [PMID: 22231482 PMCID: PMC3848608 DOI: 10.1038/ng.1039] [Citation(s) in RCA: 206] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 11/17/2011] [Indexed: 12/02/2022]
Abstract
Exogenous double-stranded RNA (dsRNA) has been shown to exert homology-dependent effects at the level of both target mRNA stability and chromatin structure. Using C. elegans undergoing RNAi as an animal model, we have investigated the generality, scope, and longevity of chromatin-targeted dsRNA effects and their dependence on components of the RNAi machinery. Using high-resolution genome-wide chromatin profiling, we found that a diverse set of genes can be induced to acquire locus-specific enrichment of H3K9 trimethylation, with modification footprints extending several kilobases from the site of dsRNA homology and with locus specificity sufficient to distinguish the targeted locus from among all 20,000 genes in the C. elegans genome. Genetic analysis of the response indicated that factors responsible for secondary siRNA production during RNAi were required for effective targeting of chromatin. Temporal analysis revealed that H3K9 methylation, once triggered by dsRNA, can be maintained in the absence of dsRNA for at least two generations before being lost. These results implicate dsRNA-triggered chromatin modification in C. elegans as a programmable and locus-specific response defining a metastable state that can persist through generational boundaries.
Collapse
Affiliation(s)
- Sam Guoping Gu
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | | | | | | | | | | |
Collapse
|
335
|
|
336
|
Schisa JA. New insights into the regulation of RNP granule assembly in oocytes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 295:233-89. [PMID: 22449492 DOI: 10.1016/b978-0-12-394306-4.00013-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In a variety of cell types in plants, animals, and fungi, ribonucleoprotein (RNP) complexes play critical roles in regulating RNA metabolism. These RNP granules include processing bodies and stress granules that are found broadly across cell types, as well as RNP granules unique to the germline, such as P granules, polar granules, sponge bodies, and germinal granules. This review focuses on RNP granules localized in oocytes of the major model systems, Caenorhabditis elegans, Drosophila, Xenopus, mouse, and zebrafish. The signature families of proteins within oocyte RNPs include Vasa and other RNA-binding proteins, decapping activators and enzymes, Argonaute family proteins, and translation initiation complex proteins. This review describes the many recent insights into the dynamics and functions of RNP granules, including their roles in mRNA degradation, mRNA localization, translational regulation, and fertility. The roles of the cytoskeleton and cell organelles in regulating RNP granule assembly are also discussed.
Collapse
Affiliation(s)
- Jennifer A Schisa
- Department of Biology, Central Michigan University, Mount Pleasant, Michigan, USA
| |
Collapse
|
337
|
Thivierge C, Makil N, Flamand M, Vasale JJ, Mello CC, Wohlschlegel J, Conte D, Duchaine TF. Tudor domain ERI-5 tethers an RNA-dependent RNA polymerase to DCR-1 to potentiate endo-RNAi. Nat Struct Mol Biol 2011; 19:90-7. [PMID: 22179787 DOI: 10.1038/nsmb.2186] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2011] [Accepted: 10/14/2011] [Indexed: 11/09/2022]
Abstract
Endogenous RNA interference (endo-RNAi) pathways use a variety of mechanisms to generate siRNA and to mediate gene silencing. In Caenorhabditis elegans, DCR-1 is essential for competing RNAi pathways-the ERI endo-RNAi pathway and the exogenous RNAi pathway-to function. Here, we demonstrate that DCR-1 forms exclusive complexes in each pathway and further define the ERI-DCR-1 complex. We show that the tandem tudor protein ERI-5 potentiates ERI endo-RNAi by tethering an RNA-dependent RNA polymerase (RdRP) module to DCR-1. In the absence of ERI-5, the RdRP module is uncoupled from DCR-1. Notably, EKL-1, an ERI-5 paralog that specifies distinct RdRP modules in Dicer-independent endo-RNAi pathways, partially compensates for the loss of ERI-5 without interacting with DCR-1. Our results implicate tudor proteins in the recruitment of RdRP complexes to specific steps within DCR-1-dependent and DCR-1-independent endo-RNAi pathways.
Collapse
|
338
|
Abstract
"Germ granules" are cytoplasmic, nonmembrane-bound organelles unique to germline. Germ granules share components with the P bodies and stress granules of somatic cells, but also contain proteins and RNAs uniquely required for germ cell development. In this review, we focus on recent advances in our understanding of germ granule assembly, dynamics, and function. One hypothesis is that germ granules operate as hubs for the posttranscriptional control of gene expression, a function at the core of the germ cell differentiation program.
Collapse
Affiliation(s)
- Ekaterina Voronina
- Department of Molecular Biology and Genetics and Howard Hughes Medical Institute, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | | | | | | |
Collapse
|
339
|
Liu X, Song Y, Lu H, Tang B, Piao X, Hou N, Peng S, Jiang N, Yin J, Liu M, Chen Q. Transcriptome of small regulatory RNAs in the development of the zoonotic parasite Trichinella spiralis. PLoS One 2011; 6:e26448. [PMID: 22096484 PMCID: PMC3212509 DOI: 10.1371/journal.pone.0026448] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 09/26/2011] [Indexed: 01/17/2023] Open
Abstract
Background Trichinella spiralis is a parasite with unique features. It is a multicellular organism but with an intracellular parasitization and development stage. T. spiralis is the helminthic pathogen that causes zoonotic trichinellosis and afflicts more than 10 million people worldwide, whereas the parasite's biology, especially the developmental regulation is largely unknown. In other organisms, small non-coding RNAs, such as microRNAs (miRNA) and small interfering RNAs (siRNA) execute post-transcriptional regulation by translational repression or mRNA degradation, and a large number of miRNAs have been identified in diverse species. In T. spiralis, the profile of small non-coding RNAs and their function remains poorly understood. Methodology and Principal Findings Here, the transcriptional profiles of miRNA and siRNA in three developmental stages of T. spiralis in the rat host were investigated, and compared by high-throughput cDNA sequencing technique (“RNA-seq”). 5,443,641 unique sequence tags were obtained. Of these, 21 represented conserved miRNAs related to 13 previously identified metazoan miRNA families and 213 were novel miRNAs so far unique to T. spiralis. Some of these miRNAs exhibited stage-specific expression. Expression of miRNAs was confirmed in three stages of the life cycle by qRT-PCR and northern blot analysis. In addition, endogenous siRNAs (endo-siRNAs) were found mainly derived from natural antisense transcripts (NAT) and transposable elements (TE) in the parasite. Conclusions and Significance We provide evidence for the presence of miRNAs and endo-siRNAs in T. spiralis. The miRNAs accounted for the major proportion of the small regulatory RNA population of T. spiralis, while fewer endogenous siRNAs were found. The finding of stage-specific expression patterns of the miRNAs in different developmental stages of T. spiralis suggests that miRNAs may play important roles in parasite development. Our data provide a basis for further understanding of the molecular regulation and functional evolution of miRNAs in parasitic nematodes.
Collapse
Affiliation(s)
- Xiaolei Liu
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China
| | - Yanxia Song
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China
- Biological Therapy Center, The First Affiliated Hospital, Jilin University, Changchun, China
| | - Huijun Lu
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China
| | - Bin Tang
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China
| | - Xianyu Piao
- Laboratory of Parasitology, Institute of Pathogen Biology, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Nan Hou
- Laboratory of Parasitology, Institute of Pathogen Biology, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Shuai Peng
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China
| | - Ning Jiang
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China
| | - Jigang Yin
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China
| | - Mingyuan Liu
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China
- * E-mail: (QC); (ML)
| | - Qijun Chen
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China
- Laboratory of Parasitology, Institute of Pathogen Biology, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
- * E-mail: (QC); (ML)
| |
Collapse
|
340
|
Drpiwi-1 is essential for germline cell formation during sexualization of the planarian Dugesia ryukyuensis. Dev Biol 2011; 361:167-76. [PMID: 22024321 DOI: 10.1016/j.ydbio.2011.10.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Revised: 07/28/2011] [Accepted: 10/07/2011] [Indexed: 11/23/2022]
Abstract
A piwi homolog is required for the regulation of stem cells, formation and maintenance of germline stem cells, and gametogenesis in many metazoans. Planarians can change their reproductive mode seasonally, both asexually and sexually, and develop and maintain germ cells and sexual organs. They have many pluripotent stem cells (neoblasts) that can differentiate into both somatic and germline stem cells. Thus, we searched for a piwi subfamily in the planarian Dugesia ryukyuensis. Four piwi homologs, identified as Drpiwi-1, -2, -3, and -4, were expressed in sexually reproductive worms. We then selectively destroyed the neoblasts by irradiating the worms with X-rays. In such worms, Drpiwi-1, -2, and -3 were not expressed at all, whereas Drpiwi-4 was expressed to the same degree as that in non-irradiated controls, indicating that Drpiwi-1, -2, and -3, but not Drpiwi-4, are expressed in neoblasts. During the regeneration process, Drpiwi-2(RNAi) and -3(RNAi) worms failed to regenerate after ablation, but Drpiwi-1 and -4(RNAi) worms regenerated. During the sexualizing process, Drpiwi-1(RNAi) worms failed to develop ovaries and testes, but somatic sexual organs were unaffected. Germ cell development was normal in Drpiwi-4(RNAi) worms. Therefore, Drpiwi-2 and -3 may be related to the regulation of neoblasts important for maintaining homeostasis, and Drpiwi-1 is essential for the development of germ cells but not somatic sexual organs. DrPiwi-1 is localized in the cytoplasm of stem cells and germline cells and may be involved in regulating some gene expression. We suggest that planarian Piwi controls germline formation via RNA silencing mechanisms.
Collapse
|
341
|
Kato M, Chen X, Inukai S, Zhao H, Slack FJ. Age-associated changes in expression of small, noncoding RNAs, including microRNAs, in C. elegans. RNA (NEW YORK, N.Y.) 2011; 17:1804-20. [PMID: 21810936 PMCID: PMC3185914 DOI: 10.1261/rna.2714411] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Small, noncoding RNAs (sncRNAs), including microRNAs (miRNAs), impact diverse biological events through the control of gene expression and genome stability. However, the role of these sncRNAs in aging remains largely unknown. To understand the contribution of sncRNAs to the aging process, we performed small RNA profiling by deep-sequencing over the course of Caenorhabditis elegans (C. elegans) aging. Many small RNAs, including a significant number of miRNAs, change their expression during aging in C. elegans. Further studies of miRNA expression changes under conditions that modify lifespan demonstrate the tight control of their expression during aging. Adult-specific loss of argonaute-like gene-1 (alg-1) activity, which is necessary for miRNA maturation and function, resulted in an abnormal lifespan, suggesting that miRNAs are, indeed, required in adulthood for normal aging. miRNA target prediction algorithms combined with transcriptome data and pathway enrichment analysis revealed likely targets of these age-associated miRNAs with known roles in aging, such as mitochondrial metabolism. Furthermore, a computational analysis of our deep-sequencing data identified additional age-associated sncRNAs, including miRNA star strands, novel miRNA candidates, and endo-siRNA sequences. We also show an increase of specific transfer RNA (tRNA) fragments during aging, which are known to be induced in response to stress in several organisms. This study suggests that sncRNAs including miRNAs contribute to lifespan regulation in C. elegans, and indicates new connections between aging, stress responses, and the small RNA world.
Collapse
Affiliation(s)
- Masaomi Kato
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
| | - Xiaowei Chen
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
- Program in Computational Biology and Bioinformatics, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Sachi Inukai
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
| | - Hongyu Zhao
- Program in Computational Biology and Bioinformatics, Yale University School of Medicine, New Haven, Connecticut 06520, USA
- Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut 06520, USA
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Frank J. Slack
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
- Corresponding author.E-mail .
| |
Collapse
|
342
|
Johnson CL, Spence AM. Epigenetic Licensing of Germline Gene Expression by Maternal RNA in C. elegans. Science 2011; 333:1311-4. [DOI: 10.1126/science.1208178] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
RNA can act as a regulator of gene expression with roles in transposon silencing, antiviral defense, and cell fate determination. Here, we show that in Caenorhabditis elegans a maternal transcript of the sex-determining gene fem-1 is required to license expression of a wild-type fem-1 allele in the zygotic germ line. Females homozygous for fem-1 deletions produce heterozygous offspring exhibiting germline feminization, reduced fem-1 activity, and transcript accumulation. Injection of fem-1 RNA incapable of encoding a protein into the maternal germ line rescues this defect in the progeny. The defect in zygotic fem-1 expression is heritable, suggesting that the gene is subject to epigenetic silencing that is prevented by maternal fem-1 transcripts. This mechanism may contribute to protecting the identity and integrity of the germ line.
Collapse
|
343
|
Abstract
Small noncoding RNAs have emerged as potent regulators of gene expression, especially in the germline. We review the biogenesis and regulatory function of three major small noncoding RNA pathways in the germline: The small interfering RNA (siRNA) pathway that leads to the degradation of target mRNAs, the microRNA (miRNA) pathway that mostly represses the translation of target mRNAs, and the newly discovered Piwi-interacting RNA (piRNA) pathway that appears to have diverse functions in epigenetic programming, transposon silencing, and the regulation of mRNA translation and stability. The siRNA and miRNA pathways are present in the germline as well as many somatic tissues, whereas the piRNA pathway is predominantly confined to the germline. Investigation of the three small RNA pathways has started to reveal a new dimension of gene regulation with defining roles in germline specification and development.
Collapse
Affiliation(s)
- Jonathan P Saxe
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | | |
Collapse
|
344
|
Wang J, Czech B, Crunk A, Wallace A, Mitreva M, Hannon GJ, Davis RE. Deep small RNA sequencing from the nematode Ascaris reveals conservation, functional diversification, and novel developmental profiles. Genome Res 2011; 21:1462-77. [PMID: 21685128 PMCID: PMC3166831 DOI: 10.1101/gr.121426.111] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 06/08/2011] [Indexed: 11/24/2022]
Abstract
Eukaryotic cells express several classes of small RNAs that regulate gene expression and ensure genome maintenance. Endogenous siRNAs (endo-siRNAs) and Piwi-interacting RNAs (piRNAs) mainly control gene and transposon expression in the germline, while microRNAs (miRNAs) generally function in post-transcriptional gene silencing in both somatic and germline cells. To provide an evolutionary and developmental perspective on small RNA pathways in nematodes, we identified and characterized known and novel small RNA classes through gametogenesis and embryo development in the parasitic nematode Ascaris suum and compared them with known small RNAs of Caenorhabditis elegans. piRNAs, Piwi-clade Argonautes, and other proteins associated with the piRNA pathway have been lost in Ascaris. miRNAs are synthesized immediately after fertilization in utero, before pronuclear fusion, and before the first cleavage of the zygote. This is the earliest expression of small RNAs ever described at a developmental stage long thought to be transcriptionally quiescent. A comparison of the two classes of Ascaris endo-siRNAs, 22G-RNAs and 26G-RNAs, to those in C. elegans, suggests great diversification and plasticity in the use of small RNA pathways during spermatogenesis in different nematodes. Our data reveal conserved characteristics of nematode small RNAs as well as features unique to Ascaris that illustrate significant flexibility in the use of small RNAs pathways, some of which are likely an adaptation to Ascaris' life cycle and parasitism. The transcriptome assembly has been submitted to NCBI Transcriptome Shotgun Assembly Sequence Database(http://www.ncbi.nlm.nih.gov/genbank/TSA.html) under accession numbers JI163767–JI182837 and JI210738–JI257410.
Collapse
Affiliation(s)
- Jianbin Wang
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Benjamin Czech
- Watson School of Biological Sciences, HHMI, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Amanda Crunk
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Adam Wallace
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Makedonka Mitreva
- Genetics and Genome Center, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | - Gregory J. Hannon
- Watson School of Biological Sciences, HHMI, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Richard E. Davis
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| |
Collapse
|
345
|
Wyman SK, Knouf EC, Parkin RK, Fritz BR, Lin DW, Dennis LM, Krouse MA, Webster PJ, Tewari M. Post-transcriptional generation of miRNA variants by multiple nucleotidyl transferases contributes to miRNA transcriptome complexity. Genome Res 2011; 21:1450-61. [PMID: 21813625 DOI: 10.1101/gr.118059.110] [Citation(s) in RCA: 237] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Modification of microRNA sequences by the 3' addition of nucleotides to generate so-called "isomiRs" adds to the complexity of miRNA function, with recent reports showing that 3' modifications can influence miRNA stability and efficiency of target repression. Here, we show that the 3' modification of miRNAs is a physiological and common post-transcriptional event that shows selectivity for specific miRNAs and is observed across species ranging from C. elegans to human. The modifications result predominantly from adenylation and uridylation and are seen across tissue types, disease states, and developmental stages. To quantitatively profile 3' nucleotide additions, we developed and validated a novel assay based on NanoString Technologies' nCounter platform. For certain miRNAs, the frequency of modification was altered by processes such as cell differentiation, indicating that 3' modification is a biologically regulated process. To investigate the mechanism of 3' nucleotide additions, we used RNA interference to screen a panel of eight candidate miRNA nucleotidyl transferases for 3' miRNA modification activity in human cells. Multiple enzymes, including MTPAP, PAPD4, PAPD5, ZCCHC6, ZCCHC11, and TUT1, were found to govern 3' nucleotide addition to miRNAs in a miRNA-specific manner. Three of these enzymes-MTPAP, ZCCHC6, and TUT1-have not previously been known to modify miRNAs. Collectively, our results indicate that 3' modification observed in next-generation small RNA sequencing data is a biologically relevant process, and identify enzymatic mechanisms that may lead to new approaches for modulating miRNA activity in vivo.
Collapse
Affiliation(s)
- Stacia K Wyman
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
346
|
Azimzadeh Jamalkandi S, Masoudi-Nejad A. RNAi pathway integration in Caenorhabditis elegans development. Funct Integr Genomics 2011; 11:389-405. [DOI: 10.1007/s10142-011-0236-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Revised: 06/12/2011] [Accepted: 06/28/2011] [Indexed: 01/07/2023]
|
347
|
Beyret E, Lin H. Pinpointing the expression of piRNAs and function of the PIWI protein subfamily during spermatogenesis in the mouse. Dev Biol 2011; 355:215-26. [PMID: 21539824 PMCID: PMC3443393 DOI: 10.1016/j.ydbio.2011.04.021] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 04/17/2011] [Indexed: 01/20/2023]
Abstract
PIWI proteins and piRNAs have been linked to transposon silencing in the primordial mouse testis, but their function in the adult testis remains elusive. Here we report the cytological characterization of piRNAs in the adult mouse testis and the phenotypic analysis of Miwi(-/-); Mili(-/-) mice. We show that piRNAs are specifically present in germ cells, especially abundant in spermatocytes and early round spermatids, regardless of the type of the genomic sequences to which they correspond. piRNAs and PIWI proteins are present in both the cytoplasm and nucleus. In the cytoplasm, they are enriched in the chromatoid body; whereas in the nucleus they are enriched in the dense body, a male-specific organelle associated with synapsis and the formation of the XY body during meiosis. Moreover, by generating Miwi(-/-); Mili(-/-) mice, which lack all PIWI proteins in the adult, we show that PIWI proteins and presumably piRNAs in the adult are required only for spermatogenesis. Spermatocytes without PIWI proteins are arrested at the pachytene stage, when the sex chromosomes undergo transcriptional silencing to form the XY body. These results pinpoint a function of the PIWI protein subfamily to meiosis during spermatogenesis.
Collapse
Affiliation(s)
- Ergin Beyret
- Department of Cell Biology, Duke University Medical School, Durham, NC 27710
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06509
| | - Haifan Lin
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06509
| |
Collapse
|
348
|
Rozhkov NV, Zelentsova ES, Shostak NG, Evgen'ev MB. Expression of Drosophila virilis retroelements and role of small RNAs in their intrastrain transposition. PLoS One 2011; 6:e21883. [PMID: 21779346 PMCID: PMC3136932 DOI: 10.1371/journal.pone.0021883] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 06/10/2011] [Indexed: 11/18/2022] Open
Abstract
Transposition of two retroelements (Ulysses and Penelope) mobilized in the course of hybrid dysgenesis in Drosophila virilis has been investigated by in situ hybridization on polytene chromosomes in two D. virilis strains of different cytotypes routinely used to get dysgenic progeny. The analysis has been repeatedly performed over the last two decades, and has revealed transpositions of Penelope in one of the strains, while, in the other strain, the LTR-containing element Ulysses was found to be transpositionally active. The gypsy retroelement, which has been previously shown to be transpositionally inactive in D. virilis strains, was also included in the analysis. Whole mount is situ hybridization with the ovaries revealed different subcellular distribution of the transposable elements transcripts in the strains studied. Ulysses transpositions occur only in the strain where antisense piRNAs homologous to this TE are virtually absent and the ping-pong amplification loop apparently does not take place. On the other hand small RNAs homologous to Penelope found in the other strain, belong predominantly to the siRNA category (21nt), and consist of sense and antisense species observed in approximately equal proportion. The number of Penelope copies in the latter strain has significantly increased during the last decades, probably because Penelope-derived siRNAs are not maternally inherited, while the low level of Penelope-piRNAs, which are faithfully transmitted from mother to the embryo, is not sufficient to silence this element completely. Therefore, we speculate that intrastrain transposition of the three retroelements studied is controlled predominantly at the post-transcriptional level.
Collapse
|
349
|
Bak CW, Yoon TK, Choi Y. Functions of PIWI proteins in spermatogenesis. Clin Exp Reprod Med 2011; 38:61-7. [PMID: 22384420 PMCID: PMC3283061 DOI: 10.5653/cerm.2011.38.2.61] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 05/30/2011] [Accepted: 06/03/2011] [Indexed: 02/04/2023] Open
Abstract
Recently, a significant understanding of the molecular mechanisms regulating spermatogenesis has been achieved utilizing small RNA molecules (small RNAs), including small interfering RNAs (siRNAs), microRNAs (miRNAs), and Piwi-interacting RNAs (piRNAs) which emerged as important regulators of gene expression at the post-transcriptional or translation level. piRNAs are only present in pachytene spermatocytes and round spermatids, whereas miRNAs are expressed abundantly in male germ cells throughout spermatogenesis. This review is aimed at providing a glimpse of piRNAs and their interacting family proteins such as PIWIL1, PIWIL2, and PIWIL4 in spermatogenesis.
Collapse
Affiliation(s)
- Chong Won Bak
- Fertility Center of Gangnam Medical Center, CHA University College of Medicine, Seoul, Korea
| | | | | |
Collapse
|
350
|
Warf MB, Johnson WE, Bass BL. Improved annotation of C. elegans microRNAs by deep sequencing reveals structures associated with processing by Drosha and Dicer. RNA (NEW YORK, N.Y.) 2011; 17:563-77. [PMID: 21307183 PMCID: PMC3062169 DOI: 10.1261/rna.2432311] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 01/05/2011] [Indexed: 05/30/2023]
Abstract
MicroRNAs (miRNAs) are small regulatory RNAs that are essential in all studied metazoans. Research has focused on the prediction and identification of novel miRNAs, while little has been done to validate, annotate, and characterize identified miRNAs. Using Illumina sequencing, ∼20 million small RNA sequences were obtained from Caenorhabditis elegans. Of the 175 miRNAs listed on the miRBase database, 106 were validated as deriving from a stem-loop precursor with hallmark characteristics of miRNAs. This result suggests that not all sequences identified as miRNAs belong in this category of small RNAs. Our large data set of validated miRNAs facilitated the determination of general sequence and structural characteristics of miRNAs and miRNA precursors. In contrast to previous observations, we did not observe a preference for the 5' nucleotide of the miRNA to be unpaired compared to the 5' nucleotide of the miRNA*, nor a preference for the miRNA to be on either the 5' or 3' arm of the miRNA precursor stem-loop. We observed that steady-state pools of miRNAs have fairly homogeneous termini, especially at their 5' end. Nearly all mature miRNA-miRNA* duplexes had two nucleotide 3' overhangs, and there was a preference for a uracil in the first and ninth position of the mature miRNA. Finally, we observed that specific nucleotides and structural distortions were overrepresented at certain positions adjacent to Drosha and Dicer cleavage sites. Our study offers a comprehensive data set of C. elegans miRNAs and their precursors that significantly decreases the uncertainty associated with the identity of these molecules in existing databases.
Collapse
Affiliation(s)
- M Bryan Warf
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | |
Collapse
|