301
|
Cantó C, Sauve AA, Bai P. Crosstalk between poly(ADP-ribose) polymerase and sirtuin enzymes. Mol Aspects Med 2013; 34:1168-201. [PMID: 23357756 DOI: 10.1016/j.mam.2013.01.004] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 01/07/2013] [Accepted: 01/17/2013] [Indexed: 01/08/2023]
Abstract
Poly(ADP-ribose) polymerases (PARPs) are NAD(+) dependent enzymes that were identified as DNA repair proteins, however, today it seems clear that PARPs are responsible for a plethora of biological functions. Sirtuins (SIRTs) are NAD(+)-dependent deacetylase enzymes involved in the same biological processes as PARPs raising the question whether PARP and SIRT enzymes may interact with each other in physiological and pathophysiological conditions. Hereby we review the current understanding of the SIRT-PARP interplay in regard to the biochemical nature of the interaction (competition for the common NAD(+) substrate, mutual posttranslational modifications and direct transcriptional effects) and the physiological or pathophysiological consequences of the interactions (metabolic events, oxidative stress response, genomic stability and aging). Finally, we give an overview of the possibilities of pharmacological intervention to modulate PARP and SIRT enzymes either directly, or through modulating NAD(+) homeostasis.
Collapse
Affiliation(s)
- Carles Cantó
- Nestlé Institute of Health Sciences, Lausanne CH-1015, Switzerland
| | | | | |
Collapse
|
302
|
Mihaylova MM, Shaw RJ. Metabolic reprogramming by class I and II histone deacetylases. Trends Endocrinol Metab 2013; 24:48-57. [PMID: 23062770 PMCID: PMC3532556 DOI: 10.1016/j.tem.2012.09.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 09/04/2012] [Accepted: 09/06/2012] [Indexed: 12/25/2022]
Abstract
Accumulating evidence suggests that protein acetylation plays a major regulatory role in many facets of transcriptional control of metabolism. The enzymes that catalyze the addition and removal of acetyl moieties are the histone acetyl transferases (HATs) and histone deacetylases (HDACs), respectively. Several recent studies have uncovered novel mechanisms and contexts in which different HDACs play crucial roles in metabolic control. Understanding the role of class I and II HDACs in different metabolic programs during development, as well as in the physiology and pathology of the adult organism, will lead to novel therapeutics for metabolic disease. Here, we review the current understanding of how class I and class II HDACs contribute to metabolic control.
Collapse
|
303
|
Sebastián C, Satterstrom FK, Haigis MC, Mostoslavsky R. From sirtuin biology to human diseases: an update. J Biol Chem 2012; 287:42444-52. [PMID: 23086954 PMCID: PMC3522245 DOI: 10.1074/jbc.r112.402768] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Originally rising to notoriety for their role in the regulation of aging, sirtuins are a family of NAD(+)-dependent enzymes that have been connected to a steadily growing set of biological processes. In addition to regulating aging, sirtuins play key roles in the maintenance of organismal metabolic homeostasis. These enzymes also have primarily protective functions in the development of many age-related diseases, including cancer, neurodegeneration, and cardiovascular disease. In this minireview, we provide an update on the known roles for each of the seven mammalian sirtuins in these areas.
Collapse
Affiliation(s)
- Carlos Sebastián
- From the Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts 02114
| | - F. Kyle Satterstrom
- the Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, and
- the Harvard School of Engineering and Applied Sciences, Cambridge, Massachusetts 02138
| | - Marcia C. Haigis
- the Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, and
| | - Raul Mostoslavsky
- From the Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts 02114
| |
Collapse
|
304
|
Abstract
The BAG6 complex was first identified as an upstream loading factor for tail-anchored membrane proteins entering the TRC40-dependent pathway for posttranslational delivery to the endoplasmic reticulum. Subsequently, BAG6 was shown to enhance the proteasomal degradation of mislocalized proteins by selectively promoting their ubiquitination. We now show that the BAG6-dependent ubiquitination of mislocalized proteins is completely reversible and identify a pivotal role for the small glutamine-rich tetratricopeptide repeat-containing protein α (SGTA) in specifically antagonizing this process. SGTA does not simply mask the exposed hydrophobic transmembrane domain of a mislocalized protein, thereby preventing BAG6 recruitment. Rather, SGTA actively promotes the deubiquitination of mislocalized proteins that are already covalently modified, thus reversing the actions of BAG6 and inhibiting its capacity to promote substrate-specific degradation. This SGTA-mediated effect is independent of its tetratricopeptide motifs, suggesting it does not require the actions of Hsp70 and Hsp90 chaperones. These data reveal that, in a cellular context, mislocalized protein ubiquitination is the result of a dynamic equilibrium reflecting competition between pathways that promote either protein maturation or degradation. The targeted perturbation of this equilibrium, achieved by increasing steady-state SGTA levels, results in a specific stabilization of a model mislocalized protein derived from the amyloid precursor protein, an effect that is completely negated by ensuring efficient precursor delivery to the endoplasmic reticulum. We speculate that a BAG6/SGTA cycle operates during protein maturation and quality control in the cytosol and that together these components dictate the fate of a specific subset of newly synthesized proteins.
Collapse
|
305
|
Abstract
Acetylation, through the post-transcriptional modification of histones, is a well-established regulator of gene transcription. More recent research has also identified an important role for acetylation in the regulation of non-histone proteins, both inside and outside the nucleus. As a fast (and reversible) post-translational process, acetylation allows cells to rapidly alter the function of existing proteins, making it ideally suited to biological programmes that require an immediate response to changing conditions. Using metabolic programmes as an example, the present chapter looks at how reversible acetylation can be used to regulate important enzymes in an ever-changing cellular environment.
Collapse
|
306
|
Xiong Y, Guan KL. Mechanistic insights into the regulation of metabolic enzymes by acetylation. ACTA ACUST UNITED AC 2012; 198:155-64. [PMID: 22826120 PMCID: PMC3410420 DOI: 10.1083/jcb.201202056] [Citation(s) in RCA: 184] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The activity of metabolic enzymes is controlled by three principle levels: the amount of enzyme, the catalytic activity, and the accessibility of substrates. Reversible lysine acetylation is emerging as a major regulatory mechanism in metabolism that is involved in all three levels of controlling metabolic enzymes and is altered frequently in human diseases. Acetylation rivals other common posttranslational modifications in cell regulation not only in the number of substrates it modifies, but also the variety of regulatory mechanisms it facilitates.
Collapse
Affiliation(s)
- Yue Xiong
- Molecular and Cell Biology Laboratory, Institute of Biomedical Sciences, Fudan University, Shanghai 20032, China.
| | | |
Collapse
|
307
|
Jaubert AM, Penot G, Niang F, Durant S, Forest C. Rapid nitration of adipocyte phosphoenolpyruvate carboxykinase by leptin reduces glyceroneogenesis and induces fatty acid release. PLoS One 2012; 7:e40650. [PMID: 22808220 PMCID: PMC3394747 DOI: 10.1371/journal.pone.0040650] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 06/11/2012] [Indexed: 01/29/2023] Open
Abstract
Fatty acid (FA) release from white adipose tissue (WAT) is the result of the balance between triglyceride breakdown and FA re-esterification. The latter relies on the induction of cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C), the key enzyme for glyceroneogenesis. We previously demonstrated that long-term (18 h) leptin treatment of rat epididymal WAT explants reduced glyceroneogenesis through nitric oxide (NO)-induced decrease in PEPCK-C expression. We investigated the effect of a short-term leptin treatment (2 h) on PEPCK-C expression and glyceroneogenesis in relation to NO production. We demonstrate that in WAT explants, leptin-induced NO synthase III (NOS III) phosphorylation was associated with reduced PEPCK-C level and glyceroneogenesis, leading to FA release, while PEPCK-C gene expression remained unaffected. These effects were absent in WAT explants from leptin receptor-deficient Zucker rat. Immunoprecipitation and western blot experiments showed that the leptin-induced decrease in PEPCK-C level was correlated with an increase in PEPCK-C nitration. All these effects were abolished by the NOS inhibitor Nω-nitro-L-arginine methyl ester and mimicked by the NO donor S-nitroso-N-acetyl-DL penicillamine. We propose a mechanism in which leptin activates NOS III and induces NO that nitrates PEPCK-C to reduce its level and glyceroneogenesis, therefore limiting FA re-esterification in WAT.
Collapse
Affiliation(s)
- Anne-Marie Jaubert
- Institut National de la Santé et de la Recherche Médicale UMR-S 747; Université Paris Descartes, Pharmacologie Toxicologie et Signalisation Cellulaire, Paris, France
- Département de Biochimie et de Biologie Moléculaire, Faculté de Médecine Paris-Ile de France-Ouest; Université de Versailles Saint-Quentin en Yvelines, Versailles, France
| | - Graziella Penot
- Institut National de la Santé et de la Recherche Médicale UMR-S 747; Université Paris Descartes, Pharmacologie Toxicologie et Signalisation Cellulaire, Paris, France
| | - Fatoumata Niang
- Institut National de la Santé et de la Recherche Médicale UMR-S 747; Université Paris Descartes, Pharmacologie Toxicologie et Signalisation Cellulaire, Paris, France
| | - Sylvie Durant
- Institut National de la Santé et de la Recherche Médicale UMR-S 747; Université Paris Descartes, Pharmacologie Toxicologie et Signalisation Cellulaire, Paris, France
| | - Claude Forest
- Institut National de la Santé et de la Recherche Médicale UMR-S 747; Université Paris Descartes, Pharmacologie Toxicologie et Signalisation Cellulaire, Paris, France
| |
Collapse
|
308
|
Joffin N, Niang F, Forest C, Jaubert AM. Is there NO help for leptin? Biochimie 2012; 94:2104-10. [PMID: 22750650 DOI: 10.1016/j.biochi.2012.06.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 06/15/2012] [Indexed: 01/14/2023]
Abstract
Since the initial identification of leptin as the product of the ob gene in 1994, the signaling pathways by which this hormone alters cell physiology have been the subject of extensive investigations. The fact that leptin can induce nitric oxide (NO) production was first demonstrated in studies of the pituitary gland and pancreatic islets. A large number of additional studies further showed that this adipokine stimulates NO synthesis in multiple tissues. This review article discusses the role of leptin in NO production and its pathophysiological consequences. The role of this gaseous messenger in cell physiology depends on the cell type, the concentration of NO and the duration of exposure. It can be either a potent oxidant or a protector of cell integrity against the formation of reactive oxygen species. Leptin plays two opposing roles on arterial pressure. It exerts a hypertensive effect due to sympathetic activation and a vasorelaxant effect due to NO production. This adipokine acts via NO to produce pro-inflammatory factors in cartilage pathology, potentially contributing to an increased risk for osteoarthritis. Another well-documented role of leptin-induced NO, acting either directly or via the hypothalamus, concerns lipid metabolism in muscle and adipose tissue. In adipocytes, the direct and rapid action of leptin is to activate the nitric oxide synthase III, which favors lipolysis. In contrast, in the long-term, leptin reduces lipolysis. However, both in the short-term and in the long-term, glyceroneogenesis and its key enzyme, the cytosolic phosphoenolpyruvatecarboxykinase (PEPCK-C), are down-regulated by the adipokine, thus favoring fatty acid release. Hence, leptin-induced NO production plays a crucial role in fatty acid metabolism in adipose tissue. The resulting effects are to prevent lipid storage and to improve energy expenditure, with possible improvements of the obese state and its associated diseases.
Collapse
Affiliation(s)
- Nolwenn Joffin
- Institut National de la Santé et de la Recherche Médicale UMR-S 747, Université Paris Descartes, Pharmacologie Toxicologie et Signalisation Cellulaire, 45 rue des Saints Pères, 75006 Paris, France
| | | | | | | |
Collapse
|
309
|
Lin H, Su X, He B. Protein lysine acylation and cysteine succination by intermediates of energy metabolism. ACS Chem Biol 2012; 7:947-60. [PMID: 22571489 DOI: 10.1021/cb3001793] [Citation(s) in RCA: 190] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In the past few years, several new protein post-translational modifications that use intermediates in metabolism have been discovered. These include various acyl lysine modifications (formylation, propionylation, butyrylation, crotonylation, malonylation, succinylation, myristoylation) and cysteine succination. Here, we review the discovery and the current understanding of these modifications. Several of these modifications are regulated by the deacylases, sirtuins, which use nicotinamide adenine dinucleotide (NAD), an important metabolic small molecule. Interestingly, several of these modifications in turn regulate the activity of metabolic enzymes. These new modifications reveal interesting connections between metabolism and protein post-translational modifications and raise many questions for future investigations.
Collapse
Affiliation(s)
- Hening Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United
States
| | - Xiaoyang Su
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United
States
| | - Bin He
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United
States
| |
Collapse
|
310
|
Park SH, Zhu Y, Ozden O, Kim HS, Jiang H, Deng CX, Gius D, Vassilopoulos A. SIRT2 is a tumor suppressor that connects aging, acetylome, cell cycle signaling, and carcinogenesis. Transl Cancer Res 2012; 1:15-21. [PMID: 22943040 PMCID: PMC3431025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
One long standing observation in clinical oncology is that age increase is the single most statistically significant factor/variable that predicts for the incidence of solid tumors. This observation suggests that the cellular and molecular processes and mechanisms that direct an organism's life span may be used to determine the clinical connection between aging and carcinogenesis. In this regard, the genes that impact upon longevity have been characterized in S. cerevisiae and C. elegans, and the human homologs include the Sirtuin family of protein deacetylases. We have recently shown that the primary cytoplasmic sirtuin, Sirt2 appears to meet the criteria as a legitimate tumor suppressor protein. Mice genetically altered to delete Sirt2 develop gender-specific tumorigenesis, with females primarily developing mammary tumors, and males developing multiple different types of gastrointestinal malignancies. Furthermore human tumors, as compared to normal samples, displayed significant decreases in SIRT2 levels suggesting that SIRT2 may also be a human tumor suppressor.
Collapse
Affiliation(s)
- Seong-Hoon Park
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yuming Zhu
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ozkan Ozden
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Hyun-Seok Kim
- Department of Life Science, College of Natural Science Ewha Womans University, Seoul 127-750, Korea
| | - Haiyan Jiang
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Chu-Xia Deng
- Genetics of Development and Disease Branch, NIDDK, NIH, Bethesda, MD 20892, USA
| | - David Gius
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | |
Collapse
|
311
|
de Oliveira RM, Sarkander J, Kazantsev AG, Outeiro TF. SIRT2 as a Therapeutic Target for Age-Related Disorders. Front Pharmacol 2012; 3:82. [PMID: 22563317 PMCID: PMC3342661 DOI: 10.3389/fphar.2012.00082] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 04/14/2012] [Indexed: 12/27/2022] Open
Abstract
Sirtuin proteins are conserved regulators of aging that have recently emerged as important modifiers of several diseases which commonly occur later in life such as cancer, diabetes, cardiovascular, and neurodegenerative diseases. In mammals, there are seven sirtuins (SIRT1-7), which display diversity in subcellular localization and function. SIRT1 has received much of attention due to its possible impact on longevity, while important biological and therapeutic roles of other sirtuins have been underestimated and just recently recognized. Here we focus on SIRT2, a member of the sirtuin family, and discuss its role in cellular and tissue-specific functions. This review summarizes the main scientific advances on SIRT2 protein biology and explores its potential as a therapeutic target for treatment of age-related disorders.
Collapse
|
312
|
Finck BN. A sweet new role for ubiquitin-specific protease 2 in controlling hepatic gluconeogenesis. Diabetes 2012; 61:993-4. [PMID: 22517656 PMCID: PMC3331750 DOI: 10.2337/db12-0198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
313
|
Dong XC. Sirtuin biology and relevance to diabetes treatment. ACTA ACUST UNITED AC 2012; 2:243-257. [PMID: 23024708 DOI: 10.2217/dmt.12.16] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Sirtuins are a group of NAD(+)-dependent enzymes that post-translationally modify histones and other proteins. Among seven mammalian sirtuins, SIRT1 has been the most extensively studied and has been demonstrated to play a critical role in all major metabolic organs and tissues. SIRT1 regulates glucose and lipid homeostasis in the liver, modulates insulin secretion in pancreatic islets, controls insulin sensitivity and glucose uptake in skeletal muscle, increases adiponectin expression in white adipose tissue and controls food intake and energy expenditure in the brain. Recently, SIRT3 has been demonstrated to modulate insulin sensitivity in skeletal muscle and systemic metabolism, and Sirt3-null mice manifest characteristics of metabolic syndrome on a high-fat diet. Thus, it is reasonable to believe that enhancing the activities of SIRT1 and SIRT3 may be beneficial for Type 2 diabetes. Although it is controversial, the SIRT1 activator SRT1720 has been reported to be effective in improving glucose metabolism and insulin sensitivity in animal models. More research needs to be conducted so that we can better understand the physiological functions and molecular mechanisms of sirtuins in order to therapeutically target these enzymes for diabetes treatment.
Collapse
Affiliation(s)
- X Charlie Dong
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS1021D, Indianapolis, IN 46202, USA; Tel.: +1 317 278 1097; ;
| |
Collapse
|
314
|
Lysine acetylation is widespread on proteins of diverse function and localization in the protozoan parasite Toxoplasma gondii. EUKARYOTIC CELL 2012; 11:735-42. [PMID: 22544907 DOI: 10.1128/ec.00088-12] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
While histone proteins are the founding members of lysine acetylation substrates, it is now clear that hundreds of other proteins can be acetylated in multiple compartments of the cell. Our knowledge of the scope of this modification throughout the kingdom of life is beginning to emerge, as proteome-wide lysine acetylation has been documented in prokaryotes, Arabidopsis thaliana, Drosophila melanogaster, and human cells. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify parasite peptides enriched by immunopurification with acetyl-lysine antibody, we produced the first proteome-wide analysis of acetylation for a protozoan organism, the opportunistic apicomplexan parasite Toxoplasma gondii. The results show that lysine acetylation is abundant in the actively proliferating tachyzoite form of the parasite, which causes acute toxoplasmosis. Our approach successfully identified known acetylation marks on Toxoplasma histones and α-tubulin and detected over 400 novel acetylation sites on a wide variety of additional proteins, including those with roles in transcription, translation, metabolism, and stress responses. Importantly, an extensive set of parasite-specific proteins, including those found in organelles unique to Apicomplexa, is acetylated in the parasite. Our data provide a wealth of new information that improves our understanding of the evolution of this vital regulatory modification while potentially revealing novel therapeutic avenues. We conclude from this study that lysine acetylation was prevalent in the early stages of eukaryotic cell evolution and occurs on proteins involved in a remarkably diverse array of cellular functions, including those that are specific to parasites.
Collapse
|
315
|
Bobrowska A, Donmez G, Weiss A, Guarente L, Bates G. SIRT2 ablation has no effect on tubulin acetylation in brain, cholesterol biosynthesis or the progression of Huntington's disease phenotypes in vivo. PLoS One 2012; 7:e34805. [PMID: 22511966 PMCID: PMC3325254 DOI: 10.1371/journal.pone.0034805] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 03/08/2012] [Indexed: 11/18/2022] Open
Abstract
Huntington's disease (HD) is a devastating neurodegenerative disorder for which there are no disease-modifying treatments. The molecular pathogenesis of HD is complex and many mechanisms and cellular processes have been proposed as potential sites of therapeutic intervention. However, prior to embarking on drug development initiatives, it is essential that therapeutic targets can be validated in mammalian models of HD. Previous studies in invertebrate and cell culture HD models have suggested that inhibition of SIRT2 could have beneficial consequences on disease progression. SIRT2 is a NAD+-dependent deacetylase that has been proposed to deacetylate α-tubulin, histone H4 K16 and to regulate cholesterol biogenesis – a pathway which is dysregulated in HD patients and HD mouse models. We have utilized mice in which SIRT2 has been reduced or ablated to further explore the function of SIRT2 and to assess whether SIRT2 loss has a beneficial impact on disease progression in the R6/2 mouse model of HD. Surprisingly we found that reduction or loss of SIRT2 had no effect on the acetylation of α-tubulin or H4K16 or on cholesterol biosynthesis in the brains of wild type mice. Equally, genetic reduction or ablation of SIRT2 had no effect on HD progression as assessed by a battery of physiological and behavioural tests. Furthermore, we observed no change in aggregate load or levels of soluble mutant huntingtin transprotein. Intriguingly, neither the constitutive genetic loss nor acute pharmacological inhibition of SIRT2 affected the expression of cholesterol biosynthesis enzymes in the context of HD. Therefore, we conclude that SIRT2 inhibition does not modify disease progression in the R6/2 mouse model of HD and SIRT2 inhibition should not be prioritised as a therapeutic option for HD.
Collapse
Affiliation(s)
- Anna Bobrowska
- Department of Medical and Molecular Genetics, King's College London, London, United Kingdom
| | - Gizem Donmez
- Paul F. Glenn Laboratory and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Andreas Weiss
- Neuroscience Discovery, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Leonard Guarente
- Paul F. Glenn Laboratory and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Gillian Bates
- Department of Medical and Molecular Genetics, King's College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
316
|
Abstract
Since the beginning of the century, the mammalian sirtuin protein family (comprising SIRT1-SIRT7) has received much attention for its regulatory role, mainly in metabolism and ageing. Sirtuins act in different cellular compartments: they deacetylate histones and several transcriptional regulators in the nucleus, but also specific proteins in other cellular compartments, such as in the cytoplasm and in mitochondria. As a consequence, sirtuins regulate fat and glucose metabolism in response to physiological changes in energy levels, thereby acting as crucial regulators of the network that controls energy homeostasis and as such determines healthspan.
Collapse
|
317
|
Abstract
It is becoming increasingly clear that cellular signalling and metabolism are not just separate entities but rather are tightly linked. Although nutrient metabolism is known to be regulated by signal transduction, an emerging paradigm is that signalling and transcriptional networks can be modulated by nutrient-sensitive protein modifications, such as acetylation and glycosylation, which depend on the availability of acetyl-CoA and sugar donors such as UDP-N-acetylglucosamine (UDP-GlcNAc), respectively. The integration of metabolic and signalling cues allows cells to modulate activities such as metabolism, cell survival and proliferation according to their intracellular metabolic resources.
Collapse
|
318
|
Acetylation negatively regulates glycogen phosphorylase by recruiting protein phosphatase 1. Cell Metab 2012; 15:75-87. [PMID: 22225877 PMCID: PMC3285296 DOI: 10.1016/j.cmet.2011.12.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 07/07/2011] [Accepted: 12/09/2011] [Indexed: 11/23/2022]
Abstract
Glycogen phosphorylase (GP) catalyzes the rate-limiting step in glycogen catabolism and plays a key role in maintaining cellular and organismal glucose homeostasis. GP is the first protein whose function was discovered to be regulated by reversible protein phosphorylation, which is controlled by phosphorylase kinase (PhK) and protein phosphatase 1 (PP1). Here we report that lysine acetylation negatively regulates GP activity by both inhibiting enzyme activity directly and promoting dephosphorylation. Acetylation of GP Lys(470) enhances its interaction with the PP1 substrate-targeting subunit, G(L), and PP1, thereby promoting GP dephosphorylation and inactivation. We show that GP acetylation is stimulated by glucose and insulin and inhibited by glucagon. Our results provide molecular insights into the intricate regulation of the classical GP and a functional crosstalk between protein acetylation and phosphorylation.
Collapse
|
319
|
Xiong Y, Lei QY, Zhao S, Guan KL. Regulation of glycolysis and gluconeogenesis by acetylation of PKM and PEPCK. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2011; 76:285-9. [PMID: 22096030 DOI: 10.1101/sqb.2011.76.010942] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Glycolysis is a catabolic process of glucose hydrolysis needed for energy and biosynthetic intermediates, whereas gluconeogenesis is a glucose production process important for maintaining blood glucose levels during starvation. Although they share many enzymes, these two processes are not simply the reverse of each other and are instead reciprocally regulated. Two key enzymes that regulate irreversible steps in these two processes are pyruvate kinase (PK) and phosphoenolpyruvate carboxy kinase (PEPCK), which catalyze the last and first step of glycolysis and gluconeogenesis, respectively, and are both regulated by lysine acetylation. Acetylation at Lys305 of the PKM (muscle form of PK) decreases its activity and also targets it for chaperone-mediated autophagy and subsequent lysosome degradation. Acetylation of PEPCK, on the other hand, targets it for ubiquitylation by the HECT E3 ligase, UBR5/EDD1, and subsequent proteasomal degradation. These studies established a model in which acetylation regulates metabolic enzymes via different mechanisms and also revealed cross talk between acetylation and ubiquitination. Given that most metabolic enzymes are acetylated, we propose that acetylation is a major posttranslational modifier that regulates cellular metabolism.
Collapse
Affiliation(s)
- Y Xiong
- Molecular and Cell Biology Laboratory, Institute of Biomedical Sciences, Shanghai Medical School, Fudan University, Shanghai 20032, China.
| | | | | | | |
Collapse
|
320
|
Beirowski B, Gustin J, Armour SM, Yamamoto H, Viader A, North BJ, Michán S, Baloh RH, Golden JP, Schmidt RE, Sinclair DA, Auwerx J, Milbrandt J. Sir-two-homolog 2 (Sirt2) modulates peripheral myelination through polarity protein Par-3/atypical protein kinase C (aPKC) signaling. Proc Natl Acad Sci U S A 2011; 108:E952-61. [PMID: 21949390 PMCID: PMC3203793 DOI: 10.1073/pnas.1104969108] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The formation of myelin by Schwann cells (SCs) occurs via a series of orchestrated molecular events. We previously used global expression profiling to examine peripheral nerve myelination and identified the NAD(+)-dependent deacetylase Sir-two-homolog 2 (Sirt2) as a protein likely to be involved in myelination. Here, we show that Sirt2 expression in SCs is correlated with that of structural myelin components during both developmental myelination and remyelination after nerve injury. Transgenic mice lacking or overexpressing Sirt2 specifically in SCs show delays in myelin formation. In SCs, we found that Sirt2 deacetylates Par-3, a master regulator of cell polarity. The deacetylation of Par-3 by Sirt2 decreases the activity of the polarity complex signaling component aPKC, thereby regulating myelin formation. These results demonstrate that Sirt2 controls an essential polarity pathway in SCs during myelin assembly and provide insights into the association between intracellular metabolism and SC plasticity.
Collapse
Affiliation(s)
| | - Jason Gustin
- Sigma–Aldrich Biotechnology, St. Louis, MO 63103
| | - Sean M. Armour
- Department of Pathology, Harvard University School of Medicine, Cambridge, MA 02115
| | - Hiroyasu Yamamoto
- Laboratory for Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | | | - Brian J. North
- Department of Pathology, Harvard University School of Medicine, Cambridge, MA 02115
| | - Shaday Michán
- Instituto de Geriatria, Institutos Nacionales de Salud, Mexico D.F., 04510, Mexico
| | - Robert H. Baloh
- Neurology, and
- Hope Center for Neurological Diseases, St. Louis, MO 63110; and
| | - Judy P. Golden
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO 63110
| | - Robert E. Schmidt
- Pathology, Washington University School of Medicine, St. Louis, MO 63110
- Hope Center for Neurological Diseases, St. Louis, MO 63110; and
| | - David A. Sinclair
- Department of Pathology, Harvard University School of Medicine, Cambridge, MA 02115
| | - Johan Auwerx
- Laboratory for Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Jeffrey Milbrandt
- Departments of Genetics
- Hope Center for Neurological Diseases, St. Louis, MO 63110; and
| |
Collapse
|
321
|
Shin J, Zhang D, Chen D. Reversible acetylation of metabolic enzymes celebration: SIRT2 and p300 join the party. Mol Cell 2011; 43:3-5. [PMID: 21726804 DOI: 10.1016/j.molcel.2011.06.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Compelling evidence suggests that metabolic pathways are coordinated through reversible acetylation of metabolic enzymes in response to nutrient availability. In this issue of Molecular Cell, Jiang et al. (2011) show that the rate-limiting enzyme in gluconeogenesis, phosphoenolpyruvate carboxykinase 1, is regulated through reversible acetylation by SIRT2 and p300.
Collapse
Affiliation(s)
- Jiyung Shin
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | |
Collapse
|