301
|
Zhang X, Zhou Y, Chen S, Li W, Chen W, Gu W. LncRNA MACC1-AS1 sponges multiple miRNAs and RNA-binding protein PTBP1. Oncogenesis 2019; 8:73. [PMID: 31822653 PMCID: PMC6904680 DOI: 10.1038/s41389-019-0182-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023] Open
Abstract
Long noncoding RNA (lncRNA) represents a class of endogenous RNAs that regulate gene expression in eukaryotes. To date, the function and underlying mechanism of the majority of mammalian lncRNAs remain unknown. Here, we report that MACC1-AS1, a cognate antisense lncRNA of the sixth intron of the MACC1 gene, functions as a cell growth modulator and enhances breast tumor progress. RNA pulldown and luciferase assays showed that MACC1-AS1 contained binding sites for multiple miRNAs, including well-known tumor suppressors miR-384 and miR-145-3p that repress the expression of pleiotrophin (PTN) and c-Myc mRNAs. Binding of miR-384 and miR-145-3p miRNAs to MACC1-AS1 alters the cell growth phenotype through increased expression of PTN and c-Myc mRNAs. MACC1-AS1 also competitively interacted with PTBP1, an RNA-binding protein, via a conserved pyrimidine rich motif within this lncRNA. Binding of PTBP1to MACC1-AS1 not only stabilized MACC1-AS1 and enhanced the sponge effect of MACC1-AS1 on miRNAs, but also decreased PTBP1 availability for binding to target mRNAs. Our results define a new dimension into how a lncRNA is able to regulate cell growth by sponging multiple miRNAs and an RNA-binding protein.
Collapse
Affiliation(s)
- Xiaona Zhang
- Department of Pathophysiology, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou, Guangdong Province, 515041, China
| | - Yanchun Zhou
- Department of Pathophysiology, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou, Guangdong Province, 515041, China
| | - Shaoying Chen
- Department of Pathophysiology, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou, Guangdong Province, 515041, China
| | - Wei Li
- Department of Pathophysiology, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou, Guangdong Province, 515041, China
| | - Weibing Chen
- Department of Pathophysiology, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou, Guangdong Province, 515041, China
| | - Wei Gu
- Department of Pathophysiology, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou, Guangdong Province, 515041, China.
- Guangdong Provincial Lab for Breast Cancer Diagnosis & Treatment, Shantou, China.
| |
Collapse
|
302
|
Mishra K, Kanduri C. Understanding Long Noncoding RNA and Chromatin Interactions: What We Know So Far. Noncoding RNA 2019; 5:ncrna5040054. [PMID: 31817041 PMCID: PMC6958424 DOI: 10.3390/ncrna5040054] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 11/25/2019] [Accepted: 11/29/2019] [Indexed: 12/12/2022] Open
Abstract
With the evolution of technologies that deal with global detection of RNAs to probing of lncRNA-chromatin interactions and lncRNA-chromatin structure regulation, we have been updated with a comprehensive repertoire of chromatin interacting lncRNAs, their genome-wide chromatin binding regions and mode of action. Evidence from these new technologies emphasize that chromatin targeting of lncRNAs is a prominent mechanism and that these chromatin targeted lncRNAs exert their functionality by fine tuning chromatin architecture resulting in an altered transcriptional readout. Currently, there are no unifying principles that define chromatin association of lncRNAs, however, evidence from a few chromatin-associated lncRNAs show presence of a short common sequence for chromatin targeting. In this article, we review how technological advancements contributed in characterizing chromatin associated lncRNAs, and discuss the potential mechanisms by which chromatin associated lncRNAs execute their functions.
Collapse
Affiliation(s)
- Kankadeb Mishra
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, 40530 Gothenburg, Sweden;
- Department of Cell Biology, Memorial Sloan Kettering Cancer Centre, Rockefeller Research Laboratory, 430 East 67th Street, RRL 445, New York, NY 10065, USA
| | - Chandrasekhar Kanduri
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, 40530 Gothenburg, Sweden;
- Correspondence:
| |
Collapse
|
303
|
The Long Noncoding RNA Paupar Modulates PAX6 Regulatory Activities to Promote Alpha Cell Development and Function. Cell Metab 2019; 30:1091-1106.e8. [PMID: 31607563 PMCID: PMC7205457 DOI: 10.1016/j.cmet.2019.09.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 06/05/2019] [Accepted: 09/16/2019] [Indexed: 12/19/2022]
Abstract
Many studies have highlighted the role of dysregulated glucagon secretion in the etiology of hyperglycemia and diabetes. Accordingly, understanding the mechanisms underlying pancreatic islet α cell development and function has important implications for the discovery of new therapies for diabetes. In this study, comparative transcriptome analyses between embryonic mouse pancreas and adult mouse islets identified several pancreatic lncRNAs that lie in close proximity to essential pancreatic transcription factors, including the Pax6-associated lncRNA Paupar. We demonstrate that Paupar is enriched in glucagon-producing α cells where it promotes the alternative splicing of Pax6 to an isoform required for activation of essential α cell genes. Consistently, deletion of Paupar in mice resulted in dysregulation of PAX6 α cell target genes and corresponding α cell dysfunction, including blunted glucagon secretion. These findings illustrate a distinct mechanism by which a pancreatic lncRNA can coordinate glucose homeostasis by cell-specific regulation of a broadly expressed transcription factor.
Collapse
|
304
|
McDonel P, Guttman M. Approaches for Understanding the Mechanisms of Long Noncoding RNA Regulation of Gene Expression. Cold Spring Harb Perspect Biol 2019; 11:11/12/a032151. [PMID: 31791999 DOI: 10.1101/cshperspect.a032151] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mammalian genomes encode tens of thousands of long noncoding RNAs (lncRNAs) that have been implicated in a diverse array of biological processes and human diseases. In recent years, the development of new tools for studying lncRNAs has enabled important progress in defining the mechanisms by which Xist and other lncRNAs function. This collective work provides a framework for how to define the mechanisms by which lncRNAs act. This includes defining lncRNA function, identifying and characterizing lncRNA-protein interactions, and lncRNA localization in the cell. In this review, we discuss various experimental approaches for deciphering lncRNA mechanisms and discuss issues and limitations in interpreting these results. We explore what these data can reveal about lncRNA function and mechanism as well as emerging insights into lncRNA biology that have been derived from these studies.
Collapse
Affiliation(s)
- Patrick McDonel
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Mitchell Guttman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
305
|
Silla T, Karadoulama E, Mąkosa D, Lubas M, Jensen TH. The RNA Exosome Adaptor ZFC3H1 Functionally Competes with Nuclear Export Activity to Retain Target Transcripts. Cell Rep 2019; 23:2199-2210. [PMID: 29768216 PMCID: PMC5972229 DOI: 10.1016/j.celrep.2018.04.061] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/28/2018] [Accepted: 04/15/2018] [Indexed: 12/31/2022] Open
Abstract
Mammalian genomes are promiscuously transcribed, yielding protein-coding and non-coding products. Many transcripts are short lived due to their nuclear degradation by the ribonucleolytic RNA exosome. Here, we show that abolished nuclear exosome function causes the formation of distinct nuclear foci, containing polyadenylated (pA+) RNA secluded from nucleocytoplasmic export. We asked whether exosome co-factors could serve such nuclear retention. Co-localization studies revealed the enrichment of pA+ RNA foci with “pA-tail exosome targeting (PAXT) connection” components MTR4, ZFC3H1, and PABPN1 but no overlap with known nuclear structures such as Cajal bodies, speckles, paraspeckles, or nucleoli. Interestingly, ZFC3H1 is required for foci formation, and in its absence, selected pA+ RNAs, including coding and non-coding transcripts, are exported to the cytoplasm in a process dependent on the mRNA export factor AlyREF. Our results establish ZFC3H1 as a central nuclear pA+ RNA retention factor, counteracting nuclear export activity. Abolished RNA exosome function leads to pA+ RNA accumulation in nuclear foci pA+ RNA foci are enriched with various transcripts and exosome adaptor proteins The exosome adaptor protein ZFC3H1 is required for pA+ RNA foci formation ZFC3H1 functionally counteracts the mRNA export factor AlyREF
Collapse
Affiliation(s)
- Toomas Silla
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Allé 3, Building 1130, 8000 Aarhus C, Denmark
| | - Evdoxia Karadoulama
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Allé 3, Building 1130, 8000 Aarhus C, Denmark; The Bioinformatics Centre, Department of Biology and Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloesvej 5, 2200 Copenhagen, Denmark
| | - Dawid Mąkosa
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Allé 3, Building 1130, 8000 Aarhus C, Denmark
| | - Michal Lubas
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Allé 3, Building 1130, 8000 Aarhus C, Denmark
| | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Allé 3, Building 1130, 8000 Aarhus C, Denmark.
| |
Collapse
|
306
|
Adriaens C, Rambow F, Bervoets G, Silla T, Mito M, Chiba T, Asahara H, Hirose T, Nakagawa S, Jensen TH, Marine JC. The long noncoding RNA NEAT1_1 is seemingly dispensable for normal tissue homeostasis and cancer cell growth. RNA (NEW YORK, N.Y.) 2019; 25:1681-1695. [PMID: 31551298 PMCID: PMC6859857 DOI: 10.1261/rna.071456.119] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 08/30/2019] [Indexed: 05/27/2023]
Abstract
NEAT1 is one of the most studied lncRNAs, in part because its silencing in mice causes defects in mammary gland development and corpus luteum formation and protects them from skin cancer development. Moreover, depleting NEAT1 in established cancer cell lines reduces growth and sensitizes cells to DNA damaging agents. However, NEAT1 produces two isoforms and because the short isoform, NEAT1_1, completely overlaps the 5' part of the long NEAT1_2 isoform; the respective contributions of each of the isoforms to these phenotypes has remained unclear. Whereas NEAT1_1 is highly expressed in most tissues, NEAT1_2 is the central architectural component of paraspeckles, which are nuclear bodies that assemble in specific tissues and cells exposed to various forms of stress. Using dual RNA-FISH to detect both NEAT1_1 outside of the paraspeckles and NEAT1_2/NEAT1 inside this nuclear body, we report herein that NEAT1_1 levels are dynamically regulated during the cell cycle and targeted for degradation by the nuclear RNA exosome. Unexpectedly, however, cancer cells engineered to lack NEAT1_1, but not NEAT1_2, do not exhibit cell cycle defects. Moreover, Neat1_1-specific knockout mice do not exhibit the phenotypes observed in Neat1-deficient mice. We propose that NEAT1 functions are mainly, if not exclusively, attributable to NEAT1_2 and, by extension, to paraspeckles.
Collapse
Affiliation(s)
- Carmen Adriaens
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, 3000 Leuven, Belgium
- Laboratory for Molecular Cancer Biology, Oncology Department, KU Leuven, 3000 Leuven, Belgium
| | - Florian Rambow
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, 3000 Leuven, Belgium
- Laboratory for Molecular Cancer Biology, Oncology Department, KU Leuven, 3000 Leuven, Belgium
| | - Greet Bervoets
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, 3000 Leuven, Belgium
- Laboratory for Molecular Cancer Biology, Oncology Department, KU Leuven, 3000 Leuven, Belgium
| | - Toomas Silla
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Mari Mito
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, 351-0198 Saitama, Japan
| | - Tomoki Chiba
- Department of Systems BioMedicine, Tokyo Medical and Dental University, 113-8510 Tokyo, Japan
| | - Hiroshi Asahara
- Department of Systems BioMedicine, Tokyo Medical and Dental University, 113-8510 Tokyo, Japan
| | - Tetsuro Hirose
- Institute for Genetic Medicine, Hokkaido University, 060-0808 Sapporo, Japan
| | - Shinichi Nakagawa
- Faculty of Pharmaceutical Sciences, Hokkaido University, 060-0812 Sapporo, Japan
| | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, 3000 Leuven, Belgium
- Laboratory for Molecular Cancer Biology, Oncology Department, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
307
|
Liu Q, Shi H, Yang J, Jiang N. Long Non-Coding RNA NEAT1 Promoted Hepatocellular Carcinoma Cell Proliferation and Reduced Apoptosis Through the Regulation of Let-7b-IGF-1R Axis. Onco Targets Ther 2019; 12:10401-10413. [PMID: 31819522 PMCID: PMC6890520 DOI: 10.2147/ott.s217763] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/15/2019] [Indexed: 12/28/2022] Open
Abstract
Background and aim Long non-coding RNA nuclear-enriched abundant transcript 1 (NEAT1) is abnormally expressed in various human malignancies, including hepatocellular carcinoma (HCC). Let-7b is a miRNA with the effect of a tumor suppressor gene, and its expression level in various tumor tissues is lower than that in normal tissues. Studies have found that IGF-1R can be abnormally activated in the process of hepatocyte deterioration, and the expression level of IGF-1R in HCC is significantly up-regulated. The aim of this study was to investigate the functional mechanism of NEAT1/let-7b-IGF-1R axis in HCC. Methods The expressions of NEAT1 and microRNA (miR)-let-7b in HCC tissues and cell lines were quantified by quantitative real-time PCR (qRT-PCR). The effect of NEAT1 on tumor growth was observed in a mice model of transplanted hepatoma. The effects of down-regulation or up-regulation of NEAT1 expression in HCC cell lines were analysed from the perspectives of cell viability and apoptosis. The binding sites of NEAT1 and miR-let-7b were predicted by biological software. The expression of the miR-let-7b target molecules IGF-1R was detected by Western blotting. Results The results showed that the expressions of NEAT1 were significantly increased, while the expressions of miR-let-7b were decreased in the HCC tissues and cell lines. Additionally, it was found that the expressions of NEAT1 and miR-let-7b showed a negative correlation in HCC tissues. The mouse model experiments confirmed that the interference with NEAT1 expression inhibited the tumor growth. Meanwhile, the cell viability of HepG2/Huh7 cell lines was significantly decreased via the downregulation of NEAT1, whereas the corresponding rates of apoptosis were significantly increased. It was further proven that there was a certain negative regulatory mechanism between NEAT1 and miR-1et-7b, which was related to the expression of IGF-1R. Conclusion The over-expression of NEAT1 could promote the proliferation of HCC cells by inhibiting the expression of the miR-let-7b regulated by IGF-1R.
Collapse
Affiliation(s)
- Qin Liu
- Department of Gastroenterology, Weihai Municipal Hospital, Weihai, People's Republic of China
| | - Hexian Shi
- Department of Hepatobiliary Surgery, Heze Municipal Hospital, Heze, People's Republic of China
| | - Jianbo Yang
- Department of Oral Medicine, Weihai Stomatological Hospital, Weihai, People's Republic of China
| | - Ning Jiang
- Department of General Surgery, Shandong Provincial Third Hospital, Jinan, People's Republic of China
| |
Collapse
|
308
|
Aboudehen K. Regulation of mTOR signaling by long non-coding RNA. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1863:194449. [PMID: 31751821 DOI: 10.1016/j.bbagrm.2019.194449] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/05/2019] [Accepted: 11/08/2019] [Indexed: 12/31/2022]
Abstract
The mechanistic target of rapamycin (mTOR) is a major signaling hub that coordinates cellular and organismal responses, such as cell growth, proliferation, apoptosis, and metabolism. Dysregulation of mTOR signaling occurs in many human diseases, and there are significant ongoing efforts to pharmacologically target this pathway. Long noncoding RNAs (lncRNA), defined by a length > 200 nucleotides and absence of a long open-reading-frame, are a class of non-protein-coding RNAs. Mutations and dysregulations of lncRNAs are directly linked to the development and progression of many diseases, including cancer, diabetes, and neurologic disorders. Recent findings reveal diverse functions for lncRNA that include transcriptional regulation, organization of nuclear domains, and regulation of proteins or RNA molecules. Despite considerable development in our understanding of lncRNA over the past decade, only a fraction of annotated lncRNAs has been examined for biological function. In addition, lncRNAs have emerged as therapeutic targets due to their ability to modulate multiple pathways, including mTOR signaling. This review will provide an up-to-date summary of lncRNAs that are involved in regulating mTOR pathway.
Collapse
Affiliation(s)
- Karam Aboudehen
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA.
| |
Collapse
|
309
|
Kuo CC, Hänzelmann S, Sentürk Cetin N, Frank S, Zajzon B, Derks JP, Akhade VS, Ahuja G, Kanduri C, Grummt I, Kurian L, Costa IG. Detection of RNA-DNA binding sites in long noncoding RNAs. Nucleic Acids Res 2019; 47:e32. [PMID: 30698727 PMCID: PMC6451187 DOI: 10.1093/nar/gkz037] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/10/2019] [Accepted: 01/15/2019] [Indexed: 01/08/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) can act as scaffolds that promote the interaction of proteins, RNA, and DNA. There is increasing evidence of sequence-specific interactions of lncRNAs with DNA via triple-helix (triplex) formation. This process allows lncRNAs to recruit protein complexes to specific genomic regions and regulate gene expression. Here we propose a computational method called Triplex Domain Finder (TDF) to detect triplexes and characterize DNA-binding domains and DNA targets statistically. Case studies showed that this approach can detect the known domains of lncRNAs Fendrr, HOTAIR and MEG3. Moreover, we validated a novel DNA-binding domain in MEG3 by a genome-wide sequencing method. We used TDF to perform a systematic analysis of the triplex-forming potential of lncRNAs relevant to human cardiac differentiation. We demonstrated that the lncRNA with the highest triplex-forming potential, GATA6-AS, forms triple helices in the promoter of genes relevant to cardiac development. Moreover, down-regulation of GATA6-AS impairs GATA6 expression and cardiac development. These data indicate the unique ability of our computational tool to identify novel triplex-forming lncRNAs and their target genes.
Collapse
Affiliation(s)
- Chao-Chung Kuo
- Institute for Computational Genomics, Joint Research Center for Computational Biomedicine, RWTH Aachen Medical Faculty, Aachen 52074, Germany
| | - Sonja Hänzelmann
- Institute for Computational Genomics, Joint Research Center for Computational Biomedicine, RWTH Aachen Medical Faculty, Aachen 52074, Germany.,Klinik für Innere Medizin II, Universitätsklinikum Schleswig-Holstein, Kiel 24105, Germany
| | - Nevcin Sentürk Cetin
- Division of Molecular Biology of the Cell II, German Cancer Research Center, Heidelberg 69120, Germany
| | - Stefan Frank
- Center for Molecular Medicine Cologne, University of Cologne, Cologne 50923, Germany.,Institute for Neurophysiology, University of Cologne, Cologne 50923, Germany.,Cologne Cluster of Excellence in Cellular Stress Responses in Ageing-associated Diseases, University of Cologne, Cologne 50923, Germany
| | - Barna Zajzon
- Institute for Computational Genomics, Joint Research Center for Computational Biomedicine, RWTH Aachen Medical Faculty, Aachen 52074, Germany
| | - Jens-Peter Derks
- Center for Molecular Medicine Cologne, University of Cologne, Cologne 50923, Germany.,Institute for Neurophysiology, University of Cologne, Cologne 50923, Germany.,Cologne Cluster of Excellence in Cellular Stress Responses in Ageing-associated Diseases, University of Cologne, Cologne 50923, Germany
| | - Vijay Suresh Akhade
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg 40530, Sweden
| | - Gaurav Ahuja
- Center for Molecular Medicine Cologne, University of Cologne, Cologne 50923, Germany.,Institute for Neurophysiology, University of Cologne, Cologne 50923, Germany.,Cologne Cluster of Excellence in Cellular Stress Responses in Ageing-associated Diseases, University of Cologne, Cologne 50923, Germany
| | - Chandrasekhar Kanduri
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg 40530, Sweden
| | - Ingrid Grummt
- Division of Molecular Biology of the Cell II, German Cancer Research Center, Heidelberg 69120, Germany
| | - Leo Kurian
- Center for Molecular Medicine Cologne, University of Cologne, Cologne 50923, Germany.,Institute for Neurophysiology, University of Cologne, Cologne 50923, Germany.,Cologne Cluster of Excellence in Cellular Stress Responses in Ageing-associated Diseases, University of Cologne, Cologne 50923, Germany
| | - Ivan G Costa
- Institute for Computational Genomics, Joint Research Center for Computational Biomedicine, RWTH Aachen Medical Faculty, Aachen 52074, Germany
| |
Collapse
|
310
|
Secondary Structural Model of Human MALAT1 Reveals Multiple Structure-Function Relationships. Int J Mol Sci 2019; 20:ijms20225610. [PMID: 31717552 PMCID: PMC6888369 DOI: 10.3390/ijms20225610] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 11/07/2019] [Indexed: 12/17/2022] Open
Abstract
Human metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is an abundant nuclear-localized long noncoding RNA (lncRNA) that has significant roles in cancer. While the interacting partners and evolutionary sequence conservation of MALAT1 have been examined, much of the structure of MALAT1 is unknown. Here, we propose a hypothetical secondary structural model for 8425 nucleotides of human MALAT1 using three experimental datasets that probed RNA structures in vitro and in various human cell lines. Our model indicates that approximately half of human MALAT1 is structured, forming 194 helices, 13 pseudoknots, five structured tetraloops, nine structured internal loops, and 13 intramolecular long-range interactions that give rise to several multiway junctions. Evolutionary conservation and covariation analyses support 153 of 194 helices in 51 mammalian MALAT1 homologs and 42 of 194 helices in 53 vertebrate MALAT1 homologs, thereby identifying an evolutionarily conserved core that likely has important functional roles in mammals and vertebrates. Data mining revealed that RNA modifications, somatic cancer-associated mutations, and single-nucleotide polymorphisms may induce structural rearrangements that sequester or expose binding sites for several cancer-associated microRNAs. Our findings reveal new mechanistic leads into the roles of MALAT1 by identifying several intriguing structure–function relationships in which the dynamic structure of MALAT1 underlies its biological functions.
Collapse
|
311
|
Wang M, Sun X, Wang H, Xin Y, Jiao W. Long non-coding RNAs in non-small cell lung cancer: functions and distinctions from other malignancies. Transl Cancer Res 2019; 8:2636-2653. [PMID: 35117021 PMCID: PMC8797712 DOI: 10.21037/tcr.2019.10.22] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/08/2019] [Indexed: 01/17/2023]
Abstract
Lung cancer leads to the most cancer-related death in the world. It was shown from the increasing evidences that long non-coding RNAs (lncRNAs) are emerging as molecules for diagnosis, prognosis and even therapy of lung cancer and other malignancies. The biological functions or involved signaling pathways of lncRNAs are always found to be inconsistent among different types of malignancies. However, no available literature has systemically summarized differences in the functions and underlying molecular mechanisms of lncRNAs between lung cancer and other cancers. In this review, the biological functions and molecular mechanisms of lncRNAs in lung cancer were introduced. Furthermore, their functional differences between lung cancer and other malignancies were discussed. Finally, their potential clinical applications in future lung cancer therapy were focused on.
Collapse
Affiliation(s)
- Maolong Wang
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Xiao Sun
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Hao Wang
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yanlu Xin
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Wenjie Jiao
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao 266003, China
| |
Collapse
|
312
|
Simon MD, Machyna M. Principles and Practices of Hybridization Capture Experiments to Study Long Noncoding RNAs That Act on Chromatin. Cold Spring Harb Perspect Biol 2019; 11:11/11/a032276. [PMID: 31676573 DOI: 10.1101/cshperspect.a032276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The diverse roles of cellular RNAs can be studied by purifying RNAs of interest together with the biomolecules they bind. Biotinylated antisense oligonucleotides that hybridize specifically to the RNA of interest provide a general approach to develop affinity reagents for these experiments. Such oligonucleotides can be used to enrich endogenous RNAs from cross-linked chromatin extracts to study the genomic binding sites of RNAs. These hybridization capture protocols are evolving modular experiments that are compatible with a range of cross-linkers and conditions. This review discusses the principles of these hybridization capture experiments as well as considerations and controls necessary to interpret the resulting data without being misled by artifactual signals.
Collapse
Affiliation(s)
- Matthew D Simon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511.,Chemical Biology Institute, Yale University, West Haven, Connecticut 06516
| | - Martin Machyna
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511.,Chemical Biology Institute, Yale University, West Haven, Connecticut 06516
| |
Collapse
|
313
|
Affiliation(s)
- Dimitrios Tsiantoulas
- Division of Cardiovascular Medicine, University of Cambridge, West Forvie Building, Forvie Site, Robinson Way, Cambridge, UK
| | - Ziad Mallat
- Division of Cardiovascular Medicine, University of Cambridge, West Forvie Building, Forvie Site, Robinson Way, Cambridge, UK
| |
Collapse
|
314
|
Gourvest M, Brousset P, Bousquet M. Long Noncoding RNAs in Acute Myeloid Leukemia: Functional Characterization and Clinical Relevance. Cancers (Basel) 2019; 11:cancers11111638. [PMID: 31653018 PMCID: PMC6896193 DOI: 10.3390/cancers11111638] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/17/2019] [Accepted: 10/22/2019] [Indexed: 12/18/2022] Open
Abstract
Acute Myeloid Leukemia (AML) is the most common form of leukemia in adults with an incidence of 4.3 per 100,000 cases per year. Historically, the identification of genetic alterations in AML focused on protein-coding genes to provide biomarkers and to understand the molecular complexity of AML. Despite these findings and because of the heterogeneity of this disease, questions as to the molecular mechanisms underlying AML development and progression remained unsolved. Recently, transcriptome-wide profiling approaches have uncovered a large family of long noncoding RNAs (lncRNAs). Larger than 200 nucleotides and with no apparent protein coding potential, lncRNAs could unveil a new set of players in AML development. Originally considered as dark matter, lncRNAs have critical roles to play in the different steps of gene expression and thus affect cellular homeostasis including proliferation, survival, differentiation, migration or genomic stability. Consequently, lncRNAs are found to be differentially expressed in tumors, notably in AML, and linked to the transformation of healthy cells into leukemic cells. In this review, we aim to summarize the knowledge concerning lncRNAs functions and implications in AML, with a particular emphasis on their prognostic and therapeutic potential.
Collapse
Affiliation(s)
- Morgane Gourvest
- Cancer Research Center of Toulouse (CRCT), UMR1037 INSERM-Université Paul Sabatier Toulouse III-CNRS ERL5294, 31037 Toulouse, France.
| | - Pierre Brousset
- Cancer Research Center of Toulouse (CRCT), UMR1037 INSERM-Université Paul Sabatier Toulouse III-CNRS ERL5294, 31037 Toulouse, France.
| | - Marina Bousquet
- Cancer Research Center of Toulouse (CRCT), UMR1037 INSERM-Université Paul Sabatier Toulouse III-CNRS ERL5294, 31037 Toulouse, France.
| |
Collapse
|
315
|
An H, Tan JT, Shelkovnikova TA. Stress granules regulate stress-induced paraspeckle assembly. J Cell Biol 2019; 218:4127-4140. [PMID: 31636118 PMCID: PMC6891081 DOI: 10.1083/jcb.201904098] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/02/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023] Open
Abstract
Stress granules and paraspeckles are prototypical RNP granules localized in the cytoplasm and nucleus, respectively. An et al. show that despite spatial separation, these two granules are interconnected, and stress granules act as key regulators of stress-induced paraspeckle hyperassembly. Eukaryotic cells contain a variety of RNA-protein macrocomplexes termed RNP granules. Different types of granules share multiple protein components; however, the crosstalk between spatially separated granules remains unaddressed. Paraspeckles and stress granules (SGs) are prototypical RNP granules localized exclusively in the nucleus and cytoplasm, respectively. Both granules are implicated in human diseases, such as amyotrophic lateral sclerosis. We characterized the composition of affinity-purified paraspeckle-like structures and found a significant overlap between the proteomes of paraspeckles and SGs. We further show that paraspeckle hyperassembly is typical for cells subjected to SG-inducing stresses. Using chemical and genetic disruption of SGs, we demonstrate that formation of microscopically visible SGs is required to trigger and maintain stress-induced paraspeckle assembly. Mechanistically, SGs may sequester negative regulators of paraspeckle formation, such as UBAP2L, alleviating their inhibitory effect on paraspeckles. Our study reveals a novel function for SGs as positive regulators of nuclear RNP granule assembly and suggests a role for disturbed SG-paraspeckle crosstalk in human disease.
Collapse
Affiliation(s)
- Haiyan An
- Biomedicine Division, School of Biosciences, Cardiff University, Cardiff, UK.,Medicines Discovery Institute, School of Biosciences, Cardiff University, Cardiff, UK
| | - Jing Tong Tan
- Biomedicine Division, School of Biosciences, Cardiff University, Cardiff, UK
| | - Tatyana A Shelkovnikova
- Biomedicine Division, School of Biosciences, Cardiff University, Cardiff, UK .,Medicines Discovery Institute, School of Biosciences, Cardiff University, Cardiff, UK
| |
Collapse
|
316
|
Sentürk Cetin N, Kuo CC, Ribarska T, Li R, Costa IG, Grummt I. Isolation and genome-wide characterization of cellular DNA:RNA triplex structures. Nucleic Acids Res 2019; 47:2306-2321. [PMID: 30605520 PMCID: PMC6411930 DOI: 10.1093/nar/gky1305] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/18/2018] [Accepted: 12/27/2018] [Indexed: 12/21/2022] Open
Abstract
RNA can directly bind to purine-rich DNA via Hoogsteen base pairing, forming a DNA:RNA triple helical structure that anchors the RNA to specific sequences and allows guiding of transcription regulators to distinct genomic loci. To unravel the prevalence of DNA:RNA triplexes in living cells, we have established a fast and cost-effective method that allows genome-wide mapping of DNA:RNA triplex interactions. In contrast to previous approaches applied for the identification of chromatin-associated RNAs, this method uses protein-free nucleic acids isolated from chromatin. High-throughput sequencing and computational analysis of DNA-associated RNA revealed a large set of RNAs which originate from non-coding and coding loci, including super-enhancers and repeat elements. Combined analysis of DNA-associated RNA and RNA-associated DNA identified genomic DNA:RNA triplex structures. The results suggest that triplex formation is a general mechanism of RNA-mediated target-site recognition, which has major impact on biological functions.
Collapse
Affiliation(s)
- Nevcin Sentürk Cetin
- Division of Molecular Biology of the Cell II, German Cancer Research Center, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Chao-Chung Kuo
- Institute for Computational Genomics, RWTH University Medical School Aachen, Germany
| | - Teodora Ribarska
- Division of Molecular Biology of the Cell II, German Cancer Research Center, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Ronghui Li
- Institute for Computational Genomics, RWTH University Medical School Aachen, Germany
| | - Ivan G Costa
- Institute for Computational Genomics, RWTH University Medical School Aachen, Germany
| | - Ingrid Grummt
- Division of Molecular Biology of the Cell II, German Cancer Research Center, DKFZ-ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|
317
|
Spiniello M, Steinbrink MI, Cesnik AJ, Miller RM, Scalf M, Shortreed MR, Smith LM. Comprehensive in vivo identification of the c-Myc mRNA protein interactome using HyPR-MS. RNA (NEW YORK, N.Y.) 2019; 25:1337-1352. [PMID: 31296583 PMCID: PMC6800478 DOI: 10.1261/rna.072157.119] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 06/27/2019] [Indexed: 05/10/2023]
Abstract
Proteins bind mRNA through their entire life cycle from transcription to degradation. We analyzed c-Myc mRNA protein interactors in vivo using the HyPR-MS method to capture the crosslinked mRNA by hybridization and then analyzed the bound proteins using mass spectrometry proteomics. Using HyPR-MS, 229 c-Myc mRNA-binding proteins were identified, confirming previously proposed interactors, suggesting new interactors, and providing information related to the roles and pathways known to involve c-Myc. We performed structural and functional analysis of these proteins and validated our findings with a combination of RIP-qPCR experiments, in vitro results released in past studies, publicly available RIP- and eCLIP-seq data, and results from software tools for predicting RNA-protein interactions.
Collapse
Affiliation(s)
- Michele Spiniello
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Department of Medicine of Precision, University of Studi della Campania Luigi Vanvitelli, Naples 80138, Italy
- Division of Immuno-Hematology and Transfusion Medicine, Cardarelli Hospital, Naples 80131, Italy
| | - Maisie I Steinbrink
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Anthony J Cesnik
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Rachel M Miller
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Mark Scalf
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Michael R Shortreed
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
318
|
Theil K, Imami K, Rajewsky N. Identification of proteins and miRNAs that specifically bind an mRNA in vivo. Nat Commun 2019; 10:4205. [PMID: 31527589 PMCID: PMC6746756 DOI: 10.1038/s41467-019-12050-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 08/19/2019] [Indexed: 12/26/2022] Open
Abstract
Understanding regulation of an mRNA requires knowledge of its regulators. However, methods for reliable de-novo identification of proteins binding to a particular RNA are scarce and were thus far only successfully applied to abundant noncoding RNAs in cell culture. Here, we present vIPR, an RNA-protein crosslink, RNA pulldown, and shotgun proteomics approach to identify proteins bound to selected mRNAs in C. elegans. Applying vIPR to the germline-specific transcript gld-1 led to enrichment of known and novel interactors. By comparing enrichment upon gld-1 and lin-41 pulldown, we demonstrate that vIPR recovers both common and specific RNA-binding proteins, and we validate DAZ-1 as a specific gld-1 regulator. Finally, combining vIPR with small RNA sequencing, we recover known and biologically important transcript-specific miRNA interactions, and we identify miR-84 as a specific interactor of the gld-1 transcript. We envision that vIPR will provide a platform for investigating RNA in vivo regulation in diverse biological systems.
Collapse
Affiliation(s)
- Kathrin Theil
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany.
| | - Koshi Imami
- Proteome Dynamics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
- Laboratory of Molecular and Cellular BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Nikolaus Rajewsky
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany.
| |
Collapse
|
319
|
Zhang G, Lan Y, Xie A, Shi J, Zhao H, Xu L, Zhu S, Luo T, Zhao T, Xiao Y, Li X. Comprehensive analysis of long noncoding RNA (lncRNA)-chromatin interactions reveals lncRNA functions dependent on binding diverse regulatory elements. J Biol Chem 2019; 294:15613-15622. [PMID: 31484726 DOI: 10.1074/jbc.ra119.008732] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/30/2019] [Indexed: 12/28/2022] Open
Abstract
Over the past decade, thousands of long noncoding RNAs (lncRNAs) have been identified, many of which play crucial roles in normal physiology and human disease. LncRNAs can interact with chromatin and then recruit protein complexes to remodel chromatin states, thus regulating gene expression. However, how lncRNA-chromatin interactions contribute to their biological functions is largely unknown. Here, we collected and constructed an atlas of 188,647 lncRNA-chromatin interactions in human and mouse. All lncRNAs showed diverse epigenetic modification patterns at their binding sites, especially the marks of enhancer activity. Functional analysis of lncRNA target genes further revealed that lncRNAs could exert their functions by binding to both promoter and distal regulatory elements, especially the distal regulatory elements. Intriguingly, many important pathways were observed to be widely regulated by lncRNAs through distal binding. For example, NEAT1, a cancer lncRNA, controls 13.3% of genes in the PI3K-AKT signaling pathway by interacting with distal regulatory elements. In addition, "two-gene" signatures composed of a lncRNA and its distal target genes, such as HOTAIR-CRIM1, provided significant clinical benefits relative to the lncRNA alone. In summary, our findings underscored that lncRNA-distal interactions were essential for lncRNA functions, which would provide new clues to understand the molecular mechanisms of lncRNAs in complex disease.
Collapse
Affiliation(s)
- Guanxiong Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yujia Lan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Aimin Xie
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Jian Shi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Hongying Zhao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Liwen Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Shiwei Zhu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Tao Luo
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Tingting Zhao
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Yun Xiao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| |
Collapse
|
320
|
Qadir MI, Bukhat S, Rasul S, Manzoor H, Manzoor M. RNA therapeutics: Identification of novel targets leading to drug discovery. J Cell Biochem 2019; 121:898-929. [DOI: 10.1002/jcb.29364] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/20/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Muhammad Imran Qadir
- Institute of Molecular Biology and Biotechnology Bahauddin Zakariya University Multan Pakistan
| | - Sherien Bukhat
- Institute of Molecular Biology and Biotechnology Bahauddin Zakariya University Multan Pakistan
| | - Sumaira Rasul
- Institute of Molecular Biology and Biotechnology Bahauddin Zakariya University Multan Pakistan
| | - Hamid Manzoor
- Institute of Molecular Biology and Biotechnology Bahauddin Zakariya University Multan Pakistan
| | - Majid Manzoor
- College of Pharmaceutical Sciences Zhejiang University Hangzhou China
| |
Collapse
|
321
|
Abstract
Mammalian genomes are extensively transcribed, which produces a large number of both coding and non-coding transcripts. Various RNAs are physically associated with chromatin, through being either retained in cis at their site of transcription or recruited in trans to other genomic regions. Driven by recent technological innovations for detecting chromatin-associated RNAs, diverse roles are being revealed for these RNAs and associated RNA-binding proteins (RBPs) in gene regulation and genome function. Such functions include locus-specific roles in gene activation and silencing, as well as emerging roles in higher-order genome organization, such as involvement in long-range enhancer-promoter interactions, transcription hubs, heterochromatin, nuclear bodies and phase transitions.
Collapse
Affiliation(s)
- Xiao Li
- Department of Cellular and Molecular Medicine and Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine and Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
322
|
Hupalowska A, Jedrusik A, Zhu M, Bedford MT, Glover DM, Zernicka-Goetz M. CARM1 and Paraspeckles Regulate Pre-implantation Mouse Embryo Development. Cell 2019; 175:1902-1916.e13. [PMID: 30550788 PMCID: PMC6292842 DOI: 10.1016/j.cell.2018.11.027] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 07/29/2018] [Accepted: 11/16/2018] [Indexed: 01/20/2023]
Abstract
Nuclear architecture has never been carefully examined during early mammalian development at the stages leading to establishment of the embryonic and extra-embryonic lineages. Heterogeneous activity of the methyltransferase CARM1 during these stages results in differential methylation of histone H3R26 to modulate establishment of these two lineages. Here we show that CARM1 accumulates in nuclear granules at the 2- to 4-cell stage transition in the mouse embryo, with the majority corresponding to paraspeckles. The paraspeckle component Neat1 and its partner p54nrb are required for CARM1's association with paraspeckles and for H3R26 methylation. Conversely, CARM1 also influences paraspeckle organization. Depletion of Neat1 or p54nrb results in arrest at the 16- to 32-cell stage, with elevated expression of transcription factor Cdx2, promoting differentiation into the extra-embryonic lineage. This developmental arrest occurs at an earlier stage than following CARM1 depletion, indicating that paraspeckles act upstream of CARM1 but also have additional earlier roles in fate choice.
Collapse
Affiliation(s)
- Anna Hupalowska
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | - Agnieszka Jedrusik
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | - Meng Zhu
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, MD Anderson Cancer Center, The University of Texas, 1808 Park Road 1C, Smithville, TX 78957, USA
| | - David M Glover
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | - Magdalena Zernicka-Goetz
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK.
| |
Collapse
|
323
|
Mapping Local and Global Liquid Phase Behavior in Living Cells Using Photo-Oligomerizable Seeds. Cell 2019; 175:1467-1480.e13. [PMID: 30500534 DOI: 10.1016/j.cell.2018.10.048] [Citation(s) in RCA: 298] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 08/10/2018] [Accepted: 10/23/2018] [Indexed: 11/24/2022]
Abstract
Liquid-liquid phase separation plays a key role in the assembly of diverse intracellular structures. However, the biophysical principles by which phase separation can be precisely localized within subregions of the cell are still largely unclear, particularly for low-abundance proteins. Here, we introduce an oligomerizing biomimetic system, "Corelets," and utilize its rapid and quantitative light-controlled tunability to map full intracellular phase diagrams, which dictate the concentrations at which phase separation occurs and the transition mechanism, in a protein sequence dependent manner. Surprisingly, both experiments and simulations show that while intracellular concentrations may be insufficient for global phase separation, sequestering protein ligands to slowly diffusing nucleation centers can move the cell into a different region of the phase diagram, resulting in localized phase separation. This diffusive capture mechanism liberates the cell from the constraints of global protein abundance and is likely exploited to pattern condensates associated with diverse biological processes. VIDEO ABSTRACT.
Collapse
|
324
|
Li M, Li L, Zhang X, Zhao H, Wei M, Zhai W, Wang B, Yan Y. LncRNA RP11-670E13.6, interacted with hnRNPH, delays cellular senescence by sponging microRNA-663a in UVB damaged dermal fibroblasts. Aging (Albany NY) 2019; 11:5992-6013. [PMID: 31444317 PMCID: PMC6738423 DOI: 10.18632/aging.102159] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 08/05/2019] [Indexed: 06/10/2023]
Abstract
Ultraviolet (UV) irradiation from the sunlight is a major etiologic factor for premature skin aging. Long noncoding RNAs (lncRNAs) are involved in various biological processes, and their roles in UV irradiation-induced skin aging have recently been described. Previously, we found that the lncRNA RP11-670E13.6 was up-regulated and delayed cellular senescence in UVB-irradiated primary human dermal fibroblasts. Here, we performed further investigations of RP11-670E13.6 function. The results showed that this lncRNA directly bound to miR-663a and functioned as a sponge for miR-663a to modulate the derepression of Cdk4 and Cdk6, thereby delaying cellular senescence during UV irradiation-induced skin photoaging. Moreover, we found that RP11-670E13.6 may facilitate DNA damage repair by increasing ATM and γH2A.X levels. In addition, heterogeneous nuclear ribonucleoprotein H physically interacted with RP11-670E13.6 and blocked its expression. Collectively, our results suggested that the RP11-670E13.6/miR-663a/CDK4 and RP11-670E13.6/miR-663a/CDK6 axis, which may function as competitive endogenous RNA networks, played important roles in UVB-induced cellular senescence.
Collapse
Affiliation(s)
- Mengna Li
- Department of Dermatology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, China
| | - Li Li
- Department of Dermatology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, China
| | - Xiaofeng Zhang
- Department of Dermatology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, China
| | - Huijuan Zhao
- Department of Dermatology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, China
| | - Min Wei
- Department of Dermatology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, China
| | - Wanying Zhai
- Department of Dermatology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, China
| | - Baoxi Wang
- Department of Dermatology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, China
| | - Yan Yan
- Department of Dermatology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, China
| |
Collapse
|
325
|
Sethuraman S, Thomas M, Gay LA, Renne R. Computational analysis of ribonomics datasets identifies long non-coding RNA targets of γ-herpesviral miRNAs. Nucleic Acids Res 2019; 46:8574-8589. [PMID: 29846699 PMCID: PMC6144796 DOI: 10.1093/nar/gky459] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 05/14/2018] [Indexed: 12/16/2022] Open
Abstract
Ribonomics experiments involving crosslinking and immuno-precipitation (CLIP) of Ago proteins have expanded the understanding of the miRNA targetome of several organisms. These techniques, collectively referred to as CLIP-seq, have been applied to identifying the mRNA targets of miRNAs expressed by Kaposi’s Sarcoma-associated herpes virus (KSHV) and Epstein–Barr virus (EBV). However, these studies focused on identifying only those RNA targets of KSHV and EBV miRNAs that are known to encode proteins. Recent studies have demonstrated that long non-coding RNAs (lncRNAs) are also targeted by miRNAs. In this study, we performed a systematic re-analysis of published datasets from KSHV- and EBV-driven cancers. We used CLIP-seq data from lymphoma cells or EBV-transformed B cells, and a crosslinking, ligation and sequencing of hybrids dataset from KSHV-infected endothelial cells, to identify novel lncRNA targets of viral miRNAs. Here, we catalog the lncRNA targetome of KSHV and EBV miRNAs, and provide a detailed in silico analysis of lncRNA–miRNA binding interactions. Viral miRNAs target several hundred lncRNAs, including a subset previously shown to be aberrantly expressed in human malignancies. In addition, we identified thousands of lncRNAs to be putative targets of human miRNAs, suggesting that miRNA–lncRNA interactions broadly contribute to the regulation of gene expression.
Collapse
Affiliation(s)
- Sunantha Sethuraman
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Merin Thomas
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Lauren A Gay
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Rolf Renne
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA.,UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA.,UF Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
326
|
Chen Y, Belmont AS. Genome organization around nuclear speckles. Curr Opin Genet Dev 2019; 55:91-99. [PMID: 31394307 DOI: 10.1016/j.gde.2019.06.008] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/05/2019] [Accepted: 06/11/2019] [Indexed: 01/08/2023]
Abstract
Higher eukaryotic cell nuclei are highly compartmentalized into bodies and structural assemblies of specialized functions. Nuclear speckles/IGCs are one of the most prominent nuclear bodies, yet their functional significance remains largely unknown. Recent advances in sequence-based mapping of nuclear genome organization now provide genome-wide analysis of chromosome organization relative to nuclear speckles. Here we review older microscopy-based studies on a small number of genes with the new genomic mapping data suggesting a significant fraction of the genome is almost deterministically positioned near nuclear speckles. Both microscopy and genomic-based approaches support the concept of the nuclear speckle periphery as a major active chromosomal compartment which may play an important role in fine-tuning gene regulation.
Collapse
Affiliation(s)
- Yu Chen
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, CIRM Center of Excellence, University of California, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, Berkeley, CA 94720, USA
| | - Andrew S Belmont
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, B107 CLSL, 601 S. Goodwin Avenue, Urbana, IL 61801, USA.
| |
Collapse
|
327
|
Wang Z, Zhao Y, Xu N, Zhang S, Wang S, Mao Y, Zhu Y, Li B, Jiang Y, Tan Y, Xie W, Yang BB, Zhang Y. NEAT1 regulates neuroglial cell mediating Aβ clearance via the epigenetic regulation of endocytosis-related genes expression. Cell Mol Life Sci 2019; 76:3005-3018. [PMID: 31006037 PMCID: PMC6647258 DOI: 10.1007/s00018-019-03074-9] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 02/22/2019] [Accepted: 03/18/2019] [Indexed: 12/17/2022]
Abstract
The accumulation of intracellular β-amyloid peptide (Aβ) is important pathological characteristic of Alzheimer's disease (AD). However, the exact underlying molecular mechanism remains to be elucidated. Here, we reported that Nuclear Paraspeckle Assembly Transcript 1 (NEAT1), a long n on-coding RNA, exhibits repressed expression in the early stage of AD and its down-regulation declines neuroglial cell mediating Aβ clearance via inhibiting expression of endocytosis-related genes. We find that NEAT1 is associated with P300/CBP complex and its inhibition affects H3K27 acetylation (H3K27Ac) and H3K27 crotonylation (H3K27Cro) located nearby to the transcription start site of many genes, including endocytosis-related genes. Interestingly, NEAT1 inhibition down-regulates H3K27Ac but up-regulates H3K27Cro through repression of acetyl-CoA generation. NEAT1 also mediates the binding between STAT3 and H3K27Ac but not H3K27Cro. Therefore, the decrease of H3K27Ac and/or the increase of H3K27Cro declines expression of multiple related genes. Collectively, this study first reveals the different roles of H3K27Ac and H3K27Cro in regulation of gene expression and provides the insight of the epigenetic regulatory mechanism of NEAT1 in gene expression and AD pathology.
Collapse
MESH Headings
- Acetyl Coenzyme A/metabolism
- Acetylation/drug effects
- Alzheimer Disease/metabolism
- Alzheimer Disease/pathology
- Amyloid beta-Peptides/metabolism
- Amyloid beta-Peptides/pharmacology
- Animals
- Caveolin 2/antagonists & inhibitors
- Caveolin 2/genetics
- Caveolin 2/metabolism
- Disease Models, Animal
- Epigenesis, Genetic
- Gene Expression/drug effects
- Histones/metabolism
- Mice
- Mice, Transgenic
- Neuroglia/cytology
- Neuroglia/metabolism
- Peptide Fragments/metabolism
- Peptide Fragments/pharmacology
- RNA Interference
- RNA, Long Noncoding/antagonists & inhibitors
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Small Interfering/metabolism
- Receptor, Transforming Growth Factor-beta Type I/antagonists & inhibitors
- Receptor, Transforming Growth Factor-beta Type I/genetics
- Receptor, Transforming Growth Factor-beta Type I/metabolism
- STAT3 Transcription Factor/metabolism
- Transforming Growth Factor beta2/antagonists & inhibitors
- Transforming Growth Factor beta2/genetics
- Transforming Growth Factor beta2/metabolism
- p300-CBP Transcription Factors/metabolism
Collapse
Affiliation(s)
- Ziqiang Wang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Key Laboratory in Health Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yiwan Zhao
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Key Laboratory in Health Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Naihan Xu
- Key Laboratory in Health Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
- State Key Laboratory of Chemical Oncogenomics, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
- Open FIESTA Center, Tsinghua University, Shenzhen, 518055, China
| | - Shikuan Zhang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Key Laboratory in Health Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Songmao Wang
- Key Laboratory in Health Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
- State Key Laboratory of Chemical Oncogenomics, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Yunhao Mao
- Key Laboratory in Health Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
- State Key Laboratory of Chemical Oncogenomics, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
- Open FIESTA Center, Tsinghua University, Shenzhen, 518055, China
| | - Yuanchang Zhu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Key Laboratory in Health Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
- State Key Laboratory of Chemical Oncogenomics, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Bing Li
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Key Laboratory in Health Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
- State Key Laboratory of Chemical Oncogenomics, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Yuyang Jiang
- State Key Laboratory of Chemical Oncogenomics, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Ying Tan
- Key Laboratory in Health Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
- State Key Laboratory of Chemical Oncogenomics, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
- Open FIESTA Center, Tsinghua University, Shenzhen, 518055, China
| | - Weidong Xie
- Key Laboratory in Health Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
- State Key Laboratory of Chemical Oncogenomics, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
- Open FIESTA Center, Tsinghua University, Shenzhen, 518055, China
| | - Burton B Yang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Department of Laboratory Medicine and Pathobiology, Sunnybrook Research Institute, University of Toronto, Toronto, Canada.
| | - Yaou Zhang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Key Laboratory in Health Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China.
- State Key Laboratory of Chemical Oncogenomics, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China.
- Open FIESTA Center, Tsinghua University, Shenzhen, 518055, China.
| |
Collapse
|
328
|
Endogenous Retrovirus-Derived Long Noncoding RNA Enhances Innate Immune Responses via Derepressing RELA Expression. mBio 2019; 10:mBio.00937-19. [PMID: 31363026 PMCID: PMC6667616 DOI: 10.1128/mbio.00937-19] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Endogenous retroviruses are transposable genetic elements comprising 8% to 10% of the human and mouse genomes. Although most ERVs have been inactivated due to deleterious mutations, some are still transcribed. However, the biological functions of transcribed ERVs are largely unknown. Here, we identified a full-length ERV-derived lncRNA, designated lnc-EPAV, as a positive regulator of host innate immune responses. We found that silencing lnc-EPAV impaired virus-induced cytokine production, resulting in increased viral replication in cells. The lnc-EPAV-deficient mice exhibited enhanced susceptibility to viral challenge. We also found that lnc-EPAV regulated expression of RELA, an NF-κB subunit that plays a critical role in antiviral responses. ERV-derived lncRNA coordinated with a transcription repressor, SFPQ, to control Rela transcription. Our report provides new insights into the previously unrecognized immune gene regulatory mechanism of ERV-derived lncRNAs. Endogenous retroviruses (ERVs) are transposable elements that cause host genome instability and usually play deleterious roles in disease such as tumorigenesis. Recent advances also suggest that this “enemy within” may encode a viral mimic to induce antiviral immune responses through viral sensors. Here, through whole-genome transcriptome analysis with RNA sequencing (RNA-Seq), we discovered that a full-length ERV-derived long noncoding RNA (lncRNA), designated lnc-EPAV (ERV-derived lncRNA positively regulates antiviral responses), was a positive regulator of NF-κB signaling. lnc-EPAV expression was rapidly upregulated by viral RNA mimics or RNA viruses to facilitate the expression of RELA, an NF-κB subunit that plays a crucial role in antiviral responses. Transcriptome analysis of lnc-EPAV-silenced macrophages showed that lnc-EPAV was critical for RELA target gene expression and innate immune responses. Consistently, lnc-EPAV-deficient mice exhibited reduced expression of type I interferons (IFNs) and, consequently, increased viral loads and mortality following lethal RNA virus infection. Mechanistically, lnc-EPAV promoted expression of RELA by competitively binding to and displacing SFPQ, a transcriptional repressor of Rela. Altogether, our work demonstrates an alternative mechanism by which ERVs regulate antiviral immune responses.
Collapse
|
329
|
Cheng Y, Li J, Wang C, Yang H, Wang Y, Zhan T, Guo S, Liang J, Bai Y, Yu J, Liu G. Inhibition of long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 attenuates high glucose-induced cardiomyocyte apoptosis via regulation of miR-181a-5p. Exp Anim 2019; 69:34-44. [PMID: 31353329 PMCID: PMC7004813 DOI: 10.1538/expanim.19-0058] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is one of the cardiovascular complications of diabetes
mellitus independent of hypertension, coronary disease, and other heart diseases. The
development of DCM is multifactorial and hard to detect at an early stage. Long non-coding
RNA metastasis-associated lung adenocarcinoma transcript 1 (Malat1) is
emerging as a regulator of DCM, the underlying mechanism of its role in DCM has not been
elaborated yet. In this study, we established a mouse DCM model via streptozocin injection
as evidenced by cell hypertrophy and cell apoptosis of myocardial tissue, and found that
Malat1 expression was upregulated in the myocardium in DCM mice.
Meanwhile, elevated expression of pro-apoptotic factors p53, p21, cleaved caspase 3,
cleaved caspase 9 and BAX, and down-regulation of anti-apoptotic BCL-2 were observed in
DCM myocardium. We further investigated the effect of Malat1 on
cardiomyocytes under high glucose condition by silencing Malat1 with its
specific short-hairpin RNA. Like in vivo, expression of
Malat1 in cardiomyocytes was notably raised, remarkable cell apoptosis
and changes in apoptosis-related factors were also observed following high glucose
treatment. Besides, we validated that Malat1 acted as a sponge of
miR-181a-5p. Inhibition of miR-181a-5p could, at least partially, abolish
Malat1 knockdown-induced alteration in cardiomyocytes. In addition,
p53, a critical regulator of apoptosis, was validated to be a downstream target of
miR-181a-5p. In summary, our findings reveal that Malat1 knockdown
attenuates high glucose-induced cardiomyocyte apoptosis via releasing miR-181a-5p, and
this mechanism may provide us with new diagnosis target of DCM.
Collapse
Affiliation(s)
- Yongxia Cheng
- Pathology Diagnosis Center, The First Clinical Medical School of Mudanjiang Medical College, No. 3 Tongxiang Street, Aimin District, Mudanjiang, Heilongjiang 157011, P.R.China.,Key Laboratory of Cancer Prevention and Treatment of Heilongjiang Province, Mudanjiang Medical College, No. 3 Tongxiang Street, Aimin District, Mudanjiang, Heilongjiang 157011, P.R.China.,Institute of Stem Cells, Mudanjiang Medical College, No. 3 Tongxiang Street, Aimin District, Mudanjiang, Heilongjiang 157011, P.R.China
| | - Jingchao Li
- Department of Neurology, Hongqi Hospital of Mudanjiang Medical College, No. 3 Tongxiang Street, Aimin District, Mudanjiang, Heilongjiang 157011, P.R.China
| | - Chong Wang
- Pathology Diagnosis Center, The First Clinical Medical School of Mudanjiang Medical College, No. 3 Tongxiang Street, Aimin District, Mudanjiang, Heilongjiang 157011, P.R.China
| | - Heran Yang
- Department of Laboratory Medicine, Hongqi Hospital of Mudanjiang Medical College, No. 3 Tongxiang Street, Aimin District, Mudanjiang, Heilongjiang 157011, P.R.China
| | - Ying Wang
- Department of Anatomy, School of Basic Medical Sciences, Mudanjiang Medical College, No. 3 Tongxiang Street, Aimin District, Mudanjiang, Heilongjiang 157011, P.R.China.,Institute of Neural Tissue Engineering, Mudanjiang Medical College, No. 3 Tongxiang Street, Aimin District, Mudanjiang, Heilongjiang 157011, P.R.China
| | - Tao Zhan
- Pathology Diagnosis Center, The First Clinical Medical School of Mudanjiang Medical College, No. 3 Tongxiang Street, Aimin District, Mudanjiang, Heilongjiang 157011, P.R.China
| | - Sufen Guo
- Pathology Diagnosis Center, The First Clinical Medical School of Mudanjiang Medical College, No. 3 Tongxiang Street, Aimin District, Mudanjiang, Heilongjiang 157011, P.R.China
| | - Jun Liang
- Institute of Stem Cells, Mudanjiang Medical College, No. 3 Tongxiang Street, Aimin District, Mudanjiang, Heilongjiang 157011, P.R.China.,Department of Histology and Embryology, School of Basic Medical Sciences, Mudanjiang Medical College, No. 3 Tongxiang Street, Aimin District, Mudanjiang, Heilongjiang 157011, P.R.China
| | - Yuxin Bai
- Pathology Diagnosis Center, The First Clinical Medical School of Mudanjiang Medical College, No. 3 Tongxiang Street, Aimin District, Mudanjiang, Heilongjiang 157011, P.R.China
| | - Jianbo Yu
- Pathology Diagnosis Center, The First Clinical Medical School of Mudanjiang Medical College, No. 3 Tongxiang Street, Aimin District, Mudanjiang, Heilongjiang 157011, P.R.China.,Key Laboratory of Cancer Prevention and Treatment of Heilongjiang Province, Mudanjiang Medical College, No. 3 Tongxiang Street, Aimin District, Mudanjiang, Heilongjiang 157011, P.R.China
| | - Guibo Liu
- Department of Anatomy, School of Basic Medical Sciences, Mudanjiang Medical College, No. 3 Tongxiang Street, Aimin District, Mudanjiang, Heilongjiang 157011, P.R.China.,Institute of Neural Tissue Engineering, Mudanjiang Medical College, No. 3 Tongxiang Street, Aimin District, Mudanjiang, Heilongjiang 157011, P.R.China
| |
Collapse
|
330
|
Niculite CM, Enciu AM, Hinescu ME. CD 36: Focus on Epigenetic and Post-Transcriptional Regulation. Front Genet 2019; 10:680. [PMID: 31379931 PMCID: PMC6659770 DOI: 10.3389/fgene.2019.00680] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/28/2019] [Indexed: 12/11/2022] Open
Abstract
CD36 is a transmembrane protein involved in fatty acid translocation, scavenging for oxidized fatty acids acting as a receptor for adhesion molecules. It is expressed on macrophages, as well as other types of cells, such as endothelial and adipose cells. CD36 participates in muscle lipid uptake, adipose energy storage, and gut fat absorption. Recently, several preclinical and clinical studies demonstrated that upregulation of CD36 is a prerequisite for tumor metastasis. Cancer metastasis-related research emerged much later and has been less investigated, though it is equally or even more important. CD36 protein expression can be modified by epigenetic changes and post-transcriptional interference from non-coding RNAs. Some data indicate modulation of CD36 expression in specific cell types by epigenetic changes via DNA methylation patterns or histone tails, or through miRNA interference, but this is largely unexplored. The few papers addressing this topic refer mostly to lipid metabolism-related pathologies, whereas in cancer research, data are even more scarce. The aim of this review was to summarize major epigenetic and post-transcriptional mechanisms that impact CD36 expression in relation to various pathologies while highlighting the areas in need of further exploration.
Collapse
Affiliation(s)
- Cristina-Mariana Niculite
- Cell Biology Department, "Victor Babes" National Institute of Pathology, Bucharest, Romania.,Department of Cellular and Molecular Biology and Histology, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Ana-Maria Enciu
- Cell Biology Department, "Victor Babes" National Institute of Pathology, Bucharest, Romania.,Department of Cellular and Molecular Biology and Histology, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Mihail Eugen Hinescu
- Cell Biology Department, "Victor Babes" National Institute of Pathology, Bucharest, Romania.,Department of Cellular and Molecular Biology and Histology, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
331
|
Zhang P, Wu W, Chen Q, Chen M. Non-Coding RNAs and their Integrated Networks. J Integr Bioinform 2019; 16:/j/jib.2019.16.issue-3/jib-2019-0027/jib-2019-0027.xml. [PMID: 31301674 PMCID: PMC6798851 DOI: 10.1515/jib-2019-0027] [Citation(s) in RCA: 425] [Impact Index Per Article: 70.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/02/2019] [Accepted: 05/21/2019] [Indexed: 12/31/2022] Open
Abstract
Eukaryotic genomes are pervasively transcribed. Besides protein-coding RNAs, there are different types of non-coding RNAs that modulate complex molecular and cellular processes. RNA sequencing technologies and bioinformatics methods greatly promoted the study of ncRNAs, which revealed ncRNAs' essential roles in diverse aspects of biological functions. As important key players in gene regulatory networks, ncRNAs work with other biomolecules, including coding and non-coding RNAs, DNAs and proteins. In this review, we discuss the distinct types of ncRNAs, including housekeeping ncRNAs and regulatory ncRNAs, their versatile functions and interactions, transcription, translation, and modification. Moreover, we summarize the integrated networks of ncRNA interactions, providing a comprehensive landscape of ncRNAs regulatory roles.
Collapse
Affiliation(s)
- Peijing Zhang
- Department of Bioinformatics, State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenyi Wu
- Department of Bioinformatics, State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qi Chen
- Department of Bioinformatics, State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ming Chen
- Department of Bioinformatics, State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
332
|
Butler AA, Johnston DR, Kaur S, Lubin FD. Long noncoding RNA NEAT1 mediates neuronal histone methylation and age-related memory impairment. Sci Signal 2019; 12:eaaw9277. [PMID: 31266852 PMCID: PMC7219525 DOI: 10.1126/scisignal.aaw9277] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Histone methylation is critical for the formation and maintenance of long-term memories. Long noncoding RNAs (lncRNAs) are regulators of histone methyltransferases and other chromatin-modifying enzymes (CMEs), thereby epigenetically modifying gene expression. Here, we investigated how the lncRNA NEAT1 may epigenetically contribute to hippocampus-dependent, long-term memory formation using a combination of transcriptomics, RNA-binding protein immunoprecipitation, CRISPR-mediated gene activation (CRISPRa), and behavioral approaches. Knockdown of the lncRNA Neat1 revealed widespread changes in gene transcription, as well as perturbations of histone 3 lysine 9 dimethylation (H3K9me2), a repressive histone modification mark that was increased in the hippocampus of aging rodents. We identified a NEAT1-dependent mechanism of transcriptional repression by H3K9me2 at the c-Fos promoter, corresponding with observed changes in c-Fos mRNA expression. Overexpression of hippocampal NEAT1 using CRISPRa was sufficient to impair memory formation in young adult mice, recapitulating observed memory deficits in old adult mice, whereas knocking down NEAT1 in both young and old adult mice improved behavior test-associated memory. These results suggest that the lncRNA NEAT1 is an epigenetic suppressor of hippocampus-dependent, long-term memory formation.
Collapse
Affiliation(s)
| | | | - Simranjit Kaur
- University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Farah D Lubin
- University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
333
|
Kopp F. Molecular functions and biological roles of long non‐coding RNAs in human physiology and disease. J Gene Med 2019; 21:e3104. [DOI: 10.1002/jgm.3104] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/28/2019] [Accepted: 05/28/2019] [Indexed: 12/21/2022] Open
Affiliation(s)
- Florian Kopp
- Department of Molecular BiologyUniversity of Texas Southwestern Medical Center Dallas TX USA
| |
Collapse
|
334
|
Wang S, Zuo H, Jin J, Lv W, Xu Z, Fan Y, Zhang J, Zuo B. Long noncoding RNA Neat1 modulates myogenesis by recruiting Ezh2. Cell Death Dis 2019; 10:505. [PMID: 31243262 PMCID: PMC6594961 DOI: 10.1038/s41419-019-1742-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/02/2019] [Accepted: 06/13/2019] [Indexed: 12/14/2022]
Abstract
Neat1 is widely expressed in many tissues and cells and exerts pro-proliferation effects on many cancer cells. However, little is known about the function of Neat1 in myogenesis. Here we characterized the roles of Neat1 in muscle cell formation and muscle regeneration. Gain- or loss-of-function studies in C2C12 cells demonstrated that Neat1 accelerates myoblast proliferation but suppresses myoblast differentiation and fusion. Further, knockdown of Neat1 in vivo increased the cross-sectional area of muscle fibers but impaired muscle regeneration. Mechanically, Neat1 physically interacted with Ezh2 mainly through the core binding region (1001–1540 bp) and recruited Ezh2 to target gene promoters. Neat1 promoted myoblast proliferation mainly by decreasing the expression of the cyclin-dependent kinase inhibitor P21 gene but inhibited myoblast differentiation by suppressing the transcription of myogenic marker genes, such as Myog, Myh4, and Tnni2. Altogether, we uncover a previously unknown function of Neat1 in muscle development and the molecular mechanism by which Neat1 regulates myogenesis.
Collapse
Affiliation(s)
- Shanshan Wang
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, Hubei, People's Republic of China.,Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, 430070, Wuhan, Hubei, People's Republic of China
| | - Hao Zuo
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, Hubei, People's Republic of China.,Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, 430070, Wuhan, Hubei, People's Republic of China
| | - Jianjun Jin
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, Hubei, People's Republic of China.,Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, 430070, Wuhan, Hubei, People's Republic of China
| | - Wei Lv
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, Hubei, People's Republic of China.,Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, 430070, Wuhan, Hubei, People's Republic of China
| | - Zaiyan Xu
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, Hubei, People's Republic of China.,Department of Basic Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, Hubei, People's Republic of China
| | - Yonghui Fan
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, Hubei, People's Republic of China.,Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, 430070, Wuhan, Hubei, People's Republic of China
| | - Jiali Zhang
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, Hubei, People's Republic of China.,Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, 430070, Wuhan, Hubei, People's Republic of China
| | - Bo Zuo
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, Hubei, People's Republic of China. .,Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, 430070, Wuhan, Hubei, People's Republic of China. .,The Cooperative Innovation Center for Sustainable Pig Production, 430070, Wuhan, People's Republic of China.
| |
Collapse
|
335
|
Huang HH, Chen FY, Chou WC, Hou HA, Ko BS, Lin CT, Tang JL, Li CC, Yao M, Tsay W, Hsu SC, Wu SJ, Chen CY, Huang SY, Tseng MH, Tien HF, Chen RH. Long non-coding RNA HOXB-AS3 promotes myeloid cell proliferation and its higher expression is an adverse prognostic marker in patients with acute myeloid leukemia and myelodysplastic syndrome. BMC Cancer 2019; 19:617. [PMID: 31234830 PMCID: PMC6591843 DOI: 10.1186/s12885-019-5822-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 06/12/2019] [Indexed: 12/25/2022] Open
Abstract
Background Long non-coding RNAs (lncRNAs) represent the majority of cellular transcripts and play pivotal roles in hematopoiesis. However, their clinical relevance in acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) remains largely unknown. Here, we investigated the functions of HOXB-AS3, a lncRNA located at human HOXB cluster, in the myeloid cells, and analyzed the prognostic significances in patients with AML and MDS. Methods shRNAs were used to downregulate HOXB-AS3 in the cell lines and the effect was evaluated by quantitative polymerase chain reaction. The proliferation of the cell lines was illustrated by proliferation and BrdU flow assays. Further, we retrospectively analyzed the HOXB-AS3 expression in 193 patients with AML and 157 with MDS by microarray analysis, and evaluated its clinical importance. Results Downregulation of HOXB-AS3 suppressed cell proliferation. Mechanistically, HOXB-AS3 potentiated the expressions of several key factors in cell cycle progression and DNA replication without affecting the expressions of HOX genes. In AML, patients with higher HOXB-AS3 expression had shorter survival than those with lower HOXB-AS3 expression (median overall survival (OS), 17.7 months versus not reached, P < 0.0001; median relapse-free survival, 12.9 months versus not reached, P = 0.0070). In MDS, patients with higher HOXB-AS3 expression also had adverse prognosis compared with those with lower HOXB-AS3 expression (median OS, 14.6 months versus 42.4 months, P = 0.0018). The prognostic significance of HOXB-AS3 expression was validated in the TCGA AML cohort and another MDS cohort from our institute. The subgroup analyses in MDS patients showed that higher HOXB-AS3 expressions could predict poor prognosis only in lower-risk (median OS, 29.2 months versus 77.3 months, P = 0.0194), but not higher-risk group. Conclusions This study uncovers a promoting role of HOXB-AS3 in myeloid malignancies and identifies the prognostic value of HOXB-AS3 expression in AML and MDS patients, particularly in the lower-risk group. Electronic supplementary material The online version of this article (10.1186/s12885-019-5822-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Huai-Hsuan Huang
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Doctoral Degree Program in Translational Medicine, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Fei-Yun Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Wen-Chien Chou
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Department of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| | - Hsin-An Hou
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Bor-Sheng Ko
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chien-Ting Lin
- Taicheng Stem Cell Therapy Center, National Taiwan University, Taipei, Taiwan
| | - Jih-Luh Tang
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Taicheng Stem Cell Therapy Center, National Taiwan University, Taipei, Taiwan
| | - Chi-Cheng Li
- Taicheng Stem Cell Therapy Center, National Taiwan University, Taipei, Taiwan
| | - Ming Yao
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Woei Tsay
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Szu-Chun Hsu
- Department of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| | - Shang-Ju Wu
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chien-Yuan Chen
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shang-Yi Huang
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Mei-Hsuan Tseng
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Hwei-Fang Tien
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan. .,Doctoral Degree Program in Translational Medicine, National Taiwan University and Academia Sinica, Taipei, Taiwan.
| | - Ruey-Hwa Chen
- Doctoral Degree Program in Translational Medicine, National Taiwan University and Academia Sinica, Taipei, Taiwan. .,Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
336
|
He Z, Dang J, Song A, Cui X, Ma Z, Zhang Z. NEAT1 promotes colon cancer progression through sponging miR-495-3p and activating CDK6 in vitro and in vivo. J Cell Physiol 2019; 234:19582-19591. [PMID: 31173354 DOI: 10.1002/jcp.28557] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/26/2019] [Accepted: 03/06/2019] [Indexed: 12/31/2022]
Abstract
Recently, increasing evidence has indicated lncRNAs are powerful regulators in the progression of multiple tumors. Dysregulation of lncRNA NEAT1 has been recognized in many cancer types. Meanwhile, the studies on NEAT1 function have suggested that NEAT1 can serve as a crucial oncogene. Nevertheless, the investigation of NEAT1 in colon cancer is still few. In our study, the function of NEAT1 was studied in colon cancer. As we observed, NEAT1 level was obviously elevated in colon cancer cells. Then, HCT-116 and SW620 cells were stably infected with shRNA-NEAT1 for 48 hr. As exhibited, silence of NEAT1 could greatly repress colon cancer cell progression. Apoptosis of colon cancer cells was triggered and the cell cycle progression was remarkably inhibited by downregulation of NEAT1. Interestingly, as exhibited, miR-495-3p was obviously decreased in colon cancer cells and it significantly suppressed colon cancer progression. Subsequently, miR-495-3p was predicted as a target of NEAT1. CDK6 was speculated as the target of miR-495-3p and miR-495-3p modulated its expression negatively. Finally, it was indicated that NEAT1 promoted colon cancer development through modulating miR-495-3p and CDK6 in vivo. Taken these together, we reported that NEAT1 could sponge miR-495-3p to contribute to colon cancer progression through activating CDK6.
Collapse
Affiliation(s)
- Zhiyun He
- Colorectal Surgical Department, Lanzhou University Second Hospital, Lanzhou, China
| | - Jie Dang
- Children's Physical Examination Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Ailin Song
- General Surgery Department, Lanzhou University Second Hospital, Lanzhou, China
| | - Xiang Cui
- Colorectal Surgical Department, Lanzhou University Second Hospital, Lanzhou, China
| | - Zhijun Ma
- Colorectal Surgical Department, Lanzhou University Second Hospital, Lanzhou, China
| | - Zhongtao Zhang
- General Surgical Department, Beijing Friendship Hospital, Beijing, China
| |
Collapse
|
337
|
Abstract
Understanding the complexity and regular function of the human brain is an unresolved challenge that hampers the identification of disease-contributing components and mechanisms of psychiatric disorders. It is accepted that the majority of psychiatric disorders result from a complex interaction of environmental and heritable factors, and efforts to determine, for example, genetic variants contributing to the pathophysiology of these diseases are becoming increasingly successful. We also continue to discover new molecules with unknown functions that might play a role in brain physiology. One such class of polymeric molecules is noncoding RNAs; though discovered years ago, they have only recently started to receive careful attention. Furthermore, recent technological advances in the field of molecular genetics and high-throughput sequencing have facilitated the discovery of a broad spectrum of RNAs that show no obvious coding potential but may provide additional layers of complexity and regulation to the molecular mechanisms underlying psychiatric disorders. Their exquisite enrichment and expression profiles in the brain may point to important functions of these RNAs in health and disease. This review will therefore aim to provide insight into the expression of noncoding RNAs in the brain, their function, and potential role in psychiatric disorders.
Collapse
|
338
|
Arun G, Spector DL. MALAT1 long non-coding RNA and breast cancer. RNA Biol 2019; 16:860-863. [PMID: 30874469 PMCID: PMC6546402 DOI: 10.1080/15476286.2019.1592072] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/27/2019] [Accepted: 02/27/2019] [Indexed: 01/11/2023] Open
Abstract
Non-coding RNAs are becoming major players in disease pathogenesis such as cancer. Metastasis Associated Lung Adenocarcinoma Transcript 1 (MALAT1) is a nuclear enriched long non-coding RNA that is generally overexpressed in patient tumors and metastases. Overexpression of MALAT1 has been shown to be positively correlated with tumor progression and metastasis in a large number of tumor types including breast tumors. Surprisingly, a recent report by Kim et al shows a metastasis suppressive role for Malat1. Here, we discuss these results in the context of a large body of published literature that support a pro-tumorigenic role for MALAT1 in order to gain potential insights into the basis of these observed differences.
Collapse
Affiliation(s)
- Gayatri Arun
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | |
Collapse
|
339
|
Wu Y, Shao A, Wang L, Hu K, Yu C, Pan C, Zhang S. The Role of lncRNAs in the Distant Metastasis of Breast Cancer. Front Oncol 2019; 9:407. [PMID: 31214490 PMCID: PMC6555305 DOI: 10.3389/fonc.2019.00407] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/30/2019] [Indexed: 12/29/2022] Open
Abstract
Breast cancer (BC) remains the most frequently diagnosed cancer worldwide. Among breast cancer patients, distant metastasis and invasion is the leading cause of BC related death. Recently, long non-coding RNAs (lncRNAs), which used to be considered a genetic byproduct (owing to their unknown biological function), have been reported to be highly implicated in the development and progression of BC. In this review, we produce a summary of the functions and mechanisms of lncRNAs implicated in the different distant metastases of BC. The functions of lncRNAs have been divided into two types: oncogenic type and tumor suppressor. Furthermore, the majority of them exert their roles through the regulation of invasion, migration, epithelial-mesenchymal transition (EMT), and the metastasis process. In the final part, we briefly addressed future research prospects of lncRNAs, especially the testing methods through which to detect lncRNAs in the clinical work, and introduced several different tools with which to detect lncRNAs more conveniently. Although lncRNA research is still in the initial stages, it is a promising prognosticator and a novel therapeutic target for BC metastasis, which requires more research in the future.
Collapse
Affiliation(s)
- Yinan Wu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, School of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Liangliang Wang
- Interdisciplinary Institute of Neuroscience and Technology, Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China
| | - Kaimin Hu
- Department of Surgical Oncology, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Chengcheng Yu
- Department of Orthopedics, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Chi Pan
- Department of Surgical Oncology, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Suzhan Zhang
- Department of Surgical Oncology, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
340
|
Abstract
A diverse catalog of long noncoding RNAs (lncRNAs), which lack protein-coding potential, are transcribed from the mammalian genome. They are emerging as important regulators in gene expression networks by controlling nuclear architecture and transcription in the nucleus and by modulating mRNA stability, translation and post-translational modifications in the cytoplasm. In this Review, we highlight recent progress in cellular functions of lncRNAs at the molecular level in mammalian cells.
Collapse
|
341
|
Bunch H, Choe H, Kim J, Jo DS, Jeon S, Lee S, Cho DH, Kang K. P-TEFb Regulates Transcriptional Activation in Non-coding RNA Genes. Front Genet 2019; 10:342. [PMID: 31068966 PMCID: PMC6491683 DOI: 10.3389/fgene.2019.00342] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/29/2019] [Indexed: 01/16/2023] Open
Abstract
Many non-coding RNAs (ncRNAs) serve as regulatory molecules in various physiological pathways, including gene expression in mammalian cells. Distinct from protein-coding RNA expression, ncRNA expression is regulated solely by transcription and RNA processing/stability. It is thus important to understand transcriptional regulation in ncRNA genes but is yet to be known completely. Previously, we identified that a subset of mammalian ncRNA genes is transcriptionally regulated by RNA polymerase II (Pol II) promoter-proximal pausing and in a tissue-specific manner. In this study, human ncRNA genes that are expressed in the early G1 phase, termed immediate early ncRNA genes, were monitored to assess the function of positive transcription elongation factor b (P-TEFb), a master Pol II pausing regulator for protein-coding genes, in ncRNA transcription. Our findings indicate that the expression of many ncRNA genes is induced in the G0–G1 transition and regulated by P-TEFb. Interestingly, a biphasic characteristic of P-TEFb-dependent transcription of serum responsive ncRNA genes was observed: Pol II carboxyl-terminal domain phosphorylated at serine 2 (S2) was largely increased in the transcription start site (TSS, -300 to +300) whereas overall, it was decreased in the gene body (GB, > +350) upon chemical inhibition of P-TEFb. In addition, the three representative, immediate early ncRNAs, whose expression is dependent on P-TEFb, metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), nuclear enriched abundant transcript 1 (NEAT1), and X-inactive specific transcript (XIST), were further analyzed for determining P-TEFb association. Taken together, our data suggest that transcriptional activation of many human ncRNAs utilizes the pausing and releasing of Pol II, and that the regulatory mechanism of transcriptional elongation in these genes requires the function of P-TEFb. Furthermore, we propose that ncRNA and mRNA transcription are regulated by similar mechanisms while P-TEFb inhibition unexpectedly increases S2 Pol II phosphorylation in the TSSs in many ncRNA genes. One Sentence Summary: P-TEFb regulates Pol II phosphorylation for transcriptional activation in many stimulus-inducible ncRNA genes.
Collapse
Affiliation(s)
- Heeyoun Bunch
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, South Korea
| | - Hyeseung Choe
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, South Korea
| | - Jongbum Kim
- Department of Transcriptome & Epigenome, Macrogen Incorporated, Seoul, South Korea
| | - Doo Sin Jo
- Institute of Life Science and Biotechnology, College of Natural Science, Kyungpook National University, Daegu, South Korea
| | - Soyeon Jeon
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, South Korea
| | - Sanghwa Lee
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, South Korea
| | - Dong-Hyung Cho
- Department of Life Science, College of Natural Science, Kyungpook National University, Daegu, South Korea
| | - Keunsoo Kang
- Department of Microbiology, College of Natural Sciences, Dankook University, Cheonan, South Korea
| |
Collapse
|
342
|
Gugnoni M, Ciarrocchi A. Long Noncoding RNA and Epithelial Mesenchymal Transition in Cancer. Int J Mol Sci 2019; 20:ijms20081924. [PMID: 31003545 PMCID: PMC6515529 DOI: 10.3390/ijms20081924] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 12/22/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a multistep process that allows epithelial cells to acquire mesenchymal properties. Fundamental in the early stages of embryonic development, this process is aberrantly activated in aggressive cancerous cells to gain motility and invasion capacity, thus promoting metastatic phenotypes. For this reason, EMT is a central topic in cancer research and its regulation by a plethora of mechanisms has been reported. Recently, genomic sequencing and functional genomic studies deepened our knowledge on the fundamental regulatory role of noncoding DNA. A large part of the genome is transcribed in an impressive number of noncoding RNAs. Among these, long noncoding RNAs (lncRNAs) have been reported to control several biological processes affecting gene expression at multiple levels from transcription to protein localization and stability. Up to now, more than 8000 lncRNAs were discovered as selectively expressed in cancer cells. Their elevated number and high expression specificity candidate these molecules as a valuable source of biomarkers and potential therapeutic targets. Rising evidence currently highlights a relevant function of lncRNAs on EMT regulation defining a new layer of involvement of these molecules in cancer biology. In this review we aim to summarize the findings on the role of lncRNAs on EMT regulation and to discuss their prospective potential value as biomarkers and therapeutic targets in cancer.
Collapse
Affiliation(s)
- Mila Gugnoni
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy.
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy.
| |
Collapse
|
343
|
Esposito R, Bosch N, Lanzós A, Polidori T, Pulido-Quetglas C, Johnson R. Hacking the Cancer Genome: Profiling Therapeutically Actionable Long Non-coding RNAs Using CRISPR-Cas9 Screening. Cancer Cell 2019; 35:545-557. [PMID: 30827888 DOI: 10.1016/j.ccell.2019.01.019] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/20/2018] [Accepted: 01/28/2019] [Indexed: 12/26/2022]
Abstract
Long non-coding RNAs (lncRNAs) represent a huge reservoir of potential cancer targets. Such "onco-lncRNAs" have resisted traditional RNAi methods, but CRISPR-Cas9 genome editing now promises functional screens at high throughput and low cost. The unique biology of lncRNAs demands screening strategies distinct from protein-coding genes. The first such screens have identified hundreds of onco-lncRNAs promoting cell proliferation and drug resistance. Ongoing developments will further improve screen performance and translational relevance. This Review aims to highlight the potential of CRISPR screening technology for discovering new onco-lncRNAs, and to guide molecular oncologists wishing to apply it to their cancer of interest.
Collapse
Affiliation(s)
- Roberta Esposito
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Núria Bosch
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland; Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Andrés Lanzós
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland; Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Taisia Polidori
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland; Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Carlos Pulido-Quetglas
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland; Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Rory Johnson
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
344
|
Shields EJ, Petracovici AF, Bonasio R. lncRedibly versatile: biochemical and biological functions of long noncoding RNAs. Biochem J 2019; 476:1083-1104. [PMID: 30971458 PMCID: PMC6745715 DOI: 10.1042/bcj20180440] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/28/2019] [Accepted: 03/19/2019] [Indexed: 02/07/2023]
Abstract
Long noncoding RNAs (lncRNAs) are transcripts that do not code for proteins, but nevertheless exert regulatory effects on various biochemical pathways, in part via interactions with proteins, DNA, and other RNAs. LncRNAs are thought to regulate transcription and other biological processes by acting, for example, as guides that target proteins to chromatin, scaffolds that facilitate protein-protein interactions and complex formation, and orchestrators of phase-separated compartments. The study of lncRNAs has reached an exciting time, as recent advances in experimental and computational methods allow for genome-wide interrogation of biochemical and biological mechanisms of these enigmatic transcripts. A better appreciation for the biochemical versatility of lncRNAs has allowed us to begin closing gaps in our knowledge of how they act in diverse cellular and organismal contexts, including development and disease.
Collapse
Affiliation(s)
- Emily J Shields
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, U.S.A
- Graduate Group in Genomics and Computational Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, U.S.A
| | - Ana F Petracovici
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, U.S.A
- Graduate Group in Genetics and Epigenetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, U.S.A
| | - Roberto Bonasio
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, U.S.A.
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, U.S.A
| |
Collapse
|
345
|
Abstract
Biomarker-driven personalized cancer therapy is a field of growing interest, and several molecular tests have been developed to detect biomarkers that predict, e.g., response of cancers to particular therapies. Identification of these molecules and understanding their molecular mechanisms is important for cancer prognosis and the development of therapeutics for late stage diseases. In the past, significant efforts have been placed on the discovery of protein or DNA-based biomarkers while only recently the class of long non-coding RNA (lncRNA) has emerged as a new category of biomarker. The mammalian genome is pervasively transcribed yielding a vast amount of non-protein-coding RNAs including lncRNAs. Hence, these transcripts represent a rich source of information that has the potential to significantly contribute to precision medicine in the future. Importantly, many lncRNAs are differentially expressed in carcinomas and they are emerging as potent regulators of tumor progression and metastasis. Here, we will highlight prime examples of lncRNAs that serve as marker for cancer progression or therapy response and which might represent promising therapeutic targets. Furthermore, we will introduce lncRNA targeting tools and strategies, and we will discuss potential pitfalls in translating these into clinical trials.
Collapse
|
346
|
Ryu J, Kim H, Yang D, Lee AJ, Jung I. A new class of constitutively active super-enhancers is associated with fast recovery of 3D chromatin loops. BMC Bioinformatics 2019; 20:127. [PMID: 30925856 PMCID: PMC6439976 DOI: 10.1186/s12859-019-2646-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Super-enhancers or stretch enhancers are clusters of active enhancers that often coordinate cell-type specific gene regulation during development and differentiation. In addition, the enrichment of disease-associated single nucleotide polymorphism in super-enhancers indicates their critical function in disease-specific gene regulation. However, little is known about the function of super-enhancers beyond gene regulation. Results In this study, through a comprehensive analysis of super-enhancers in 30 human cell/tissue types, we identified a new class of super-enhancers which are constitutively active across most cell/tissue types. These ‘common’ super-enhancers are associated with universally highly expressed genes in contrast to the canonical definition of super-enhancers that assert cell-type specific gene regulation. In addition, the genome sequence of these super-enhancers is highly conserved by evolution and among humans, advocating their universal function in genome regulation. Integrative analysis of 3D chromatin loops demonstrates that, in comparison to the cell-type specific super-enhancers, the cell-type common super-enhancers present a striking association with rapidly recovering loops. Conclusions In this study, we propose that a new class of super-enhancers may play an important role in the early establishment of 3D chromatin structure. Electronic supplementary material The online version of this article (10.1186/s12859-019-2646-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jayoung Ryu
- Department of Biological Sciences, KAIST, Daejeon, 34141, South Korea
| | - Hyunwoong Kim
- Department of Biological Sciences, KAIST, Daejeon, 34141, South Korea
| | - Dongchan Yang
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, South Korea
| | - Andrew J Lee
- Department of Biological Sciences, KAIST, Daejeon, 34141, South Korea
| | - Inkyung Jung
- Department of Biological Sciences, KAIST, Daejeon, 34141, South Korea.
| |
Collapse
|
347
|
Machyna M, Simon MD. Catching RNAs on chromatin using hybridization capture methods. Brief Funct Genomics 2019; 17:96-103. [PMID: 29126220 DOI: 10.1093/bfgp/elx038] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The growing appreciation of the importance of long noncoding RNAs (lncRNAs), together with the awareness that some of these RNAs are associated with chromatin, has inspired the development of methods to detect their sites of interaction on a genome-wide scale at high resolution. Hybridization capture methods combine antisense oligonucleotide hybridization with enrichment of RNA from cross-linked chromatin extracts. These techniques have provided insight into lncRNA localization and the interactions of lncRNAs with protein to better understand biological roles of lncRNAs. Here, we review the core principles of hybridization capture methods, focusing on the three most commonly used protocols: capture hybridization analysis of RNA targets (CHART), chromatin isolation by RNA purification (ChIRP) and RNA affinity purification (RAP). We highlight the general principles of these techniques and discuss how differences in experimental procedures present distinct challenges to help researchers using these protocols or, more generally, interpreting the results of hybridization capture experiments.
Collapse
|
348
|
Central role of the p53 pathway in the noncoding-RNA response to oxidative stress. Aging (Albany NY) 2019; 9:2559-2586. [PMID: 29242407 PMCID: PMC5764393 DOI: 10.18632/aging.101341] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/01/2017] [Indexed: 12/21/2022]
Abstract
Oxidative stress plays a fundamental role in many conditions. Specifically, redox imbalance inhibits endothelial cell (EC) growth, inducing cell death and senescence. We used global transcriptome profiling to investigate the involvement of noncoding-RNAs in these phenotypes. By RNA-sequencing, transcriptome changes were analyzed in human ECs exposed to H2O2, highlighting a pivotal role of p53-signaling. Bioinformatic analysis and validation in p53-silenced ECs, identified several p53-targets among both mRNAs and long noncoding-RNAs (lncRNAs), including MALAT1 and NEAT1. Among microRNAs (miRNAs), miR-192-5p was the most induced by H2O2 treatment, in a p53-dependent manner. Down-modulated mRNA-targets of miR-192-5p were involved in cell cycle, DNA repair and stress response. Accordingly, miR-192-5p overexpression significantly decreased EC proliferation, inducing cell death. A central role of the p53-pathway was also confirmed by the analysis of differential exon usage: Upon H2O2 treatment, the expression of p53-dependent 5'-isoforms of MDM2 and PVT1 increased selectively. The transcriptomic alterations identified in H2O2-treated ECs were also observed in other physiological and pathological conditions where redox control plays a fundamental role, such as ECs undergoing replicative senescence, skeletal muscles of critical limb-ischemia patients and the peripheral-blood mononuclear cells of long-living individuals. Collectively, these findings indicate a prominent role of noncoding-RNAs in oxidative stress response.
Collapse
|
349
|
Ramanathan M, Porter DF, Khavari PA. Methods to study RNA-protein interactions. Nat Methods 2019; 16:225-234. [PMID: 30804549 PMCID: PMC6692137 DOI: 10.1038/s41592-019-0330-1] [Citation(s) in RCA: 234] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/28/2019] [Indexed: 12/26/2022]
Abstract
Noncoding RNA sequences, including long noncoding RNAs, small nucleolar RNAs, and untranslated mRNA regions, accomplish many of their diverse functions through direct interactions with RNA-binding proteins (RBPs). Recent efforts have identified hundreds of new RBPs that lack known RNA-binding domains, thus underscoring the complexity and diversity of RNA-protein complexes. Recent progress has expanded the number of methods for studying RNA-protein interactions in two general categories: approaches that characterize proteins bound to an RNA of interest (RNA-centric), and those that examine RNAs bound to a protein of interest (protein-centric). Each method has unique strengths and limitations, which makes it important to select optimal approaches for the biological question being addressed. Here we review methods for the study of RNA-protein interactions, with a focus on their suitability for specific applications.
Collapse
Affiliation(s)
- Muthukumar Ramanathan
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Douglas F Porter
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Paul A Khavari
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA.
| |
Collapse
|
350
|
Nozawa RS, Gilbert N. RNA: Nuclear Glue for Folding the Genome. Trends Cell Biol 2019; 29:201-211. [DOI: 10.1016/j.tcb.2018.12.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 12/10/2018] [Accepted: 12/14/2018] [Indexed: 12/20/2022]
|