301
|
Yildirim D, Tükel SS, Alptekin Ö, Alagöz D. Immobilized Aspergillus niger epoxide hydrolases: Cost-effective biocatalysts for the prepation of enantiopure styrene oxide, propylene oxide and epichlorohydrin. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2012.11.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
302
|
Eixelsberger T, Woodley JM, Nidetzky B, Kratzer R. Scale-up and intensification of (S)-1-(2-chlorophenyl)ethanol bioproduction: Economic evaluation of whole cell-catalyzed reduction ofo-Chloroacetophenone. Biotechnol Bioeng 2013; 110:2311-5. [DOI: 10.1002/bit.24896] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 02/18/2013] [Accepted: 02/25/2013] [Indexed: 11/07/2022]
|
303
|
Abrahamson MJ, Wong JW, Bommarius AS. The Evolution of an Amine Dehydrogenase Biocatalyst for the Asymmetric Production of Chiral Amines. Adv Synth Catal 2013. [DOI: 10.1002/adsc.201201030] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
304
|
Kwon I, Lim SI. Non-Natural Amino Acids for Protein Engineering and New Protein Chemistries. MACROMOL CHEM PHYS 2013. [DOI: 10.1002/macp.201200710] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
305
|
Garcia-Galan C, Barbosa O, Fernandez-Lafuente R. Stabilization of the hexameric glutamate dehydrogenase from Escherichia coli by cations and polyethyleneimine. Enzyme Microb Technol 2013; 52:211-7. [PMID: 23540921 DOI: 10.1016/j.enzmictec.2013.02.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 02/19/2013] [Accepted: 02/21/2013] [Indexed: 12/21/2022]
Abstract
The enzyme glutamate dehydrogenase (GDH) from Escherichia coli is a hexameric protein. The stability of this enzyme was increased in the presence of Li(+) in concentrations ranging from 1 to 10mM, 1M of sodium phosphate, or 1M ammonium sulfate. A very significant dependence of the enzyme stability on protein concentration was found, suggesting that subunit dissociation could be the first step of GDH inactivation. This effect of enzyme concentration on its stability was not significantly decreased by the presence of 10mM Li(+). Subunit crosslinking could not be performed using neither dextran nor glutaraldehyde because both reagents readily inactivated GDH. Thus, they were discarded as crosslinking reagents and GDH was incubated in the presence of polyethyleneimine (PEI) with the aim of physically crosslinking the enzyme subunits. This incubation does not have a significant effect on enzyme activity. However, after optimization, the PEI-GDH was found to almost maintain the full initial activity after 2h under conditions where the untreated enzyme retained only 20% of the initial activity, and the effect of the enzyme concentration on enzyme stability almost disappeared. This stabilization was maintained in the pH range 5-9, but it was lost at high ionic strength. This PEI-GDH composite was also much more stable than the unmodified enzyme in stirred systems. The results suggested that a real adsorption of the PEI on the GDH surface was required to obtain this stabilizing effect. A positive effect of Li(+) on enzyme stability was maintained after enzyme surface coating with PEI, suggesting that the effects of both stabilizing agents could not be exactly based on the same mechanism. Thus, the coating of GDH surface with PEI seems to be a good alternative to have a stabilized and soluble composite of the enzyme.
Collapse
Affiliation(s)
- Cristina Garcia-Galan
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
306
|
Scholz A, Eckstein M, Ansorge-Schumacher MB. Hydrophilized Silicone Matrix for the Preparation of Stable Carbonyl Reductase Immobilizates. ChemCatChem 2013. [DOI: 10.1002/cctc.201200455] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
307
|
Arora K, Brooks CL. Multiple intermediates, diverse conformations, and cooperative conformational changes underlie the catalytic hydride transfer reaction of dihydrofolate reductase. Top Curr Chem (Cham) 2013; 337:165-87. [PMID: 23420416 PMCID: PMC4394636 DOI: 10.1007/128_2012_408] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
It has become increasingly clear that protein motions play an essential role in enzyme catalysis. However, exactly how these motions are related to an enzyme's chemical step is still intensely debated. This chapter examines the possible role of protein motions that display a hierarchy of timescales in enzyme catalysis. The linkage between protein motions and catalysis is investigated in the context of a model enzyme, E. coli dihydrofolate reductase (DHFR), that catalyzes the hydride transfer reaction in the conversion of dihydrofolate to tetrahydrofolate. The results of extensive computer simulations probing the protein motions that are manifest during different steps along the turnover cycle of DHFR are summarized. Evidence is presented that the protein motions modulate the catalytic efficacy of DHFR by generating a conformational ensemble conducive to the hydride transfer. The alteration of the equilibrium conformational ensemble rather than any protein dynamical effects is found to be sufficient to explain the rate-diminishing effects of mutation on the kinetics of the enzyme. These data support the view that the protein motions facilitate catalysis by establishing reaction competent conformations of the enzyme, but they do not directly couple to the chemical reaction itself. These findings have broad implications for our understanding of enzyme mechanisms and the design of novel protein catalysts.
Collapse
Affiliation(s)
- Karunesh Arora
- Department of Chemistry and Biophysics Program, University of Michigan, Ann Arbor, MI 48109
| | - Charles L. Brooks
- Department of Chemistry and Biophysics Program, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
308
|
Brenna E, Gatti FG, Manfredi A, Monti D, Parmeggiani F. Old Yellow Enzyme-mediated reduction of β-cyano-α,β-unsaturated esters for the synthesis of chiral building blocks: stereochemical analysis of the reaction. Catal Sci Technol 2013. [DOI: 10.1039/c3cy20804d] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
309
|
Franssen MCR, Steunenberg P, Scott EL, Zuilhof H, Sanders JPM. Immobilised enzymes in biorenewables production. Chem Soc Rev 2013; 42:6491-533. [DOI: 10.1039/c3cs00004d] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
310
|
Biocatalysts for multicomponent Biginelli reaction: bovine serum albumin triggered waste-free synthesis of 3,4-dihydropyrimidin-2-(1H)-ones. Amino Acids 2012; 44:1031-7. [DOI: 10.1007/s00726-012-1437-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 11/27/2012] [Indexed: 11/26/2022]
|
311
|
|
312
|
Stella S, Chadha A. Biocatalytic reduction of α-keto amides to (R)-α-hydroxy amides using Candida parapsilosis ATCC 7330. Catal Today 2012. [DOI: 10.1016/j.cattod.2012.03.081] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
313
|
Enzymatic production of (S)-3-cyano-5-methylhexanoic acid ethyl ester with high substrate loading by immobilized Pseudomonas cepacia lipase. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.tetasy.2012.10.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
314
|
Ursoiu A, Paul C, Kurtán T, Péter F. Sol-gel entrapped Candida antarctica lipase B--a biocatalyst with excellent stability for kinetic resolution of secondary alcohols. Molecules 2012; 17:13045-61. [PMID: 23124473 PMCID: PMC6268352 DOI: 10.3390/molecules171113045] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 10/15/2012] [Accepted: 10/30/2012] [Indexed: 11/19/2022] Open
Abstract
Sol-gel entrapment is an efficient immobilization technique that allows preparation of robust and highly stable biocatalysts. Lipase from Candida antarctica B was immobilized by sol-gel entrapment and by sol-gel entrapment combined with adsorption on Celite 545, using a ternary silane precursor system. After optimization of the immobilization protocol, the best enzyme loading was 17.4 mg/g support for sol-gel entrapped lipase and 10.7 mg/g support for samples obtained by entrapment and adsorption. Sol-gel immobilized enzymes showed excellent values of enantiomeric ratio E and activity when ionic liquid 1-octyl-3-methyl-imidazolium tetrafluoroborate was used as additive. Immobilization increased the stability of the obtained biocatalysts in several organic solvents. Excellent operational stability was obtained for the immobilized lipase, maintaining unaltered catalytic activity and enantioselectivity during 15 reuse cycles. The biocatalysts were characterized using scanning electron microscopy (SEM) and fluorescence microscopy. The improved catalytic efficiency of entrapped lipases recommends their application for large-scale kinetic resolution of optically active secondary alcohols.
Collapse
Affiliation(s)
- Anca Ursoiu
- Faculty of Industrial Chemistry and Environmental, University “Politehnica” of Timisoara, C. Telbisz 6, 300001 Timisoara, Romania; (A.U.); (C.P.)
| | - Cristina Paul
- Faculty of Industrial Chemistry and Environmental, University “Politehnica” of Timisoara, C. Telbisz 6, 300001 Timisoara, Romania; (A.U.); (C.P.)
| | - Tibor Kurtán
- Department of Organic Chemistry, University of Debrecen, Debrecen 4032, Egyetem tér 1, Hungary;
| | - Francisc Péter
- Faculty of Industrial Chemistry and Environmental, University “Politehnica” of Timisoara, C. Telbisz 6, 300001 Timisoara, Romania; (A.U.); (C.P.)
- Author to whom correspondence should be addressed; ; Tel.: +40-256-404-216; Fax: +40-256-403-060
| |
Collapse
|
315
|
Gong JS, Lu ZM, Li H, Shi JS, Zhou ZM, Xu ZH. Nitrilases in nitrile biocatalysis: recent progress and forthcoming research. Microb Cell Fact 2012; 11:142. [PMID: 23106943 PMCID: PMC3537687 DOI: 10.1186/1475-2859-11-142] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 10/23/2012] [Indexed: 12/27/2022] Open
Abstract
Over the past decades, nitrilases have drawn considerable attention because of their application in nitrile degradation as prominent biocatalysts. Nitrilases are derived from bacteria, filamentous fungi, yeasts, and plants. In-depth investigations on their natural sources function mechanisms, enzyme structure, screening pathways, and biocatalytic properties have been conducted. Moreover, the immobilization, purification, gene cloning and modifications of nitrilase have been dwelt upon. Some nitrilases are used commercially as biofactories for carboxylic acids production, waste treatment, and surface modification. This critical review summarizes the current status of nitrilase research, and discusses a number of challenges and significant attempts in its further development. Nitrilase is a significant and promising biocatalyst for catalytic applications.
Collapse
Affiliation(s)
- Jin-Song Gong
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, People's Republic of China
| | | | | | | | | | | |
Collapse
|
316
|
Saravanan T, Selvakumar R, Doble M, Chadha A. Stereochemical preference of Candida parapsilosis ATCC 7330 mediated deracemization: E- versus Z-aryl secondary alcohols. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.tetasy.2012.09.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
317
|
|
318
|
Ge J, Yang C, Zhu J, Lu D, Liu Z. Nanobiocatalysis in Organic Media: Opportunities for Enzymes in Nanostructures. Top Catal 2012. [DOI: 10.1007/s11244-012-9906-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
319
|
Guan Z, Fu JP, He YH. Biocatalytic promiscuity: lipase-catalyzed asymmetric aldol reaction of heterocyclic ketones with aldehydes. Tetrahedron Lett 2012. [DOI: 10.1016/j.tetlet.2012.07.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
320
|
Lainioti GC, Kapolos J, Koliadima A, Karaiskakis G. The study of the influence of temperature and initial glucose concentration on the fermentation process in the presence of Saccharomyces cerevisiae yeast strain immobilized on starch gels by reversed-flow gas chromatography. Prep Biochem Biotechnol 2012; 42:489-506. [PMID: 22897770 DOI: 10.1080/10826068.2012.657820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The technique of reversed-flow gas chromatography (RFGC) was employed for the determination of the alcoholic fermentation phases and of kinetic parameters for free and immobilized cell systems, at different initial glucose concentrations and temperature values. In addition to this, due to its considerable advantages over other techniques, RFGC was used for the characterization of a new biocatalyst, yeast cells immobilized on starch gel, and especially wheat starch gel. Immobilization of wine yeast Saccharomyces cerevisiae AXAZ-1 was accomplished on wheat and corn starch gels in order to prepare new biocatalysts with great interest for the fermentation industry. The RFGC led with great accuracy, resulting from a literature review, to the determination of reaction rate constants and activation energies at each phase of the fermentation processes. A maximum value of rate constants was observed at initial glucose concentration of 205 g/L, where a higher number of yeast cells was observed. The increase of glucose concentrations had a negative influence on the growth of AXAZ-1 cells and rate constants were decreased. The decrease of fermentation temperature caused a substantial reduction in the viability of immobilized cells as well as in rate constant values. Activation energies of corn starch gel presented lower values than those of wheat starch gel. However, the two supports showed higher catalytic efficiency than free cell systems, proving that starch gels may act as a promoter of the catalytic activity of the yeast cells involved in the fermentation process.
Collapse
Affiliation(s)
- G Ch Lainioti
- Department of Chemistry, University of Patras, Patras, Greece
| | | | | | | |
Collapse
|
321
|
Sattler JH, Fuchs M, Tauber K, Mutti FG, Faber K, Pfeffer J, Haas T, Kroutil W. Redox self-sufficient biocatalyst network for the amination of primary alcohols. Angew Chem Int Ed Engl 2012; 51:9156-9. [PMID: 22887645 DOI: 10.1002/anie.201204683] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Indexed: 12/17/2022]
Abstract
Driving the machinery: A biocatalytic redox-neutral cascade for the preparation of terminal primary amines from primary alcohols at the expense of ammonia has been established in a one-pot one-step method. Applying this artificial biocatalyst network, long-chain 1,ω-alkanediols were converted into diamines, which are building blocks for polymers, in up to 99 % conversion.
Collapse
Affiliation(s)
- Johann H Sattler
- Department of Chemistry, Organic and Bioorganic Chemistry, University of Graz, Graz, Austria
| | | | | | | | | | | | | | | |
Collapse
|
322
|
Sattler JH, Fuchs M, Tauber K, Mutti FG, Faber K, Pfeffer J, Haas T, Kroutil W. Redox Self-Sufficient Biocatalyst Network for the Amination of Primary Alcohols. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201204683] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
323
|
Rogers JL, MacMillan JB. A labeled substrate approach to discovery of biocatalytic reactions: a proof of concept transformation with N-methylindole. J Am Chem Soc 2012; 134:12378-81. [PMID: 22809085 DOI: 10.1021/ja304767m] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Biocatalysis has become an important method in the pharmaceutical industry for the incorporation of new functionality in small molecules. Currently this method is limited in the types of reactions that can be carried out and no strategy exists to systematically screen for new biocatalyzed reactions. This study involves the development of a medium throughput screen to identify and optimize new reactions using a series of marine-derived bacterial cell lines, which were screened against several (13)C labeled organic substrates. The reactions were analyzed using (13)C NMR as the primary screening tool. We describe the discovery of a bacterial catalyzed indole oxidation reaction in which complete conversion of (13)C labeled N-methyl indole to 3-hydroxyindole was observed. In addition, the sensitivity of this reaction to dO(2) levels can be exploited to oxidize to either 3-hydroxyindole or 2-oxoindole. This new platform sets up an important tool for the discovery of new organic transformations using an extensive library of marine bacteria.
Collapse
Affiliation(s)
- Jamie L Rogers
- Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9038, United States
| | | |
Collapse
|
324
|
Muñoz Solano D, Hoyos P, Hernáiz MJ, Alcántara AR, Sánchez-Montero JM. Industrial biotransformations in the synthesis of building blocks leading to enantiopure drugs. BIORESOURCE TECHNOLOGY 2012; 115:196-207. [PMID: 22230779 DOI: 10.1016/j.biortech.2011.11.131] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 11/26/2011] [Accepted: 11/29/2011] [Indexed: 05/11/2023]
Abstract
Due to the growing demand of enantiomerically pure compounds, as well as the increasing strict safety, quality and environmentally requirements of industrial synthetic processes, the development of more sustainable, healthy and economically attractive strategies for the synthesis of chiral biologically active molecules is still an open challenge in the pharmaceutical industry. In this context, the biotransformations field has emerged as a real alternative to traditional synthetic routes, because of the exquisite chemo-, regio- and enantioselectivities commonly displayed by enzymes; thus, biocatalysis is becoming a widespread methodology for the synthesis of chiral compounds, not only at laboratory scale, but also at industrial scale. As hydrolases and oxido-reductases are the most employed enzymes, this review is focused on describing several industrial processes based on the use of these enzymes for obtaining chiral compounds useful for the pharmaceutical industry.
Collapse
Affiliation(s)
- D Muñoz Solano
- Department of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy, Complutense University, Madrid, Spain
| | | | | | | | | |
Collapse
|
325
|
Gernaey KV, Cervera-Padrell AE, Woodley JM. A perspective on PSE in pharmaceutical process development and innovation. Comput Chem Eng 2012. [DOI: 10.1016/j.compchemeng.2012.02.022] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
326
|
Xue R, Woodley JM. Process technology for multi-enzymatic reaction systems. BIORESOURCE TECHNOLOGY 2012; 115:183-195. [PMID: 22531164 DOI: 10.1016/j.biortech.2012.03.033] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Revised: 03/07/2012] [Accepted: 03/09/2012] [Indexed: 05/31/2023]
Abstract
In recent years, biocatalysis has started to provide an important green tool in synthetic organic chemistry. Currently, the idea of using multi-enzymatic systems for industrial production of chemical compounds becomes increasingly attractive. Recent examples demonstrate the potential of enzymatic synthesis and fermentation as an alternative to chemical-catalysis for the production of pharmaceuticals and fine chemicals. In particular, the use of multiple enzymes is of special interest. However, many challenges remain in the scale-up of a multi-enzymatic system. This review summarizes and discusses the technology options and strategies that are available for the development of multi-enzymatic processes. Some engineering tools, including kinetic models and operating windows, for developing and evaluating such processes are also introduced.
Collapse
Affiliation(s)
- Rui Xue
- Center for Process Engineering and Technology, Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | | |
Collapse
|
327
|
Rocha LC, Ferreira HV, Luiz RF, Sette LD, Porto ALM. Stereoselective bioreduction of 1-(4-methoxyphenyl)ethanone by whole cells of marine-derived fungi. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2012; 14:358-362. [PMID: 22160343 DOI: 10.1007/s10126-011-9419-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 10/30/2011] [Indexed: 05/31/2023]
Abstract
Nine strains of marine-derived fungi (Aspergillus sydowii Ce15, A. sydowii Ce19, Aspergillus sclerotiorum CBMAI 849, Bionectria sp. Ce5, Beauveria felina CBMAI 738, Cladosporium cladosporioides CBMAI 857, Mucor racemosus CBMAI 847, Penicillium citrinum CBMAI 1186, and Penicillium miczynskii Gc5) were screened, catalyzing the asymmetric bioreduction of 1-(4-methoxyphenyl)ethanone 1 to its corresponding 1-(4-methoxyphenyl)ethanol 2. A. sydowii Ce15 and Bionectria sp. Ce5 produced the enantiopure (R)-alcohol 2 (>99% ee) in accordance with the anti-Prelog rule and, the fungi B. felina CBMAI 738 (>99% ee) and P. citrinum CBMAI 1186 (69% ee) in accordance with the Prelog rule. Stereoselective bioreduction by whole cells of marine-derived fungi described by us is important for the production of new reductases from marine-derived fungi.
Collapse
Affiliation(s)
- Lenilson C Rocha
- Instituto de Química de São Carlos, Universidade de São Paulo, Av. Trabalhador São-carlense, 400, CEP 13560-970, CP 780, São Carlos, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
328
|
Isolation of enantioselective α-hydroxyacid dehydrogenases based on a high-throughput screening method. Bioprocess Biosyst Eng 2012; 35:1515-22. [DOI: 10.1007/s00449-012-0741-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 04/22/2012] [Indexed: 10/28/2022]
|
329
|
Barbayianni E, Kokotos G. Biocatalyzed Regio- and Chemoselective Ester Cleavage: Synthesis of Bioactive Molecules. ChemCatChem 2012. [DOI: 10.1002/cctc.201200035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
330
|
Cobb RE, Sun N, Zhao H. Directed evolution as a powerful synthetic biology tool. Methods 2012; 60:81-90. [PMID: 22465795 DOI: 10.1016/j.ymeth.2012.03.009] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 03/09/2012] [Indexed: 01/31/2023] Open
Abstract
At the heart of synthetic biology lies the goal of rationally engineering a complete biological system to achieve a specific objective, such as bioremediation and synthesis of a valuable drug, chemical, or biofuel molecule. However, the inherent complexity of natural biological systems has heretofore precluded generalized application of this approach. Directed evolution, a process which mimics Darwinian selection on a laboratory scale, has allowed significant strides to be made in the field of synthetic biology by allowing rapid identification of desired properties from large libraries of variants. Improvement in biocatalyst activity and stability, engineering of biosynthetic pathways, tuning of functional regulatory systems and logic circuits, and development of desired complex phenotypes in industrial host organisms have all been achieved by way of directed evolution. Here, we review recent contributions of directed evolution to synthetic biology at the protein, pathway, network, and whole cell levels.
Collapse
Affiliation(s)
- Ryan E Cobb
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | |
Collapse
|
331
|
Abrahamson MJ, Vázquez-Figueroa E, Woodall NB, Moore JC, Bommarius AS. Entwicklung einer Amindehydrogenase zur Synthese von chiralen Aminen. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201107813] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
332
|
Abrahamson MJ, Vázquez-Figueroa E, Woodall NB, Moore JC, Bommarius AS. Development of an Amine Dehydrogenase for Synthesis of Chiral Amines. Angew Chem Int Ed Engl 2012; 51:3969-72. [DOI: 10.1002/anie.201107813] [Citation(s) in RCA: 202] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Indexed: 01/14/2023]
|
333
|
Experimental determination of thermodynamic equilibrium in biocatalytic transamination. Biotechnol Bioeng 2012; 109:2159-62. [DOI: 10.1002/bit.24472] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 01/18/2012] [Accepted: 02/06/2012] [Indexed: 11/07/2022]
|
334
|
Schmölzer K, Mädje K, Nidetzky B, Kratzer R. Bioprocess design guided by in situ substrate supply and product removal: process intensification for synthesis of (S)-1-(2-chlorophenyl)ethanol. BIORESOURCE TECHNOLOGY 2012; 108:216-23. [PMID: 22281147 PMCID: PMC3314988 DOI: 10.1016/j.biortech.2012.01.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 01/03/2012] [Accepted: 01/04/2012] [Indexed: 05/31/2023]
Abstract
We report herein on bioprocess development guided by the hydrophobicities of substrate and product. Bioreductions of o-chloroacetophenone are severely limited by instability of the catalyst in the presence of aromatic substrate and (S)-1-(2-chlorophenyl)ethanol. In situ substrate supply and product removal was used to protect the utilized Escherichia coli whole cell catalyst based on Candida tenuis xylose reductase during the reaction. Further engineering at the levels of the catalyst and the reaction media was matched to low substrate concentrations in the aqueous phase. Productivities obtained in aqueous batch reductions were 21-fold improved by addition of 20% (v/v) hexane, NAD(+), expression engineering, cell permeabilization and pH optimization. Reduction of 300 mM substrate was accomplished in 97% yield and use of the co-solvent hexane in subsequent extraction steps led to 88% recovery. Product loss due to high catalyst loading was minimized by using the same extractant in bioreduction and product isolation.
Collapse
Affiliation(s)
| | | | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Graz, Austria
| | - Regina Kratzer
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Graz, Austria
| |
Collapse
|
335
|
He YH, Li HH, Chen YL, Xue Y, Yuan Y, Guan Z. Chymopapain-Catalyzed Direct Asymmetric Aldol Reaction. Adv Synth Catal 2012. [DOI: 10.1002/adsc.201100555] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
336
|
Key residues for controlling enantioselectivity of Halohydrin dehalogenase from Arthrobacter sp. strain AD2, revealed by structure-guided directed evolution. Appl Environ Microbiol 2012; 78:2631-7. [PMID: 22327597 DOI: 10.1128/aem.06586-11] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Halohydrin dehalogenase from Agrobacterium radiobacter AD1 (HheC) is a valuable tool in the preparation of R enantiomers of epoxides and β-substituted alcohols. In contrast, the halohydrin dehalogenase from Arthrobacter sp. AD2 (HheA) shows a low S enantioselectivity toward most aromatic substrates. Here, three amino acids (V136, L141, and N178) located in the two neighboring active-site loops of HheA were proposed to be the key residues for controlling enantioselectivity. They were subjected to saturation mutagenesis aimed at evolving an S-selective enzyme. This led to the selection of two outstanding mutants (the V136Y/L141G and N178A mutants). The double mutant displayed an inverted enantioselectivity (from S enantioselectivity [E(S)] = 1.7 to R enantioselectivity [E(R)] = 13) toward 2-chloro-1-phenylethanol without compromising enzyme activity. Strikingly, the N178A mutant showed a large enantioselectivity improvement (E(S) > 200) and a 5- to 6-fold-enhanced specific activity toward (S)-2-chloro-1-phenylethanol. Further analysis revealed that those mutations produced some interference for the binding of nonfavored enantiomers which could account for the observed enantioselectivities. Our work demonstrated that those three active-site residues are indeed crucial in modulating the enantioselectivity of HheA and that a semirational design strategy has great potential for rapid creation of novel industrial biocatalysts.
Collapse
|
337
|
Winter RT, Heuts DPHM, Rijpkema EMA, van Bloois E, Wijma HJ, Fraaije MW. Hot or not? Discovery and characterization of a thermostable alditol oxidase from Acidothermus cellulolyticus 11B. Appl Microbiol Biotechnol 2012; 95:389-403. [PMID: 22231860 PMCID: PMC3371188 DOI: 10.1007/s00253-011-3750-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 11/01/2011] [Accepted: 11/17/2011] [Indexed: 11/26/2022]
Abstract
We describe the discovery, isolation and characterization of a highly thermostable alditol oxidase from Acidothermus cellulolyticus 11B. This protein was identified by searching the genomes of known thermophiles for enzymes homologous to Streptomyces coelicolor A3(2) alditol oxidase (AldO). A gene (sharing 48% protein sequence identity to AldO) was identified, cloned and expressed in Escherichia coli. Following 6xHis tag purification, characterization revealed the protein to be a covalent flavoprotein of 47 kDa with a remarkably similar reactivity and substrate specificity to that of AldO. A steady-state kinetic analysis with a number of different polyol substrates revealed lower catalytic rates but slightly altered substrate specificity when compared to AldO. Thermostability measurements revealed that the novel AldO is a highly thermostable enzyme with an unfolding temperature of 84 °C and an activity half-life at 75 °C of 112 min, prompting the name HotAldO. Inspired by earlier studies, we attempted a straightforward, exploratory approach to improve the thermostability of AldO by replacing residues with high B-factors with corresponding residues from HotAldO. None of these mutations resulted in a more thermostable oxidase; a fact that was corroborated by in silico analysis.
Collapse
Affiliation(s)
- Remko T. Winter
- Laboratory of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Dominic P. H. M. Heuts
- Manchester Interdisciplinary Biocentre and Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester, M1 7DN UK
| | - Egon M. A. Rijpkema
- Laboratory of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Edwin van Bloois
- Laboratory of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Hein J. Wijma
- Laboratory of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Marco W. Fraaije
- Laboratory of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
338
|
Garcia-Galan C, Berenguer-Murcia Á, Fernandez-Lafuente R, Rodrigues RC. Potential of Different Enzyme Immobilization Strategies to Improve Enzyme Performance. Adv Synth Catal 2011. [DOI: 10.1002/adsc.201100534] [Citation(s) in RCA: 1159] [Impact Index Per Article: 82.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
339
|
Bora PP, Bez G, Anal JMH. First example of hydrolytic kinetic resolution of acrylate of secondary alcohols by lipase Amano AK. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.molcatb.2011.06.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
340
|
Raj H, Puthan Veetil V, Szymanski W, Dekker FJ, Quax WJ, Feringa BL, Janssen DB, Poelarends GJ. Characterization of a thermostable methylaspartate ammonia lyase from Carboxydothermus hydrogenoformans. Appl Microbiol Biotechnol 2011; 94:385-97. [PMID: 22005738 PMCID: PMC3310078 DOI: 10.1007/s00253-011-3615-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 08/30/2011] [Accepted: 09/28/2011] [Indexed: 01/05/2023]
Abstract
Methylaspartate ammonia lyase (MAL; EC 4.3.1.2) catalyzes the reversible addition of ammonia to mesaconate to give (2S,3S)-3-methylaspartate and (2S,3R)-3-methylaspartate as products. MAL is of considerable biocatalytic interest because of its potential use for the asymmetric synthesis of substituted aspartic acids, which are important building blocks for synthetic enzymes, peptides, chemicals, and pharmaceuticals. Here, we have cloned the gene encoding MAL from the thermophilic bacterium Carboxydothermus hydrogenoformans Z-2901. The enzyme (named Ch-MAL) was overproduced in Escherichia coli and purified to homogeneity by immobilized metal affinity chromatography. Ch-MAL is a dimer in solution, consisting of two identical subunits (∼49 kDa each), and requires Mg2+ and K+ ions for maximum activity. The optimum pH and temperature for the deamination of (2S,3S)-3-methylaspartic acid are 9.0 and 70°C (kcat = 78 s−1 and Km = 16 mM). Heat inactivation assays showed that Ch-MAL is stable at 50°C for >4 h, which is the highest thermal stability observed among known MALs. Ch-MAL accepts fumarate, mesaconate, ethylfumarate, and propylfumarate as substrates in the ammonia addition reaction. The enzyme also processes methylamine, ethylamine, hydrazine, hydroxylamine, and methoxylamine as nucleophiles that can replace ammonia in the addition to mesaconate, resulting in the corresponding N-substituted methylaspartic acids with excellent diastereomeric excess (>98% de). This newly identified thermostable MAL appears to be a potentially attractive biocatalyst for the stereoselective synthesis of aspartic acid derivatives on large (industrial) scale.
Collapse
Affiliation(s)
- Hans Raj
- Department of Pharmaceutical Biology, University of Groningen, Antonius Deusinglaan 1, Groningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
341
|
Kaler A, Meena VS, Singh M, Pujala B, Chakraborti AK, Banerjee UC. Lipase-mediated kinetic resolution of (RS)-1-bromo-3-[4-(2-methoxy-ethyl)-phenoxy]-propan-2-ol to (R)-1-bromo-3-(4-(2-methoxyethyl) phenoxy) propan-2-yl acetate. Tetrahedron Lett 2011. [DOI: 10.1016/j.tetlet.2011.08.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
342
|
Okrob D, Paravidino M, Orru RVA, Wiechert W, Hanefeld U, Pohl M. Hydroxynitrile Lyase from Arabidopsis thaliana: Identification of Reaction Parameters for Enantiopure Cyanohydrin Synthesis by Pure and Immobilized Catalyst. Adv Synth Catal 2011. [DOI: 10.1002/adsc.201100199] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
343
|
Patel RN. Biocatalysis: Synthesis of Key Intermediates for Development of Pharmaceuticals. ACS Catal 2011. [DOI: 10.1021/cs200219b] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Ramesh N. Patel
- Biotechnology Department, Unimark Remedies, Ltd., Mumbai, India
- SLRP Associates, LLC, 572 Cabot Hill Road, Bridgewater, New Jersey 08807, United States
| |
Collapse
|
344
|
Rodrigues RC, Berenguer-Murcia Á, Fernandez-Lafuente R. Coupling Chemical Modification and Immobilization to Improve the Catalytic Performance of Enzymes. Adv Synth Catal 2011. [DOI: 10.1002/adsc.201100163] [Citation(s) in RCA: 279] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
345
|
Enhancing the functional properties of thermophilic enzymes by chemical modification and immobilization. Enzyme Microb Technol 2011; 49:326-46. [PMID: 22112558 DOI: 10.1016/j.enzmictec.2011.06.023] [Citation(s) in RCA: 226] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 06/28/2011] [Accepted: 06/29/2011] [Indexed: 12/20/2022]
Abstract
The immobilization of proteins (mostly typically enzymes) onto solid supports is mature technology and has been used successfully to enhance biocatalytic processes in a wide range of industrial applications. However, continued developments in immobilization technology have led to more sophisticated and specialized applications of the process. A combination of targeted chemistries, for both the support and the protein, sometimes in combination with additional chemical and/or genetic engineering, has led to the development of methods for the modification of protein functional properties, for enhancing protein stability and for the recovery of specific proteins from complex mixtures. In particular, the development of effective methods for immobilizing large multi-subunit proteins with multiple covalent linkages (multi-point immobilization) has been effective in stabilizing proteins where subunit dissociation is the initial step in enzyme inactivation. In some instances, multiple benefits are achievable in a single process. Here we comprehensively review the literature pertaining to immobilization and chemical modification of different enzyme classes from thermophiles, with emphasis on the chemistries involved and their implications for modification of the enzyme functional properties. We also highlight the potential for synergies in the combined use of immobilization and other chemical modifications.
Collapse
|
346
|
Chaloupkova R, Prokop Z, Sato Y, Nagata Y, Damborsky J. Stereoselectivity and conformational stability of haloalkane dehalogenase DbjA from Bradyrhizobium japonicum USDA110: the effect of pH and temperature. FEBS J 2011; 278:2728-38. [DOI: 10.1111/j.1742-4658.2011.08203.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
347
|
Modelling as a tool of enzyme reaction engineering for enzyme reactor development. Appl Microbiol Biotechnol 2011; 91:845-56. [DOI: 10.1007/s00253-011-3414-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 05/24/2011] [Accepted: 05/24/2011] [Indexed: 11/25/2022]
|
348
|
Cloning and expression of a tyrosinase from Aspergillus oryzae in Yarrowia lipolytica: application in l-DOPA biotransformation. Appl Microbiol Biotechnol 2011; 92:951-9. [DOI: 10.1007/s00253-011-3400-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 04/22/2011] [Accepted: 05/17/2011] [Indexed: 10/18/2022]
|
349
|
|
350
|
Leisch H, Morley K, Lau PCK. Baeyer−Villiger Monooxygenases: More Than Just Green Chemistry. Chem Rev 2011; 111:4165-222. [DOI: 10.1021/cr1003437] [Citation(s) in RCA: 317] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Hannes Leisch
- Biotechnology Research Institute, National Research Council Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
| | - Krista Morley
- Biotechnology Research Institute, National Research Council Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
| | - Peter C. K. Lau
- Biotechnology Research Institute, National Research Council Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
- Department of Microbiology and Immunology, McGill University, 3775 University Street, Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|