301
|
Ghorecha V, Patel K, Ingle S, Sunkar R, Krishnayya NSR. Analysis of biochemical variations and microRNA expression in wild ( Ipomoea campanulata ) and cultivated ( Jacquemontia pentantha ) species exposed to in vivo water stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2014; 20:57-67. [PMID: 24554839 PMCID: PMC3925483 DOI: 10.1007/s12298-013-0207-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 09/10/2013] [Accepted: 09/13/2013] [Indexed: 05/27/2023]
Abstract
The current study analyses few important biochemical parameters and microRNA expression in two closely related species (wild but tolerant Ipomoea campanulata L. and cultivated but sensitive Jacquemontia pentantha Jacq.G.Don) exposed to water deficit conditions naturally occurring in the field. Under soil water deficit, both the species showed reduction in their leaf area and SLA as compared to well-watered condition. A greater decrease in chlorophyll was noticed in J. pentantha (~50 %) as compared to I. campanulata (20 %) under stress. By contrast, anthocyanin and MDA accumulation was greater in J. pentantha as compared to I. campanulata. Multiple isoforms of superoxide dismutases (SODs) with differing activities were observed under stress in these two plant species. CuZnSOD isoforms showed comparatively higher induction (~10-40 %) in I. campanulata than J. pentantha. MicroRNAs, miR398, miR319, miR395 miR172, and miR408 showed opposing expression under water deficit in these two plant species. Expression of miR156, miR168, miR171, miR172, miR393, miR319, miR396, miR397 and miR408 from either I. campanulata or J. pentantha or both demonstrated opposite pattern of expression to that of drought stressed Arabidopsis. The better tolerance of the wild species (I. campanulata) to water deficit could be attributed to lesser variations in chlorophyll and anthocyanin levels; and relatively higher levels of SODs than J. pentantha. miRNA expression was different in I. campanulata than J. pentantha.
Collapse
Affiliation(s)
- Vallabhi Ghorecha
- />Ecology Laboratory, Botany Department, Faculty of Science, M.S.University of Baroda, Baroda, 390002 India
| | - Ketan Patel
- />Microbiology Department, Faculty of Science, M.S.University of Baroda, Baroda, 390002 India
| | - S. Ingle
- />Microbiology Department, Faculty of Science, M.S.University of Baroda, Baroda, 390002 India
| | - Ramanjulu Sunkar
- />Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74074 USA
| | - N. S. R. Krishnayya
- />Ecology Laboratory, Botany Department, Faculty of Science, M.S.University of Baroda, Baroda, 390002 India
| |
Collapse
|
302
|
Chen Y, Jiang J, Song A, Chen S, Shan H, Luo H, Gu C, Sun J, Zhu L, Fang W, Chen F. Ambient temperature enhanced freezing tolerance of Chrysanthemum dichrum CdICE1 Arabidopsis via miR398. BMC Biol 2013; 11:121. [PMID: 24350981 PMCID: PMC3895800 DOI: 10.1186/1741-7007-11-121] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 12/12/2013] [Indexed: 01/07/2023] Open
Abstract
Background ICE (Inducer of CBF Expression) family genes play an important role in the regulation of cold tolerance pathways. In an earlier study, we isolated the gene CdICE1 from Chrysanthemum dichrum and demonstrated that freezing tolerance was enhanced by CdICE1 overexpression. Therefore, we sought to determine the mechanism by which ICE1 family genes participate in freezing tolerance. Results Using EMSA (Electrophoretic Mobility Shift Assay) and yeast one-hybrid assays, we confirmed that CdICE1 binds specifically to the MYC element in the CdDREBa promoter and activates transcription. In addition, overexpression of CdICE1 enhanced Arabidopsis freezing tolerance after transition from 23°C to 4°C or 16°C. We found that after acclimation to 4°C, CdICE1, like Arabidopsis AtICE1, promoted expression of CBFs (CRT/DRE Binding Factor) and their genes downstream involved in freezing tolerance, including COR15a (Cold-Regulated 15a), COR6.6, and RD29a (Responsive to Dessication 29a). Interestingly, we observed that CdICE1-overexpressing plants experienced significant reduction in miR398. In addition, its target genes CSD1 (Copper/zinc Superoxide Dismutase 1) and CSD2 showed inducible expression under acclimation at 16°C, indicating that the miR398-CSD pathway was involved in the induction of freezing tolerance. Conclusions Our data indicate that CdICE1-mediated freezing tolerance occurs via different pathways, involving either CBF or miR398, under acclimation at two different temperatures.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
303
|
Zuo J, Fu D, Zhu Y, Qu G, Tian H, Zhai B, Ju Z, Gao C, Wang Y, Luo Y, Zhu B. SRNAome parsing yields insights into tomato fruit ripening control. PHYSIOLOGIA PLANTARUM 2013; 149:540-53. [PMID: 23550530 DOI: 10.1111/ppl.12055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Revised: 03/18/2013] [Accepted: 03/18/2013] [Indexed: 05/15/2023]
Abstract
Small RNAs have emerged as critical regulators in the expression and function of eukaryotic genomes at the post-transcriptional level. To elucidate the functions of microRNA (miRNAs) and endogenous small-interfering RNAs (siRNAs) in tomato fruit ripening process, the deep sequencing and bioinformatics methods were combined to parse the small RNAs landscape in three fruit-ripening stages (mature green, breaker and red-ripe) on a whole genome. Two species-specific miRNAs and two members of TAS3 family were identified, 590 putative phased small RNAs and 125 cis-natural antisense (nat-siRNAs) were also found in our results which enriched the tomato small RNAs repository and all of them showed differential expression patterns during fruit ripening. A large amount of the targets of the small RNAs were predicted to be involved in fruit ripening and ethylene pathway. Furthermore, the promoters of the conserved and novel miRNAs were found to contain the conserved motifs of TATA-box and CT microsatellites which were also found in Arabidopsis and rice, and several species-specific motifs were found in parallel.
Collapse
Affiliation(s)
- Jinhua Zuo
- Laboratory of Postharvest Molecular Biology of Fruits and vegetables, Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Laboratory of Postharvest Storage and Processing of Vegetables, National Engineering Research Center for Vegetables, Beijing, 100097, China
- Laboratory of Postharvest Storage and Processing of Vegetables, Vegetable Research Centre, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Daqi Fu
- Laboratory of Postharvest Molecular Biology of Fruits and vegetables, Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yi Zhu
- Laboratory of Postharvest Molecular Biology of Fruits and vegetables, Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Guiqin Qu
- Laboratory of Postharvest Molecular Biology of Fruits and vegetables, Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Huiqin Tian
- Laboratory of Postharvest Molecular Biology of Fruits and vegetables, Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Baiqiang Zhai
- Laboratory of Postharvest Molecular Biology of Fruits and vegetables, Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Zheng Ju
- Laboratory of Postharvest Molecular Biology of Fruits and vegetables, Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Chao Gao
- Laboratory of Postharvest Molecular Biology of Fruits and vegetables, Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yunxiang Wang
- Laboratory of Postharvest Molecular Biology of Fruits and vegetables, Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yunbo Luo
- Laboratory of Postharvest Molecular Biology of Fruits and vegetables, Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Benzhong Zhu
- Laboratory of Postharvest Molecular Biology of Fruits and vegetables, Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
304
|
Abstract
Ever growing interest in microRNAs has immensely populated the number of resources and research papers devoted to the field and, as a result, it becomes more and more demanding to find miRNA data of interest. To mitigate this problem, we created miRNEST database (http://mirnest.amu.edu.pl), an integrative microRNAs resource. In its updated version, named miRNEST 2.0, the database is complemented with our extensive miRNA predictions from deep sequencing libraries, data from plant degradome analyses, results of pre-miRNA classification with HuntMi and miRNA splice sites information. We also added download and upload options and improved the user interface to make it easier to browse through miRNA records.
Collapse
Affiliation(s)
- Michał W. Szcześniak
- *To whom correspondence should be addressed. Tel: +48 61 829 5836; Fax: +48 61 829 5949;
| | - Izabela Makałowska
- Correspondence may also be addressed to Izabela Makałowska. Tel: +48 61 829 5835; Fax: +48 61 829 5949;
| |
Collapse
|
305
|
Ballén-Taborda C, Plata G, Ayling S, Rodríguez-Zapata F, Becerra Lopez-Lavalle LA, Duitama J, Tohme J. Identification of Cassava MicroRNAs under Abiotic Stress. Int J Genomics 2013; 2013:857986. [PMID: 24328029 PMCID: PMC3845235 DOI: 10.1155/2013/857986] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 10/11/2013] [Indexed: 11/18/2022] Open
Abstract
The study of microRNAs (miRNAs) in plants has gained significant attention in recent years due to their regulatory role during development and in response to biotic and abiotic stresses. Although cassava (Manihot esculenta Crantz) is tolerant to drought and other adverse conditions, most cassava miRNAs have been predicted using bioinformatics alone or through sequencing of plants challenged by biotic stress. Here, we use high-throughput sequencing and different bioinformatics methods to identify potential cassava miRNAs expressed in different tissues subject to heat and drought conditions. We identified 60 miRNAs conserved in other plant species and 821 potential cassava-specific miRNAs. We also predicted 134 and 1002 potential target genes for these two sets of sequences. Using real time PCR, we verified the condition-specific expression of 5 cassava small RNAs relative to a non-stress control. We also found, using publicly available expression data, a significantly lower expression of the predicted target genes of conserved and nonconserved miRNAs under drought stress compared to other cassava genes. Gene Ontology enrichment analysis along with condition specific expression of predicted miRNA targets, allowed us to identify several interesting miRNAs which may play a role in stress-induced posttranscriptional regulation in cassava and other plants.
Collapse
Affiliation(s)
- Carolina Ballén-Taborda
- Agrobiodiversity and Biotechnology Project, International Center for Tropical Agriculture (CIAT), A.A. 6713, Cali, Colombia
| | - Germán Plata
- Department of Systems Biology, Columbia University, 1130 Saint Nicholas Avenue, New York, NY 10032, USA
| | - Sarah Ayling
- The Genome Analysis Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Fausto Rodríguez-Zapata
- Agrobiodiversity and Biotechnology Project, International Center for Tropical Agriculture (CIAT), A.A. 6713, Cali, Colombia
| | | | - Jorge Duitama
- Agrobiodiversity and Biotechnology Project, International Center for Tropical Agriculture (CIAT), A.A. 6713, Cali, Colombia
| | - Joe Tohme
- Agrobiodiversity and Biotechnology Project, International Center for Tropical Agriculture (CIAT), A.A. 6713, Cali, Colombia
| |
Collapse
|
306
|
Li Z, Zhou X. Small RNA biology: from fundamental studies to applications. SCIENCE CHINA. LIFE SCIENCES 2013; 56:1059-1062. [PMID: 23943246 DOI: 10.1007/s11427-013-4535-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 07/22/2013] [Indexed: 06/02/2023]
Affiliation(s)
- Zhenghe Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | | |
Collapse
|
307
|
Qi X, Xie S, Liu Y, Yi F, Yu J. Genome-wide annotation of genes and noncoding RNAs of foxtail millet in response to simulated drought stress by deep sequencing. PLANT MOLECULAR BIOLOGY 2013; 83:459-73. [PMID: 23860794 DOI: 10.1007/s11103-013-0104-6] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 07/02/2013] [Indexed: 05/20/2023]
Abstract
Drought is a major abiotic stress that affects plant growth, production, and survival. Plants have evolved sophisticated and highly complex reactions to drought stress, including large-scale transcriptome reconfiguration. Foxtail millet (Setaria italica) is a member of the Poaceae family. Because of its outstanding tolerance to drought stress foxtail millet has the potential to become a new model organism. To enrich our knowledge of the processes that contribute to drought resistance, we have used a deep sequencing approach to generate a genome-wide transcriptome of foxtail millet after exposure to simulated drought stress. A large number of differentially expressed genes were characterized; in particular, we examined the roles of small interfering RNAs (siRNAs) and long noncoding RNAs (lncRNAs) in response to a water-deficit condition. These RNAs have remained largely unexplored in previous studies of stress-induced transcriptomes. We found that the reduced levels of 24-nt siRNA flanking genes were associated, for the most part, with proximal up-regulated genes, indicating a potential effect of 24-nt siRNAs on drought-regulated gene expression. Several lncRNAs that responded to the simulated drought stress were also identified, and we found that one of them shared sequence conservation and colinearity with its counterpart in sorghum (Sorghum bicolor). Our findings provide new insights into drought-induced changes in the foxtail millet transcriptome.
Collapse
Affiliation(s)
- Xin Qi
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China,
| | | | | | | | | |
Collapse
|
308
|
Liang G, Li Y, He H, Wang F, Yu D. Identification of miRNAs and miRNA-mediated regulatory pathways in Carica papaya. PLANTA 2013; 238:739-52. [PMID: 23851604 DOI: 10.1007/s00425-013-1929-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 07/01/2013] [Indexed: 05/22/2023]
Abstract
Plant microRNAs (miRNAs) post-transcriptionally regulate target gene expression to modulate growth and development and biotic and abiotic stress responses. By analyzing small RNA deep sequencing data in combination with the genome sequence, we identified 75 conserved miRNAs and 11 novel miRNAs. Their target genes were also predicted. For most conserved miRNAs, the miRNA-target pairs were conserved across plant species. In addition to these conserved miRNA-target pairs, we also identified some papaya-specific miRNA-target regulatory pathways. Both miR168 and miR530 target the Argonaute 1 gene, indicating a second autoregulatory mechanism for miRNA regulation. A non-conserved miRNA was mapped within an intron of Dicer-like 1 (DCL1), suggesting a conserved homeostatic autoregulatory mechanism for DCL1 expression. A 21-nt miRNA triggers secondary siRNA production from its target genes, nucleotide-binding site leucine-rich repeat protein genes. Certain phased-miRNAs were processed from their conserved miRNA precursors, indicating a putative miRNA evolution mechanism. In addition, we identified a Carica papaya-specific miRNA that targets an ethylene receptor gene, implying its function in the ethylene signaling pathway. This work will also advance our understanding of miRNA functions and evolution in plants.
Collapse
Affiliation(s)
- Gang Liang
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | | | | | | | | |
Collapse
|
309
|
Agarwal PK, Shukla PS, Gupta K, Jha B. Bioengineering for salinity tolerance in plants: state of the art. Mol Biotechnol 2013; 54:102-23. [PMID: 22539206 DOI: 10.1007/s12033-012-9538-3] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Genetic engineering of plants for abiotic stress tolerance is a challenging task because of its multifarious nature. Comprehensive studies for developing abiotic stress tolerance are in progress, involving genes from different pathways including osmolyte synthesis, ion homeostasis, antioxidative pathways, and regulatory genes. In the last decade, several attempts have been made to substantiate the role of "single-function" gene(s) as well as transcription factor(s) for abiotic stress tolerance. Since, the abiotic stress tolerance is multigenic in nature, therefore, the recent trend is shifting towards genetic transformation of multiple genes or transcription factors. A large number of crop plants are being engineered by abiotic stress tolerant genes and have shown the stress tolerance mostly at laboratory level. This review presents a mechanistic view of different pathways and emphasizes the function of different genes in conferring salt tolerance by genetic engineering approach. It also highlights the details of successes achieved in developing salt tolerance in plants thus far.
Collapse
Affiliation(s)
- Pradeep K Agarwal
- Discipline of Marine Biotechnology and Ecology, Central Salt and Marine Chemicals Research Institute (Council of Scientific and Industrial Research), G.B. Road, Bhavnagar, 364021 Gujarat, India.
| | | | | | | |
Collapse
|
310
|
Guo W, Liew JY, Yuan YA. Structural insights into the arms race between host and virus along RNA silencing pathways inArabidopsis thaliana. Biol Rev Camb Philos Soc 2013; 89:337-55. [DOI: 10.1111/brv.12057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 06/29/2013] [Accepted: 07/30/2013] [Indexed: 12/18/2022]
Affiliation(s)
- Wei Guo
- Department of Biological Sciences and Centre for Bioimaging Sciences; National University of Singapore; Singapore 117543 Singapore
| | - Jia Yee Liew
- Department of Biological Sciences and Centre for Bioimaging Sciences; National University of Singapore; Singapore 117543 Singapore
| | - Y. Adam Yuan
- Department of Biological Sciences and Centre for Bioimaging Sciences; National University of Singapore; Singapore 117543 Singapore
- Mechanobiology Institute; National University of Singapore; Singapore 117411 Singapore
- National University of Singapore (Suzhou) Research Institute; Suzhou Jiangsu 215123 P. R. China
| |
Collapse
|
311
|
Pei L, Jin Z, Li K, Yin H, Wang J, Yang A. Identification and comparative analysis of low phosphate tolerance-associated microRNAs in two maize genotypes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 70:221-34. [PMID: 23792878 DOI: 10.1016/j.plaphy.2013.05.043] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 05/30/2013] [Indexed: 05/07/2023]
Abstract
Low phosphate (Pi) availability is a major constraint on maize growth and productivity. MicroRNAs (miRNAs) are known to play critical roles in plant responses to various environmental conditions. The identification of low Pi tolerance-associated miRNAs will accelerate the development of Pi starvation tolerant maize plants. However, miRNAs associated with low Pi tolerance have not been identified. In this study, we compared deep sequencing small RNA reads from two maize genotypes, the wild type, Qi319, and the low Pi tolerant mutant, 99038, under normal and low Pi conditions. Six known miRNA families and seven novel miRNAs were found differently expressed by the two genotypes. All these miRNAs were confirmed by sequencing a second batch of small RNA libraries constructed in the same way as those used in the first sequencing. The expression profiles of some of these miRNAs were further confirmed by real-time PCR. The predicted target genes of the low Pi tolerance-associated miRNAs were involved in root development or stress responses. Expression levels of some of target genes were significantly different between Qi319 and 99038. These findings suggested that miRNAs may play important roles in low Pi tolerance in maize and may be a key factor in determining the level of low Pi tolerance in different maize genotypes. This study provides an approach for identifying low Pi tolerance-associated miRNAs and can help in the selection and manipulation of high performing maize genotypes under low Pi conditions.
Collapse
Affiliation(s)
- Laming Pei
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, 27 Shanda South Road, 250100 Jinan, Shandong, People's Republic of China
| | | | | | | | | | | |
Collapse
|
312
|
Galla G, Volpato M, Sharbel TF, Barcaccia G. Computational identification of conserved microRNAs and their putative targets in the Hypericum perforatum L. flower transcriptome. PLANT REPRODUCTION 2013; 26:209-29. [PMID: 23846415 DOI: 10.1007/s00497-013-0227-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 06/28/2013] [Indexed: 05/03/2023]
Abstract
MicroRNAs (miRNAs) have recently emerged as important regulators of gene expression in plants. Many miRNA families and their targets have been extensively studied in model species and major crops. We have characterized mature miRNAs along with their precursors and potential targets in Hypericum to generate a comprehensive list of conserved miRNA families and to investigate the regulatory role of selected miRNAs in biological processes that occur in the flower. St. John's wort (Hypericum perforatum L., 2n = 4x = 32), a medicinal plant that produces pharmaceutically important metabolites with therapeutic activities, was chosen because it is regarded as an attractive model system for the study of apomixis. A computational in silico prediction of structure, in combination with an in vitro validation, allowed us to identify 7 pre-miRNAs, including miR156, miR166, miR390, miR394, miR396, and miR414. We demonstrated that H. perforatum flowers share highly conserved miRNAs and that these miRNAs potentially target dozens of genes with a wide range of molecular functions, including metabolism, response to stress, flower development, and plant reproduction. Our analysis paves the way toward identifying flower-specific miRNAs that may differentiate the sexual and apomictic reproductive pathways.
Collapse
Affiliation(s)
- Giulio Galla
- Laboratory of Genetics and Genomics, DAFNAE, University of Padova, Campus of Agripolis, Viale dell'Università 16, 35020, Legnaro, Italy
| | | | | | | |
Collapse
|
313
|
Lin JS, Lin CC, Li YC, Wu MT, Tsai MH, Hsing YIC, Jeng ST. Interaction of small RNA-8105 and the intron of IbMYB1 RNA regulates IbMYB1 family genes through secondary siRNAs and DNA methylation after wounding. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:781-794. [PMID: 23663233 DOI: 10.1111/tpj.12238] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 05/06/2013] [Accepted: 05/08/2013] [Indexed: 06/02/2023]
Abstract
Small RNAs (sRNAs) play important roles in plants under stress conditions. However, limited research has been performed on the sRNAs involved in plant wound responses. In the present study, a novel wounding-induced sRNA, sRNA8105, was identified in sweet potato (Ipomoea batatas cv. Tainung 57) using microarray analysis. It was found that expression of sRNA8105 increased after mechanical wounding. Furthermore, Dicer-like 1 (DCL1) is required for the sRNA8105 precursor (pre-sRNA8105) to generate 22 and 24 nt mature sRNA8105. sRNA8105 targeted the first intron of IbMYB1 (MYB domain protein 1) before RNA splicing, and mediated RNA cleavage and DNA methylation of IbMYB1. The interaction between sRNA8105 and IbMYB1 was confirmed by cleavage site mapping, agro-infiltration analyses, and use of a transgenic sweet potato over-expressing pre-sRNA8105 gene. Induction of IbMYB1-siRNA was observed in the wild-type upon wounding and in transgenic sweet potato over-expressing pre-sRNA8105 gene without wounding, resulting in decreased expression of the whole IbMYB1 gene family, i.e. IbMYB1 and the IbMYB2 genes, and thus directing metabolic flux toward biosynthesis of lignin in the phenylpropanoid pathway. In conclusion, sRNA8105 induced by wounding binds to the first intron of IbMYB1 RNA to methylate IbMYB1, cleave IbMYB1 RNA, and trigger production of secondary siRNAs, further repressing the expression of the IbMYB1 family genes and regulating the phenylpropanoid pathway.
Collapse
Affiliation(s)
- Jeng-Shane Lin
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Roosevelt Road, Taipei, 106, Taiwan
| | | | | | | | | | | | | |
Collapse
|
314
|
Jiang J, Jiang J, Yang Y, Cao J. Identification of microRNAs potentially involved in male sterility of Brassica campestris ssp. chinensis using microRNA array and quantitative RT-PCR assays. Cell Mol Biol Lett 2013; 18:416-32. [PMID: 23864334 PMCID: PMC6275644 DOI: 10.2478/s11658-013-0097-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 07/10/2013] [Indexed: 12/19/2022] Open
Abstract
microRNAs (miRNAs) are a class of newly identified, noncoding, small RNA molecules that negatively regulate gene expression. Many miRNAs are reportedly involved in plant growth, development and stress response processes. However, their roles in the sexual reproduction mechanisms in flowering plants remain unknown. Pollen development is an important process in the life cycle of a flowering plant, and it is closely related to the yield and quality of crop seeds. This study aimed to identify miRNAs involved in pollen development. A microarray assay was conducted using the known complementary sequences of plant miRNAs as probes on inflorescences of a sterile male line (Bcajh97-01A) and a fertile male line (Bcajh97-01B) of the Brassica campestris ssp. chinensis cv. 'Aijiaohuang' genic male sterility sister line system (Bcajh97-01A/B). The results showed that 44 miRNAs were differently expressed in the two lines. Of these, 15 had over 1.5-fold changes in their transcript levels, with 9 upregulated and 6 downregulated miRNAs in inflorescences of 'Bcajh97-01A' sterile line plants. We then focused on 3 of these 15 miRNAs (miR158, miR168 and miR172). Through computational methods, 13 family members were predicted for these 3 miRNAs and 22 genes were predicted to be their candidate target genes. By using 5' modified RACE, 2 target genes of miR168 and 5 target genes of miR172 were identified. Then, qRT-PCR was applied to verify the existence and expression patterns of the 3 miRNAs in the flower buds at five developmental stages. The results were generally consistent with those of the microarray. Thus, this study may give a valuable clue for further exploring the miRNA group that may function during pollen development.
Collapse
Affiliation(s)
- Jianxia Jiang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058 China
| | - Jingjing Jiang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058 China
| | - Yafei Yang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058 China
| | - Jiashu Cao
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058 China
| |
Collapse
|
315
|
Pan YZ, Wu SG, Dai HC, Zhang HJ, Yue HY, Qi GH. Solexa sequencing of microRNAs on chromium metabolism in broiler chicks. JOURNAL OF NUTRIGENETICS AND NUTRIGENOMICS 2013; 6:137-53. [PMID: 23948696 DOI: 10.1159/000353703] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 06/12/2013] [Indexed: 11/19/2022]
Abstract
AIM The aim of this study was to determine the effect of chromium picolinate (CrPic) on the differential expression of the known microRNAs (miRNAs) in broiler skeletal muscle. METHODS AND RESULTS A total of 288 1-day-old male Arbor Acres broilers were randomly assigned to one of four dietary treatments supplemented with 0, 0.4, 2.0, or 10.0 mg·kg(-1) CrPic, respectively. Dietary CrPic supplementation at 10.0 mg·kg(-1) increased the average daily feed intake in broilers (p < 0.05). On day 42, the serum total protein level was highest in animals treated with 2.0 mg·kg(-1) (p < 0.05) and 10.0 mg·kg(-1) CrPic (p < 0.05). Dietary supplementation with 10.0 mg·kg(-1) CrPic decreased the levels of serum glucose (p < 0.05) on day 42 and of serum triglyceride (p < 0.05) on days 21 and 42. To further identify miRNAs from broiler skeletal muscles, we sequenced two small RNA libraries using the Solexa sequencing approach, and 57 miRNAs were found to be significantly differentially expressed (p < 0.05). Among them, 6 upregulated and 2 downregulated miRNAs were validated by real-time qPCR (p < 0.05). CONCLUSIONS The results of the present study provide a valuable clue regarding the role of miRNA target genes in the mechanism of the dietary CrPic effect on protein synthesis in skeletal muscles of broilers.
Collapse
Affiliation(s)
- Y Z Pan
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | | | | | | | | |
Collapse
|
316
|
Pani A, Mahapatra RK. Computational identification of microRNAs and their targets in Catharanthus roseus expressed sequence tags. GENOMICS DATA 2013; 1:2-6. [PMID: 26484050 PMCID: PMC4608865 DOI: 10.1016/j.gdata.2013.06.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 06/27/2013] [Accepted: 06/28/2013] [Indexed: 12/21/2022]
Abstract
No study has been performed on identifying microRNAs (miRNAs) and their targets in the medicinal plant, Catharanthus roseus. In the present study, using the comparative genomics approach, we have predicted two potential C. roseus miRNAs. Furthermore, twelve potential mRNA targets were identified in C. roseus genome based on the characteristics that miRNAs exhibit perfect or nearly perfect complementarity with their targeted mRNA sequences. Among them many of the targets were predicted to encode enzymes that regulate the biosynthesis of terpenoid indole alkaloids (TIA). In addition, most of the predicted targets were the gene coding for transcription factors which are mainly involved in cell growth and development, signaling and metabolism. This is the first in silico study to indicate that miRNA target gene encoding enzymes involved in vinblastine and vincristine biosynthesis, which may help to understand the miRNA-mediated regulation of TIA alkaloid biosynthesis in C. roseus.
Collapse
Affiliation(s)
- Alok Pani
- School of Biotechnology, Campus-11, KIIT University, Bhubaneswar, Odisha 751024, India
| | | |
Collapse
|
317
|
Wang M, Wang Q, Zhang B. Response of miRNAs and their targets to salt and drought stresses in cotton (Gossypium hirsutum L.). Gene 2013; 530:26-32. [PMID: 23948080 DOI: 10.1016/j.gene.2013.08.009] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 06/15/2013] [Accepted: 08/03/2013] [Indexed: 12/22/2022]
Abstract
MicroRNAs (miRNAs) are an important gene regulator, controlling almost all biological and metabolic processes, in both plants and animals. In this study, we investigated the effect of drought and salinity stress on the expression of miRNAs and their targets in cotton (Gossypium hirsutum L.). Our results show that the expression change of miRNAs and their targets were dose-dependent and tissue-dependent under salinity and drought conditions. The expression of miRNAs in leaf was down-regulated under higher salinity stress while shows variable patterns in other conditions. The highest fold-changes of miRNAs were miR398 in roots with 28.9 fold down-regulation under 0.25% NaCl treatment and miR395 in leaves with 7.6 fold down-regulation under 1% PEG treatment. The highest up-regulation of miRNA targets was AST in roots with 4.7 fold-change under 2.5% PEG and the gene with highest down-regulation was CUC1 in leaves with 25.6 fold-change under 0.25% NaCl treatment. Among seven miRNA-target pairs we studied, five pairs, miR156-SPL2, miR162-DCL1, miR159-TCP3, miR395-APS1 and miR396-GRF1, show significant regulation relationship in roots and leaves under salinity stress concentration.
Collapse
Affiliation(s)
- Min Wang
- Beijing Key Laboratory of Plant Resources Research and Development, Department of Biotechnology, School of Science, Beijing Technology and Business University, Haidian District, Beijing, China
| | | | | |
Collapse
|
318
|
Humbeck K. Epigenetic and small RNA regulation of senescence. PLANT MOLECULAR BIOLOGY 2013; 82:529-37. [PMID: 23315005 DOI: 10.1007/s11103-012-0005-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 12/19/2012] [Indexed: 05/08/2023]
Abstract
Leaf senescence is regulated through a complex regulatory network triggered by internal and external signals for the reprogramming of gene expression. In plants, the major developmental phase transitions and stress responses are under epigenetic control. In this review, the underlying molecular mechanisms are briefly discussed and evidence is shown that epigenetic processes are also involved in the regulation of leaf senescence. Changes in the chromatin structure during senescence, differential histone modifications determining active and inactive sites at senescence-associated genes and DNA methylation are addressed. In addition, the role of small RNAs in senescence regulation is discussed.
Collapse
Affiliation(s)
- Klaus Humbeck
- Institute of Biology, Martin-Luther-University Halle-Wittenberg, Weinbergweg 10, 06120, Halle, Germany.
| |
Collapse
|
319
|
Zhao Y, Xu Z, Mo Q, Zou C, Li W, Xu Y, Xie C. Combined small RNA and degradome sequencing reveals novel miRNAs and their targets in response to low nitrate availability in maize. ANNALS OF BOTANY 2013; 112:633-42. [PMID: 23788746 PMCID: PMC3718221 DOI: 10.1093/aob/mct133] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
BACKGROUND AND AIMS MicroRNAs (miRNAs) play an important role in the responses and adaptation of plants to many stresses including low nitrogen (LN). Characterizing relevant miRNAs will improve our understanding of nitrogen (N) use efficiency and LN tolerance and thus contribute to sustainable maize production. The objective of this study was to identify novel and known miRNAs and their targets involved in the response and adaptation of maize (Zea mays) to LN stress. METHODS MiRNAs and their targets were identified by combined analysis of deep sequencing of small RNA and degradome libraries. The identity of target genes was confirmed by gene-specific RNA ligase-mediated rapid amplification of 5' cDNA ends (RLM-RACE) and by quantitative expression analysis. KEY RESULTS Over 150 million raw reads of small RNA and degradome sequence data were generated. A total of 46 unique mature miRNA sequences belonging to 23 maize miRNA families were sequenced. Eighty-five potentially new miRNAs were identified, with corresponding miRNA* also identified for 65 of them. Twenty-five new miRNAs showed >2-fold relative change in response to LN. In addition to known miR169 species, two novel putative miR169 species were identified. Deep sequencing of miRNAs and the degradome, and RLM-RACE and quantitative polymerase chain reaction (PCR) analyses of their targets showed that miRC10- and miRC68-mediated target cleavage may play a major role among miR169 families in the adaptation to LN by maize seedlings. CONCLUSIONS Small RNA and degradome sequencing combined with quantitative reverse transcription-PCR and RLM-RACE verification enabled the efficient identification of miRNAs and their target genes. The generated data sets and the two novel miR169 species that were identified will contribute to our understanding of the physiological basis of adaptation to LN stress in maize plants.
Collapse
Affiliation(s)
- Yongping Zhao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing, 100081, China
| | - Zhenhua Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing, 100081, China
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, N1G 2W1, Canada
| | - Qiaocheng Mo
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing, 100081, China
- Anhui Agricultural University, Hefei, Anhui Province, 230036, China
| | - Cheng Zou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing, 100081, China
| | - Wenxue Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing, 100081, China
| | - Yunbi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing, 100081, China
- International Maize and Wheat Improvement Center (CIMMYT), El Batan, Mexico
- For correspondence. E-mail or
| | - Chuanxiao Xie
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing, 100081, China
- For correspondence. E-mail or
| |
Collapse
|
320
|
Kurtoglu KY, Kantar M, Lucas SJ, Budak H. Unique and conserved microRNAs in wheat chromosome 5D revealed by next-generation sequencing. PLoS One 2013; 8:e69801. [PMID: 23936103 PMCID: PMC3720673 DOI: 10.1371/journal.pone.0069801] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 06/12/2013] [Indexed: 11/18/2022] Open
Abstract
MicroRNAs are a class of short, non-coding, single-stranded RNAs that act as post-transcriptional regulators in gene expression. miRNA analysis of Triticum aestivum chromosome 5D was performed on 454 GS FLX Titanium sequences of flow-sorted chromosome 5D with a total of 3,208,630 good quality reads representing 1.34x and 1.61x coverage of the short (5DS) and long (5DL) arms of the chromosome respectively. In silico and structural analyses revealed a total of 55 miRNAs; 48 and 42 miRNAs were found to be present on 5DL and 5DS respectively, of which 35 were common to both chromosome arms, while 13 miRNAs were specific to 5DL and 7 miRNAs were specific to 5DS. In total, 14 of the predicted miRNAs were identified in wheat for the first time. Representation (the copy number of each miRNA) was also found to be higher in 5DL (1,949) compared to 5DS (1,191). Targets were predicted for each miRNA, while expression analysis gave evidence of expression for 6 out of 55 miRNAs. Occurrences of the same miRNAs were also found in Brachypodium distachyon and Oryza sativa genome sequences to identify syntenic miRNA coding sequences. Based on this analysis, two other miRNAs: miR1133 and miR167 were detected in B. distachyon syntenic region of wheat 5DS. Five of the predicted miRNA coding regions (miR6220, miR5070, miR169, miR5085, miR2118) were experimentally verified to be located to the 5D chromosome and three of them : miR2118, miR169 and miR5085, were shown to be 5D specific. Furthermore miR2118 was shown to be expressed in Chinese Spring adult leaves. miRNA genes identified in this study will expand our understanding of gene regulation in bread wheat.
Collapse
Affiliation(s)
| | - Melda Kantar
- Faculty of Engineering and Natural Sciences, Sabanci University, Orhanlı, Tuzla, Istanbul, Turkey
| | - Stuart J. Lucas
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Sabanci University, Tuzla, Istanbul, Turkey
| | - Hikmet Budak
- Faculty of Engineering and Natural Sciences, Sabanci University, Orhanlı, Tuzla, Istanbul, Turkey
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Sabanci University, Tuzla, Istanbul, Turkey
- * E-mail:
| |
Collapse
|
321
|
Genomics approaches for crop improvement against abiotic stress. ScientificWorldJournal 2013; 2013:361921. [PMID: 23844392 PMCID: PMC3690750 DOI: 10.1155/2013/361921] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 04/22/2013] [Indexed: 12/13/2022] Open
Abstract
As sessile organisms, plants are inevitably exposed to one or a combination of stress factors every now and then throughout their growth and development. Stress responses vary considerably even in the same plant species; stress-susceptible genotypes are at one extreme, and stress-tolerant ones are at the other. Elucidation of the stress responses of crop plants is of extreme relevance, considering the central role of crops in food and biofuel production. Crop improvement has been a traditional issue to increase yields and enhance stress tolerance; however, crop improvement against abiotic stresses has been particularly compelling, given the complex nature of these stresses. As traditional strategies for crop improvement approach their limits, the era of genomics research has arisen with new and promising perspectives in breeding improved varieties against abiotic stresses.
Collapse
|
322
|
Raman V, Simon SA, Romag A, Demirci F, Mathioni SM, Zhai J, Meyers BC, Donofrio NM. Physiological stressors and invasive plant infections alter the small RNA transcriptome of the rice blast fungus, Magnaporthe oryzae. BMC Genomics 2013; 14:326. [PMID: 23663523 PMCID: PMC3658920 DOI: 10.1186/1471-2164-14-326] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 05/02/2013] [Indexed: 11/21/2022] Open
Abstract
Background The rice blast fungus, Magnaporthe oryzae is a destructive pathogen of rice and other related crops, causing significant yield losses worldwide. Endogenous small RNAs (sRNAs), including small interfering RNAs (siRNAs) and microRNAs (miRNAs) are critical components of gene regulation in many eukaryotic organisms. Recently several new species of sRNAs have been identified in fungi. This fact along with the availability of genome sequence makes M. oryzae a compelling target for sRNA profiling. We have examined sRNA species and their biosynthetic genes in M. oryzae, and the degree to which these elements regulate fungal stress responses. To this end, we have characterized sRNAs under different physiological stress conditions, which had not yet been examined in this fungus. Results The resulting libraries are composed of more than 37 million total genome matched reads mapping to intergenic regions, coding sequences, retrotransposons, inverted, tandem, and other repeated regions of the genome with more than half of the small RNAs arising from intergenic regions. The 24 nucleotide (nt) size class of sRNAs was predominant. A comparison to transcriptional data of M. oryzae undergoing the same physiological stresses indicates that sRNAs play a role in transcriptional regulation for a small subset of genes. Support for this idea comes from generation and characterization of mutants putatively involved in sRNAs biogenesis; our results indicate that the deletion of Dicer-like genes and an RNA-Dependent RNA Polymerase gene increases the transcriptional regulation of this subset of genes, including one involved in virulence. Conclusions Various physiological stressors and in planta conditions alter the small RNA profile of the rice blast fungus. Characterization of sRNA biosynthetic mutants helps to clarify the role of sRNAs in transcriptional control.
Collapse
Affiliation(s)
- Vidhyavathi Raman
- Department of Plant & Soil Sciences, University of Delaware, Newark, DE 19716, USA
| | | | | | | | | | | | | | | |
Collapse
|
323
|
Pandey B, Gupta OP, Pandey DM, Sharma I, Sharma P. Identification of new stress-induced microRNA and their targets in wheat using computational approach. PLANT SIGNALING & BEHAVIOR 2013; 8:e23932. [PMID: 23511197 PMCID: PMC3906146 DOI: 10.4161/psb.23932] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
MicroRNAs (miRNAs) are a class of short endogenous non-coding small RNA molecules of about 18-22 nucleotides in length. Their main function is to downregulate gene expression in different manners like translational repression, mRNA cleavage and epigenetic modification. Computational predictions have raised the number of miRNAs in wheat significantly using an EST based approach. Hence, a combinatorial approach which is amalgamation of bioinformatics software and perl script was used to identify new miRNA to add to the growing database of wheat miRNA. Identification of miRNAs was initiated by mining the EST (Expressed Sequence Tags) database available at National Center for Biotechnology Information. In this investigation, 4677 mature microRNA sequences belonging to 50 miRNA families from different plant species were used to predict miRNA in wheat. A total of five abiotic stress-responsive new miRNAs were predicted and named Ta-miR5653, Ta-miR855, Ta-miR819k, Ta-miR3708 and Ta-miR5156. In addition, four previously identified miRNA, i.e., Ta-miR1122, miR1117, Ta-miR1134 and Ta-miR1133 were predicted in newly identified EST sequence and 14 potential target genes were subsequently predicted, most of which seems to encode ubiquitin carrier protein, serine/threonine protein kinase, 40S ribosomal protein, F-box/kelch-repeat protein, BTB/POZ domain-containing protein, transcription factors which are involved in growth, development, metabolism and stress response. Our result has increased the number of miRNAs in wheat, which should be useful for further investigation into the biological functions and evolution of miRNAs in wheat and other plant species.
Collapse
Affiliation(s)
- Bharati Pandey
- Plant Biotechnology; Directorate of Wheat Research; Karnal, India
- Department of Biotechnology; Birla Institute of Technology; Mesra, India
| | - Om Prakash Gupta
- Quality and Basic Science; Directorate of Wheat Research; Karnal, India
| | - Dev Mani Pandey
- Department of Biotechnology; Birla Institute of Technology; Mesra, India
| | - Indu Sharma
- Plant Biotechnology; Directorate of Wheat Research; Karnal, India
| | - Pradeep Sharma
- Plant Biotechnology; Directorate of Wheat Research; Karnal, India
- Correspondence to: Pradeep Sharma,
| |
Collapse
|
324
|
Mohanan S, Gowda K, Kandukuri SV, Chandrashekar A. Involvement of a novel intronic microRNA in cross regulation of N-methyltransferase genes involved in caffeine biosynthesis in Coffea canephora. Gene 2013; 519:107-12. [PMID: 23376454 DOI: 10.1016/j.gene.2013.01.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 01/11/2013] [Accepted: 01/14/2013] [Indexed: 10/27/2022]
Abstract
There are numerous reports on intronic miRNAs from plants, most of which are involved in the regulation of unrelated genes. Some of the target genes are antagonistic to the host genes. Intronic miRNAs in animal systems, however, are known to have synergistic effects. This article is the first to report a similar regulatory effect of a miRNA originating from an intron in plants. NMT genes involved in caffeine biosynthesis were silenced to obtain transformants with reduced caffeine. Transcript analysis revealed the accumulation of transcripts for a related NMT gene (CaMTL1) in transformants bearing either antisense or RNAi constructs. The altered expression was assumed to relate to the silencing of the NMT genes. Bioinformatics analysis of the genes involved in biosynthesis revealed the presence of an intronic miRNA originating from the intron of the theobromine synthase gene targeting CaMTL1. The putative miRNA was cloned and sequenced. Modified 5'-RLM-RACE mapping of the cleavage site and subsequent Northern blotting experimentally demonstrated the presence and activity of such a miRNA in Coffea canephora. This novel regulatory mechanism previously unreported in plants will shed more light onto the evolution of multigene families and the role of introns in this process.
Collapse
Affiliation(s)
- Shibin Mohanan
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute (CFTRI), Mysore, Karnataka 570020, India
| | | | | | | |
Collapse
|
325
|
Ozhuner E, Eldem V, Ipek A, Okay S, Sakcali S, Zhang B, Boke H, Unver T. Boron stress responsive microRNAs and their targets in barley. PLoS One 2013; 8:e59543. [PMID: 23555702 PMCID: PMC3608689 DOI: 10.1371/journal.pone.0059543] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 02/15/2013] [Indexed: 01/08/2023] Open
Abstract
Boron stress is an environmental factor affecting plant development and production. Recently, microRNAs (miRNAs) have been found to be involved in several plant processes such as growth regulation and stress responses. In this study, miRNAs associated with boron stress were identified and characterized in barley. miRNA profiles were also comparatively analyzed between root and leave samples. A total of 31 known and 3 new miRNAs were identified in barley; 25 of them were found to respond to boron treatment. Several miRNAs were expressed in a tissue specific manner; for example, miR156d, miR171a, miR397, and miR444a were only detected in leaves. Additionally, a total of 934 barley transcripts were found to be specifically targeted and degraded by miRNAs. In silico analysis of miRNA target genes demonstrated that many miRNA targets are conserved transcription factors such as Squamosa promoter-binding protein, Auxin response factor (ARF), and the MYB transcription factor family. A majority of these targets were responsible for plant growth and response to environmental changes. We also propose that some of the miRNAs in barley such as miRNA408 might play critical roles against boron exposure. In conclusion, barley may use several pathways and cellular processes targeted by miRNAs to cope with boron stress.
Collapse
Affiliation(s)
- Esma Ozhuner
- Department of Biology, Faculty of Science, Cankiri Karatekin University, Cankiri, Turkey
| | - Vahap Eldem
- Department of Biology, Faculty of Science, Cankiri Karatekin University, Cankiri, Turkey
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Arif Ipek
- Department of Biology, Faculty of Science, Cankiri Karatekin University, Cankiri, Turkey
| | - Sezer Okay
- Department of Biology, Faculty of Science, Cankiri Karatekin University, Cankiri, Turkey
| | - Serdal Sakcali
- Department of Biology, Faculty of Arts and Sciences, Suleyman Demirel University, Isparta, Turkey
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, North Carolina, United States of America
| | - Hatice Boke
- Department of Biology, Faculty of Science, Cankiri Karatekin University, Cankiri, Turkey
| | - Turgay Unver
- Department of Biology, Faculty of Science, Cankiri Karatekin University, Cankiri, Turkey
- * E-mail:
| |
Collapse
|
326
|
Characterization of virus-encoded RNA interference suppressors in Caenorhabditis elegans. J Virol 2013; 87:5414-23. [PMID: 23468484 DOI: 10.1128/jvi.00148-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In fungi, plants, and invertebrates, antiviral RNA interference (RNAi) directed by virus-derived small interfering RNAs (siRNAs) represents a major antiviral defense that the invading viruses have to overcome in order to establish infection. As a counterdefense mechanism, viruses of these hosts produce diverse classes of proteins capable of suppressing the biogenesis and/or function of viral siRNAs. This RNA-directed viral immunity (RDVI) in the nematode Caenorhabditis elegans is known to exhibit some unique features. Currently, little is known about viral suppression of RNAi in C. elegans. Here, we show that ectopic expression of the B2 protein encoded by Flock House virus (FHV) suppresses RNAi induced by either long double-stranded RNA (dsRNA) or an FHV-based replicon and facilitates the natural infection of C. elegans by Orsay virus but is not active against RNA silencing mediated by microRNAs. We report the development of an assay for the identification of viral suppressor of RNAi (VSR) in C. elegans based on the suppression of a viral replicon-triggered RDVI by ectopic expression of candidate proteins. No VSR activity was detected for either of the two Orsay viral proteins proposed previously as VSRs. We detected, among the known heterologous VSRs, VSR activity for B2 of Nodamura virus but not for 2b of tomato aspermy virus, p29 of fungus-infecting hypovirus, or p19 of tomato bushy stunt virus. We further show that, unlike that in plants and insects, FHV B2 suppresses worm RDVI mainly by interfering with the function of virus-derived primary siRNAs.
Collapse
|
327
|
Qiao M, Xiang F. A set of Arabidopsis thaliana miRNAs involve shoot regeneration in vitro. PLANT SIGNALING & BEHAVIOR 2013; 8:e23479. [PMID: 23333958 PMCID: PMC3676518 DOI: 10.4161/psb.23479] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 01/02/2013] [Accepted: 01/03/2013] [Indexed: 05/22/2023]
Abstract
Plant miRNAs, the critical regulator of gene expression, involve many development processes in vivo. However, the roles of miRNAs in plant cell proliferation and redifferntiation in vitro remain unknown. To determine better the molecular mechanism of these processes, we have recently reported that a set of miRNAs with different expression patterns between cells of totipotent and non-totipotent Arabidopsis calli. Some of these were specifically up- or downregulated during callus formation or shoot regeneration, and other development. Among them, miR160, and one of its target genes, ARF10, regulated Arabidopsis in vitro shoot regeneration via WUS, CLV3 and CUC1/ 2. The miR160-overexpressing, 35S transgenic lines, exhibited reduced shoot regeneration efficiency. The mARF10, a miR160-resistant form of ARF10, showed a high level of shoot regeneration ability. In the transgenic, expression of the above shoot meristem-specific genes was elevated, which is consistent with the improved shoot regeneration. In contrast, the ARF10 deficient knockout mutant produced fewer regenerated shoot. However, overexpressors of ARF10 were only marginally more efficient than the wild type with the respect to shoot regeneration. Our observation strongly supports that proper shoot regeneration from in vitro cultured cells requires the miR160-directed negative influence of ARF10. The enhanced expression of ARF10 is likely to have contributed to the improved regeneration ability.
Collapse
|
328
|
Zhang R, Marshall D, Bryan GJ, Hornyik C. Identification and characterization of miRNA transcriptome in potato by high-throughput sequencing. PLoS One 2013; 8:e57233. [PMID: 23437348 PMCID: PMC3578796 DOI: 10.1371/journal.pone.0057233] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 01/18/2013] [Indexed: 12/20/2022] Open
Abstract
Micro RNAs (miRNAs) represent a class of short, non-coding, endogenous RNAs which play important roles in post-transcriptional regulation of gene expression. While the diverse functions of miRNAs in model plants have been well studied, the impact of miRNAs in crop plant biology is poorly understood. Here we used high-throughput sequencing and bioinformatics analysis to analyze miRNAs in the tuber bearing crop potato (Solanum tuberosum). Small RNAs were analysed from leaf and stolon tissues. 28 conserved miRNA families were found and potato-specific miRNAs were identified and validated by RNA gel blot hybridization. The size, origin and predicted targets of conserved and potato specific miRNAs are described. The large number of miRNAs and complex population of small RNAs in potato suggest important roles for these non-coding RNAs in diverse physiological and metabolic pathways.
Collapse
Affiliation(s)
- Runxuan Zhang
- The James Hutton Institute, Invergowrie, Dundee, United Kingdom
| | - David Marshall
- The James Hutton Institute, Invergowrie, Dundee, United Kingdom
| | - Glenn J. Bryan
- The James Hutton Institute, Invergowrie, Dundee, United Kingdom
| | - Csaba Hornyik
- The James Hutton Institute, Invergowrie, Dundee, United Kingdom
- * E-mail:
| |
Collapse
|
329
|
Abstract
Nitrogen is an essential mineral nutrient required for plant growth and development. Insufficient nitrogen (N) supply triggers extensive physiological and biochemical changes in plants. In this study, we used Affymetrix GeneChip rice genome arrays to analyse the dynamics of rice transcriptome under N starvation. N starvation induced or suppressed transcription of 3518 genes, representing 10.88 percent of the genome. These changes, mostly transient, affected various cellular metabolic pathways, including stress response, primary and secondary metabolism, molecular transport, regulatory process and organismal development. 462 or 13.1 percent transcripts for N starvation expressed similarly in root and shoot. Comparative analysis between rice and Arabidopsis identified 73 orthologous groups that responded to N starvation, demonstrated the existence of conserved N stress coupling mechanism among plants. Additional analysis of transcription profiles of microRNAs revealed differential expression of miR399 and miR530 under N starvation, suggesting their potential roles in plant nutrient homeostasis.
Collapse
|
330
|
Chiba Y, Mineta K, Hirai MY, Suzuki Y, Kanaya S, Takahashi H, Onouchi H, Yamaguchi J, Naito S. Changes in mRNA stability associated with cold stress in Arabidopsis cells. PLANT & CELL PHYSIOLOGY 2013; 54:180-94. [PMID: 23220693 DOI: 10.1093/pcp/pcs164] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Control of mRNA half-life is a powerful strategy to adjust individual mRNA levels to various stress conditions, because the mRNA degradation rate controls not only the steady-state mRNA level but also the transition speed of mRNA levels. Here, we analyzed mRNA half-life changes in response to cold stress in Arabidopsis cells using genome-wide analysis, in which mRNA half-life measurements and transcriptome analysis were combined. Half-lives of average transcripts were determined to be elongated under cold conditions. Taking this general shift into account, we identified more than a thousand transcripts that were classified as relatively stabilized or relatively destabilized. The relatively stabilized class was predominantly observed in functional categories that included various regulators involved in transcriptional, post-transcriptional and post-translational processes. On the other hand, the relatively destabilized class was enriched in categories related to stress and hormonal response proteins, supporting the idea that rapid decay of mRNA is advantageous for swift responses to stress. In addition, pentatricopeptide repeat, cyclin-like F-box and Myb transcription factor protein families were significantly over-represented in the relatively destabilized class. The global analysis presented here demonstrates not only the importance of mRNA turnover control in the cold stress response but also several structural characteristics that might be important in the control of mRNA stability.
Collapse
MESH Headings
- Adaptation, Physiological
- Arabidopsis/drug effects
- Arabidopsis/genetics
- Arabidopsis/metabolism
- Cells, Cultured
- Cold Temperature
- Deoxyadenosines/pharmacology
- Gene Expression Regulation, Plant
- Half-Life
- Plant Cells/drug effects
- Plant Cells/metabolism
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Protein Structure, Tertiary
- RNA Stability
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Stress, Physiological
- Time Factors
- Transcription, Genetic/drug effects
Collapse
Affiliation(s)
- Yukako Chiba
- Creative Research Institution, Hokkaido University, Sapporo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
331
|
Délye C. Unravelling the genetic bases of non-target-site-based resistance (NTSR) to herbicides: a major challenge for weed science in the forthcoming decade. PEST MANAGEMENT SCIENCE 2013; 69:176-87. [PMID: 22614948 DOI: 10.1002/ps.3318] [Citation(s) in RCA: 242] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 01/24/2012] [Accepted: 03/15/2012] [Indexed: 05/08/2023]
Abstract
Non-target-site-based resistance (NTSR) can confer unpredictable cross-resistance to herbicides. However, the genetic determinants of NTSR remain poorly known. The current, urgent challenge for weed scientists is thus to elucidate the bases of NTSR so that detection tools are developed, the evolution of NTSR is understood, the efficacy of the shrinking herbicide portfolio is maintained and integrated weed management strategies, including fully effective herbicide applications, are designed and implemented. In this paper, the importance of NTSR in resistance to herbicides is underlined. The most likely way in which NTSR evolves-by accumulation of different mechanisms within individual plants-is described. The NTSR mechanisms, which can interfere with herbicide penetration, translocation and accumulation at the target site, and/or protect the plant against the consequences of herbicide action, are then reviewed. NTSR is a part of the plant stress response. As such, NTSR is a dynamic process unrolling over time that involves 'protectors' directly interfering with herbicide action, and also regulators controlling 'protector' expression. NTSR is thus a quantitative trait. On this basis, a three-step procedure is proposed, based on the use of the 'omics' (genomics, transcriptomics, proteomics or metabolomics), to unravel the genetic bases of NTSR.
Collapse
|
332
|
Westwood JH, McCann L, Naish M, Dixon H, Murphy AM, Stancombe MA, Bennett MH, Powell G, Webb AAR, Carr JP. A viral RNA silencing suppressor interferes with abscisic acid-mediated signalling and induces drought tolerance in Arabidopsis thaliana. MOLECULAR PLANT PATHOLOGY 2013; 14:158-70. [PMID: 23083401 PMCID: PMC6638696 DOI: 10.1111/j.1364-3703.2012.00840.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Cucumber mosaic virus (CMV) encodes the 2b protein, which plays a role in local and systemic virus movement, symptom induction and suppression of RNA silencing. It also disrupts signalling regulated by salicylic acid and jasmonic acid. CMV induced an increase in tolerance to drought in Arabidopsis thaliana. This was caused by the 2b protein, as transgenic plants expressing this viral factor showed increased drought tolerance, but plants infected with CMVΔ2b, a viral mutant lacking the 2b gene, did not. The silencing effector ARGONAUTE1 (AGO1) controls a microRNA-mediated drought tolerance mechanism and, in this study, we noted that plants (dcl2/3/4 triple mutants) lacking functional short-interfering RNA-mediated silencing were also drought tolerant. However, drought tolerance engendered by CMV may be independent of the silencing suppressor activity of the 2b protein. Although CMV infection did not alter the accumulation of the drought response hormone abscisic acid (ABA), 2b-transgenic and ago1-mutant seeds were hypersensitive to ABA-mediated inhibition of germination. However, the induction of ABA-regulated genes in 2b-transgenic and CMV-infected plants was inhibited more strongly than in ago1-mutant plants. The virus engenders drought tolerance by altering the characteristics of the roots and not of the aerial tissues as, compared with the leaves of silencing mutants, leaves excised from CMV-infected or 2b-transgenic plants showed greater stomatal permeability and lost water more rapidly. This further indicates that CMV-induced drought tolerance is not mediated via a change in the silencing-regulated drought response mechanism. Under natural conditions, virus-induced drought tolerance may serve viruses by aiding susceptible hosts to survive periods of environmental stress.
Collapse
Affiliation(s)
- Jack H Westwood
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
333
|
Hajdarpašić A, Ruggenthaler P. Analysis of miRNA expression under stress in Arabidopsis thaliana. Bosn J Basic Med Sci 2013; 12:169-76. [PMID: 22938544 DOI: 10.17305/bjbms.2012.2471] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of small, 21-24 nucleotides long, non-coding RNAs involved in the post-transcriptional regulation of gene expression. Using the array analysis on Arabidopsis thaliana infected with the Oil-seed Rape Mosaic Virus (ORMV), we have found 28 up-regulated miRNAs. From them, six were selected for further validation by Northern blot analysis: miRNA172a, miRNA161, miRNA167a&b, miRNA168a&b, miRNA171a, and miRNA159. In addition, 29 miRNAs were detected in plants exposed to drought stress, 13 of those detected miRNAs were up-regulated and 16 down-regulated miRNAs. Out of 29 differentially expressed miRNAs during the abiotic stress, six miRNAs (167a&b, 168a&b, 173, 171b&c, 399d and 447c) were chosen for Northern blot and RT-PCR analysis to confirm the array results. Interestingly, four out of these six miRNAs, 171b&c, 168a&b, 399d, and 447c, showed very high abundance of pri-miRNAs and pre-miRNAs. Furthermore, mature forms of miRNAs171b&c, 399d, and 447c, were not detectable in the rosette leaves, indicating that miRNA processing is tissue specific. In conclusion, using the array analysis we show that 28 miRNAs are involved in the plant response to viral infection and 29 miRNAs are involved in the regulation of drought stress. We also demonstrate that at least some miRNAs involved in the stress response in Arabidopsis thaliana are regulated at the maturation level. One such example is miRNA 171b&c. This miRNA is transcribed in all tissues, evidenced by its detected pri and pre-miRNA forms; however, its mature form is constitutively or transiently expressed depending on the tissue type.
Collapse
Affiliation(s)
- Aida Hajdarpašić
- Max F. Perutz Laboratories, Medical University of Vienna, Department of Medical Biochemistry, Vienna, Austria.
| | | |
Collapse
|
334
|
Yang J, Liu X, Xu B, Zhao N, Yang X, Zhang M. Identification of miRNAs and their targets using high-throughput sequencing and degradome analysis in cytoplasmic male-sterile and its maintainer fertile lines of Brassica juncea. BMC Genomics 2013; 14:9. [PMID: 23324572 PMCID: PMC3553062 DOI: 10.1186/1471-2164-14-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 12/26/2012] [Indexed: 11/13/2022] Open
Abstract
Background Regulatory network of cytoplasmic male sterility (CMS) occurrence is still largely unknown in plants, although numerous researches have been attempted to isolate genes involved in CMS. Here, we employed high-throughput sequencing and degradome analysis to identify microRNAs and their targets using high-throughput sequencing in CMS and its maintainer fertile (MF) lines of Brassica juncea. Results We identified 197 known and 78 new candidate microRNAs during reproductive development of B. juncea. A total of 47 differentially expressed microRNAs between CMS and its MF lines were discovered, according to their sequencing reads number. Different expression levels of selected microRNAs were confirmed by using real-time quantitative PCR between CMS and MF lines. Furthermore, we observed that the transcriptional patterns of these microRNAs could be mimicked by artificially inhibiting mitochondrial F1F0-ATPase activity and its function in MF line by using treatment with oligomycin. Targeted genes of the microRNAs were identified by high-throughput sequencing and degradome approaches, including auxin response factor, NAC (No Apical Meristem) domain transcription factor, GRAS family transcription factor, MYB transcription factor, squamosa promoter binding protein, AP2-type transcription factor, homeobox/homeobox-leucine zipper family and TCP family transcription factors, which were observed to be differentially expressed between CMS and MF. Conclusion Taken together, from these findings we suggested microRNA might participate in the regulatory network of CMS by tuning fork in gene expressions in CMS B. juncea. The differential expression of miRNAs observed between CMS and MF lines suggested that biogenesis of miRNAs could be influenced in the CMS.
Collapse
Affiliation(s)
- Jinghua Yang
- Laboratory Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | | | | | | | | | | |
Collapse
|
335
|
Bokszczanin KL, Fragkostefanakis S. Perspectives on deciphering mechanisms underlying plant heat stress response and thermotolerance. FRONTIERS IN PLANT SCIENCE 2013; 4:315. [PMID: 23986766 PMCID: PMC3750488 DOI: 10.3389/fpls.2013.00315] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 07/27/2013] [Indexed: 05/17/2023]
Abstract
Global warming is a major threat for agriculture and food safety and in many cases the negative effects are already apparent. The current challenge of basic and applied plant science is to decipher the molecular mechanisms of heat stress response (HSR) and thermotolerance in detail and use this information to identify genotypes that will withstand unfavorable environmental conditions. Nowadays X-omics approaches complement the findings of previous targeted studies and highlight the complexity of HSR mechanisms giving information for so far unrecognized genes, proteins and metabolites as potential key players of thermotolerance. Even more, roles of epigenetic mechanisms and the involvement of small RNAs in thermotolerance are currently emerging and thus open new directions of yet unexplored areas of plant HSR. In parallel it is emerging that although the whole plant is vulnerable to heat, specific organs are particularly sensitive to elevated temperatures. This has redirected research from the vegetative to generative tissues. The sexual reproduction phase is considered as the most sensitive to heat and specifically pollen exhibits the highest sensitivity and frequently an elevation of the temperature just a few degrees above the optimum during pollen development can have detrimental effects for crop production. Compared to our knowledge on HSR of vegetative tissues, the information on pollen is still scarce. Nowadays, several techniques for high-throughput X-omics approaches provide major tools to explore the principles of pollen HSR and thermotolerance mechanisms in specific genotypes. The collection of such information will provide an excellent support for improvement of breeding programs to facilitate the development of tolerant cultivars. The review aims at describing the current knowledge of thermotolerance mechanisms and the technical advances which will foster new insights into this process.
Collapse
Affiliation(s)
- Kamila L. Bokszczanin
- GenXPro GmbH, Frankfurt am MainGermany
- *Correspondence: Kamila L. Bokszczanin, GenXPro GmbH, Altenhöferallee 3, Frankfurt am Main 60438, Germany e-mail: ; Sotirios Fragkostefanakis, Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Max-von-Laue-Street 9, Frankfurt am Main 60438, Germany e-mail:
| | | | - Sotirios Fragkostefanakis
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt am MainGermany
- *Correspondence: Kamila L. Bokszczanin, GenXPro GmbH, Altenhöferallee 3, Frankfurt am Main 60438, Germany e-mail: ; Sotirios Fragkostefanakis, Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Max-von-Laue-Street 9, Frankfurt am Main 60438, Germany e-mail:
| |
Collapse
|
336
|
Global identification of small RNA targets in plants by sequencing sliced ends of messenger RNAs. Methods Mol Biol 2013; 956:119-29. [PMID: 23135849 DOI: 10.1007/978-1-62703-194-3_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Small RNAs (microRNAs and other classes of endogenous small interfering RNAs) play important roles in a wide variety of biological processes. However, integration of small RNAs in diverse biological networks relies on the confirmation of their RNA targets. In plants, miRNAs negatively regulate mRNA targets by guiding a cleavage in the complementary site that leaves a 3' polyadenylated RNA possessing monophosphate at its 5' end. This chapter describes a detailed step-by-step protocol for cloning such sliced 3' products in order to identify small RNA targets. Using this protocol, we have identified more than 150 small RNA targets in rice; some are conserved and others are non-conserved targets for rice small RNAs.
Collapse
|
337
|
Jagadeeswaran G, Sunkar R. Cloning of small RNAs for the discovery of novel microRNAs in plants. Methods Mol Biol 2013; 956:109-118. [PMID: 23135848 DOI: 10.1007/978-1-62703-194-3_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Endogenous small RNAs can be grouped into several distinct classes of 21-nt-long microRNAs (miRNAs), short interfering RNAs (siRNAs), trans-acting siRNAs (tasiRNAs), and 24-nt long heterochromatic siRNAs. miRNAs are increasingly being recognized as significant effectors of gene regulation in a wide range of organisms. These molecules are typically ∼21-nt long and are amenable for cloning by streamlined protocols. Here we detail the methodology for cloning small RNAs in rice to identify novel miRNAs and other important small RNAs. Briefly, small RNA molecules are size fractionated, attached to adaptors, and subsequently converted into cDNA and PCR amplified. Current high-throughput sequencing technologies allow sequencing of the PCR products directly.
Collapse
Affiliation(s)
- Guru Jagadeeswaran
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, USA
| | | |
Collapse
|
338
|
Vaseva II, Feller U. Natural antisense transcripts of Trifolium repens dehydrins. PLANT SIGNALING & BEHAVIOR 2013; 8:e27674. [PMID: 24390012 PMCID: PMC4091226 DOI: 10.4161/psb.27674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The recently described complex nature of some dehydrin-coding sequences in Trifolium repens could explain the considerable variability among transcripts originating from a single gene.1 For some of the sequences the existence of natural antisense transcripts (NAT s), which could form sense-antisense (SAS) pairs, was predicted. The present study demonstrates that cis-natural antisense transcripts of 2 dehydrin types (YnKn and YnSKn) accumulate in white clover plants subjected to treatments with polyethylene glycol (PEG), abscisic acid (ABA), and high salt concentration. The isolated YnKn cis-NAT s mapped to sequence site enriched in alternative start codons. Some of the sense-antisense pairs exhibited inverse expression with differing profiles which depended on the applied stress. A natural antisense transcript coding for an ABC F family protein (a trans-NAT ) which shares short sequence homology with YnSKn dehydrin was identified in plants subjected to salt stress. Forthcoming experiments will evaluate the impact of NAT s on transcript abundances, elucidating the role of transcriptional and post-transcriptional interferences in the regulation of dehydrin levels under various abiotic stresses.
Collapse
Affiliation(s)
- Irina I Vaseva
- Plant Stress Molecular Biology Department; Institute of Plant Physiology and Genetics; Bulgarian Academy of Sciences; Sofia, Bulgaria
- Correspondence to: Irina I Vaseva, and Urs Feller,
| | - Urs Feller
- Institute of Plant Sciences and Oeschger Centre for Climate Change Research (OCCR); University of Bern; Bern, Switzerland
- Correspondence to: Irina I Vaseva, and Urs Feller,
| |
Collapse
|
339
|
Numnark S, Mhuantong W, Ingsriswang S, Wichadakul D. C-mii: a tool for plant miRNA and target identification. BMC Genomics 2012; 13 Suppl 7:S16. [PMID: 23281648 PMCID: PMC3521235 DOI: 10.1186/1471-2164-13-s7-s16] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) have been known to play an important role in several biological processes in both animals and plants. Although several tools for miRNA and target identification are available, the number of tools tailored towards plants is limited, and those that are available have specific functionality, lack graphical user interfaces, and restrict the number of input sequences. Large-scale computational identifications of miRNAs and/or targets of several plants have been also reported. Their methods, however, are only described as flow diagrams, which require programming skills and the understanding of input and output of the connected programs to reproduce. RESULTS To overcome these limitations and programming complexities, we proposed C-mii as a ready-made software package for both plant miRNA and target identification. C-mii was designed and implemented based on established computational steps and criteria derived from previous literature with the following distinguishing features. First, software is easy to install with all-in-one programs and packaged databases. Second, it comes with graphical user interfaces (GUIs) for ease of use. Users can identify plant miRNAs and targets via step-by-step execution, explore the detailed results from each step, filter the results according to proposed constraints in plant miRNA and target biogenesis, and export sequences and structures of interest. Third, it supplies bird's eye views of the identification results with infographics and grouping information. Fourth, in terms of functionality, it extends the standard computational steps of miRNA target identification with miRNA-target folding and GO annotation. Fifth, it provides helper functions for the update of pre-installed databases and automatic recovery. Finally, it supports multi-project and multi-thread management. CONCLUSIONS C-mii constitutes the first complete software package with graphical user interfaces enabling computational identification of both plant miRNA genes and miRNA targets. With the provided functionalities, it can help accelerate the study of plant miRNAs and targets, especially for small and medium plant molecular labs without bioinformaticians. C-mii is freely available at http://www.biotec.or.th/isl/c-mii for both Windows and Ubuntu Linux platforms.
Collapse
Affiliation(s)
- Somrak Numnark
- Information Systems Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phaholyothin Road, Klong 1, Klong Luang, Pathumthani, Thailand
| | | | | | | |
Collapse
|
340
|
Nischal L, Mohsin M, Khan I, Kardam H, Wadhwa A, Abrol YP, Iqbal M, Ahmad A. Identification and comparative analysis of microRNAs associated with low-N tolerance in rice genotypes. PLoS One 2012; 7:e50261. [PMID: 23227161 PMCID: PMC3515565 DOI: 10.1371/journal.pone.0050261] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 10/17/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Nitrogen [N] is a critical limiting nutrient for plants and has to be exogenously supplied to many crops, to achieve high yield with significant economic and environmental costs, specifically for rice. Development of low-input nitrogen sustainable crop is necessary for sustainable agriculture. Identification of regulatory elements associated with low-N tolerance is imperative for formulating innovative approaches for developing low-N tolerant crop plants, using gene manipulation. MicroRNAs (miRNAs) are known to play crucial roles in the modulation of gene expression in plants under various environmental conditions. METHODOLOGY/PRINCIPAL FINDINGS MiRNAs associated with low-N tolerance have not been identified so far. In this study, we investigated microarray-based miRNA expression in low-N tolerant and low-N sensitive rice genotypes under low N condition. Expressions of 32 miRNAs differed significantly in the two genotypes. Of these 32 miRNAs, expressions of nine miRNAs were further validated experimentally in leaves as well as in roots. Of these differentially expressed miRNAs, six miRNAs (miR156, miR164, miR528, miR820, miR821 and miR1318) were reported in leaves and four (miR164, miR167, miR168 and miR528) in roots. Target genes of all the 32 miRNAs were predicted, which encode transcription factors, and proteins associated with metabolic processes or stress responses. Expression levels of some of the corresponding miRNA targets were analysed and found to be significantly higher in low N-tolerant genotype than low-N sensitive genotype. These findings suggested that miRNAs played an important role in low-N tolerance in rice. CONCLUSIONS/SIGNIFICANCE Genome-wide differences in expression of miRNA in low N-tolerant and low N-sensitive rice genotypes were reported. This provides a platform for selection as well as manipulation of genotypes for better N utilization efficiency.
Collapse
Affiliation(s)
- Lata Nischal
- Molecular Ecology Laboratory, Department of Botany, Faculty of Science, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Mohd Mohsin
- Molecular Ecology Laboratory, Department of Botany, Faculty of Science, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Ishrat Khan
- Molecular Ecology Laboratory, Department of Botany, Faculty of Science, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Hemant Kardam
- Molecular Ecology Laboratory, Department of Botany, Faculty of Science, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Asha Wadhwa
- Molecular Ecology Laboratory, Department of Botany, Faculty of Science, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Yash Pal Abrol
- Molecular Ecology Laboratory, Department of Botany, Faculty of Science, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Muhammad Iqbal
- Molecular Ecology Laboratory, Department of Botany, Faculty of Science, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Altaf Ahmad
- Molecular Ecology Laboratory, Department of Botany, Faculty of Science, Jamia Hamdard (Hamdard University), New Delhi, India
| |
Collapse
|
341
|
Ren Y, Chen L, Zhang Y, Kang X, Zhang Z, Wang Y. Identification and characterization of salt-responsive microRNAs in Populus tomentosa by high-throughput sequencing. Biochimie 2012; 95:743-50. [PMID: 23142627 DOI: 10.1016/j.biochi.2012.10.025] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 10/30/2012] [Indexed: 12/13/2022]
Abstract
Salt is one of the main environmental factors limiting plant growth and a better understanding of mechanisms of salt stress would aid efforts to bolster plant salt tolerance. MicroRNAs are well known for their important regulatory roles in response to abiotic stress in plants. In this study, high-throughput sequencing was employed to identify miRNAs in Populus tomentosa plantlets treated or not with salt (200 mM for 10 h). We found 141 conserved miRNAs belonging to 31 families, 29 non-conserved but previously-known miRNAs belonging to 26 families, and 17 novel miRNAs. Under salt stress, 19 miRNAs belonging to seven conserved miRNA families were significantly downregulated, and two miRNAs belonging to two conserved miRNA families were upregulated. Of seven non-conserved miRNAs with significantly altered expression, five were downregulated and two were upregulated. Furthermore, eight miRNAs were validated by qRT-PCR and their dynamic differential expressions were analyzed. In addition, 269 target genes of identified miRNAs were predicted and categorized by function. These results provide new insights into salt-responsive miRNAs in Populus.
Collapse
Affiliation(s)
- Yuanyuan Ren
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, 100083 Beijing, People's Republic of China
| | | | | | | | | | | |
Collapse
|
342
|
Mandhan V, Kaur J, Singh K. smRNAome profiling to identify conserved and novel microRNAs in Stevia rebaudiana Bertoni. BMC PLANT BIOLOGY 2012; 12:197. [PMID: 23116282 PMCID: PMC3502355 DOI: 10.1186/1471-2229-12-197] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 10/29/2012] [Indexed: 05/30/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) constitute a family of small RNA (sRNA) population that regulates the gene expression and plays an important role in plant development, metabolism, signal transduction and stress response. Extensive studies on miRNAs have been performed in different plants such as Arabidopsis thaliana, Oryza sativa etc. and volume of the miRNA database, mirBASE, has been increasing on day to day basis. Stevia rebaudiana Bertoni is an important perennial herb which accumulates high concentrations of diterpene steviol glycosides which contributes to its high indexed sweetening property with no calorific value. Several studies have been carried out for understanding molecular mechanism involved in biosynthesis of these glycosides, however, information about miRNAs has been lacking in S. rebaudiana. Deep sequencing of small RNAs combined with transcriptomic data is a powerful tool for identifying conserved and novel miRNAs irrespective of availability of genome sequence data. RESULTS To identify miRNAs in S. rebaudiana, sRNA library was constructed and sequenced using Illumina genome analyzer II. A total of 30,472,534 reads representing 2,509,190 distinct sequences were obtained from sRNA library. Based on sequence similarity, we identified 100 miRNAs belonging to 34 highly conserved families. Also, we identified 12 novel miRNAs whose precursors were potentially generated from stevia EST and nucleotide sequences. All novel sequences have not been earlier described in other plant species. Putative target genes were predicted for most conserved and novel miRNAs. The predicted targets are mainly mRNA encoding enzymes regulating essential plant metabolic and signaling pathways. CONCLUSIONS This study led to the identification of 34 highly conserved miRNA families and 12 novel potential miRNAs indicating that specific miRNAs exist in stevia species. Our results provided information on stevia miRNAs and their targets building a foundation for future studies to understand their roles in key stevia traits.
Collapse
Affiliation(s)
- Vibha Mandhan
- Department of Biotechnology, Panjab University, Sector 14, Chandigarh, 160014, India
| | - Jagdeep Kaur
- Department of Biotechnology, Panjab University, Sector 14, Chandigarh, 160014, India
| | - Kashmir Singh
- Department of Biotechnology, Panjab University, Sector 14, Chandigarh, 160014, India
| |
Collapse
|
343
|
Curtin SJ, Kantar MB, Yoon HW, Whaley AM, Schlueter JA, Stupar RM. Co-expression of soybean Dicer-like genes in response to stress and development. Funct Integr Genomics 2012; 12:671-82. [PMID: 22527487 DOI: 10.1007/s10142-012-0278-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 03/15/2012] [Accepted: 03/21/2012] [Indexed: 01/03/2023]
Abstract
Regulation of gene transcription and post-transcriptional processes is critical for proper development, genome integrity, and stress responses in plants. Many genes involved in the key processes of transcriptional and post-transcriptional regulation have been well studied in model diploid organisms. However, gene and genome duplication may alter the function of the genes involved in these processes. To address this question, we assayed the stress-induced transcription patterns of duplicated gene pairs involved in RNAi and DNA methylation processes in the paleopolyploid soybean. Real-time quantitative PCR and Sequenom MassARRAY expression assays were used to profile the relative expression ratios of eight gene pairs across eight different biotic and abiotic stress conditions. The transcriptional responses to stress for genes involved in DNA methylation, RNAi processing, and miRNA processing were compared. The strongest evidence for pairwise co-expression in response to stresses was exhibited by non-paralogous Dicer-like (DCL) genes GmDCL2a-GmDCL3a and GmDCL1b-GmDCL2b, most profoundly in root tissues. Among homoeologous or paralogous DCL genes, the Dicer-like 2 (DCL2) gene pair exhibited the strongest response to stress and most conserved co-expression pattern. This was surprising because the DCL2 duplication event is more ancient than the other DCL duplications. Possible mechanisms that may be driving the DCL2 co-expression are discussed.
Collapse
Affiliation(s)
- Shaun J Curtin
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
| | | | | | | | | | | |
Collapse
|
344
|
Kruszka K, Pieczynski M, Windels D, Bielewicz D, Jarmolowski A, Szweykowska-Kulinska Z, Vazquez F. Role of microRNAs and other sRNAs of plants in their changing environments. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:1664-72. [PMID: 22647959 DOI: 10.1016/j.jplph.2012.03.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 03/05/2012] [Accepted: 03/05/2012] [Indexed: 05/18/2023]
Abstract
Plants constantly face a complex array of environmental biotic and abiotic stimuli. Recent studies in various plants have highlighted the key roles of microRNAs and of different siRNA classes in the post-transcriptional regulation of plant genes essential for conserved responses of plants to individual stress conditions. It is not yet clear how these different signals and responses are integrated in nature. In the present review, we summarize current knowledge on sRNA-mediated responses to stress, and highlight possible directions of future research.
Collapse
Affiliation(s)
- Katarzyna Kruszka
- Department of Gene Expression, Adam Mickiewicz University, Poznan, Poland
| | | | | | | | | | | | | |
Collapse
|
345
|
Arabidopsis proline-rich protein important for development and abiotic stress tolerance is involved in microRNA biogenesis. Proc Natl Acad Sci U S A 2012; 109:18198-203. [PMID: 23071326 DOI: 10.1073/pnas.1216199109] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
MicroRNAs (miRNAs) are important for plant development and stress responses. However, factors regulating miRNA metabolism are not completely understood. SICKLE (SIC), a proline-rich protein critical for development and abiotic stress tolerance of Arabidopsis, was identified in this study. Loss-of-function sic-1 mutant plants exhibited a serrated, sickle-like leaf margin, reduced height, delayed flowering, and abnormal inflorescence phyllotaxy, which are common characteristics of mutants involved in miRNA biogenesis. The sic-1 mutant plants accumulated lower levels of a subset of miRNAs and transacting siRNAs but higher levels of corresponding primary miRNAs than the WT. The SIC protein colocalizes with the miRNA biogenesis component HYL1 in distinct subnuclear bodies. sic-1 mutant plants also accumulated higher levels of introns from hundreds of loci. In addition, sic-1 mutant plants are hypersensitive to chilling and salt stresses. These results suggest that SIC is a unique factor required for the biogenesis of some miRNAs and degradation of some spliced introns and important for plant development and abiotic stress responses.
Collapse
|
346
|
Lin JS, Lin CC, Lin HH, Chen YC, Jeng ST. MicroR828 regulates lignin and H2O2 accumulation in sweet potato on wounding. THE NEW PHYTOLOGIST 2012; 196:427-440. [PMID: 22931461 DOI: 10.1111/j.1469-8137.2012.04277.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 07/12/2012] [Indexed: 05/04/2023]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs which post-transcriptionally regulate gene expression by directing mRNA cleavage or translational inhibition. miRNAs play multiple roles in the growth, development and stress responses in plants. However, little is known of the wounding-responsive miRNAs and their regulation. Here, we investigated the expression patterns of microR828 (miR828) on wounding in sweet potato (Ipomoea batatas cv Tainung 57). The expression of miR828 was only detected in leaves, and was induced by wounding rather than by ethylene, hydrogen peroxide (H2O2), methyl jasmonate or nitric oxide (NO). Moreover, cyclic guanosine monophosphate (cGMP) was necessary for miR828 accumulation in leaves on wounding. Two miR828 target candidates, named IbMYB and IbTLD, were obtained by cDNA cloning, and their mRNA cleavage caused by miR828 was confirmed by cleavage site mapping, agro-infiltration and transgenics studies. The reduction in IbMYB and IbTLD expression coincided with the induction of miR828, demonstrating that IbMYB and IbTLD might be miR828 targets. Furthermore, transgenic sweet potato overexpressing miR828 precursor affected lignin and H2O2 contents. These results showed that cGMP could regulate wounding-responsive miR828, which repressed the expression of IbMYB and IbTLD. Subsequently, lignin and H2O2 were accumulated to participate in defense mechanisms.
Collapse
Affiliation(s)
- Jeng-Shane Lin
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | - Chih-Ching Lin
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | - Hsin-Hung Lin
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | - Yu-Chi Chen
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Shih-Tong Jeng
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, 106, Taiwan
| |
Collapse
|
347
|
Contreras-Cubas C, Palomar M, Arteaga-Vázquez M, Reyes JL, Covarrubias AA. Non-coding RNAs in the plant response to abiotic stress. PLANTA 2012; 236:943-958. [PMID: 22761008 DOI: 10.1007/s00425-012-1693-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 06/07/2012] [Indexed: 05/27/2023]
Abstract
As sessile organisms, plants have to cope with the ever-changing environment as well as with numerous forms of stress. To react to these external cues, plants have evolved a suite of response mechanisms operating at many different levels, ranging from physiological to molecular processes that provide the organism with a wide phenotypic plasticity, allowing for fine tuning of the reactions to these adverse circumstances. During the past decade, non-coding RNAs (ncRNAs) have emerged as key regulatory molecules, which contribute to a significant portion of the transcriptome in eukaryotes and are involved in the control of transcriptional and post-transcriptional gene regulatory pathways. Although accumulated evidence supports an important role for ncRNAs in plant response and adaptation to abiotic stress, their mechanism(s) of action still remains obscure and a functional characterization of the ncRNA repertoire in plants is still needed. Moreover, common features in the biogenesis of different small ncRNAs, and in some cases, cross talk between different gene regulatory pathways may add to the complexity of these pathways and could play important roles in modulating stress responses. Here we review the various ncRNAs that have been reported to participate in the response to abiotic stress in plants, focusing on their importance in plant adaptation and evolution. Understanding how ncRNAs work may reveal novel mechanisms involved in the plant responses to the environment.
Collapse
Affiliation(s)
- Cecilia Contreras-Cubas
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo Postal 510-3, 62250 Cuernavaca, Mor, Mexico
| | | | | | | | | |
Collapse
|
348
|
Zhou J, Liu M, Jiang J, Qiao G, Lin S, Li H, Xie L, Zhuo R. Expression profile of miRNAs in Populus cathayana L. and Salix matsudana Koidz under salt stress. Mol Biol Rep 2012; 39:8645-8654. [PMID: 22718503 DOI: 10.1007/s11033-012-1719-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 06/06/2012] [Indexed: 01/01/2023]
Abstract
Soil salinization can lead to environmental and ecological problems worldwide. Abiotic stressors, including salinity, are suspected to regulate microRNA (miRNA) expression. Plants exposed to such abiotic stressors express specific miRNAs, which are genes encoding small non-coding RNAs of 20-24 nucleotides. miRNAs are known to exist widely in plant genomes, and are endogenous. A previous study used miRNA microarray technology and poly(A) polymerase-mediated qRT-PCR technology to analyze the expression profile of miRNAs in two types of plants, Populus cathayana L. (salt-sensitive plants) and Salix matsudana Koidz (highly salinity-tolerant plants), both belonging to the Salicaceae family. miRNA microarray hybridization revealed changes in expression of 161 miRNAs P. cathayana and 32 miRNAs in S. matsudana under salt stress. Differences in expression indicate that the same miRNA has different expression patterns in salt-sensitive plants and salt-tolerant plants under salt stress. These indicate that changes in expression of miRNAs might function as a response to varying salt concentrations. To examine this, we used qRT-PCR to select five miRNA family target genes involved in plant responses to salt stress. Upon saline treatment, the expressions of both ptc-miR474c and ptc-miR398b in P. cathayana were down-regulated, but were up-regulated in S. matsudana. Expression of the miR396 family in both types of plants was suppressed. Furthermore, we have analyzed the different expression patterns between P. cathayana and S. matsudana. Findings of this study can be utilized in future investigations of post-transcriptional gene regulation in P. cathayana and S. matsudana under saline stress.
Collapse
Affiliation(s)
- Jing Zhou
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, China.
| | | | | | | | | | | | | | | |
Collapse
|
349
|
Kinoshita N, Wang H, Kasahara H, Liu J, Macpherson C, Machida Y, Kamiya Y, Hannah MA, Chua NH. IAA-Ala Resistant3, an evolutionarily conserved target of miR167, mediates Arabidopsis root architecture changes during high osmotic stress. THE PLANT CELL 2012; 24:3590-602. [PMID: 22960911 PMCID: PMC3480289 DOI: 10.1105/tpc.112.097006] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The functions of microRNAs and their target mRNAs in Arabidopsis thaliana development have been widely documented; however, roles of stress-responsive microRNAs and their targets are not as well understood. Using small RNA deep sequencing and ATH1 microarrays to profile mRNAs, we identified IAA-Ala Resistant3 (IAR3) as a new target of miR167a. As expected, IAR3 mRNA was cleaved at the miR167a complementary site and under high osmotic stress miR167a levels decreased, whereas IAR3 mRNA levels increased. IAR3 hydrolyzes an inactive form of auxin (indole-3-acetic acid [IAA]-alanine) and releases bioactive auxin (IAA), a central phytohormone for root development. In contrast with the wild type, iar3 mutants accumulated reduced IAA levels and did not display high osmotic stress-induced root architecture changes. Transgenic plants expressing a cleavage-resistant form of IAR3 mRNA accumulated high levels of IAR3 mRNAs and showed increased lateral root development compared with transgenic plants expressing wild-type IAR3. Expression of an inducible noncoding RNA to sequester miR167a by target mimicry led to an increase in IAR3 mRNA levels, further confirming the inverse relationship between the two partners. Sequence comparison revealed the miR167 target site on IAR3 mRNA is conserved in evolutionarily distant plant species. Finally, we showed that IAR3 is required for drought tolerance.
Collapse
MESH Headings
- Amidohydrolases/genetics
- Amidohydrolases/metabolism
- Arabidopsis/genetics
- Arabidopsis/growth & development
- Arabidopsis/physiology
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Biological Evolution
- Droughts
- Gene Expression Profiling
- Gene Expression Regulation, Plant/genetics
- High-Throughput Nucleotide Sequencing
- Hydroponics
- Indoleacetic Acids/metabolism
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Models, Biological
- Oligonucleotide Array Sequence Analysis
- Osmosis
- Phenotype
- Plant Growth Regulators/metabolism
- Plant Leaves/genetics
- Plant Leaves/growth & development
- Plant Leaves/physiology
- Plant Roots/genetics
- Plant Roots/growth & development
- Plant Roots/physiology
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Sequence Analysis, DNA
- Stress, Physiological/genetics
Collapse
Affiliation(s)
- Natsuko Kinoshita
- Laboratory of Plant Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
350
|
Yao Y, Sun Q. Exploration of small non coding RNAs in wheat (Triticum aestivum L.). PLANT MOLECULAR BIOLOGY 2012; 80:67-73. [PMID: 22009635 DOI: 10.1007/s11103-011-9835-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 10/09/2011] [Indexed: 05/11/2023]
Abstract
Large numbers of noncoding RNA transcripts (ncRNAs) are being revealed in animals and plants, which can function at the transcriptional or posttranscriptional level to negatively regulate or control genes, repetitive sequences, viruses, and mobile elements. With the identification of microRNA and siRNAs in diverse organisms, increasing evidences indicate that these short npcRNAs play important roles in development, stress response and diseases by cleavage of target mRNA or interfere with translation of target genes. To explore the small RNA transcriptome in wheat (Triticum aestivum L.), a couple of small RNA libraries were constructed and sequenced by high throughput sequencing method. In this review, we focused on the discovery of wheat small RNAs including miRNA and some other non coding small RNAs, then have a view of miRNAs conservations and differences among wheat and other plant species. We also summarized the developmental and stress responsive expression of wheat miRNAs and these observations could serve as a foundation for future functional studies.
Collapse
Affiliation(s)
- Yingyin Yao
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | | |
Collapse
|