301
|
Alaoui-Jamali MA, Qiang H. The interface between ErbB and non-ErbB receptors in tumor invasion: clinical implications and opportunities for target discovery. Drug Resist Updat 2003; 6:95-107. [PMID: 12729807 DOI: 10.1016/s1368-7646(03)00024-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The molecular switches by which malignant cancer cells evolve from a confined to an invasive state are poorly understood, but seem to involve a progressive activation of a signaling network shared by several growth factor receptors and non-receptor molecules. Abnormal expression of ErbB tyrosine kinase receptors, commonly seen in cancer, is an early event in the invasive process, which makes these receptors exciting targets for drug discovery. The past few years have been full of promise for ErbB targeting in the context of receptor overexpression, but also fraught with disappointment as clinical efficacy has often been hampered by potential problems such as the heterogeneity of receptor expression within the same tumor, and the extensive cooperative signaling among ErbB and non-ErbB receptors. Cooperative signaling is a common characteristic of invasive cancer cells, and is believed to dictate the genetic program that controls invasion switches. Molecular studies on the combinatorial signaling involved in tumor invasion are becoming a fertile area for target discovery in cancer. This review discusses how cooperative signaling between ErbB and non-ErbB receptors regulates tumor invasion and hence provides multiple opportunities for drug discovery, and how current therapies and investigational drugs could pave the way to even more potent alternative combinatorial therapeutic approaches for invasive cancers.
Collapse
Affiliation(s)
- Moulay A Alaoui-Jamali
- Department of Medicine, Lady Davis Institute for Medical Research, McGill University, Montreal, Que., Canada.
| | | |
Collapse
|
302
|
Pennacchietti S, Michieli P, Galluzzo M, Mazzone M, Giordano S, Comoglio PM. Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell 2003; 3:347-61. [PMID: 12726861 DOI: 10.1016/s1535-6108(03)00085-0] [Citation(s) in RCA: 1026] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Hypoxia unleashes the invasive and metastatic potential of tumor cells by largely unknown mechanisms. The Met tyrosine kinase, a high affinity receptor for hepatocyte growth factor (HGF), plays a crucial role in controlling invasive growth and is often overexpressed in cancer. Here we show that: (1) hypoxia activates transcription of the met protooncogene, resulting in higher levels of Met; (2) hypoxic areas of tumors overexpress Met; (3) hypoxia amplifies HGF signaling; (4) hypoxia synergizes with HGF in inducing invasion; (5) the proinvasive effects of hypoxia are mimicked by Met overexpression; and (6) inhibition of Met expression prevents hypoxia-induced invasive growth. These data show that hypoxia promotes tumor invasion by sensitizing cells to HGF stimulation, providing a molecular basis to explain Met overexpression in cancer.
Collapse
Affiliation(s)
- Selma Pennacchietti
- Division of Molecular Oncology, Institute for Cancer Research and Treatment, University of Torino Medical School, Candiolo, Italy
| | | | | | | | | | | |
Collapse
|
303
|
Abstract
Invasion causes cancer malignancy. We review recent data about cellular and molecular mechanisms of invasion, focusing on cross-talk between the invaders and the host. Cancer disturbs these cellular activities that maintain multicellular organisms, namely, growth, differentiation, apoptosis, and tissue integrity. Multiple alterations in the genome of cancer cells underlie tumor development. These genetic alterations occur in varying orders; many of them concomitantly influence invasion as well as the other cancer-related cellular activities. Examples discussed are genes encoding elements of the cadherin/catenin complex, the nonreceptor tyrosine kinase Src, the receptor tyrosine kinases c-Met and FGFR, the small GTPase Ras, and the dual phosphatase PTEN. In microorganisms, invasion genes belong to the class of virulence genes. There are numerous clinical and experimental observations showing that invasion results from the cross-talk between cancer cells and host cells, comprising myofibroblasts, endothelial cells, and leukocytes, all of which are themselves invasive. In bone metastases, host osteoclasts serve as targets for therapy. The molecular analysis of invasion-associated cellular activities, namely, homotypic and heterotypic cell-cell adhesion, cell-matrix interactions and ectopic survival, migration, and proteolysis, reveal branching signal transduction pathways with extensive networks between individual pathways. Cellular responses to invasion-stimulatory molecules such as scatter factor, chemokines, leptin, trefoil factors, and bile acids or inhibitory factors such as platelet activating factor and thrombin depend on activation of trimeric G proteins, phosphoinositide 3-kinase, and the Rac and Rho family of small GTPases. The role of proteolysis in invasion is not limited to breakdown of extracellular matrix but also causes cleavage of proinvasive fragments from cell surface glycoproteins.
Collapse
Affiliation(s)
- Marc Mareel
- Laboratory of Experimental Cancerology, Department of Radiotherapy and Nuclear Medicine, Ghent University Hospital, Belgium.
| | | |
Collapse
|
304
|
Wright JH, Wang X, Manning G, LaMere BJ, Le P, Zhu S, Khatry D, Flanagan PM, Buckley SD, Whyte DB, Howlett AR, Bischoff JR, Lipson KE, Jallal B. The STE20 kinase HGK is broadly expressed in human tumor cells and can modulate cellular transformation, invasion, and adhesion. Mol Cell Biol 2003; 23:2068-82. [PMID: 12612079 PMCID: PMC149462 DOI: 10.1128/mcb.23.6.2068-2082.2003] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2002] [Revised: 09/17/2002] [Accepted: 11/06/2002] [Indexed: 02/06/2023] Open
Abstract
HGK (hepatocyte progenitor kinase-like/germinal center kinase-like kinase) is a member of the human STE20/mitogen-activated protein kinase kinase kinase kinase family of serine/threonine kinases and is the ortholog of mouse NIK (Nck-interacting kinase). We have cloned a novel splice variant of HGK from a human tumor line and have further identified a complex family of HGK splice variants. We showed HGK to be highly expressed in most tumor cell lines relative to normal tissue. An active role for this kinase in transformation was suggested by an inhibition of H-Ras(V12)-induced focus formation by expression of inactive, dominant-negative mutants of HGK in both fibroblast and epithelial cell lines. Expression of an inactive mutant of HGK also inhibited the anchorage-independent growth of cells yet had no effect on proliferation in monolayer culture. Expression of HGK mutants modulated integrin receptor expression and had a striking effect on hepatocyte growth factor-stimulated epithelial cell invasion. Together, these results suggest an important role for HGK in cell transformation and invasiveness.
Collapse
MESH Headings
- 3T3 Cells
- Alternative Splicing
- Animals
- Base Sequence
- Cell Adhesion/physiology
- Cell Transformation, Neoplastic/genetics
- Cells, Cultured/drug effects
- Cells, Cultured/enzymology
- Cloning, Molecular
- Enzyme Induction
- Epithelial Cells/drug effects
- Epithelial Cells/enzymology
- Fibroblasts/enzymology
- Gene Expression Regulation, Neoplastic
- Gene Library
- Genes, Dominant
- Glioblastoma/enzymology
- Hepatocyte Growth Factor/pharmacology
- Humans
- Integrins/biosynthesis
- Integrins/genetics
- Intracellular Signaling Peptides and Proteins
- Isoenzymes/biosynthesis
- Isoenzymes/genetics
- Isoenzymes/physiology
- MAP Kinase Signaling System
- Mice
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Neoplasm Invasiveness
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Protein Serine-Threonine Kinases/biosynthesis
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/physiology
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Neoplasm/biosynthesis
- RNA, Neoplasm/genetics
- Sequence Homology, Nucleic Acid
- Tumor Cells, Cultured/enzymology
Collapse
|
305
|
Zamurs L, Pouliot N, Gibson P, Hocking G, Nice E. Strategies for the purification of laminin-10 for studies on colon cancer metastasis. Biomed Chromatogr 2003; 17:201-11. [PMID: 12717810 DOI: 10.1002/bmc.248] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Signals from the epidermal growth factor (EGF) receptor family are thought to combine with integrin-dependent adhesion to laminins to contribute to disease progression and metastasis in cancer. To date, little is known about the mechanisms by which these signals interact. Recently, we have shown that the colon cancer cell line LIM1215 secretes and adheres to laminin-10 through multiple integrin receptors, and that EGF stimulates spreading and migration of these cells on the same substrate. Additionally laminin-10/11 has been shown by immunohistochemistry to be present at the invasive edge of moderately differentiated colon cancers. To enable detailed structure-function studies to be undertaken, it is important to be able to rapidly obtain highly purified native laminin-10 from bulk biological samples in reasonable yield. The development of a multidimensional micropurification scheme to achieve this is presented and compared with other reported methods for the purification of laminins.
Collapse
Affiliation(s)
- Laura Zamurs
- The Ludwig Institute for Cancer Research, Melbourne Tumour Biology Branch, Melbourne, Victoria, Australia
| | | | | | | | | |
Collapse
|
306
|
Shimizu H, Seiki T, Asada M, Yoshimatsu K, Koyama N. Alpha6beta1 integrin induces proteasome-mediated cleavage of erbB2 in breast cancer cells. Oncogene 2003; 22:831-9. [PMID: 12584562 DOI: 10.1038/sj.onc.1206203] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
ErbB2 and alpha6 integrin have been implicated in malignancy of breast cancer cells. Here we have determined the influence of alpha6beta1 integrin on erbB2 signaling in anchorage-independent growth, using MDA-MB435 breast cancer cells. Firstly, we transfected the cells with erbB2 cDNA, and isolated cells with high or low levels of alpha6beta1 integrin by cell sorting (alpha6H-ErbB and alpha6L-ErbB). We found that an erbB ligand, heregulin beta1, enhanced growth activity of alpha6L-ErbB cells, but not alpha6H-ErbB cells. Secondly, we established cells expressing a beta4 integrin deletion mutant (beta4-deltacyt), which selectively inhibited alpha6beta1 integrin expression and adhesion to laminin-1. Again, heregulin beta1 enhanced the growth of erbB2 cDNA-transfected beta4-deltacyt cells, but not mock cells. Western blot analysis revealed that heregulin beta1 stimulated phosphorylation of Akt and its downstream molecules, GSK3beta and p70S6kinase, and that the extent of phosphorylation was greater in ErbB2/beta4-deltacyt cells than ErbB2/mock cells. Furthermore, we found that the erbB2 cytoplasmic domain was truncated in ErbB2/mock cells, which was independent of ligand stimulation and adhesion, and was suppressed by proteasome inhibitors. These results suggest that alpha6beta1 integrin inhibits erbB2 signals by inducing proteasome-dependent proteolytic cleavage of the erbB2 cytoplasmic domain, and may thereby contribute to the regulation of tumor growth.
Collapse
Affiliation(s)
- Hajime Shimizu
- Tsukuba Research Laboratories, Eisai Co, Ltd, Ibaraki, Japan.
| | | | | | | | | |
Collapse
|
307
|
Staquicini FI, Moreira CR, Nascimento FD, Tersariol IL, Nader HB, Dietrich CP, Lopes JD. Enzyme and integrin expression by high and low metastatic melanoma cell lines. Melanoma Res 2003; 13:11-8. [PMID: 12569279 DOI: 10.1097/00008390-200302000-00003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Dissemination of a malignant tumour is the result of a cascade of events beginning with detachment of cells from primary tumour followed by extravasation and growth at secondary sites. The differences in metastatic ability could be attributed to properties intrinsic to the various tumour types. Thus the clonal selection of tumour cells from successive metastases apparently results in cells better equipped for survival and formation of colonies in secondary sites, indicating that survival is not a random phenomenon. Many studies of malignant cells have correlated the overexpression of adhesion receptors such as integrins and the production of cysteine proteases and glycosidases with the progression of malignancy. The interaction of cysteine proteases with basement membrane components has been implicated in tumour invasion, activation of hormones and growth factors. On the other hand, the expression of the heparanase gene and its protein has been associated with the metastatic potential of several human and mouse tumour cell lines. This study aimed to investigate the correlations between the metastatic properties of clones with high and low metastatic potential and their ability to adhere to the extracellular matrix and to degrade proteins and sulphated glycosaminoglycans present there. Clonal selection of the B16F10 cell line was performed, and the clones were examined for the expression of an integrin-type laminin receptor. A significantly higher level was detected in a high metastatic clone. Enzymatic assays showed higher activity for alpha-d-N-acetylglucosaminidase, beta-d-N-acetylgalactosaminidase and beta-d-glucuronidase in conditioned medium from low metastatic clones compared with that from high metastatic clones. However, higher endopeptidase activity was observed in conditioned medium from high metastatic clones. In summary, these results showed a positive correlation between high metastatic potential and endopeptidase secretion. Similarly, a positive correlation was observed between low metastatic cells and the secretion of glycosaminoglycan-degrading glycosidases.
Collapse
Affiliation(s)
- F I Staquicini
- Department of Immunology, Federal University of São Paulo, São Paulo, Brazil.
| | | | | | | | | | | | | |
Collapse
|
308
|
Bonaccorsi L, Muratori M, Carloni V, Zecchi S, Formigli L, Forti G, Baldi E. Androgen receptor and prostate cancer invasion. INTERNATIONAL JOURNAL OF ANDROLOGY 2003; 26:21-5. [PMID: 12534934 DOI: 10.1046/j.1365-2605.2003.00375.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Evidence indicates that androgen-sensitive prostate cancer cells have a lower malignant potential. We previously demonstrated that expression of androgen receptor (AR) by transfection of the androgen-independent prostate cancer cell line PC3 decreases invasion and adhesion of these cells through modulation of alpha6beta4 expression. Treatment with the androgen further reduced adhesion and invasion of the cells without, however, modifying alpha6beta4. Here we investigated whether the androgen has a direct effect on alpha6beta4-EGF receptor (EGFR) interaction and signalling leading to invasion of these cells. Immunoconfocal microscopy demonstrated that in control cells (PC3-Neo), alpha6beta4 and EGFR colocalize and redistribute in response to epidermal growth factor (EGF). In PC3-AR cells colocalization and redistribution between the two molecules was reduced and abolished by pre-treatment with R1881. Co-immunoprecipitation studies demonstrated that tyrosine phosphorylation of beta4 in response to EGF was reduced in PC3-AR cells compared to PC3-Neo. Immunoconfocal and co-immunoprecipitation studies demonstrated colocalization at membrane level and co-immunoprecipitation of EGFR and AR, indicating an interaction between the two proteins. PI3K activity, a key signalling pathway for invasion of these cells, was decreased in PC3-AR cells in response to EGF and further reduced by treatment with R1881. EGFR internalization was strongly reduced in PC3-AR compared with PC3-Neo cells and was reduced by treatment with R1881. In conclusion, the expression of AR by transfection in PC3 cells confers a less malignant phenotype by interfering with EGFR--alpha6beta4 interaction and signalling leading to invasion through a mechanism involving an interaction between the classic AR and EGFR.
Collapse
Affiliation(s)
- Lorella Bonaccorsi
- Dipartimento di Fisiopatologia Clinica, Unità di Andrologia, Università di Firenze, Firenze, Italy.
| | | | | | | | | | | | | |
Collapse
|
309
|
Zhang YW, Vande Woude GF. HGF/SF-met signaling in the control of branching morphogenesis and invasion. J Cell Biochem 2003; 88:408-17. [PMID: 12520544 DOI: 10.1002/jcb.10358] [Citation(s) in RCA: 226] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hepatocyte growth factor/Scatter factor (HGF/SF) is a multifunctional growth factor which can induce diverse biological events. In vitro, these include scattering, invasion, proliferation and branching morphogenesis. In vivo, HGF/SF is responsible for many processes during embryonic development and a variety of activities in adults, and many of these normal activities have been implicated in its role in tumorgenesis and metastasis. The c-Met receptor tyrosine kinase is the only known receptor for HGF/SF and mediates all HGF/SF induced biological activities. Upon HGF/SF stimulation, the c-Met receptor is tyrosine-phosphorylated which is followed by the recruitment of a group of signaling molecules and/or adaptor proteins to its cytoplasmic domain and its multiple docking sites. This action leads to the activation of several different signaling cascades that form a complete network of intra and extracellular responses. Different combinations of signaling pathways and signaling molecules and/or differences in magnitude of responses contribute to these diverse series of HGF/SF-Met induced activities and most certainly are influenced by cell type as well as different cellular environments. In this review, we focus on HGF/SF-induced branching morphogenesis and invasion, and bring together recent new findings which provide insight into how HGF/SF, via c-Met induces this response.
Collapse
Affiliation(s)
- Yu-Wen Zhang
- Laboratory of Molecular Oncology, Van Andel Research Institute, 333 Bostwick Ave. NE, Grand Rapids, Michigan 49503, USA
| | | |
Collapse
|
310
|
Abstract
All epithelia form sheets of cells connected by tight and adherent junctions and exhibit polarized distribution of membrane proteins and lipids. During their development, epithelia progress from this 'generic' phenotype to terminally differentiated states characterized by the development of apical structures such as microvilli, apical endocytosis and regulated exocytosis as well as characteristic cell shapes. We have identified an extracellular matrix protein, hensin, which when polymerized into a fiber induces the terminal differentiation of renal cells. Hensin is expressed in most epithelia where it exists in tissue-specific alternately spliced forms. Many epithelial tumors have deletions in the human ortholog of hensin. We propose that hensin mediates terminal differentiation of these epithelia.
Collapse
Affiliation(s)
- Qais Al-Awqati
- Department of Medicine and Physiology, College of Physicians and Surgeons of Columbia University, 630 W. 168th St., New York, NY 10032, USA
| | | | | |
Collapse
|
311
|
Ponta H, Sherman L, Herrlich PA. CD44: from adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol 2003; 4:33-45. [PMID: 12511867 DOI: 10.1038/nrm1004] [Citation(s) in RCA: 1798] [Impact Index Per Article: 81.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cell-adhesion molecules, once believed to function primarily in tethering cells to extracellular ligands, are now recognized as having broader functions in cellular signalling cascades. The CD44 transmembrane glycoprotein family adds new aspects to these roles by participating in signal-transduction processes--not only by establishing specific transmembrane complexes, but also by organizing signalling cascades through association with the actin cytoskeleton. CD44 and its associated partner proteins monitor changes in the extracellular matrix that influence cell growth, survival and differentiation.
Collapse
Affiliation(s)
- Helmut Ponta
- Forschungszentrum Karlsruhe, Institute of Toxicology and Genetics, PO Box 3640, 76021 Karlsruhe, Germany
| | | | | |
Collapse
|
312
|
Chan PC, Liang CC, Yu KC, Chang MC, Ho WL, Chen BH, Chen HC. Synergistic effect of focal adhesion kinase overexpression and hepatocyte growth factor stimulation on cell transformation. J Biol Chem 2002; 277:50373-9. [PMID: 12393896 DOI: 10.1074/jbc.m204691200] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although an elevated level of focal adhesion kinase (FAK) has been observed in a variety of invasive human tumors, forced expression of FAK alone in cultured cells does not cause them to exhibit transformed phenotypes. Therefore, the role of FAK in oncogenic transformation remains unclear. In this study, we have demonstrated that FAK overexpression in Madin-Darby canine kidney epithelial cells rendered them susceptible to transformation by hepatocyte growth factor (HGF). Using various FAK mutants, we found that the simultaneous bindings of Src and p130(cas) were required for FAK to potentiate cell transformation. Expression of FAK-related nonkinase, kinase-deficient Src, or the Src homology 3 domain of p130(cas), which respectively serve as dominant negative versions of FAK, Src, and p130(cas), apparently reversed the transformed phenotypes of FAK-overexpressed cells upon HGF stimulation. Moreover, FAK overexpression was able to enhance HGF-elicited signals, leading to sustained activation of ERK, JNK, and AKT, which could be prevented by the expression of the Src homology 3 domain of p130(cas). Taken together, our results indicate that the synergistic effect of FAK overexpression and HGF stimulation leads to cell transformation and implicate a critical role of p130(cas) in this process.
Collapse
Affiliation(s)
- Po-Chao Chan
- Department of Life Sciences and the Graduate Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | | | | | | | | | | | | |
Collapse
|
313
|
Lock LS, Maroun CR, Naujokas MA, Park M. Distinct recruitment and function of Gab1 and Gab2 in Met receptor-mediated epithelial morphogenesis. Mol Biol Cell 2002. [PMID: 12058075 DOI: 10.1091/mbc.02-02-0031.] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Gab family of docking proteins (Gab1 and Gab2) are phosphorylated in response to various cytokines and growth factors. Gab1 acts to diversify the signal downstream from the Met receptor tyrosine kinase through the recruitment of multiple signaling proteins, and is essential for epithelial morphogenesis. To determine whether Gab1 and Gab2 are functionally redundant, we have examined the role of Gab2 in epithelial cells. Both Gab1 and Gab2 are expressed in epithelial cells and localize to cell-cell junctions. However, whereas overexpression of Gab1 promotes a morphogenic response, the overexpression of Gab2 fails to induce this response. We show that Gab2 recruitment to the Met receptor is dependent on the Grb2 adapter protein. In contrast, Gab1 recruitment to Met is both Grb2 dependent and Grb2 independent. The latter requires a novel amino acid sequence present in the Met-binding domain of Gab1 but not Gab2. Mutation of these residues in Gab1 impairs both association with the Met receptor and the ability of Gab1 to promote a morphogenic response, whereas their insertion into Gab2 increases Gab2 association with Met, but does not confer on Gab2 the ability to promote epithelial morphogenesis. We propose that the Grb2-independent recruitment of Gab proteins to Met is necessary but not sufficient to promote epithelial morphogenesis.
Collapse
Affiliation(s)
- Lisa S Lock
- Department of Biochemistry, Molecular Oncology Group, McGill University Health Centre, Montreal, Quebec, Canada H3A 1A1
| | | | | | | |
Collapse
|
314
|
Orian-Rousseau V, Chen L, Sleeman JP, Herrlich P, Ponta H. CD44 is required for two consecutive steps in HGF/c-Met signaling. Genes Dev 2002; 16:3074-86. [PMID: 12464636 PMCID: PMC187488 DOI: 10.1101/gad.242602] [Citation(s) in RCA: 406] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2002] [Accepted: 10/04/2002] [Indexed: 11/25/2022]
Abstract
The tyrosine kinase receptor c-Met and its ligand HGF/SF, ezrin, and splice variants of CD44 have independently been identified as tumor metastasis-associated proteins. We now show that these proteins cooperate. A CD44 isoform containing variant exon v6 sequences is strictly required for c-Met activation by HGF/SF in rat and human carcinoma cells, in established cell lines as well as in primary keratinocytes. CD44v6-deficient tumor cells were unable to activate c-Met unless they were transfected with a CD44v6-bearing isoform. Antibodies to two v6-encoded epitopes inhibited autophosphorylation of c-Met by interfering with the formation of a complex formed by c-Met, CD44v6, and HGF/SF. In addition, signal transduction from activated c-Met to MEK and Erk required the presence of the cytoplasmic tail of CD44 including a binding motif for ERM proteins. This suggests a role for ERM proteins and possibly their link to the cortical actin cytoskeleton in signal transfer.
Collapse
|
315
|
Abstract
It is now increasingly recognized that the microenvironment plays a critical role in the progression of tumors. Perhaps less obvious is the concept that the microenvironment may share responsibility in determining the "malignant" traits of tumor cells, i.e. invasiveness and metastasis. If tumors are tissues, however unbalanced, rather than a collection of "malignant" cells recruiting local resources for the purpose of growth, then it is inevitable that tumor cells will respond to local stimuli. These stimuli include cues for motility and migration, which normally appear in tissues undergoing formation, remodeling or healing. Carcinoma cells are likely to be sensitive to the motility cues that normally regulate epithelial morphogenetic movements such as ingression, delamination, invagination, and tube or sheet migration. "Malignant" tumors, then, can be redefined as those in which these cues arise more frequently or act more effectively. Here, we expand on this view and propose that invasion and metastasis may be the outcome of tumor cell responses to microenvironmental motility cues. Understanding how such motility cues arise and act, both in normal and tumor tissue, should be a high priority in cancer research.
Collapse
Affiliation(s)
- Vito Quaranta
- Department of Cell Biology, the Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
316
|
Abstract
The integrin alpha6beta4 has been implicated in two apparently contrasting processes, i.e., the formation of stable adhesions, and cell migration and invasion. To study the dynamic properties of alpha6beta4 in live cells two different beta4-chimeras were stably expressed in beta4-deficient PA-JEB keratinocytes. One chimera consisted of full-length beta4 fused to EGFP at its carboxy terminus (beta4-EGFP). In a second chimera the extracellular part of beta4 was replaced by EGFP (EGFP-beta4), thereby rendering it incapable of associating with alpha6 and thus of binding to laminin-5. Both chimeras induce the formation of hemidesmosome-like structures, which contain plectin and often also BP180 and BP230. During cell migration and division, the beta4-EGFP and EGFP-beta4 hemidesmosomes disappear, and a proportion of the beta4-EGFP, but not of the EGFP-beta4 molecules, become part of retraction fibers, which are occasionally ripped from the cell membrane, thereby leaving "footprints" of the migrating cell. PA-JEB cells expressing beta4-EGFP migrate considerably more slowly than those that express EGFP-beta4. Studies with a beta4-EGFP mutant that is unable to interact with plectin and thus with the cytoskeleton (beta4(R1281W)-EGFP) suggest that the stabilization of the interaction between alpha6beta4 and LN-5, rather than the increased adhesion to LN-5, is responsible for the inhibition of migration. Consistent with this, photobleaching and recovery experiments revealed that the interaction of beta4 with plectin renders the bond between alpha6beta4 and laminin-5 more stable, i.e., beta4-EGFP is less dynamic than beta4(R1281W)-EGFP. On the other hand, when alpha6beta4 is bound to laminin-5, the binding dynamics of beta4 to plectin are increased, i.e., beta4-EGFP is more dynamic than EGFP-beta4. We suggest that the stability of the interaction between alpha6beta4 and laminin-5 is influenced by the clustering of alpha6beta4 through the deposition of laminin-5 underneath the cells. This clustering ultimately determines whether alpha6beta4 will inhibit cell migration or not.
Collapse
Affiliation(s)
- Cecile A W Geuijen
- Division of Cell Biology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | | |
Collapse
|
317
|
Abdel-Ghany M, Cheng HC, Elble RC, Pauli BU. Focal adhesion kinase activated by beta(4) integrin ligation to mCLCA1 mediates early metastatic growth. J Biol Chem 2002; 277:34391-400. [PMID: 12110680 DOI: 10.1074/jbc.m205307200] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Early metastatic growth occurs at sites of vascular arrest of blood-borne cancer cells and is entirely intravascular. Here we show that lung colonization by B16-F10 cells is licensed by beta(4) integrin adhesion to the mouse lung endothelial Ca(2+)-activated chloride channel protein mCLCA1. In a manner independent of Met, beta(4) integrin-mCLCA1-ligation leads to complexing with and activation of focal adhesion kinase (FAK) and downstream signaling to extracellular signal-regulated kinase (ERK). FAK/ERK signaling is Src-dependent and is interrupted by adhesion blocking antibodies and by dominant-negative (dn)-FAK mutants. Levels of ERK activation in B16-F10 cells transfected with wild-type or mutant FAK are closely associated with rates of proliferation and bromodeoxyuridine (BrdUrd) incorporation of tumor cells grown in mCLCA1-coated dishes, the ability to form tumor cell colonies on CLCA-expressing endothelial cell monolayers, and the extent of pulmonary metastatic growth. Parallel with the transfection rates, B16-F10 cells transfected with dn-FAK mutants and injected intravenously into syngeneic mice generate approximately half the number and size of lung colonies that vector-transfected B16-F10 cells produce. For the first time, beta(4) integrin ligation to its novel CLCA-adhesion partner is shown to be associated with FAK complexing, activation, and signaling to promote early, intravascular, metastatic growth.
Collapse
Affiliation(s)
- Mossaad Abdel-Ghany
- Cancer Biology Laboratories, Department of Molecular Medicine, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
318
|
Giordano S, Corso S, Conrotto P, Artigiani S, Gilestro G, Barberis D, Tamagnone L, Comoglio PM. The semaphorin 4D receptor controls invasive growth by coupling with Met. Nat Cell Biol 2002; 4:720-4. [PMID: 12198496 DOI: 10.1038/ncb843] [Citation(s) in RCA: 340] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Semaphorins are cell surface and soluble signals that control axonal guidance. Recently, semaphorin receptors (plexins) have been discovered and shown to be widely expressed. Their biological activities outside the nervous system and the signal transduction mechanism(s) they utilize are largely unknown. Here, we show that in epithelial cells, Semaphorin 4D (Sema 4D) triggers invasive growth, a complex programme that includes cell#150;cell dissociation, anchorage-independent growth and branching morphogenesis. Interestingly, the same response is also controlled by scatter factors through their tyrosine kinase receptors, which share striking structural homology with plexins in their extracellular domain. We found that in cells expressing the endogenous proteins, Plexin B1 (the Sema 4D Receptor) and Met (the Scatter Factor 1/ Hepatocyte Growth Factor Receptor) associate in a complex. In addition, binding of Sema 4D to Plexin B1 stimulates the tyrosine kinase activity of Met, resulting in tyrosine phosphorylation of both receptors. Finally, cells lacking Met expression do not respond to Sema 4D unless exogenous Met is expressed. This work identifies a novel biological function of semaphorins and suggests the involvement of an unexpected signalling mechanism, namely, the coupling of a plexin to a tyrosine kinase receptor.
Collapse
Affiliation(s)
- Silvia Giordano
- Institute for Cancer Research and Treatment, University of Torino School of Medicine, 10060 Candiolo, Torino, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
319
|
Chung J, Bachelder RE, Lipscomb EA, Shaw LM, Mercurio AM. Integrin (alpha 6 beta 4) regulation of eIF-4E activity and VEGF translation: a survival mechanism for carcinoma cells. J Cell Biol 2002; 158:165-74. [PMID: 12105188 PMCID: PMC2173018 DOI: 10.1083/jcb.200112015] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
We define a novel mechanism by which integrins regulate growth factor expression and the survival of carcinoma cells. Specifically, we demonstrate that the alpha 6 beta 4 integrin enhances vascular endothelial growth factor (VEGF) translation in breast carcinoma cells. The mechanism involves the ability of this integrin to stimulate the phosphorylation and inactivation of 4E-binding protein (4E-BP1), a translational repressor that inhibits the function of eukaryotic translation initiation factor 4E (eIF-4E). The regulation of 4E-BP1 phosphorylation by alpha 6 beta 4 derives from the ability of this integrin to activate the PI-3K-Akt pathway and, consequently, the rapamycin-sensitive kinase mTOR that can phosphorylate 4E-BP1. Importantly, we show that this alpha 6 beta 4-dependent regulation of VEGF translation plays an important role in the survival of metastatic breast carcinoma cells by sustaining a VEGF autocrine signaling pathway that involves activation of PI-3K and Akt. These findings reveal that integrin-mediated activation of PI-3K-Akt is amplified by integrin-stimulated VEGF expression and they provide a mechanism that substantiates the reported role of alpha 6 beta 4 in carcinoma progression.
Collapse
Affiliation(s)
- Jun Chung
- Division of Cancer Biology and Angiogenesis, Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|
320
|
Jauliac S, López-Rodriguez C, Shaw LM, Brown LF, Rao A, Toker A. The role of NFAT transcription factors in integrin-mediated carcinoma invasion. Nat Cell Biol 2002; 4:540-544. [PMID: 12080349 DOI: 10.1038/ncb816] [Citation(s) in RCA: 341] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Integrins, receptors for extracellular matrix ligands, are critical regulators of the invasive phenotype. Specifically, the alpha(6)beta(4) integrin has been linked with epithelial cell motility, cellular survival and carcinoma invasion, hallmarks of metastatic tumours. Previous studies have also shown that antagonists of the NFAT (nuclear factor of activated T-cells) family of transcription factors exhibit strong anti-tumour-promoting activity. This suggests that NFAT may function in tumour metastasis. Here, we investigate the involvement of NFAT in promoting carcinoma invasion downstream of the alpha(6)beta(4) integrin. We provide evidence that both NFAT1, and the recently identified NFAT5 isoform, are expressed in invasive human ductal breast carcinomas and participate in promoting carcinoma invasion using cell lines derived from human breast and colon carcinomas. NFAT1 and NFAT5 activity correlates with the expression of the alpha(6)beta(4) integrin. In addition, the transcriptional activity of NFAT5 is induced by alpha(6)beta(4) clustering in the presence of chemo-attractants, resulting in enhanced cell migration. These observations show that NFATs are targets of alpha(6)beta(4) integrin signalling and are involved in promoting carcinoma invasion, highlighting a novel function for this family of transcription factors in human cancer.
Collapse
Affiliation(s)
- Sebastien Jauliac
- Department of Pathology, Harvard Medical School and Beth Israel Deaconess Medical Center, 200 Longwood Avenue, Boston MA 02115, USA
| | | | | | | | | | | |
Collapse
|
321
|
Abstract
As organisms have evolved in size and complexity, tubular systems have developed to enable the efficient transport of substances into and out of tissues. These tubular systems are generated using strategies that are based on common elements of cell behaviour, including cell polarization, tube migration to target sites, cell-fate diversification and localization of specialized cells to different regions of the tube system. Using examples from both invertebrate and vertebrate systems, this review highlights progress in understanding these basic principles and briefly discusses the possible evolution of strategies to regulate the morphogenesis of tubular systems.
Collapse
Affiliation(s)
- Brigid L M Hogan
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, Vanderbilt Medical Center, Nashville, Tennessee 37232-2175, USA.
| | | |
Collapse
|
322
|
Braun S, auf dem Keller U, Beer HD, Krampert M, Müller M, Werner S, Dickson C, Werner S. Meeting report: growth factors in development, repair and disease. Eur J Cell Biol 2002; 81:375-82. [PMID: 12160145 DOI: 10.1078/0171-9335-00258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Susanne Braun
- Institute of Cell Biology, ETH Zürich, Department of Biology, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
323
|
Lock LS, Maroun CR, Naujokas MA, Park M. Distinct recruitment and function of Gab1 and Gab2 in Met receptor-mediated epithelial morphogenesis. Mol Biol Cell 2002; 13:2132-46. [PMID: 12058075 PMCID: PMC117630 DOI: 10.1091/mbc.02-02-0031] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Gab family of docking proteins (Gab1 and Gab2) are phosphorylated in response to various cytokines and growth factors. Gab1 acts to diversify the signal downstream from the Met receptor tyrosine kinase through the recruitment of multiple signaling proteins, and is essential for epithelial morphogenesis. To determine whether Gab1 and Gab2 are functionally redundant, we have examined the role of Gab2 in epithelial cells. Both Gab1 and Gab2 are expressed in epithelial cells and localize to cell-cell junctions. However, whereas overexpression of Gab1 promotes a morphogenic response, the overexpression of Gab2 fails to induce this response. We show that Gab2 recruitment to the Met receptor is dependent on the Grb2 adapter protein. In contrast, Gab1 recruitment to Met is both Grb2 dependent and Grb2 independent. The latter requires a novel amino acid sequence present in the Met-binding domain of Gab1 but not Gab2. Mutation of these residues in Gab1 impairs both association with the Met receptor and the ability of Gab1 to promote a morphogenic response, whereas their insertion into Gab2 increases Gab2 association with Met, but does not confer on Gab2 the ability to promote epithelial morphogenesis. We propose that the Grb2-independent recruitment of Gab proteins to Met is necessary but not sufficient to promote epithelial morphogenesis.
Collapse
Affiliation(s)
- Lisa S Lock
- Department of Biochemistry, Molecular Oncology Group, McGill University Health Centre, Montreal, Quebec, Canada H3A 1A1
| | | | | | | |
Collapse
|
324
|
Trusolino L, Comoglio PM. Scatter-factor and semaphorin receptors: cell signalling for invasive growth. Nat Rev Cancer 2002; 2:289-300. [PMID: 12001990 DOI: 10.1038/nrc779] [Citation(s) in RCA: 578] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Malignant disease occurs when neoplastic cells abandon their primary site of accretion, cross tissue boundaries and penetrate the vasculature to colonize distant sites. This process --metastasis--is the aberrant counterpart of a physiological programme for organ regeneration and maintenance. Scatter factors and semaphorins, together with their receptors, help to orchestrate this programme. What are the differences between physiological and pathological activation of these signalling molecules, and can we exploit them therapeutically to prevent metastasis?
Collapse
Affiliation(s)
- Livio Trusolino
- Institute for Cancer Research and Treatment, University of Torino School of Medicine, Candiolo, Italy.
| | | |
Collapse
|
325
|
Price JT, Thompson EW. Mechanisms of tumour invasion and metastasis: emerging targets for therapy. Expert Opin Ther Targets 2002; 6:217-33. [PMID: 12223082 DOI: 10.1517/14728222.6.2.217] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The progression of a tumour from one of benign and delimited growth to one that is invasive and metastatic is the major cause of poor clinical outcome in cancer patients. The invasion and metastasis of tumours is a highly complex and multistep process that requires a tumour cell to modulate its ability to adhere, degrade the surrounding extracellular matrix, migrate, proliferate at a secondary site and stimulate angiogenesis. Knowledge of the process has greatly increased and this has resulted in the identification of a number of molecules that are fundamental to the process. The involvement of these molecules has been shown to relate not only to the survival and proliferation of the tumour cell but, also to the processes of tumour cell adhesion, migration, and the tumour cells ability to degrade and escape the primary site as well as play a role in angiogenesis. These molecules may provide important therapeutic targets that represent the ability to target specific steps in the process of invasion and metastasis and provide additional therapies. The review focuses on representative key targets in each of these processes and summarises the state of play in each case.
Collapse
Affiliation(s)
- John T Price
- Bone Metastasis and Cell Migration Laboratory, St Vincent's Institute of Medical Research, Department of Surgery, University of Melbourne, St. Vincent's Hospital, Fitzroy, Melbourne, VIC 3065, Australia.
| | | |
Collapse
|
326
|
Abstract
The hepatocyte growth factor (HGF) receptor mediates a two-sided response-cell proliferation and differentiation. This process, defined as "branching morphogenesis," involves cell scatter and redistribution to form ramified hollow tubules within the extracellular matrix, and protection from apoptosis. We have fused the intracellular domain of the HGF receptor (HGFR) with three FK506-binding protein (FKBP) domains and a membrane-targeting signal. This molecule (FKBP-HGFR) dimerizes after administration of a bifunctional ligand specific for FKBP domains. We show that, in mouse hepatocyte progenitors, FKBP-HGFR dimerization elicits the differentiative side of the HGF response, including cell scatter, morphogenesis, and protection from apoptosis. Surprisingly, FKBP-HGFR does not induce cell proliferation. We could correlate the segregation of the differentiative response with a distinctive signaling kinetic of FKBP-HGFR: a) reduced and prolonged tyrosine kinase activation; and b) low early peak of MAP kinase activation (a log lower than the peak induced by the wild-type receptor), followed by a sustained activation over 6 h. These data show that the biological response triggered by the HGFR can be dissected on the basis of the quantitative signaling profile, and that FKBP-HGFR may be used to control selectively the differentiation of hepatocytes, without promoting cell expansion.
Collapse
Affiliation(s)
- Carla Boccaccio
- Institute for Cancer Research and Treatment, University of Torino Medical School, 10060 Candiolo-Torino, Italy.
| | | | | |
Collapse
|
327
|
Klein R. Novel effector function for an old receptor. Nat Cell Biol 2002; 4:E11-2. [PMID: 11780135 DOI: 10.1038/ncb0102-e11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
328
|
Abstract
In carcinoma cells, the beta 4 integrin functions in a ligand-independent manner to promote proliferation, migration, and invasion. An interesting new paper describes a mechanism whereby the beta 4 integrin cytoplasmic tail becomes an integrin ligand-independent adaptor protein for the Met receptor tyrosine kinase, thereby enhancing the mitogenic, morphogenic, and motogenic properties of Met.
Collapse
Affiliation(s)
- M E Hemler
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|