301
|
Yun SP, Kim D, Kim S, Kim S, Karuppagounder SS, Kwon SH, Lee S, Kam TI, Lee S, Ham S, Park JH, Dawson VL, Dawson TM, Lee Y, Ko HS. α-Synuclein accumulation and GBA deficiency due to L444P GBA mutation contributes to MPTP-induced parkinsonism. Mol Neurodegener 2018; 13:1. [PMID: 29310663 PMCID: PMC5759291 DOI: 10.1186/s13024-017-0233-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 12/29/2017] [Indexed: 12/20/2022] Open
Abstract
Background Mutations in glucocerebrosidase (GBA) cause Gaucher disease (GD) and increase the risk of developing Parkinson’s disease (PD) and Dementia with Lewy Bodies (DLB). Since both genetic and environmental factors contribute to the pathogenesis of sporadic PD, we investigated the susceptibility of nigrostriatal dopamine (DA) neurons in L444P GBA heterozygous knock-in (GBA+/L444P) mice to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a selective dopaminergic mitochondrial neurotoxin. Method We used GBA+/L444P mice, α-synuclein knockout (SNCA−/−) mice at 8 months of age, and adeno-associated virus (AAV)-human GBA overexpression to investigate the rescue effect of DA neuronal loss and susceptibility by MPTP. Mitochondrial morphology and functional assay were used to identify mitochondrial defects in GBA+/L444P mice. Motor behavioral test, immunohistochemistry, and HPLC were performed to measure dopaminergic degeneration by MPTP and investigate the relationship between GBA mutation and α-synuclein. Mitochondrial immunostaining, qPCR, and Western blot were also used to study the effects of α-synuclein knockout or GBA overexpression on MPTP-induced mitochondrial defects and susceptibility. Results L444P GBA heterozygous mutation reduced GBA protein levels, enzymatic activity and a concomitant accumulation of α-synuclein in the midbrain of GBA+/L444P mice. Furthermore, the deficiency resulted in defects in mitochondria of cortical neurons cultured from GBA+/L444P mice. Notably, treatment with MPTP resulted in a significant loss of dopaminergic neurons and striatal dopaminergic fibers in GBA+/L444P mice compared to wild type (WT) mice. Levels of striatal DA and its metabolites were more depleted in the striatum of GBA+/L444P mice. Behavioral deficits, neuroinflammation, and mitochondrial defects were more exacerbated in GBA+/L444P mice after MPTP treatment. Importantly, MPTP induced PD-like symptoms were significantly improved by knockout of α-synuclein or augmentation of GBA via AAV5-hGBA injection in both WT and GBA+/L444P mice. Intriguingly, the degree of reduction in MPTP induced PD-like symptoms in GBA+/L444Pα-synuclein (SNCA)−/− mice was nearly equal to that in SNCA−/− mice after MPTP treatment. Conclusion Our results suggest that GBA deficiency due to L444P GBA heterozygous mutation and the accompanying accumulation of α-synuclein render DA neurons more susceptible to MPTP intoxication. Thus, GBA and α-synuclein play dual physiological roles in the survival of DA neurons in response to the mitochondrial dopaminergic neurotoxin, MPTP. Electronic supplementary material The online version of this article (10.1186/s13024-017-0233-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Seung Pil Yun
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neurology, Baltimore, MD, USA.,Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, USA
| | - Donghoon Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neurology, Baltimore, MD, USA
| | - Sangjune Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neurology, Baltimore, MD, USA
| | - SangMin Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neurology, Baltimore, MD, USA
| | - Senthilkumar S Karuppagounder
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neurology, Baltimore, MD, USA
| | - Seung-Hwan Kwon
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neurology, Baltimore, MD, USA
| | - Saebom Lee
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neurology, Baltimore, MD, USA
| | - Tae-In Kam
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neurology, Baltimore, MD, USA
| | - Suhyun Lee
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neurology, Baltimore, MD, USA
| | - Sangwoo Ham
- Division of Pharmacology, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon, South Korea
| | - Jae Hong Park
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neurology, Baltimore, MD, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neurology, Baltimore, MD, USA.,Department of Physiology, Baltimore, MD, USA.,Solomon H. Snyder Department of Neuroscience, Baltimore, MD, USA.,Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neurology, Baltimore, MD, USA.,Solomon H. Snyder Department of Neuroscience, Baltimore, MD, USA.,Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, USA.,Diana Helis Henry Medical Research Foundation, New Orleans, LA, USA
| | - Yunjong Lee
- Division of Pharmacology, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon, South Korea. .,Samsung Medical Center (SMC), Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon, South Korea.
| | - Han Seok Ko
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Department of Neurology, Baltimore, MD, USA. .,Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, USA. .,Diana Helis Henry Medical Research Foundation, New Orleans, LA, USA.
| |
Collapse
|
302
|
Kett LR, Dauer WT. Endolysosomal dysfunction in Parkinson's disease: Recent developments and future challenges. Mov Disord 2017; 31:1433-1443. [PMID: 27619535 DOI: 10.1002/mds.26797] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 08/08/2016] [Accepted: 08/09/2016] [Indexed: 12/11/2022] Open
Abstract
Increasingly, genetic, cell biological, and in vivo work emphasizes the role of the endolysosomal system dysfunction in Parkinson's disease pathogenesis. Yet many questions remain about the mechanisms by which primary endolysosomal dysfunction causes PD as well as how the endolysosomal system interacts with α-synuclein-mediated neurotoxicity. We recently described a new mouse model of parkinsonism in which loss of the endolysosomal protein Atp13a2 causes behavioral, neuropathological, and biochemical changes similar to those present in human subjects with ATP13A2 mutations. In this Scientific Perspectives, we revisit the evidence implicating the endolysosomal system in PD, current hypotheses of disease pathogenesis, and how recent studies refine these hypotheses and raise new questions for future research. © 2016 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Lauren R Kett
- Department of Neurology, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - William T Dauer
- Department of Neurology, University of Michigan Medical School, Ann Arbor, Michigan, USA. .,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| |
Collapse
|
303
|
Autophagy impairment in Parkinson's disease. Essays Biochem 2017; 61:711-720. [PMID: 29233880 DOI: 10.1042/ebc20170023] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/14/2017] [Accepted: 10/24/2017] [Indexed: 11/17/2022]
Abstract
Parkinson's disease (PD) is a debilitating movement disorder typically associated with the accumulation of intracytoplasmic aggregate prone protein deposits. Over recent years, increasing evidence has led to the suggestion that the mutations underlying certain forms of PD impair autophagy. Autophagy is a degradative pathway that delivers cytoplasmic content to lysosomes for degradation and represents a major route for degradation of aggregated cellular proteins and dysfunctional organelles. Autophagy up-regulation is a promising therapeutic strategy that is being explored for its potential to protect cells against the toxicity of aggregate-prone proteins in neurodegenerative diseases. Here, we describe how the mutations in different subtypes of PD can affect different stages of autophagy.
Collapse
|
304
|
Schapansky J, Khasnavis S, DeAndrade MP, Nardozzi JD, Falkson SR, Boyd JD, Sanderson JB, Bartels T, Melrose HL, LaVoie MJ. Familial knockin mutation of LRRK2 causes lysosomal dysfunction and accumulation of endogenous insoluble α-synuclein in neurons. Neurobiol Dis 2017; 111:26-35. [PMID: 29246723 DOI: 10.1016/j.nbd.2017.12.005] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 12/05/2017] [Accepted: 12/11/2017] [Indexed: 02/07/2023] Open
Abstract
Missense mutations in the multi-domain kinase LRRK2 cause late onset familial Parkinson's disease. They most commonly with classic proteinopathy in the form of Lewy bodies and Lewy neurites comprised of insoluble α-synuclein, but in rare cases can also manifest tauopathy. The normal function of LRRK2 has remained elusive, as have the cellular consequences of its mutation. Data from LRRK2 null model organisms and LRRK2-inhibitor treated animals support a physiological role for LRRK2 in regulating lysosome function. Since idiopathic and LRRK2-linked PD are associated with the intraneuronal accumulation of protein aggregates, a series of critical questions emerge. First, how do pathogenic mutations that increase LRRK2 kinase activity affect lysosome biology in neurons? Second, are mutation-induced changes in lysosome function sufficient to alter the metabolism of α-synuclein? Lastly, are changes caused by pathogenic mutation sensitive to reversal with LRRK2 kinase inhibitors? Here, we report that mutation of LRRK2 induces modest but significant changes in lysosomal morphology and acidification, and decreased basal autophagic flux when compared to WT neurons. These changes were associated with an accumulation of detergent-insoluble α-synuclein and increased neuronal release of α-synuclein and were reversed by pharmacologic inhibition of LRRK2 kinase activity. These data demonstrate a critical and disease-relevant influence of native neuronal LRRK2 kinase activity on lysosome function and α-synuclein homeostasis. Furthermore, they also suggest that lysosome dysfunction, altered neuronal α-synuclein metabolism, and the insidious accumulation of aggregated protein over decades may contribute to pathogenesis in this late-onset form of familial PD.
Collapse
Affiliation(s)
- Jason Schapansky
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, United States
| | - Saurabh Khasnavis
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, United States
| | - Mark P DeAndrade
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, United States
| | - Jonathan D Nardozzi
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, United States
| | - Samuel R Falkson
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, United States
| | - Justin D Boyd
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, United States
| | - John B Sanderson
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, United States
| | - Tim Bartels
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, United States
| | - Heather L Melrose
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL 32224, United States
| | - Matthew J LaVoie
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
305
|
Plenge RM. Disciplined approach to drug discovery and early development. Sci Transl Med 2017; 8:349ps15. [PMID: 27464747 DOI: 10.1126/scitranslmed.aaf2608] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 07/07/2016] [Indexed: 12/28/2022]
Abstract
Our modern health care system demands therapeutic interventions that improve the lives of patients. Unfortunately, decreased productivity in therapeutics research and development (R&D) has driven drug costs up while delivering insufficient value to patients. Here, I discuss a model of translational medicine that connects four components of the early R&D pipeline-causal human biology, therapeutic modality, biomarkers of target modulation, and proof-of-concept clinical trials. Whereas the individual components of this model are not new, technological advances and a disciplined approach to integrating all four areas offer hope for improving R&D productivity.
Collapse
|
306
|
Woeste MA, Wachten D. The Enigmatic Role of GBA2 in Controlling Locomotor Function. Front Mol Neurosci 2017; 10:386. [PMID: 29234271 PMCID: PMC5712312 DOI: 10.3389/fnmol.2017.00386] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 11/06/2017] [Indexed: 01/22/2023] Open
Abstract
The non-lysosomal glucosylceramidase GBA2 catalyzes the hydrolysis of glucosylceramide to glucose and ceramide. Loss of GBA2 function results in accumulation of glucosylceramide. Mutations in the human GBA2 gene have been associated with hereditary spastic paraplegia (HSP) and autosomal-recessive cerebellar ataxia (ARCA). Patients suffering from these disorders exhibit impaired locomotion and neurological abnormalities. GBA2 mutations found in these patients have been proposed to impair GBA2 function. However, the molecular mechanism underlying the occurrence of mutations in the GBA2 gene and the development of locomotor dysfunction is not well-understood. In this review, we aim to summarize recent findings regarding mutations in the GBA2 gene and their impact on GBA2 function in health and disease.
Collapse
Affiliation(s)
- Marina A Woeste
- Institute of Innate Immunity, University Hospital, University of Bonn, Bonn, Germany
| | - Dagmar Wachten
- Institute of Innate Immunity, University Hospital, University of Bonn, Bonn, Germany.,Molecular Physiology, Center of Advanced European Studies and Research, Minerva Max Planck Research Group, Bonn, Germany
| |
Collapse
|
307
|
Platt FM. Emptying the stores: lysosomal diseases and therapeutic strategies. Nat Rev Drug Discov 2017; 17:133-150. [PMID: 29147032 DOI: 10.1038/nrd.2017.214] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lysosomal storage disorders (LSDs) - designated as 'orphan' diseases - are inborn errors of metabolism caused by defects in genes that encode proteins involved in various aspects of lysosomal homeostasis. For many years, LSDs were viewed as unattractive targets for the development of therapies owing to their low prevalence. However, the development and success of the first commercial biologic therapy for an LSD - enzyme replacement therapy for type 1 Gaucher disease - coupled with regulatory incentives rapidly catalysed commercial interest in therapeutically targeting LSDs. Despite ongoing challenges, various therapeutic strategies for LSDs now exist, with many agents approved, undergoing clinical trials or in preclinical development.
Collapse
Affiliation(s)
- Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| |
Collapse
|
308
|
Helley MP, Pinnell J, Sportelli C, Tieu K. Mitochondria: A Common Target for Genetic Mutations and Environmental Toxicants in Parkinson's Disease. Front Genet 2017; 8:177. [PMID: 29204154 PMCID: PMC5698285 DOI: 10.3389/fgene.2017.00177] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/01/2017] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease (PD) is a devastating neurological movement disorder. Since its first discovery 200 years ago, genetic and environmental factors have been identified to play a role in PD development and progression. Although genetic studies have been the predominant driving force in PD research over the last few decades, currently only a small fraction of PD cases can be directly linked to monogenic mutations. The remaining cases have been attributed to other risk associated genes, environmental exposures and gene-environment interactions, making PD a multifactorial disorder with a complex etiology. However, enormous efforts from global research have yielded significant insights into pathogenic mechanisms and potential therapeutic targets for PD. This review will highlight mitochondrial dysfunction as a common pathway involved in both genetic mutations and environmental toxicants linked to PD.
Collapse
Affiliation(s)
- Martin P. Helley
- Department of Environmental Health Sciences, Florida International University, Miami, FL, United States
| | - Jennifer Pinnell
- Department of Environmental Health Sciences, Florida International University, Miami, FL, United States
- Peninsula Schools of Medicine and Dentistry, Plymouth University, Plymouth, United Kingdom
| | - Carolina Sportelli
- Department of Environmental Health Sciences, Florida International University, Miami, FL, United States
- Peninsula Schools of Medicine and Dentistry, Plymouth University, Plymouth, United Kingdom
| | - Kim Tieu
- Department of Environmental Health Sciences, Florida International University, Miami, FL, United States
| |
Collapse
|
309
|
Wise AH, Yang A, Naik H, Stauffer C, Zeid N, Liong C, Balwani M, Desnick RJ, Alcalay RN. Parkinson's disease prevalence in Fabry disease: A survey study. Mol Genet Metab Rep 2017; 14:27-30. [PMID: 29159076 PMCID: PMC5683804 DOI: 10.1016/j.ymgmr.2017.10.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 10/31/2017] [Indexed: 01/02/2023] Open
Abstract
Recent research has suggested a possible link between Parkinson's disease (PD) and Fabry disease. To test this relationship, we administered a self-report and family history questionnaire to determine the prevalence of PD in Fabry disease patients and family members with likely pathogenic alpha-galactosidase A (GLA) mutations. A total of 90 Fabry patients (77 from the online survey and 13 from the Icahn School of Medicine at Mount Sinai (ISMMS)) were included in the analysis. Two of the Fabry disease patients who completed the online survey were diagnosed with PD (2/90, 2.2%). Among probands older than 60, 8.3% (2/24) were diagnosed with PD. Using Kaplan Meier survival analysis, the age-specific risk of PD by age 70 was 11.1%. Family history was available on 72 Fabry families from the online study and 9 Fabry families from ISMMS. Among these 81 families, 6 (7.4%) had one first degree relative who fit the criteria for a conservative diagnosis of PD. The results of this study suggest that there may be an increased risk of developing PD in individuals with GLA mutations, but these findings should be interpreted with caution given the limitations of the study design.
Collapse
Affiliation(s)
- Adina H Wise
- Department of Neurology, Columbia University Medical Center, 710 W. 168th St., New York, NY 10032, United States
| | - Amy Yang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai Hospital, 1428 Madison Ave, Atran Building, 1st Floor, New York, NY 10029, United States
| | - Hetanshi Naik
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai Hospital, 1428 Madison Ave, Atran Building, 1st Floor, New York, NY 10029, United States
| | - Chanan Stauffer
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai Hospital, 1428 Madison Ave, Atran Building, 1st Floor, New York, NY 10029, United States
| | - Natasha Zeid
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai Hospital, 1428 Madison Ave, Atran Building, 1st Floor, New York, NY 10029, United States
| | - Christopher Liong
- Department of Neurology, Columbia University Medical Center, 710 W. 168th St., New York, NY 10032, United States
| | - Manisha Balwani
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai Hospital, 1428 Madison Ave, Atran Building, 1st Floor, New York, NY 10029, United States
| | - Robert J Desnick
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai Hospital, 1428 Madison Ave, Atran Building, 1st Floor, New York, NY 10029, United States
| | - Roy N Alcalay
- Department of Neurology, Columbia University Medical Center, 710 W. 168th St., New York, NY 10032, United States
| |
Collapse
|
310
|
Andréasson M, Brodin L, Laffita-Mesa JM, Svenningsson P. Correlations Between Methionine Cycle Metabolism, COMT Genotype, and Polyneuropathy in L-Dopa Treated Parkinson’s Disease: A Preliminary Cross-Sectional Study. JOURNAL OF PARKINSONS DISEASE 2017; 7:619-628. [DOI: 10.3233/jpd-171127] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Mattias Andréasson
- Department of Neurology, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Lovisa Brodin
- Department of Neurology, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - José Miguel Laffita-Mesa
- Department of Clinical Neuroscience, Translational Neuropharmacology, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Per Svenningsson
- Department of Neurology, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Department of Clinical Neuroscience, Translational Neuropharmacology, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
311
|
Vingill S, Connor-Robson N, Wade-Martins R. Are rodent models of Parkinson's disease behaving as they should? Behav Brain Res 2017; 352:133-141. [PMID: 29074404 DOI: 10.1016/j.bbr.2017.10.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/13/2017] [Accepted: 10/19/2017] [Indexed: 12/20/2022]
Abstract
In recent years our understanding of Parkinson's disease has expanded both in terms of pathological hallmarks as well as relevant genetic influences. In parallel with the aetiological discoveries a multitude of PD animal models have been established. The vast majority of these are rodent models based on environmental, genetic and mechanistic insight. A major challenge in many of these models is their ability to only recapitulate some of the complex disease features seen in humans. Although symptom alleviation and clinical signs are of utmost importance in therapeutic research many of these models lack comprehensive behavioural testing. While non-motor symptoms become increasingly important as early diagnostic markers in PD, they are poorly characterized in rodents. In this review we look at well-established and more recent animal models of PD in terms of behavioural characterization and discuss how they can best contribute to progression in Parkinson's research.
Collapse
Affiliation(s)
- Siv Vingill
- Oxford Parkinson's Disease Centre, University of Oxford, South Parks Road, Oxford OX1 3QX, UK.
| | - Natalie Connor-Robson
- Oxford Parkinson's Disease Centre, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Richard Wade-Martins
- Oxford Parkinson's Disease Centre, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| |
Collapse
|
312
|
Migdalska-Richards A, Wegrzynowicz M, Rusconi R, Deangeli G, Di Monte DA, Spillantini MG, Schapira AHV. The L444P Gba1 mutation enhances alpha-synuclein induced loss of nigral dopaminergic neurons in mice. Brain 2017; 140:2706-2721. [PMID: 28969384 PMCID: PMC5841155 DOI: 10.1093/brain/awx221] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/10/2017] [Indexed: 12/21/2022] Open
Abstract
Mutations in glucocerebrosidase 1 (GBA1) represent the most prevalent risk factor for Parkinson's disease. The molecular mechanisms underlying the link between GBA1 mutations and Parkinson's disease are incompletely understood. We analysed two aged (24-month-old) Gba1 mouse models, one carrying a knock-out mutation and the other a L444P knock-in mutation. A significant reduction of glucocerebrosidase activity was associated with increased total alpha-synuclein accumulation in both these models. Gba1 mutations alone did not alter the number of nigral dopaminergic neurons nor striatal dopamine levels. We then investigated the effect of overexpression of human alpha-synuclein in the substantia nigra of aged (18 to 21-month-old) L444P Gba1 mice. Following intraparenchymal injections of human alpha-synuclein carrying viral vectors, pathological accumulation of phosphorylated alpha-synuclein occurred within the transduced neurons. Stereological counts of nigral dopaminergic neurons revealed a significantly greater cell loss in Gba1-mutant than wild-type mice. These results indicate that Gba1 deficiency enhances neuronal vulnerability to neurodegenerative processes triggered by increased alpha-synuclein expression.
Collapse
Affiliation(s)
- Anna Migdalska-Richards
- Department of Clinical Neurosciences, Institute of Neurology, University College London, London NW3 2PF, UK
| | - Michal Wegrzynowicz
- Department of Clinical Neurosciences, Clifford Allbutt Building, University of Cambridge, Cambridge, CB2 0AH, UK
| | - Raffaella Rusconi
- German Centre for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Strasse 27, 53127 Bonn, Germany
| | - Giulio Deangeli
- Department of Clinical Neurosciences, Clifford Allbutt Building, University of Cambridge, Cambridge, CB2 0AH, UK.,Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy.,University of Pisa, Lungarno Antonio Pacinotti 43, 56126 Pisa, Italy
| | - Donato A Di Monte
- German Centre for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Strasse 27, 53127 Bonn, Germany
| | - Maria G Spillantini
- Department of Clinical Neurosciences, Clifford Allbutt Building, University of Cambridge, Cambridge, CB2 0AH, UK
| | - Anthony H V Schapira
- Department of Clinical Neurosciences, Institute of Neurology, University College London, London NW3 2PF, UK
| |
Collapse
|
313
|
The GBAP1 pseudogene acts as a ceRNA for the glucocerebrosidase gene GBA by sponging miR-22-3p. Sci Rep 2017; 7:12702. [PMID: 28983119 PMCID: PMC5629250 DOI: 10.1038/s41598-017-12973-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 09/13/2017] [Indexed: 12/11/2022] Open
Abstract
Mutations in the GBA gene, encoding lysosomal glucocerebrosidase, represent the major predisposing factor for Parkinson's disease (PD), and modulation of the glucocerebrosidase activity is an emerging PD therapy. However, little is known about mechanisms regulating GBA expression. We explored the existence of a regulatory network involving GBA, its expressed pseudogene GBAP1, and microRNAs. The high level of sequence identity between GBA and GBAP1 makes the pseudogene a promising competing-endogenous RNA (ceRNA), functioning as a microRNA sponge. After selecting microRNAs potentially targeting both transcripts, we demonstrated that miR-22-3p binds to and down-regulates GBA and GBAP1, and decreases their endogenous mRNA levels up to 70%. Moreover, over-expression of GBAP1 3'-untranslated region was able to sequester miR-22-3p, thus increasing GBA mRNA and glucocerebrosidase levels. The characterization of GBAP1 splicing identified multiple out-of-frame isoforms down-regulated by the nonsense-mediated mRNA decay, suggesting that GBAP1 levels and, accordingly, its ceRNA effect, are significantly modulated by this degradation process. Using skin-derived induced pluripotent stem cells of PD patients with GBA mutations and controls, we observed a significant GBA up-regulation during dopaminergic differentiation, paralleled by down-regulation of miR-22-3p. Our results describe the first microRNA controlling GBA and suggest that the GBAP1 non-coding RNA functions as a GBA ceRNA.
Collapse
|
314
|
de la Fuente C, Burke DG, Eaton S, Heales SJ. Inhibition of neuronal mitochondrial complex I or lysosomal glucocerebrosidase is associated with increased dopamine and serotonin turnover. Neurochem Int 2017; 109:94-100. [DOI: 10.1016/j.neuint.2017.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 02/16/2017] [Accepted: 02/21/2017] [Indexed: 01/31/2023]
|
315
|
Smith L, Mullin S, Schapira AHV. Insights into the structural biology of Gaucher disease. Exp Neurol 2017; 298:180-190. [PMID: 28923368 DOI: 10.1016/j.expneurol.2017.09.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 09/08/2017] [Accepted: 09/14/2017] [Indexed: 01/08/2023]
Abstract
Gaucher disease, the most common lysosomal storage disorder, is caused by mutations in the gene encoding the acid-β-glucosidase lysosomal hydrolase enzyme that cleaves glucocerebroside into glucose and ceramide. Reduced enzyme activity and impaired structural stability arise due to >300 known disease-causing mutations. Several of these mutations have also been associated with an increased risk of Parkinson disease (PD). Since the discovery of the acid-β-glucosidase X-ray structure, there have been major advances in our understanding of the structural properties of the protein. Analysis of specific residues has provided insight into their functional and structural importance and provided insight into the pathogenesis of Gaucher disease and the contribution to PD. Disease-causing mutations are positioned throughout the acid-β-glucosidase structure, with many located far from the active site and thus retaining some enzymatic activity however, thus far no clear relationship between mutation location and disease severity has been established. Here, we review the crystal structure of acid-β-glucosidase, while highlighting important structural aspects of the protein in detail. This review discusses the structural stability of acid-β-glucosidase, which can be altered by pH and glycosylation, and explores the relationship between known Gaucher disease and PD mutations, structural stability and disease severity.
Collapse
Affiliation(s)
- Laura Smith
- Department of Clinical Neurosciences, Institute of Neurology, University College London, London, NW3 2PF, UK
| | - Stephen Mullin
- Department of Clinical Neurosciences, Institute of Neurology, University College London, London, NW3 2PF, UK
| | - Anthony H V Schapira
- Department of Clinical Neurosciences, Institute of Neurology, University College London, London, NW3 2PF, UK.
| |
Collapse
|
316
|
Menzies FM, Fleming A, Caricasole A, Bento CF, Andrews SP, Ashkenazi A, Füllgrabe J, Jackson A, Jimenez Sanchez M, Karabiyik C, Licitra F, Lopez Ramirez A, Pavel M, Puri C, Renna M, Ricketts T, Schlotawa L, Vicinanza M, Won H, Zhu Y, Skidmore J, Rubinsztein DC. Autophagy and Neurodegeneration: Pathogenic Mechanisms and Therapeutic Opportunities. Neuron 2017; 93:1015-1034. [PMID: 28279350 DOI: 10.1016/j.neuron.2017.01.022] [Citation(s) in RCA: 828] [Impact Index Per Article: 103.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 12/11/2022]
Abstract
Autophagy is a conserved pathway that delivers cytoplasmic contents to the lysosome for degradation. Here we consider its roles in neuronal health and disease. We review evidence from mouse knockout studies demonstrating the normal functions of autophagy as a protective factor against neurodegeneration associated with intracytoplasmic aggregate-prone protein accumulation as well as other roles, including in neuronal stem cell differentiation. We then describe how autophagy may be affected in a range of neurodegenerative diseases. Finally, we describe how autophagy upregulation may be a therapeutic strategy in a wide range of neurodegenerative conditions and consider possible pathways and druggable targets that may be suitable for this objective.
Collapse
Affiliation(s)
- Fiona M Menzies
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Angeleen Fleming
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Andrea Caricasole
- Alzheimer's Research UK Cambridge Drug Discovery Institute, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0AH, UK
| | - Carla F Bento
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Stephen P Andrews
- Alzheimer's Research UK Cambridge Drug Discovery Institute, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0AH, UK
| | - Avraham Ashkenazi
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Jens Füllgrabe
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Anne Jackson
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Maria Jimenez Sanchez
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Cansu Karabiyik
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Floriana Licitra
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Ana Lopez Ramirez
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Mariana Pavel
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Claudia Puri
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Maurizio Renna
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Thomas Ricketts
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Lars Schlotawa
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Mariella Vicinanza
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Hyeran Won
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Ye Zhu
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - John Skidmore
- Alzheimer's Research UK Cambridge Drug Discovery Institute, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0AH, UK
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
317
|
Dual-Task Performance in GBA Parkinson's Disease. PARKINSONS DISEASE 2017; 2017:8582740. [PMID: 28819579 PMCID: PMC5551514 DOI: 10.1155/2017/8582740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/29/2017] [Accepted: 06/27/2017] [Indexed: 11/29/2022]
Abstract
Introduction Parkinson's disease patients carrying a heterozygous mutation in the gene glucocerebrosidase (GBA-PD) show faster motor and cognitive decline than idiopathic Parkinson's disease (iPD) patients, but the mechanisms behind this observation are not well understood. Successful dual tasking (DT) requires a smooth integration of motor and nonmotor operations. This study compared the DT performances between GBA-PD and iPD patients. Methods Eleven GBA-PD patients (p.N370S, p.L444P) and eleven matched iPD patients were included. Clinical characterization included a motor score (Unified PD Rating Scale-III, UPDRS-III) and nonmotor scores (Montreal Cognitive Assessment, MoCA, and Beck's Depression Inventory). Quantitative gait analysis during the single-task (ST) and DT assessments was performed using a wearable sensor unit. These parameters corrected for UPDRS and MoCA were then compared between the groups. Results Under the DT condition “walking while checking boxes,” GBA-PD patients showed slower gait and box-checking speeds than iPD patients. GBA-PD and iPD patients did not show significant differences regarding dual-task costs. Conclusion This pilot study suggests that DT performance with a secondary motor task is worse in GBA-PD than in iPD patients. This finding may be associated with the known enhanced motor and cognitive deficits in GBA-PD compared to iPD and should motivate further studies.
Collapse
|
318
|
García-Sanz P, Orgaz L, Bueno-Gil G, Espadas I, Rodríguez-Traver E, Kulisevsky J, Gutierrez A, Dávila JC, González-Polo RA, Fuentes JM, Mir P, Vicario C, Moratalla R. N370S-GBA1 mutation causes lysosomal cholesterol accumulation in Parkinson's disease. Mov Disord 2017; 32:1409-1422. [PMID: 28779532 DOI: 10.1002/mds.27119] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/29/2017] [Accepted: 06/29/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Heterozygous mutations in the GBA1 gene, which encodes the lysosomal enzyme β-glucocerebrosidase-1, increase the risk of developing Parkinson's disease, although the underlying mechanisms remain unclear. The aim of this study was to explore the impact of the N370S-GBA1 mutation on cellular homeostasis and vulnerability in a patient-specific cellular model of PD. METHODS We isolated fibroblasts from 4 PD patients carrying the N370S/wild type GBA1 mutation and 6 controls to study the autophagy-lysosome pathway, endoplasmic reticulum stress, and Golgi apparatus structure by Western blot, immunofluorescence, LysoTracker and Filipin stainings, mRNA analysis, and electron microscopy. We evaluated cell vulnerability by apoptosis, reactive oxygen species and mitochondrial membrane potential with flow cytometry. RESULTS The N370S mutation produced a significant reduction in β-glucocerebrosidase-1 protein and enzyme activity and β-glucocerebrosidase-1 retention within the endoplasmic reticulum, which interrupted its traffic to the lysosome. This led to endoplasmic reticulum stress activation and triggered unfolded protein response and Golgi apparatus fragmentation. Furthermore, these alterations resulted in autophagosome and p62/SQSTM1 accumulation. This impaired autophagy was a result of dysfunctional lysosomes, indicated by multilamellar body accumulation probably caused by increased cholesterol, enlarged lysosomal mass, and reduced enzyme activity. This phenotype impaired the removal of damaged mitochondria and reactive oxygen species production and enhanced cell death. CONCLUSIONS Our results support a connection between the loss of β-glucocerebrosidase-1 function, cholesterol accumulation, and the disruption of cellular homeostasis in GBA1-PD. Our work reveals new insights into the cellular pathways underlying PD pathogenesis, providing evidence that GBA1-PD shares common features with lipid-storage diseases. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
| | - Lorena Orgaz
- Instituto Cajal, CSIC, Madrid, Spain.,CIBERNED, Madrid, Spain
| | | | - Isabel Espadas
- Instituto Cajal, CSIC, Madrid, Spain.,CIBERNED, Madrid, Spain
| | | | - Jaime Kulisevsky
- CIBERNED, Madrid, Spain.,Movement Disorders Unit, Neurology Dpt, Hospital Sant Pau (IIB-Sant Pau), Univ. Autònoma de Barcelona, Barcelona, Spain
| | - Antonia Gutierrez
- CIBERNED, Madrid, Spain.,Dpto. de Biología Celular, Genética y Fisiología, Facultad de Ciencias, IBIMA, Universidad de Málaga, Málaga, Spain
| | - José C Dávila
- CIBERNED, Madrid, Spain.,Dpto. de Biología Celular, Genética y Fisiología, Facultad de Ciencias, IBIMA, Universidad de Málaga, Málaga, Spain
| | - Rosa A González-Polo
- CIBERNED, Madrid, Spain.,Dpto. de Bioquímica, Biología Molecular y Genética F. Enfermería y T.O., Univ. de Extremadura, Cáceres, Spain
| | - José M Fuentes
- CIBERNED, Madrid, Spain.,Dpto. de Bioquímica, Biología Molecular y Genética F. Enfermería y T.O., Univ. de Extremadura, Cáceres, Spain
| | - Pablo Mir
- CIBERNED, Madrid, Spain.,Neurology Dpt, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Carlos Vicario
- Instituto Cajal, CSIC, Madrid, Spain.,CIBERNED, Madrid, Spain
| | | |
Collapse
|
319
|
Schalli M, Weber P, Tysoe C, Pabst BM, Thonhofer M, Paschke E, Stütz AE, Tschernutter M, Windischhofer W, Withers SG. A new type of pharmacological chaperone for G M1 -gangliosidosis related human lysosomal β-galactosidase: N -Substituted 5-amino-1-hydroxymethyl-cyclopentanetriols. Bioorg Med Chem Lett 2017; 27:3431-3435. [DOI: 10.1016/j.bmcl.2017.05.086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/26/2017] [Accepted: 05/27/2017] [Indexed: 01/22/2023]
|
320
|
McMillan KJ, Korswagen HC, Cullen PJ. The emerging role of retromer in neuroprotection. Curr Opin Cell Biol 2017; 47:72-82. [PMID: 28399507 PMCID: PMC5677836 DOI: 10.1016/j.ceb.2017.02.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/06/2017] [Accepted: 02/08/2017] [Indexed: 11/26/2022]
Abstract
Efficient sorting and transportation of integral membrane proteins, such as ion channels, nutrient transporters, signalling receptors, cell-cell and cell-matrix adhesion molecules is essential for the function of cellular organelles and hence organism development and physiology. Retromer is a master controller of integral membrane protein sorting and transport through one of the major sorting station within eukaryotic cells, the endosomal network. Subtle de-regulation of retromer is an emerging theme in the pathoetiology of Parkinson's disease. Here we summarise recent advances in defining the neuroprotective role of retromer and how its de-regulation may contribute to Parkinson's disease by interfering with: lysosomal health and protein degradation, association with accessory proteins including the WASH complex and mitochondrial health.
Collapse
Affiliation(s)
- Kirsty J McMillan
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD, UK
| | - Hendrick C Korswagen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Peter J Cullen
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD, UK.
| |
Collapse
|
321
|
Brockmann K, Lohmann K. [Genetic risk variants in Parkinson's disease and other movement disorders]. DER NERVENARZT 2017; 88:713-719. [PMID: 28536875 DOI: 10.1007/s00115-017-0348-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Movement disorders are often genetically complex with genetic risk factors playing a major role. For example, monogenic causes of Parkinson's disease (PD) can be found in only 2-5% of patients who often have an early onset (<40 years). In the majority of patients, common genetic variants seem to contribute to the disease risk. To date, 24 genetic risk factors have been identified. For restless legs syndrome (RLS), six different risk variants have been reported but no monogenic cause is known yet. For the genetic risk factors of essential tremor and dystonia, which are less well studied, only five and two candidate variants, respectively, have been described but their roles still require independent confirmation. In this review, we provide an overview on the involved genes, their function, and discuss possible, disease mechanism-driven therapies.
Collapse
Affiliation(s)
- K Brockmann
- Zentrum für Neurologie, Abteilung Neurodegeneration, Hertie-Institut für klinische Hirnforschung, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Universität Tübingen, Hoppe Seyler Straße 3, 72076, Tübingen, Deutschland.
| | - K Lohmann
- Institut für Neurogenetik, Universität zu Lübeck, Lübeck, Deutschland
| |
Collapse
|
322
|
Connecting Gaucher and Parkinson Disease: Considerations for Clinical and Research Genetic Counseling Settings. J Genet Couns 2017; 26:1165-1172. [DOI: 10.1007/s10897-017-0123-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 06/01/2017] [Indexed: 12/29/2022]
|
323
|
Lee AJ, Wang Y, Alcalay RN, Mejia-Santana H, Saunders-Pullman R, Bressman S, Corvol JC, Brice A, Lesage S, Mangone G, Tolosa E, Pont-Sunyer C, Vilas D, Schüle B, Kausar F, Foroud T, Berg D, Brockmann K, Goldwurm S, Siri C, Asselta R, Ruiz-Martinez J, Mondragón E, Marras C, Ghate T, Giladi N, Mirelman A, Marder K. Penetrance estimate of LRRK2 p.G2019S mutation in individuals of non-Ashkenazi Jewish ancestry. Mov Disord 2017. [PMID: 28639421 DOI: 10.1002/mds.27059] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Penetrance estimates of the leucine-rich repeat kinase 2 (LRRK2) p.G2019S mutation for PD vary widely (24%-100%). The p.G2019S penetrance in individuals of Ashkenazi Jewish ancestry has been estimated as 25%, adjusted for multiple covariates. It is unknown whether penetrance varies among different ethnic groups. The objective of this study was to estimate the penetrance of p.G2019S in individuals of non-Ashkenazi Jewish ancestry and compare penetrance between Ashkenazi Jews and non-Ashkenazi Jews to age 80. METHODS The kin-cohort method was used to estimate penetrance in 474 first-degree relatives of 69 non-Ashkenazi Jewish LRRK2 p.G2019S carrier probands at 8 sites from the Michael J. Fox LRRK2 Cohort Consortium. An identical validated family history interview was administered to assess age at onset of PD, current age, or age at death for relatives in different ethnic groups at each site. Neurological examination and LRRK2 genotype of relatives were included when available. RESULTS Risk of PD in non-Ashkenazi Jewish relatives who carry a LRRK2 p.G2019S mutation was 42.5% (95% confidence interval [CI]: 26.3%-65.8%) to age 80, which is not significantly higher than the previously estimated 25% (95% CI: 16.7%-34.2%) in Ashkenazi Jewish carrier relatives. The penetrance of PD to age 80 in LRRK2 p.G2019S mutation carrier relatives was significantly higher than the noncarrier relatives, as seen in Ashkenazi Jewish relatives. CONCLUSIONS The similar penetrance of LRRK2 p.G2019S estimated in Ashkenazi Jewish carriers and non-Ashkenazi Jewish carriers confirms that p.G2019S penetrance is 25% to 42.5% at age 80 in all populations analyzed. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Annie J Lee
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Yuanjia Wang
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Roy N Alcalay
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, New York, USA.,Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, New York, USA
| | - Helen Mejia-Santana
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | | | - Susan Bressman
- Department of Neurology, Mount Sinai Beth Israel Medical Center, New York, New York, USA
| | - Jean-Christophe Corvol
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC Univ) Paris 06.,Institut National de la Santé et de la Recherche Médicale, U1127, Paris, France.,Centre National de la Recherche Scientifique, UMR 7225, Paris, France.,Institut du Cerveau et de la Moelle Epinière (ICM), Hôpital Pitié-Salpêtrière, Département des maladies du système nerveux, F-75013, Paris, France.,Department of Neurology, Institut National de la Santé et de la Recherche Médicale, Assistance-Publique Hôpitaux de Paris, CIC-1422, Hôpital Pitié-Salpêtrière, Paris, France.,Assistance publique - Hôpitaux de Paris (AP-HP), 75015, Paris, France
| | - Alexis Brice
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC Univ) Paris 06.,Institut National de la Santé et de la Recherche Médicale, U1127, Paris, France.,Centre National de la Recherche Scientifique, UMR 7225, Paris, France.,Institut du Cerveau et de la Moelle Epinière (ICM), Hôpital Pitié-Salpêtrière, Département des maladies du système nerveux, F-75013, Paris, France.,Department of Neurology, Institut National de la Santé et de la Recherche Médicale, Assistance-Publique Hôpitaux de Paris, CIC-1422, Hôpital Pitié-Salpêtrière, Paris, France.,Assistance publique - Hôpitaux de Paris (AP-HP), 75015, Paris, France
| | - Suzanne Lesage
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC Univ) Paris 06.,Institut National de la Santé et de la Recherche Médicale, U1127, Paris, France.,Centre National de la Recherche Scientifique, UMR 7225, Paris, France.,Institut du Cerveau et de la Moelle Epinière (ICM), Hôpital Pitié-Salpêtrière, Département des maladies du système nerveux, F-75013, Paris, France.,Department of Neurology, Institut National de la Santé et de la Recherche Médicale, Assistance-Publique Hôpitaux de Paris, CIC-1422, Hôpital Pitié-Salpêtrière, Paris, France.,Assistance publique - Hôpitaux de Paris (AP-HP), 75015, Paris, France
| | - Graziella Mangone
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC Univ) Paris 06.,Institut National de la Santé et de la Recherche Médicale, U1127, Paris, France.,Centre National de la Recherche Scientifique, UMR 7225, Paris, France.,Institut du Cerveau et de la Moelle Epinière (ICM), Hôpital Pitié-Salpêtrière, Département des maladies du système nerveux, F-75013, Paris, France.,Department of Neurology, Institut National de la Santé et de la Recherche Médicale, Assistance-Publique Hôpitaux de Paris, CIC-1422, Hôpital Pitié-Salpêtrière, Paris, France.,Assistance publique - Hôpitaux de Paris (AP-HP), 75015, Paris, France
| | - Eduardo Tolosa
- Neurology Service, Parkinson's disease and Movement Disorders Unit, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi iSunyer, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Barcelona, Spain
| | - Claustre Pont-Sunyer
- Neurology Service, Parkinson's disease and Movement Disorders Unit, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi iSunyer, Barcelona, Spain
| | - Dolores Vilas
- Neurology Service, Parkinson's disease and Movement Disorders Unit, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi iSunyer, Barcelona, Spain
| | - Birgitt Schüle
- Parkinson's Institute and Clinical Center, Sunnyvale, California, USA
| | - Farah Kausar
- Parkinson's Institute and Clinical Center, Sunnyvale, California, USA
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, Indiana, USA
| | - Daniela Berg
- Department of Neurology, Christian-Albrechts-University of Kiel and Hertie-Institute of Clinical Brain Research, University of Tübingen, Germany
| | - Kathrin Brockmann
- Department of Neurodegeneration, Hertie-Institute of Clinical Brain Research, University of Tübingen and German Center for Neurodegenerative Diseases, Germany
| | - Stefano Goldwurm
- Parkinson Institute, Azienda Socio Sanitaria Territoriale (ASST) "Gaetano Pini-CTO", Milan, Italy
| | - Chiara Siri
- Parkinson Institute, Azienda Socio Sanitaria Territoriale (ASST) "Gaetano Pini-CTO", Milan, Italy
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Rozzano, Milan, Italy.,Humanitas Clinical and Research Center, Milan, Italy
| | - Javier Ruiz-Martinez
- Department of Neurology, Donostia University Hospital, Biodonostia Research Institute, San Sebastián (Gipuzkoa), Spain.,Centre for Networked Biomedical Research on Neurodegenerative Diseases, Madrid, Spain
| | - Elisabet Mondragón
- Department of Neurology, Donostia University Hospital, Biodonostia Research Institute, San Sebastián (Gipuzkoa), Spain.,Centre for Networked Biomedical Research on Neurodegenerative Diseases, Madrid, Spain
| | - Connie Marras
- Morton and Gloria Shulman Movement Disorders Centre and the Edmond J. Safra Program in Parkinson's Research, Toronto, Canada
| | - Taneera Ghate
- Morton and Gloria Shulman Movement Disorders Centre and the Edmond J. Safra Program in Parkinson's Research, Toronto, Canada
| | - Nir Giladi
- Sackler School of Medicine, Sagol School for Neurosciences, Tel Aviv University, Tel Aviv, Israel.,Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Anat Mirelman
- Sackler School of Medicine, Sagol School for Neurosciences, Tel Aviv University, Tel Aviv, Israel.,Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Karen Marder
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, New York, USA.,Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, New York, USA
| | | |
Collapse
|
324
|
Cecioni S, Vocadlo DJ. Carbohydrate Bis-acetal-Based Substrates as Tunable Fluorescence-Quenched Probes for Monitoring exo-Glycosidase Activity. J Am Chem Soc 2017. [PMID: 28631482 DOI: 10.1021/jacs.7b01948] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Tunable Förster resonance energy transfer (FRET)-quenched substrates are useful for monitoring the activity of various enzymes within their relevant physiological environments. Development of FRET-quenched substrates for exo-glycosidases, however, has been hindered by their constrained pocket-shaped active sites. Here we report the design of a new class of substrate that overcomes this problem. These Bis-Acetal-Based Substrates (BABS) bear a hemiacetal aglycon leaving group that tethers fluorochromes in close proximity, also positioning them distant from the active site pocket. Following cleavage of the glycosidic bond, the liberated hemiacetal spontaneously breaks down, leading to separation of the fluorophore and quencher. We detail the synthesis and characterization of GlcNAc-BABS, revealing a striking 99.9% quenching efficiency. These substrates are efficiently turned over by the human exo-glycosidase O-GlcNAcase (OGA). We find the hemiacetal leaving group rapidly breaks down, enabling quantitative monitoring of OGA activity. We expect this strategy to be broadly useful for the development of substrate probes for monitoring exo-glycosidases, as well as a range of other enzymes having constrained pocket-shaped active sites.
Collapse
Affiliation(s)
- Samy Cecioni
- Department of Chemistry, Simon Fraser University , Burnaby, British Columbia, Canada
| | - David J Vocadlo
- Department of Chemistry, Simon Fraser University , Burnaby, British Columbia, Canada.,Department of Molecular Biology and Biochemistry, Simon Fraser University , Burnaby, British Columbia, Canada
| |
Collapse
|
325
|
Migdalska‐Richards A, Daly L, Bezard E, Schapira AHV. Ambroxol effects in glucocerebrosidase and α-synuclein transgenic mice. Ann Neurol 2017; 80:766-775. [PMID: 27859541 PMCID: PMC5132106 DOI: 10.1002/ana.24790] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/13/2016] [Accepted: 09/25/2016] [Indexed: 12/17/2022]
Abstract
Objective Gaucher disease is caused by mutations in the glucocerebrosidase 1 gene that result in deficiency of the lysosomal enzyme glucocerebrosidase. Both homozygous and heterozygous glucocerebrosidase 1 mutations confer an increased risk for developing Parkinson disease. Current estimates indicate that 10 to 25% of Parkinson patients carry glucocerebrosidase 1 mutations. Ambroxol is a small molecule chaperone that has been shown to increase glucocerebrosidase activity in vitro. This study investigated the effect of ambroxol treatment on glucocerebrosidase activity and on α‐synuclein and phosphorylated α‐synuclein protein levels in mice. Methods Mice were treated with ambroxol for 12 days. After the treatment, glucocerebrosidase activity was measured in the mouse brain lysates. The brain lysates were also analyzed for α‐synuclein and phosphorylated α‐synuclein protein levels. Results Ambroxol treatment resulted in increased brain glucocerebrosidase activity in (1) wild‐type mice, (2) transgenic mice expressing the heterozygous L444P mutation in the murine glucocerebrosidase 1 gene, and (3) transgenic mice overexpressing human α‐synuclein. Furthermore, in the mice overexpressing human α‐synuclein, ambroxol treatment decreased both α‐synuclein and phosphorylated α‐synuclein protein levels. Interpretation Our work supports the proposition that ambroxol should be further investigated as a potential novel disease‐modifying therapy for treatment of Parkinson disease and neuronopathic Gaucher disease to increase glucocerebrosidase activity and decrease α‐synuclein and phosphorylated α‐synuclein protein levels. Ann Neurol 2016;80:766–775
Collapse
Affiliation(s)
- Anna Migdalska‐Richards
- Department of Clinical Neurosciences, Institute of NeurologyUniversity College LondonLondonUnited Kingdom
| | - Liam Daly
- Department of Clinical Neurosciences, Institute of NeurologyUniversity College LondonLondonUnited Kingdom
| | - Erwan Bezard
- Neurodegenerative Diseases InstituteUniversity of BordeauxMixed Unit of Research 5293BordeauxFrance
- Neurodegenerative Diseases Institute, National Center for Scientific ResearchMixed Unit of Research 5293BordeauxFrance
| | - Anthony H. V. Schapira
- Department of Clinical Neurosciences, Institute of NeurologyUniversity College LondonLondonUnited Kingdom
| |
Collapse
|
326
|
Lahut S, Gispert S, Ömür Ö, Depboylu C, Seidel K, Domínguez-Bautista JA, Brehm N, Tireli H, Hackmann K, Pirkevi C, Leube B, Ries V, Reim K, Brose N, den Dunnen WF, Johnson M, Wolf Z, Schindewolf M, Schrempf W, Reetz K, Young P, Vadasz D, Frangakis AS, Schröck E, Steinmetz H, Jendrach M, Rüb U, Başak AN, Oertel W, Auburger G. Blood RNA biomarkers in prodromal PARK4 and rapid eye movement sleep behavior disorder show role of complexin 1 loss for risk of Parkinson's disease. Dis Model Mech 2017; 10:619-631. [PMID: 28108469 PMCID: PMC5451169 DOI: 10.1242/dmm.028035] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/12/2017] [Indexed: 12/30/2022] Open
Abstract
Parkinson's disease (PD) is a frequent neurodegenerative process in old age. Accumulation and aggregation of the lipid-binding SNARE complex component α-synuclein (SNCA) underlies this vulnerability and defines stages of disease progression. Determinants of SNCA levels and mechanisms of SNCA neurotoxicity have been intensely investigated. In view of the physiological roles of SNCA in blood to modulate vesicle release, we studied blood samples from a new large pedigree with SNCA gene duplication (PARK4 mutation) to identify effects of SNCA gain of function as potential disease biomarkers. Downregulation of complexin 1 (CPLX1) mRNA was correlated with genotype, but the expression of other Parkinson's disease genes was not. In global RNA-seq profiling of blood from presymptomatic PARK4 indviduals, bioinformatics detected significant upregulations for platelet activation, hemostasis, lipoproteins, endocytosis, lysosome, cytokine, Toll-like receptor signaling and extracellular pathways. In PARK4 platelets, stimulus-triggered degranulation was impaired. Strong SPP1, GZMH and PLTP mRNA upregulations were validated in PARK4. When analysing individuals with rapid eye movement sleep behavior disorder, the most specific known prodromal stage of general PD, only blood CPLX1 levels were altered. Validation experiments confirmed an inverse mutual regulation of SNCA and CPLX1 mRNA levels. In the 3'-UTR of the CPLX1 gene we identified a single nucleotide polymorphism that is significantly associated with PD risk. In summary, our data define CPLX1 as a PD risk factor and provide functional insights into the role and regulation of blood SNCA levels. The new blood biomarkers of PARK4 in this Turkish family might become useful for PD prediction.
Collapse
Affiliation(s)
- Suna Lahut
- Experimental Neurology, Goethe University Medical School, Frankfurt/Main 60590, Germany
- NDAL, Boğaziçi University, Istanbul 34342, Turkey
| | - Suzana Gispert
- Experimental Neurology, Goethe University Medical School, Frankfurt/Main 60590, Germany
| | - Özgür Ömür
- Experimental Neurology, Goethe University Medical School, Frankfurt/Main 60590, Germany
- NDAL, Boğaziçi University, Istanbul 34342, Turkey
| | - Candan Depboylu
- Department of Neurology, Philipps University, Baldingerstrasse, Marburg 35043, Germany
| | - Kay Seidel
- Dr Senckenberg Chronomedical Institute, Goethe University, Frankfurt/Main 60590, Germany
| | | | - Nadine Brehm
- Experimental Neurology, Goethe University Medical School, Frankfurt/Main 60590, Germany
| | - Hülya Tireli
- Department of Neurology, Haydarpaşa Numune Training and Research Hospital, Istanbul 34668, Turkey
| | - Karl Hackmann
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, Dresden 01307, Germany
| | | | - Barbara Leube
- Institute of Human Genetics, Heinrich Heine University, Düsseldorf 40225, Germany
| | - Vincent Ries
- Department of Neurology, Philipps University, Baldingerstrasse, Marburg 35043, Germany
| | - Kerstin Reim
- Department of Molecular Neurobiology and Center for the Molecular Physiology of the Brain, Max Planck Institute of Experimental Medicine, Göttingen 37075, Germany
| | - Nils Brose
- Department of Molecular Neurobiology and Center for the Molecular Physiology of the Brain, Max Planck Institute of Experimental Medicine, Göttingen 37075, Germany
| | - Wilfred F den Dunnen
- Department of Pathology and Medical Biology, Medical Center, University, Groningen 9700 RB, The Netherlands
| | - Madrid Johnson
- Buchmann Institute for Molecular Life Sciences and Institute for Biophysics, Goethe University, Frankfurt/Main 60438, Germany
| | - Zsuzsanna Wolf
- Haemophilia Centre, Medical Clinic III, Institute of Immunohaematology and Transfusion Medicine, Goethe University, Frankfurt/Main 60590, Germany
| | - Marc Schindewolf
- Department of Internal Medicine, Division of Vascular Medicine and Hemostaseology, Goethe University, Frankfurt 60590, Germany
| | - Wiebke Schrempf
- Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität, Dresden 01307, Germany
| | - Kathrin Reetz
- Department of Neurology, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Peter Young
- Department of Sleep Medicine and Neuromuscular Disorders, University Hospital Münster, Münster 48149, Germany
| | - David Vadasz
- Department of Neurology, Philipps University, Baldingerstrasse, Marburg 35043, Germany
| | - Achilleas S Frangakis
- Buchmann Institute for Molecular Life Sciences and Institute for Biophysics, Goethe University, Frankfurt/Main 60438, Germany
| | - Evelin Schröck
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, Dresden 01307, Germany
| | - Helmuth Steinmetz
- Experimental Neurology, Goethe University Medical School, Frankfurt/Main 60590, Germany
| | - Marina Jendrach
- Experimental Neurology, Goethe University Medical School, Frankfurt/Main 60590, Germany
| | - Udo Rüb
- Dr Senckenberg Chronomedical Institute, Goethe University, Frankfurt/Main 60590, Germany
| | | | - Wolfgang Oertel
- Department of Neurology, Philipps University, Baldingerstrasse, Marburg 35043, Germany
| | - Georg Auburger
- Experimental Neurology, Goethe University Medical School, Frankfurt/Main 60590, Germany
| |
Collapse
|
327
|
Roshan Lal T, Sidransky E. The Spectrum of Neurological Manifestations Associated with Gaucher Disease. Diseases 2017; 5:E10. [PMID: 28933363 PMCID: PMC5456331 DOI: 10.3390/diseases5010010] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 12/13/2022] Open
Abstract
Gaucher disease, the most common lysosomal storage disorder, is due to a deficiency in the enzyme glucocerebrosidase. This leads to the accumulation of its normal substrate, glucocerebroside, in tissue macrophages, affecting the hematological, visceral, bone and neurologic systems. Gaucher disease is classified into three broad phenotypes based upon the presence or absence of neurological involvement: type 1 (non-neuronopathic), type 2 (acute neuronopathic), and type 3 (subacute neuronopathic). Phenotypically, there is a wide spectrum of visceral and neurological manifestations. Enzyme replacement is effective in managing the visceral disease; however, treating the neurological manifestations has proved to be more challenging. This review discusses the various neurological manifestations encountered in Gaucher disease, and provides a brief overview regarding the treatment and ongoing research challenges.
Collapse
Affiliation(s)
- Tamanna Roshan Lal
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Building 35A Room 1E623, 35A Convent Drive, Bethesda, MD 20892-3708, USA.
| | - Ellen Sidransky
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Building 35A Room 1E623, 35A Convent Drive, Bethesda, MD 20892-3708, USA.
| |
Collapse
|
328
|
Donida B, Jacques CED, Mescka CP, Rodrigues DGB, Marchetti DP, Ribas G, Giugliani R, Vargas CR. Oxidative damage and redox in Lysosomal Storage Disorders: Biochemical markers. Clin Chim Acta 2017; 466:46-53. [DOI: 10.1016/j.cca.2017.01.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 01/04/2017] [Accepted: 01/07/2017] [Indexed: 02/03/2023]
|
329
|
Glucosylceramide synthase inhibition alleviates aberrations in synucleinopathy models. Proc Natl Acad Sci U S A 2017; 114:2699-2704. [PMID: 28223512 DOI: 10.1073/pnas.1616152114] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutations in the glucocerebrosidase gene (GBA) confer a heightened risk of developing Parkinson's disease (PD) and other synucleinopathies, resulting in a lower age of onset and exacerbating disease progression. However, the precise mechanisms by which mutations in GBA increase PD risk and accelerate its progression remain unclear. Here, we investigated the merits of glucosylceramide synthase (GCS) inhibition as a potential treatment for synucleinopathies. Two murine models of synucleinopathy (a Gaucher-related synucleinopathy model, GbaD409V/D409V and a A53T-α-synuclein overexpressing model harboring wild-type alleles of GBA, A53T-SNCA mouse model) were exposed to a brain-penetrant GCS inhibitor, GZ667161. Treatment of GbaD409V/D409V mice with the GCS inhibitor reduced levels of glucosylceramide and glucosylsphingosine in the central nervous system (CNS), demonstrating target engagement. Remarkably, treatment with GZ667161 slowed the accumulation of hippocampal aggregates of α-synuclein, ubiquitin, and tau, and improved the associated memory deficits. Similarly, prolonged treatment of A53T-SNCA mice with GZ667161 reduced membrane-associated α-synuclein in the CNS and ameliorated cognitive deficits. The data support the contention that prolonged antagonism of GCS in the CNS can affect α-synuclein processing and improve behavioral outcomes. Hence, inhibition of GCS represents a disease-modifying therapeutic strategy for GBA-related synucleinopathies and conceivably for certain forms of sporadic disease.
Collapse
|
330
|
Lobasso S, Tanzarella P, Vergara D, Maffia M, Cocco T, Corcelli A. Lipid profiling of parkin-mutant human skin fibroblasts. J Cell Physiol 2017; 232:3540-3551. [PMID: 28109117 DOI: 10.1002/jcp.25815] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/20/2016] [Accepted: 01/19/2017] [Indexed: 12/14/2022]
Abstract
Parkin mutations are a major cause of early-onset Parkinson's disease (PD). The impairment of protein quality control system together with defects in mitochondria and autophagy process are consequences of the lack of parkin, which leads to neurodegeneration. Little is known about the role of lipids in these alterations of cell functions. In the present study, parkin-mutant human skin primary fibroblasts have been considered as cellular model of PD to investigate on possible lipid alterations associated with the lack of parkin protein. Dermal fibroblasts were obtained from two unrelated PD patients with different parkin mutations and their lipid compositions were compared with that of two control fibroblasts. The lipid extracts of fibroblasts have been analyzed by combined matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF/MS) and thin-layer chromatography (TLC). In parallel, we have performed direct MALDI-TOF/MS lipid analyses of intact fibroblasts by skipping lipid extraction steps. Results show that the proportions of some phospholipids and glycosphingolipids were altered in the lipid profiles of parkin-mutant fibroblasts. The detected higher level of gangliosides, phosphatidylinositol, and phosphatidylserine could be linked to dysfunction of autophagy and mitochondrial turnover; in addition, the lysophosphatidylcholine increase could represent the marker of neuroinflammatory state, a well-known component of PD.
Collapse
Affiliation(s)
- Simona Lobasso
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari "A. Moro", Bari, Italy
| | - Paola Tanzarella
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari "A. Moro", Bari, Italy
| | - Daniele Vergara
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Michele Maffia
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Tiziana Cocco
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari "A. Moro", Bari, Italy
| | - Angela Corcelli
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari "A. Moro", Bari, Italy
| |
Collapse
|
331
|
Barkhuizen M, Anderson DG, van der Westhuizen FH, Grobler AF. A molecular analysis of the GBA gene in Caucasian South Africans with Parkinson's disease. Mol Genet Genomic Med 2017; 5:147-156. [PMID: 28361101 PMCID: PMC5370228 DOI: 10.1002/mgg3.267] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/16/2016] [Accepted: 11/22/2016] [Indexed: 01/07/2023] Open
Abstract
Background The molecular basis of Parkinson's disease in South African population groups remains elusive. To date, substitutions in the GBA gene are the most common large‐effect genetic risk factor for Parkinson's disease. The primary objective of this study was to determine the prevalence of GBA substitutions in South Africans with idiopathic Parkinson's disease. Methods Participants were recruited from tertiary hospitals in the Gauteng Province in South Africa. All participants were screened for substitutions in GBA exon 8‐11 and the full coding region was analysed in 20 participants. Peripheral β‐glucocerebrosidase enzymatic activity of GBA‐carriers was measured in mixed leukocytes. Results Of 105 Caucasian Parkinson's disease participants (82.7% Afrikaner) with an average age of disease onset of 61.9 ± 12.2 years and 40 controls (age 73.4 ± 12.4 years) were included. Heterozygous GBA substitutions were identified in 12.38% of affected participants (p.G35A, p.E326K, p.I368T, p.T369M, p.N370S, p.P387L and p.K441N) and 5.00% of controls (p.E326K and p.T369M). The substitutions ranged from predicted benign to moderately damaging; with p.E326K and p.T369M most prevalent, followed by the Afrikaner Gaucher disease substitution p.P387L. Severe Gaucher disease mutations, like p.L444P, were absent in this cohort. Enzyme activity analysis revealed a nonsignificant reduction in the GBA‐Parkinson's disease individuals (14.49 ± 2.30 nmol/h/mg protein vs. 15.98 ± 3.06 nmol/h/mg in control samples). GBA substitutions occur in both young‐onset and late‐onset Parkinson's cases in the cohort. Conclusion Mild GBA substitutions that may not cause Gaucher disease were a common risk factor for Parkinson's disease in the participant group.
Collapse
Affiliation(s)
- Melinda Barkhuizen
- DST/NWU Preclinical Drug Development PlatformNorth-West UniversityPotchefstroom2520South Africa; Department of PaediatricsSchool for Mental Health and NeuroscienceMaastricht UniversityMaastricht6229The Netherlands
| | - David G Anderson
- Department of Neurology University of the Witwatersrand Donald Gordon Medical Centre Johannesburg 2193 South Africa
| | | | - Anne F Grobler
- DST/NWU Preclinical Drug Development Platform North-West University Potchefstroom 2520 South Africa
| |
Collapse
|
332
|
Jansen IE, Ye H, Heetveld S, Lechler MC, Michels H, Seinstra RI, Lubbe SJ, Drouet V, Lesage S, Majounie E, Gibbs JR, Nalls MA, Ryten M, Botia JA, Vandrovcova J, Simon-Sanchez J, Castillo-Lizardo M, Rizzu P, Blauwendraat C, Chouhan AK, Li Y, Yogi P, Amin N, van Duijn CM, Morris HR, Brice A, Singleton AB, David DC, Nollen EA, Jain S, Shulman JM, Heutink P. Discovery and functional prioritization of Parkinson's disease candidate genes from large-scale whole exome sequencing. Genome Biol 2017; 18:22. [PMID: 28137300 PMCID: PMC5282828 DOI: 10.1186/s13059-017-1147-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 01/03/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Whole-exome sequencing (WES) has been successful in identifying genes that cause familial Parkinson's disease (PD). However, until now this approach has not been deployed to study large cohorts of unrelated participants. To discover rare PD susceptibility variants, we performed WES in 1148 unrelated cases and 503 control participants. Candidate genes were subsequently validated for functions relevant to PD based on parallel RNA-interference (RNAi) screens in human cell culture and Drosophila and C. elegans models. RESULTS Assuming autosomal recessive inheritance, we identify 27 genes that have homozygous or compound heterozygous loss-of-function variants in PD cases. Definitive replication and confirmation of these findings were hindered by potential heterogeneity and by the rarity of the implicated alleles. We therefore looked for potential genetic interactions with established PD mechanisms. Following RNAi-mediated knockdown, 15 of the genes modulated mitochondrial dynamics in human neuronal cultures and four candidates enhanced α-synuclein-induced neurodegeneration in Drosophila. Based on complementary analyses in independent human datasets, five functionally validated genes-GPATCH2L, UHRF1BP1L, PTPRH, ARSB, and VPS13C-also showed evidence consistent with genetic replication. CONCLUSIONS By integrating human genetic and functional evidence, we identify several PD susceptibility gene candidates for further investigation. Our approach highlights a powerful experimental strategy with broad applicability for future studies of disorders with complex genetic etiologies.
Collapse
Affiliation(s)
- Iris E. Jansen
- German Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-Str. 23, Tübingen, 72076 Germany
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, 1081HZ The Netherlands
| | - Hui Ye
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX USA
| | - Sasja Heetveld
- German Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-Str. 23, Tübingen, 72076 Germany
| | - Marie C. Lechler
- German Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-Str. 23, Tübingen, 72076 Germany
- Graduate School of Cellular & Molecular Neuroscience, Tübingen, 72074 Germany
| | - Helen Michels
- European Research Institute for the Biology of Aging, University of Groningen, University Medical Centre Groningen, Groningen, 9700AD The Netherlands
| | - Renée I. Seinstra
- European Research Institute for the Biology of Aging, University of Groningen, University Medical Centre Groningen, Groningen, 9700AD The Netherlands
| | - Steven J. Lubbe
- Department of Clinical Neuroscience, UCL Institute of Neurology, London, UK
- Northwestern University Feinberg School of Medicine, Ken and Ruth Davee Department of Neurology, Chicago, IL USA
| | - Valérie Drouet
- Inserm U1127, CNRS UMR7225, Sorbonne Universités, UPMC Univ Paris 06, UMR_S1127, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Suzanne Lesage
- Inserm U1127, CNRS UMR7225, Sorbonne Universités, UPMC Univ Paris 06, UMR_S1127, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Elisa Majounie
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - J. Raphael Gibbs
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD USA
| | - Mike A. Nalls
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD USA
| | - Mina Ryten
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
- Department of Medical & Molecular Genetics, King’s College London, London, UK
| | - Juan A. Botia
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Jana Vandrovcova
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Javier Simon-Sanchez
- German Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-Str. 23, Tübingen, 72076 Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Melissa Castillo-Lizardo
- German Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-Str. 23, Tübingen, 72076 Germany
| | - Patrizia Rizzu
- German Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-Str. 23, Tübingen, 72076 Germany
| | - Cornelis Blauwendraat
- German Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-Str. 23, Tübingen, 72076 Germany
| | - Amit K. Chouhan
- Department of Neurology, Baylor College of Medicine, Houston, TX USA
| | - Yarong Li
- Department of Neurology, Baylor College of Medicine, Houston, TX USA
| | - Puja Yogi
- Department of Neurology, Baylor College of Medicine, Houston, TX USA
| | - Najaf Amin
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Cornelia M. van Duijn
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Huw R. Morris
- Department of Clinical Neuroscience, UCL Institute of Neurology, London, UK
| | - Alexis Brice
- Inserm U1127, CNRS UMR7225, Sorbonne Universités, UPMC Univ Paris 06, UMR_S1127, Institut du Cerveau et de la Moelle épinière, Paris, France
- Assistance Publique Hôpitaux de Paris, Hôpital de la Salpêtrière, Département de Génétique et Cytogénétique, Paris, France
| | | | - Della C. David
- German Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-Str. 23, Tübingen, 72076 Germany
| | - Ellen A. Nollen
- European Research Institute for the Biology of Aging, University of Groningen, University Medical Centre Groningen, Groningen, 9700AD The Netherlands
| | - Shushant Jain
- German Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-Str. 23, Tübingen, 72076 Germany
| | - Joshua M. Shulman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX USA
- Department of Neurology, Baylor College of Medicine, Houston, TX USA
- Department of Neuroscience and Program in Developmental Biology, Baylor College of Medicine, Houston, TX USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund St., N.1150, Houston, TX 77030 USA
| | - Peter Heutink
- German Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-Str. 23, Tübingen, 72076 Germany
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, 1081HZ The Netherlands
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
333
|
Pignataro D, Sucunza D, Rico AJ, Dopeso-Reyes IG, Roda E, Rodríguez-Perez AI, Labandeira-Garcia JL, Broccoli V, Kato S, Kobayashi K, Lanciego JL. Gene therapy approaches in the non-human primate model of Parkinson's disease. J Neural Transm (Vienna) 2017; 125:575-589. [PMID: 28130586 DOI: 10.1007/s00702-017-1681-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/16/2017] [Indexed: 12/23/2022]
Abstract
The field of gene therapy has recently witnessed a number of major conceptual changes. Besides the traditional thinking that comprises the use of viral vectors for the delivery of a given therapeutic gene, a number of original approaches have been recently envisaged, focused on using vectors carrying genes to further modify basal ganglia circuits of interest. It is expected that these approaches will ultimately induce a therapeutic potential being sustained by gene-induced changes in brain circuits. Among others, at present, it is technically feasible to use viral vectors to (1) achieve a controlled release of neurotrophic factors, (2) conduct either a transient or permanent silencing of any given basal ganglia circuit of interest, (3) perform an in vivo cellular reprogramming by promoting the conversion of resident cells into dopaminergic-like neurons, and (4) improving levodopa efficacy over time by targeting aromatic L-amino acid decarboxylase. Furthermore, extensive research efforts based on viral vectors are currently ongoing in an attempt to better replicate the dopaminergic neurodegeneration phenomena inherent to the progressive intraneuronal aggregation of alpha-synuclein. Finally, a number of incoming strategies will soon emerge over the horizon, these being sustained by the underlying goal of promoting alpha-synuclein clearance, such as, for instance, gene therapy initiatives based on increasing the activity of glucocerebrosidase. To provide adequate proof-of-concept on safety and efficacy and to push forward true translational initiatives based on these different types of gene therapies before entering into clinical trials, the use of non-human primate models undoubtedly plays an instrumental role.
Collapse
Affiliation(s)
- D Pignataro
- Department of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, Pio XII Ave 55, Edificio CIMA, 31008, Pamplona, Navarra, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - D Sucunza
- Department of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, Pio XII Ave 55, Edificio CIMA, 31008, Pamplona, Navarra, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - A J Rico
- Department of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, Pio XII Ave 55, Edificio CIMA, 31008, Pamplona, Navarra, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - I G Dopeso-Reyes
- Department of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, Pio XII Ave 55, Edificio CIMA, 31008, Pamplona, Navarra, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - E Roda
- Department of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, Pio XII Ave 55, Edificio CIMA, 31008, Pamplona, Navarra, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - A I Rodríguez-Perez
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - J L Labandeira-Garcia
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - V Broccoli
- Division of Neuroscience, Ospedale San Raffaele, 20132, Milan, Italy
- CNR Institute of Neuroscience, 20129, Milan, Italy
| | - S Kato
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - K Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - José L Lanciego
- Department of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, Pio XII Ave 55, Edificio CIMA, 31008, Pamplona, Navarra, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| |
Collapse
|
334
|
Moors TE, Hoozemans JJM, Ingrassia A, Beccari T, Parnetti L, Chartier-Harlin MC, van de Berg WDJ. Therapeutic potential of autophagy-enhancing agents in Parkinson's disease. Mol Neurodegener 2017; 12:11. [PMID: 28122627 PMCID: PMC5267440 DOI: 10.1186/s13024-017-0154-3] [Citation(s) in RCA: 208] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 01/18/2017] [Indexed: 01/07/2023] Open
Abstract
Converging evidence from genetic, pathological and experimental studies have increasingly suggested an important role for autophagy impairment in Parkinson’s Disease (PD). Genetic studies have identified mutations in genes encoding for components of the autophagy-lysosomal pathway (ALP), including glucosidase beta acid 1 (GBA1), that are associated with increased risk for developing PD. Observations in PD brain tissue suggest an aberrant regulation of autophagy associated with the aggregation of α-synuclein (α-syn). As autophagy is one of the main systems involved in the proteolytic degradation of α-syn, pharmacological enhancement of autophagy may be an attractive strategy to combat α-syn aggregation in PD. Here, we review the potential of autophagy enhancement as disease-modifying therapy in PD based on preclinical evidence. In particular, we provide an overview of the molecular regulation of autophagy and targets for pharmacological modulation within the ALP. In experimental models, beneficial effects on multiple pathological processes involved in PD, including α-syn aggregation, cell death, oxidative stress and mitochondrial dysfunction, have been demonstrated using the autophagy enhancers rapamycin and lithium. However, selectivity of these agents is limited, while upstream ALP signaling proteins are involved in many other pathways than autophagy. Broad stimulation of autophagy may therefore cause a wide spectrum of dose-dependent side-effects, suggesting that its clinical applicability is limited. However, recently developed agents selectively targeting core ALP components, including Transcription Factor EB (TFEB), lysosomes, GCase as well as chaperone-mediated autophagy regulators, exert more specific effects on molecular pathogenetic processes causing PD. To conclude, the targeted manipulation of downstream ALP components, rather than broad autophagy stimulation, may be an attractive strategy for the development of novel pharmacological therapies in PD. Further characterization of dysfunctional autophagy in different stages and molecular subtypes of PD in combination with the clinical translation of downstream autophagy regulation offers exciting new avenues for future drug development.
Collapse
Affiliation(s)
- Tim E Moors
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy, Amsterdam Neuroscience, VU University Medical Center Amsterdam, Amsterdam, The Netherlands.
| | - Jeroen J M Hoozemans
- Department of Pathology, Amsterdam Neuroscience, VU University Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Angela Ingrassia
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy, Amsterdam Neuroscience, VU University Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Tommaso Beccari
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Lucilla Parnetti
- Department of Medicine, Section of Neurology, University of Perugia, Perugia, Italy
| | - Marie-Christine Chartier-Harlin
- UMR-S 1172-JPArc-Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, University of Lille, Lille, F-59000, France.,Inserm, UMR-S 1172, Team "Early stages of Parkinson's disease", F-59000, Lille, France
| | - Wilma D J van de Berg
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy, Amsterdam Neuroscience, VU University Medical Center Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
335
|
Age- and brain region-dependent α-synuclein oligomerization is attributed to alterations in intrinsic enzymes regulating α-synuclein phosphorylation in aging monkey brains. Oncotarget 2017; 7:8466-80. [PMID: 27032368 PMCID: PMC4890980 DOI: 10.18632/oncotarget.6445] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/16/2015] [Indexed: 11/25/2022] Open
Abstract
We previously reported that the levels of α-syn oligomers, which play pivotal pathogenic roles in age-related Parkinson's disease (PD) and dementia with Lewy bodies, increase heterogeneously in the aging brain. Here, we show that exogenous α-syn incubated with brain extracts from older cynomolgus monkeys and in Lewy body pathology (LBP)-susceptible brain regions (striatum and hippocampus) forms higher amounts of phosphorylated and oligomeric α-syn than that in extracts from younger monkeys and LBP-insusceptible brain regions (cerebellum and occipital cortex). The increased α-syn phosphorylation and oligomerization in the brain extracts from older monkeys and in LBP-susceptible brain regions were associated with higher levels of polo-like kinase 2 (PLK2), an enzyme promoting α-syn phosphorylation, and lower activity of protein phosphatase 2A (PP2A), an enzyme inhibiting α-syn phosphorylation, in these brain extracts. Further, the extent of the age- and brain-dependent increase in α-syn phosphorylation and oligomerization was reduced by inhibition of PLK2 and activation of PP2A. Inversely, phosphorylated α-syn oligomers reduced the activity of PP2A and showed potent cytotoxicity. In addition, the activity of GCase and the levels of ceramide, a product of GCase shown to activate PP2A, were lower in brain extracts from older monkeys and in LBP-susceptible brain regions. Our results suggest a role for altered intrinsic metabolic enzymes in age- and brain region-dependent α-syn oligomerization in aging brains.
Collapse
|
336
|
Mistry PK, Lopez G, Schiffmann R, Barton NW, Weinreb NJ, Sidransky E. Gaucher disease: Progress and ongoing challenges. Mol Genet Metab 2017; 120:8-21. [PMID: 27916601 PMCID: PMC5425955 DOI: 10.1016/j.ymgme.2016.11.006] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/15/2016] [Accepted: 11/16/2016] [Indexed: 12/31/2022]
Abstract
Over the past decades, tremendous progress has been made in the field of Gaucher disease, the inherited deficiency of the lysosomal enzyme glucocerebrosidase. Many of the colossal achievements took place during the course of the sixty-year tenure of Dr. Roscoe Brady at the National Institutes of Health. These include the recognition of the enzymatic defect involved, the isolation and characterization of the protein, the localization and characterization of the gene and its nearby pseudogene, as well as the identification of the first mutant alleles in patients. The first treatment for Gaucher disease, enzyme replacement therapy, was conceived of, developed and tested at the Clinical Center of the National Institutes of Health. Advances including recombinant production of the enzyme, the development of mouse models, pioneering gene therapy experiments, high throughput screens of small molecules and the generation of induced pluripotent stem cell models have all helped to catapult research in Gaucher disease into the twenty-first century. The appreciation that mutations in the glucocerebrosidase gene are an important risk factor for parkinsonism further expands the impact of this work. However, major challenges still remain, some of which are described here, that will provide opportunities, excitement and discovery for the next generations of Gaucher investigators.
Collapse
Affiliation(s)
- Pramod K Mistry
- Yale University School of Medicine, Department of Internal Medicine, 333 Cedar Street, LMP 1080, P.O. Box 208019, New Haven, CT 06520-8019, United States.
| | - Grisel Lopez
- Medical Genetics Branch, NHGRI, NIH, Bldg 35A Room 1E623, 35 Convent Drive, Bethesda, MD 20892, United States.
| | - Raphael Schiffmann
- Institute of Metabolic Disease, Baylor Research Institute, Dallas, TX 75226, United States.
| | - Norman W Barton
- Therapeutic Area Head Neuroscience, Shire plc, 300 Shire Way, Lexington, MA 02421, United States.
| | - Neal J Weinreb
- University of Miami Miller School of Medicine, Department of Human Genetics and Medicine (Hematology), UHealth Sylvester Coral Springs, 8170 Royal Palm Boulevard, Coral Springs, FL 33065, United States.
| | - Ellen Sidransky
- Medical Genetics Branch, NHGRI, NIH, Bldg 35A Room 1E623, 35 Convent Drive, Bethesda, MD 20892, United States.
| |
Collapse
|
337
|
Abstract
Leucine-rich repeat kinase 2 (LRRK2) has been implicated in a wide range of cellular processes, including the catabolic pathways collectively described as autophagy. In this chapter, the evidence linking LRRK2 to autophagy will be examined, along with how regulation of autophagy and lysosomal pathways may provide a nexus between the physiological function of this protein and the different diseases with which it has been associated. Data from cellular and animal models for LRRK2 function and dysfunction support a role in the regulation and control of autophagic pathways in the cell, although the extant results do not provide a clear indication as to whether LRRK2 is a positive or negative regulator of these pathways, and there are conflicting data as to the impact of mutations in LRRK2 causative for Parkinson's disease. Given that LRRK2 is a priority drug target for Parkinson's, the evidence suggesting that knockout or inhibition of LRRK2 can result in deregulation of autophagy may have important implications and is discussed in the context of our wider understanding of LRRK2.
Collapse
Affiliation(s)
- Claudia Manzoni
- School of Pharmacy, University of Reading, Whiteknights, Reading, UK
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| | - Patrick A Lewis
- School of Pharmacy, University of Reading, Whiteknights, Reading, UK.
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK.
| |
Collapse
|
338
|
Sala G, Marinig D, Arosio A, Ferrarese C. Role of Chaperone-Mediated Autophagy Dysfunctions in the Pathogenesis of Parkinson's Disease. Front Mol Neurosci 2016; 9:157. [PMID: 28066181 PMCID: PMC5179559 DOI: 10.3389/fnmol.2016.00157] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 12/08/2016] [Indexed: 12/20/2022] Open
Abstract
Chaperone-mediated autophagy (CMA) represents a selective form of autophagy involved in the degradation of specific soluble proteins containing a pentapeptide motif that is recognized by a cytosolic chaperone able to deliver proteins to the lysosomes for degradation. Physiologically, CMA contributes to maintain crucial cellular functions including energetic balance and protein quality control. Dysfunctions in CMA have been associated to the pathogenesis of several neurodegenerative diseases characterized by accumulation and aggregation of proteins identified as CMA substrates. In particular, increasing evidence highlights the existence of a strong relationship between CMA defects and Parkinson’s disease (PD). Several mutations associated with familial forms of PD (SNCA, LRRK2, UCHL1 and DJ-1) have been demonstrated to block or reduce the activity of CMA, the main catabolic pathway for alpha-synuclein (asyn). CMA dysfunctions also leads to a mislocalization and inactivation of the transcription factor MEF2D that plays a key-role in the survival of dopaminergic neurons. Furthermore, reduced levels of CMA markers have been observed in post mortem brain samples from PD patients. The aim of this review article is to provide an organic revision of evidence for the involvement of CMA dysfunctions in the pathogenesis of PD. Updated findings obtained in patient’s specimens will be resumed, and results deriving from in vivo and in vitro studies will be discussed to evidence the current knowledge on the molecular mechanisms underlying CMA alterations in PD. Finally, the possibility of up-regulating CMA pathway as promising neuroprotective strategy will be considered.
Collapse
Affiliation(s)
- Gessica Sala
- Laboratory of Neurobiology, School of Medicine and Surgery, Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca Monza, Italy
| | - Daniele Marinig
- Laboratory of Neurobiology, School of Medicine and Surgery, Milan Center for Neuroscience (NeuroMI), University of Milano-BicoccaMonza, Italy; PhD Program in Neuroscience, University of Milano-BicoccaMonza, Italy
| | - Alessandro Arosio
- Laboratory of Neurobiology, School of Medicine and Surgery, Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca Monza, Italy
| | - Carlo Ferrarese
- Laboratory of Neurobiology, School of Medicine and Surgery, Milan Center for Neuroscience (NeuroMI), University of Milano-BicoccaMonza, Italy; Department of Neurology, San Gerardo Hospital, University of Milano-BicoccaMonza, Italy
| |
Collapse
|
339
|
Lubbe SJ, Escott-Price V, Brice A, Gasser T, Pittman AM, Bras J, Hardy J, Heutink P, Wood NM, Singleton AB, Grosset DG, Carroll CB, Law MH, Demenais F, Iles MM, Bishop DT, Newton-Bishop J, Williams NM, Morris HR. Rare variants analysis of cutaneous malignant melanoma genes in Parkinson's disease. Neurobiol Aging 2016; 48:222.e1-222.e7. [PMID: 27640074 PMCID: PMC5096891 DOI: 10.1016/j.neurobiolaging.2016.07.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 07/15/2016] [Accepted: 07/20/2016] [Indexed: 11/22/2022]
Abstract
A shared genetic susceptibility between cutaneous malignant melanoma (CMM) and Parkinson's disease (PD) has been suggested. We investigated this by assessing the contribution of rare variants in genes involved in CMM to PD risk. We studied rare variation across 29 CMM risk genes using high-quality genotype data in 6875 PD cases and 6065 controls and sought to replicate findings using whole-exome sequencing data from a second independent cohort totaling 1255 PD cases and 473 controls. No statistically significant enrichment of rare variants across all genes, per gene, or for any individual variant was detected in either cohort. There were nonsignificant trends toward different carrier frequencies between PD cases and controls, under different inheritance models, in the following CMM risk genes: BAP1, DCC, ERBB4, KIT, MAPK2, MITF, PTEN, and TP53. The very rare TYR p.V275F variant, which is a pathogenic allele for recessive albinism, was more common in PD cases than controls in 3 independent cohorts. Tyrosinase, encoded by TYR, is the rate-limiting enzyme for the production of neuromelanin, and has a role in the production of dopamine. These results suggest a possible role for another gene in the dopamine-biosynthetic pathway in susceptibility to neurodegenerative Parkinsonism, but further studies in larger PD cohorts are needed to accurately determine the role of these genes/variants in disease pathogenesis.
Collapse
Affiliation(s)
- S J Lubbe
- Department of Clinical Neuroscience, UCL Institute of Neurology, London, United Kingdom
| | - V Escott-Price
- Institute of Psychological Medicine and Clinical Neurosciences, Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Department of Psychological Medicine and Neurology, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - A Brice
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle Epinière, ICM, France
| | - T Gasser
- Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, and DZNE, German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - A M Pittman
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, United Kingdom
| | - J Bras
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, United Kingdom
| | - J Hardy
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, United Kingdom
| | - P Heutink
- Department of Clinical Genetics, Section of Medical Genomics, VU University Medical Centre, Amsterdam, The Netherlands
| | - N M Wood
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, United Kingdom; UCL Genetics Institute, London, United Kingdom
| | - A B Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - D G Grosset
- Department of Neurology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - C B Carroll
- Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, United Kingdom
| | - M H Law
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - F Demenais
- INSERM, UMR 946, Genetic Variation and Human Diseases Unit, Paris, France; Institut Universitaire d'Hématologie, Université Paris Diderot, Sorbonne, Paris, France
| | - M M Iles
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, Leeds, United Kingdom
| | - D T Bishop
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, Leeds, United Kingdom
| | - J Newton-Bishop
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, Leeds, United Kingdom
| | - N M Williams
- Institute of Psychological Medicine and Clinical Neurosciences, Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Department of Psychological Medicine and Neurology, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - H R Morris
- Department of Clinical Neuroscience, UCL Institute of Neurology, London, United Kingdom.
| |
Collapse
|
340
|
Pchelina S, Emelyanov A, Baydakova G, Andoskin P, Senkevich K, Nikolaev M, Miliukhina I, Yakimovskii A, Timofeeva A, Fedotova E, Abramycheva N, Usenko T, Kulabukhova D, Lavrinova A, Kopytova A, Garaeva L, Nuzhnyi E, Illarioshkin S, Zakharova E. Oligomeric α-synuclein and glucocerebrosidase activity levels in GBA-associated Parkinson's disease. Neurosci Lett 2016; 636:70-76. [PMID: 27780739 DOI: 10.1016/j.neulet.2016.10.039] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/14/2016] [Accepted: 10/20/2016] [Indexed: 12/16/2022]
Abstract
Alpha-synuclein oligomerization plays a key role in the development of Parkinson's disease (PD). Being the most common genetic contributor to PD, glucocerebrosidase 1 (GBA) mutations have been associated with decreased GBA enzymatic activity in PD patients with mutations in the GBA gene (GBA-PD). However, it is unknown whether the activities of other lysosomal hydrolases are being altered in GBA-PD patients and are accompanied by an increase in alpha-synuclein oligomerization. The aim of our study was to estimate GBA enzymatic activity as well as the activities of five other lysosomal hydrolases (galactocerebrosidase, alpha-glucosidase, alpha-galactosidase, sphingomyelinase, alpha-iduronidase) in dried blood spots with assessing plasma oligomeric alpha-synuclein levels in sporadic PD (sPD) patients, in GBA-PD patients and in controls. GBA enzymatic activity and plasma oligomeric alpha-synuclein levels were assessed in sPD patients (N=84), in GBA-PD patients (N=21) and controls (N=62) by LC-MS/MS and ELISA methods accordingly. GBA-PD patients showed lower GBA enzymatic activity compared to controls (p=0.001) and to sPD (p=0.0001). We also found the reduction of GLA enzymatic activity (but not of other lysosomal hydrolases) in GBA-PD (p=0.001). At the same time plasma oligomeric alpha-synuclein levels were increased in GBA-PD group compared to sPD and controls (p=0.002 and p<0.0001, respectively). Our results suggest that the decrease in enzymatic activity of lysosomal hydrolases in GBA mutation carriers may contribute to PD pathogenesis by increasing the level of neurotoxic oligomeric alpha-synuclein species.
Collapse
Affiliation(s)
- S Pchelina
- Petersburg Nuclear Physics Institute, St. Petersburg, Russia; First Pavlov State Medical University of St. Petersburg, St. Petersburg, Russia; St. Petersburg Academic University-Nanothecnology Research and Education Centre, RAS, St. Petersburg, Russia; Institute of Experimental Medicine, St. Petersburg, Russia.
| | - A Emelyanov
- Petersburg Nuclear Physics Institute, St. Petersburg, Russia; First Pavlov State Medical University of St. Petersburg, St. Petersburg, Russia; St. Petersburg Academic University-Nanothecnology Research and Education Centre, RAS, St. Petersburg, Russia
| | - G Baydakova
- Research Center of Medical Genetics, Moscow, Russia
| | - P Andoskin
- Petersburg Nuclear Physics Institute, St. Petersburg, Russia
| | - K Senkevich
- First Pavlov State Medical University of St. Petersburg, St. Petersburg, Russia; Institute of Experimental Medicine, St. Petersburg, Russia
| | - M Nikolaev
- Petersburg Nuclear Physics Institute, St. Petersburg, Russia; First Pavlov State Medical University of St. Petersburg, St. Petersburg, Russia
| | - I Miliukhina
- First Pavlov State Medical University of St. Petersburg, St. Petersburg, Russia; Institute of Experimental Medicine, St. Petersburg, Russia
| | - A Yakimovskii
- First Pavlov State Medical University of St. Petersburg, St. Petersburg, Russia
| | - A Timofeeva
- First Pavlov State Medical University of St. Petersburg, St. Petersburg, Russia
| | - E Fedotova
- Research Centre of Neurology, Moscow, Russia
| | | | - T Usenko
- Petersburg Nuclear Physics Institute, St. Petersburg, Russia; First Pavlov State Medical University of St. Petersburg, St. Petersburg, Russia
| | - D Kulabukhova
- Petersburg Nuclear Physics Institute, St. Petersburg, Russia
| | - A Lavrinova
- Petersburg Nuclear Physics Institute, St. Petersburg, Russia
| | - A Kopytova
- Petersburg Nuclear Physics Institute, St. Petersburg, Russia
| | - L Garaeva
- Petersburg Nuclear Physics Institute, St. Petersburg, Russia
| | - E Nuzhnyi
- First Pavlov State Medical University of St. Petersburg, St. Petersburg, Russia; Research Centre of Neurology, Moscow, Russia
| | | | - E Zakharova
- Research Center of Medical Genetics, Moscow, Russia
| |
Collapse
|
341
|
Stütz AE, Wrodnigg TM. Carbohydrate-Processing Enzymes of the Lysosome: Diseases Caused by Misfolded Mutants and Sugar Mimetics as Correcting Pharmacological Chaperones. Adv Carbohydr Chem Biochem 2016; 73:225-302. [PMID: 27816107 DOI: 10.1016/bs.accb.2016.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Lysosomal storage diseases are hereditary disorders caused by mutations on genes encoding for one of the more than fifty lysosomal enzymes involved in the highly ordered degradation cascades of glycans, glycoconjugates, and other complex biomolecules in the lysosome. Several of these metabolic disorders are associated with the absence or the lack of activity of carbohydrate-processing enzymes in this cell compartment. In a recently introduced therapy concept, for susceptible mutants, small substrate-related molecules (so-called pharmacological chaperones), such as reversible inhibitors of these enzymes, may serve as templates for the correct folding and transport of the respective protein mutant, thus improving its concentration and, consequently, its enzymatic activity in the lysosome. Carbohydrate-processing enzymes in the lysosome, related lysosomal diseases, and the scope and limitations of reported reversible inhibitors as pharmacological chaperones are discussed with a view to possibly extending and improving research efforts in this area of orphan diseases.
Collapse
Affiliation(s)
- Arnold E Stütz
- Glycogroup, Institute of Organic Chemistry, Graz University of Technology, Graz, Austria
| | - Tanja M Wrodnigg
- Glycogroup, Institute of Organic Chemistry, Graz University of Technology, Graz, Austria
| |
Collapse
|
342
|
Farhan SMK, Dilliott AA, Ghani M, Sato C, Liang E, Zhang M, McIntyre AD, Cao H, Racacho L, Robinson JF, Strong MJ, Masellis M, St George-Hyslop P, Bulman DE, Rogaeva E, Hegele RA. The ONDRISeq panel: custom-designed next-generation sequencing of genes related to neurodegeneration. NPJ Genom Med 2016; 1:16032. [PMID: 29263818 PMCID: PMC5685311 DOI: 10.1038/npjgenmed.2016.32] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 08/01/2016] [Accepted: 08/05/2016] [Indexed: 12/13/2022] Open
Abstract
The Ontario Neurodegenerative Disease Research Initiative (ONDRI) is a multimodal, multi-year, prospective observational cohort study to characterise five diseases: (1) Alzheimer's disease (AD) or amnestic single or multidomain mild cognitive impairment (aMCI) (AD/MCI); (2) amyotrophic lateral sclerosis (ALS); (3) frontotemporal dementia (FTD); (4) Parkinson's disease (PD); and (5) vascular cognitive impairment (VCI). The ONDRI Genomics subgroup is investigating the genetic basis of neurodegeneration. We have developed a custom next-generation-sequencing-based panel, ONDRISeq that targets 80 genes known to be associated with neurodegeneration. We processed DNA collected from 216 individuals diagnosed with one of the five diseases, on ONDRISeq. All runs were executed on a MiSeq instrument and subjected to rigorous quality control assessments. We also independently validated a subset of the variant calls using NeuroX (a genome-wide array for neurodegenerative disorders), TaqMan allelic discrimination assay, or Sanger sequencing. ONDRISeq consistently generated high-quality genotyping calls and on average, 92% of targeted bases are covered by at least 30 reads. We also observed 100% concordance for the variants identified via ONDRISeq and validated by other genomic technologies. We were successful in detecting known as well as novel rare variants in 72.2% of cases although not all variants are disease-causing. Using ONDRISeq, we also found that the APOE E4 allele had a frequency of 0.167 in these samples. Our optimised workflow highlights next-generation sequencing as a robust tool in elucidating the genetic basis of neurodegenerative diseases by screening multiple candidate genes simultaneously.
Collapse
Affiliation(s)
- Sali M K Farhan
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Allison A Dilliott
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Mahdi Ghani
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Christine Sato
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Eric Liang
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Ming Zhang
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Adam D McIntyre
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Henian Cao
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Lemuel Racacho
- Department of Microbiology and Immunology, Faculty of Medicine, Department of Biochemistry, University of Ottawa, Ottawa, ON, Canada.,Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - John F Robinson
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Michael J Strong
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Department of Clinical Neurological Sciences, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Mario Masellis
- Department of Medicine (Neurology), Sunnybrook Health Sciences Centre, LC Campbell Cognitive Neurology Research Unit, Hurvitz Brain Science Research Program, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Peter St George-Hyslop
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada.,Department of Clinical Neurosciences, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Dennis E Bulman
- Department of Microbiology and Immunology, Faculty of Medicine, Department of Biochemistry, University of Ottawa, Ottawa, ON, Canada.,Department of Pediatrics, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Robert A Hegele
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | | |
Collapse
|
343
|
Dai M, Liou B, Swope B, Wang X, Zhang W, Inskeep V, Grabowski GA, Sun Y, Pan D. Progression of Behavioral and CNS Deficits in a Viable Murine Model of Chronic Neuronopathic Gaucher Disease. PLoS One 2016; 11:e0162367. [PMID: 27598339 PMCID: PMC5012639 DOI: 10.1371/journal.pone.0162367] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 08/22/2016] [Indexed: 12/12/2022] Open
Abstract
To study the neuronal deficits in neuronopathic Gaucher Disease (nGD), the chronological behavioral profiles and the age of onset of brain abnormalities were characterized in a chronic nGD mouse model (9V/null). Progressive accumulation of glucosylceramide (GC) and glucosylsphingosine (GS) in the brain of 9V/null mice were observed at as early as 6 and 3 months of age for GC and GS, respectively. Abnormal accumulation of α-synuclein was present in the 9V/null brain as detected by immunofluorescence and Western blot analysis. In a repeated open-field test, the 9V/null mice (9 months and older) displayed significantly less environmental habituation and spent more time exploring the open-field than age-matched WT group, indicating the onset of short-term spatial memory deficits. In the marble burying test, the 9V/null group had a shorter latency to initiate burying activity at 3 months of age, whereas the latency increased significantly at ≥12 months of age; 9V/null females buried significantly more marbles to completion than the WT group, suggesting an abnormal response to the instinctive behavior and an abnormal activity in non-associative anxiety-like behavior. In the conditional fear test, only the 9V/null males exhibited a significant decrease in response to contextual fear, but both genders showed less response to auditory-cued fear compared to age- and gender-matched WT at 12 months of age. These results indicate hippocampus-related emotional memory defects. Abnormal gait emerged in 9V/null mice with wider front-paw and hind-paw widths, as well as longer stride in a gender-dependent manner with different ages of onset. Significantly higher liver- and spleen-to-body weight ratios were detected in 9V/null mice with different ages of onsets. These data provide temporal evaluation of neurobehavioral dysfunctions and brain pathology in 9V/null mice that can be used for experimental designs to evaluate novel therapies for nGD.
Collapse
Affiliation(s)
- Mei Dai
- Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Benjamin Liou
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Brittany Swope
- Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, Ohio, United States of America
| | - Xiaohong Wang
- Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Wujuan Zhang
- Division of Pathology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Venette Inskeep
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Gregory A. Grabowski
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Ying Sun
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, Ohio, United States of America
| | - Dao Pan
- Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, Ohio, United States of America
| |
Collapse
|
344
|
Zheng J, Chen L, Schwake M, Silverman RB, Krainc D. Design and Synthesis of Potent Quinazolines as Selective β-Glucocerebrosidase Modulators. J Med Chem 2016; 59:8508-20. [PMID: 27598312 DOI: 10.1021/acs.jmedchem.6b00930] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Gaucher's disease is a common genetic disease caused by mutations in the β-glucocerebrosidase (GBA1) gene that have been also linked to increased risk of Parkinson's disease and Lewy body dementia. Stabilization of misfolded mutant β-glucocerebrosidase (GCase) represents an important therapeutic strategy in synucleinopathies. Here we report a novel class of GCase quinazoline inhibitors, obtained in a high throughput screening, with moderate potency against wild-type GCase. Rational design and a SAR study of this class of compounds led to a new series of quinazoline derivatives with single-digit nanomolar potency. These compounds were shown to selectively stabilize GCase when compared to other lysosomal enzymes and to increase N370S mutant GCase protein concentration and activity in cell assays. To the best of our knowledge, these molecules are the most potent noniminosugar GCase modulators to date that may prove useful for future mechanistic studies and therapeutic approaches in Gaucher's and Parkinson's diseases.
Collapse
Affiliation(s)
- Jianbin Zheng
- Department of Neurology, Northwestern University Feinberg School of Medicine , Chicago, Illinois 60611, United States.,Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, and Center for Developmental Therapeutics, Northwestern University , Evanston, Illinois 60208-3113, United States
| | - Long Chen
- Department of Neurology, Northwestern University Feinberg School of Medicine , Chicago, Illinois 60611, United States
| | - Michael Schwake
- Department of Neurology, Northwestern University Feinberg School of Medicine , Chicago, Illinois 60611, United States
| | - Richard B Silverman
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, and Center for Developmental Therapeutics, Northwestern University , Evanston, Illinois 60208-3113, United States
| | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine , Chicago, Illinois 60611, United States
| |
Collapse
|
345
|
Martorell P, Llopis S, Gonzalez N, Ramón D, Serrano G, Torrens A, Serrano JM, Navarro M, Genovés S. A nutritional supplement containing lactoferrin stimulates the immune system, extends lifespan, and reduces amyloid β peptide toxicity in Caenorhabditis elegans. Food Sci Nutr 2016; 5:255-265. [PMID: 28265360 PMCID: PMC5332254 DOI: 10.1002/fsn3.388] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 04/06/2016] [Accepted: 04/21/2016] [Indexed: 11/23/2022] Open
Abstract
Lactoferrin is a highly multifunctional glycoprotein involved in many physiological functions, including regulation of iron absorption and immune responses. Moreover, there is increasing evidence for neuroprotective effects of lactoferrin. We used Caenorhabditis elegans as a model to test the protective effects, both on phenotype and transcriptome, of a nutraceutical product based on lactoferrin liposomes. In a dose‐dependent manner, the lactoferrin‐based product protected against acute oxidative stress and extended lifespan of C. elegans N2. Furthermore, Paralysis of the transgenic C. elegans strain CL4176, caused by Aβ1‐42 aggregates, was clearly ameliorated by treatment. Transcriptome analysis in treated nematodes indicated immune system stimulation, together with enhancement of processes involved in the oxidative stress response. The lactoferrin‐based product also improved the protein homeostasis processes, cellular adhesion processes, and neurogenesis in the nematode. In summary, the tested product exerts protection against aging and neurodegeneration, modulating processes involved in oxidative stress response, protein homeostasis, synaptic function, and xenobiotic metabolism. This lactoferrin‐based product is also able to stimulate the immune system, as well as improving reproductive status and energy metabolism. These findings suggest that oral supplementation with this lactoferrin‐based product could improve the immune system and antioxidant capacity. Further studies to understand the molecular mechanisms related with neuronal function would be of interest.
Collapse
Affiliation(s)
- Patricia Martorell
- Cell Biology Laboratory Food Biotechnology Department Biópolis SL Paterna, Valencia 46980 Spain
| | - Silvia Llopis
- Cell Biology Laboratory Food Biotechnology Department Biópolis SL Paterna, Valencia 46980 Spain
| | - Nuria Gonzalez
- Cell Biology Laboratory Food Biotechnology Department Biópolis SL Paterna, Valencia 46980 Spain
| | - Daniel Ramón
- Cell Biology Laboratory Food Biotechnology Department Biópolis SL Paterna, Valencia 46980 Spain
| | - Gabriel Serrano
- Research and Development Department Sesderma Laboratories Rafelbuñol, Valencia 46138 Spain
| | - Ana Torrens
- Research and Development Department Sesderma Laboratories Rafelbuñol, Valencia 46138 Spain
| | - Juan M Serrano
- Research and Development Department Sesderma Laboratories Rafelbuñol, Valencia 46138 Spain
| | - Maria Navarro
- Research and Development Department Sesderma Laboratories Rafelbuñol, Valencia 46138 Spain
| | - Salvador Genovés
- Cell Biology Laboratory Food Biotechnology Department Biópolis SL Paterna, Valencia 46980 Spain
| |
Collapse
|
346
|
Picillo M, Petrucci S, Valente EM, Pappatà S, Squame F, Ginevrino M, Pace L, Barone P, Pellecchia MT. Progressive Supranuclear Palsy-Like Phenotype in a GBA E326K Mutation Carrier. Mov Disord Clin Pract 2016; 4:444-446. [PMID: 30838276 DOI: 10.1002/mdc3.12406] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 06/08/2016] [Accepted: 06/10/2016] [Indexed: 11/06/2022] Open
Affiliation(s)
- Marina Picillo
- Center for Neurodegenerative Diseases (CEMAND) Department of Medicine and Surgery Neuroscience section University of Salerno Salerno Italy
| | - Simona Petrucci
- Department of Neurology and Psychiatry "Sapienza" University of Rome Rome Italy
| | - Enza Maria Valente
- Center for Neurodegenerative Diseases (CEMAND) Department of Medicine and Surgery Neuroscience section University of Salerno Salerno Italy
| | - Sabina Pappatà
- Institute of Biostructure and Bioimaging CNR Naples Italy
| | - Fiorenzo Squame
- Nuclear Medicine A.O.U. San Giovanni di Dio e Ruggi d'Aragona Salerno Italy
| | - Monia Ginevrino
- Center for Neurodegenerative Diseases (CEMAND) Department of Medicine and Surgery Neuroscience section University of Salerno Salerno Italy
| | - Leonardo Pace
- Department of Medicine and Surgery University of Salerno Salerno Italy
| | - Paolo Barone
- Center for Neurodegenerative Diseases (CEMAND) Department of Medicine and Surgery Neuroscience section University of Salerno Salerno Italy
| | - Maria Teresa Pellecchia
- Center for Neurodegenerative Diseases (CEMAND) Department of Medicine and Surgery Neuroscience section University of Salerno Salerno Italy
| |
Collapse
|
347
|
Glycosphingolipid analysis in a naturally occurring ovine model of acute neuronopathic Gaucher disease. Neurobiol Dis 2016; 91:143-54. [DOI: 10.1016/j.nbd.2016.03.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/18/2016] [Accepted: 03/10/2016] [Indexed: 01/06/2023] Open
|
348
|
Multisystem Lewy body disease and the other parkinsonian disorders. Nat Genet 2016; 47:1378-84. [PMID: 26620112 DOI: 10.1038/ng.3454] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 10/28/2015] [Indexed: 12/12/2022]
Abstract
Here we prioritize as multisystem Lewy body disease (MLBD) those genetic forms of Parkinson's disease that point the way toward a mechanistic understanding of the majority of sporadic disease. Pathological diagnosis of genetic subtypes offers the prospect of distinguishing different mechanistic trajectories with a common mutational etiology, differing outcomes from varying allelic bases, and those disease-associated variants that can be used in gene-environment analysis. Clearly delineating parkinsonian disorders into subclasses on the basis of molecular mechanisms with well-characterized outcome expectations is the basis for refining these forms of neurodegeneration as research substrate through the use of cell models derived from affected individuals while ensuring that clinically collected data can be used for therapeutic decisions and research without increasing the noise and confusion engendered by the collection of data against a range of historically defined criteria.
Collapse
|
349
|
Geiger JT, Ding J, Crain B, Pletnikova O, Letson C, Dawson TM, Rosenthal LS, Pantelyat A, Gibbs JR, Albert MS, Hernandez DG, Hillis AE, Stone DJ, Singleton AB, Hardy JA, Troncoso JC, Scholz SW. Next-generation sequencing reveals substantial genetic contribution to dementia with Lewy bodies. Neurobiol Dis 2016; 94:55-62. [PMID: 27312774 DOI: 10.1016/j.nbd.2016.06.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 06/08/2016] [Accepted: 06/11/2016] [Indexed: 11/15/2022] Open
Abstract
Dementia with Lewy bodies (DLB) is the second most common neurodegenerative dementia after Alzheimer's disease. Although an increasing number of genetic factors have been connected to this debilitating condition, the proportion of cases that can be attributed to distinct genetic defects is unknown. To provide a comprehensive analysis of the frequency and spectrum of pathogenic missense mutations and coding risk variants in nine genes previously implicated in DLB, we performed exome sequencing in 111 pathologically confirmed DLB patients. All patients were Caucasian individuals from North America. Allele frequencies of identified missense mutations were compared to 222 control exomes. Remarkably, ~25% of cases were found to carry a pathogenic mutation or risk variant in APP, GBA or PSEN1, highlighting that genetic defects play a central role in the pathogenesis of this common neurodegenerative disorder. In total, 13% of our cohort carried a pathogenic mutation in GBA, 10% of cases carried a risk variant or mutation in PSEN1, and 2% were found to carry an APP mutation. The APOE ε4 risk allele was significantly overrepresented in DLB patients (p-value <0.001). Our results conclusively show that mutations in GBA, PSEN1, and APP are common in DLB and consideration should be given to offer genetic testing to patients diagnosed with Lewy body dementia.
Collapse
Affiliation(s)
- Joshua T Geiger
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Jinhui Ding
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Barbara Crain
- Department of Pathology (Neuropathology), Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Olga Pletnikova
- Department of Pathology (Neuropathology), Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher Letson
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Ted M Dawson
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Solomon H. Synder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA; Department of Pharmacology and Molecular Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Neuroregeneration Program, Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Liana S Rosenthal
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alexander Pantelyat
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - J Raphael Gibbs
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Marilyn S Albert
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dena G Hernandez
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Argye E Hillis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David J Stone
- Genetics and Pharmacogenomics, Merck Research Laboratories, West Point, PA, USA
| | - Andrew B Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | | | - John A Hardy
- Department of Molecular Neuroscience, University College London, London, UK
| | - Juan C Troncoso
- Department of Pathology (Neuropathology), Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sonja W Scholz
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
350
|
Xu M, Motabar O, Ferrer M, Marugan JJ, Zheng W, Ottinger EA. Disease models for the development of therapies for lysosomal storage diseases. Ann N Y Acad Sci 2016; 1371:15-29. [PMID: 27144735 DOI: 10.1111/nyas.13052] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 03/02/2016] [Accepted: 03/02/2016] [Indexed: 12/11/2022]
Abstract
Lysosomal storage diseases (LSDs) are a group of rare diseases in which the function of the lysosome is disrupted by the accumulation of macromolecules. The complexity underlying the pathogenesis of LSDs and the small, often pediatric, population of patients make the development of therapies for these diseases challenging. Current treatments are only available for a small subset of LSDs and have not been effective at treating neurological symptoms. Disease-relevant cellular and animal models with high clinical predictability are critical for the discovery and development of new treatments for LSDs. In this paper, we review how LSD patient primary cells and induced pluripotent stem cell-derived cellular models are providing novel assay systems in which phenotypes are more similar to those of the human LSD physiology. Furthermore, larger animal disease models are providing additional tools for evaluation of the efficacy of drug candidates. Early predictors of efficacy and better understanding of disease biology can significantly affect the translational process by focusing efforts on those therapies with the higher probability of success, thus decreasing overall time and cost spent in clinical development and increasing the overall positive outcomes in clinical trials.
Collapse
Affiliation(s)
- Miao Xu
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland.,Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Omid Motabar
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Marc Ferrer
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Juan J Marugan
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Elizabeth A Ottinger
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| |
Collapse
|