301
|
Miller RL, Guimond SE, Schwörer R, Zubkova OV, Tyler PC, Xu Y, Liu J, Chopra P, Boons GJ, Grabarics M, Manz C, Hofmann J, Karlsson NG, Turnbull JE, Struwe WB, Pagel K. Shotgun ion mobility mass spectrometry sequencing of heparan sulfate saccharides. Nat Commun 2020; 11:1481. [PMID: 32198425 PMCID: PMC7083916 DOI: 10.1038/s41467-020-15284-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 02/27/2020] [Indexed: 01/23/2023] Open
Abstract
Despite evident regulatory roles of heparan sulfate (HS) saccharides in numerous biological processes, definitive information on the bioactive sequences of these polymers is lacking, with only a handful of natural structures sequenced to date. Here, we develop a “Shotgun” Ion Mobility Mass Spectrometry Sequencing (SIMMS2) method in which intact HS saccharides are dissociated in an ion mobility mass spectrometer and collision cross section values of fragments measured. Matching of data for intact and fragment ions against known values for 36 fully defined HS saccharide structures (from di- to decasaccharides) permits unambiguous sequence determination of validated standards and unknown natural saccharides, notably including variants with 3O-sulfate groups. SIMMS2 analysis of two fibroblast growth factor-inhibiting hexasaccharides identified from a HS oligosaccharide library screen demonstrates that the approach allows elucidation of structure-activity relationships. SIMMS2 thus overcomes the bottleneck for decoding the informational content of functional HS motifs which is crucial for their future biomedical exploitation. Heparan sulfates (HS) contain functionally relevant structural motifs, but determining their monosaccharide sequence remains challenging. Here, the authors develop an ion mobility mass spectrometry-based method that allows unambiguous characterization of HS sequences and structure-activity relationships.
Collapse
Affiliation(s)
- Rebecca L Miller
- Copenhagen Center for Glycomics, Department of Cellular & Molecular Medicine, University of Copenhagen, Copenhagen, N 2200, Denmark. .,Centre for Glycobiology, Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK. .,Laboratory of Cancer Biology, Department of Oncology, Medical Sciences Division, University of Oxford, Old Road Campus Research Building, Old Road Campus, Roosevelt Drive, Oxford, OX3 7DQ, UK.
| | - Scott E Guimond
- Centre for Glycobiology, Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK.,Institute for Science and Technology in Medicine, School of Medicine, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Ralf Schwörer
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Gracefield, Lower Hutt, 5010, New Zealand
| | - Olga V Zubkova
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Gracefield, Lower Hutt, 5010, New Zealand
| | - Peter C Tyler
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Gracefield, Lower Hutt, 5010, New Zealand
| | - Yongmei Xu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Pradeep Chopra
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA.,Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Science, and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Márkó Grabarics
- Freie Universitaet Berlin, Institute of Chemistry and Biochemistry, Takustrasse 3, 14195, Berlin, Germany.,Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195, Berlin, Germany
| | - Christian Manz
- Freie Universitaet Berlin, Institute of Chemistry and Biochemistry, Takustrasse 3, 14195, Berlin, Germany.,Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195, Berlin, Germany
| | - Johanna Hofmann
- Freie Universitaet Berlin, Institute of Chemistry and Biochemistry, Takustrasse 3, 14195, Berlin, Germany.,Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195, Berlin, Germany
| | - Niclas G Karlsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jeremy E Turnbull
- Copenhagen Center for Glycomics, Department of Cellular & Molecular Medicine, University of Copenhagen, Copenhagen, N 2200, Denmark.,Centre for Glycobiology, Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - Weston B Struwe
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3QZ, UK
| | - Kevin Pagel
- Freie Universitaet Berlin, Institute of Chemistry and Biochemistry, Takustrasse 3, 14195, Berlin, Germany.,Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195, Berlin, Germany
| |
Collapse
|
302
|
Ross DH, Cho JH, Xu L. Breaking Down Structural Diversity for Comprehensive Prediction of Ion-Neutral Collision Cross Sections. Anal Chem 2020; 92:4548-4557. [PMID: 32096630 DOI: 10.1021/acs.analchem.9b05772] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Identification of unknowns is a bottleneck for large-scale untargeted analyses like metabolomics or drug metabolite identification. Ion mobility-mass spectrometry (IM-MS) provides rapid two-dimensional separation of ions based on their mobility through a neutral buffer gas. The mobility of an ion is related to its collision cross section (CCS) with the buffer gas, a physical property that is determined by the size and shape of the ion. This structural dependency makes CCS a promising characteristic for compound identification, but this utility is limited by the availability of high-quality reference CCS values. CCS prediction using machine learning (ML) has recently shown promise in the field, but accurate and broadly applicable models are still lacking. Here we present a novel ML approach that employs a comprehensive collection of CCS values covering a wide range of chemical space. Using this diverse database, we identified the structural characteristics, represented by molecular quantum numbers (MQNs), that contribute to variance in CCS and assessed the performance of a variety of ML algorithms in predicting CCS. We found that by breaking down the chemical structural diversity using unsupervised clustering based on the MQNs, specific and accurate prediction models for each cluster can be trained, which showed superior performance than a single model trained with all data. Using this approach, we have robustly trained and characterized a CCS prediction model with high accuracy on diverse chemical structures. An all-in-one web interface (https://CCSbase.net) was built for querying the CCS database and accessing the predictive model to support unknown compound identifications.
Collapse
Affiliation(s)
- Dylan H Ross
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Jang Ho Cho
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Libin Xu
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
303
|
McMahon WP, Dalvi R, Lesniewski JE, Hall ZY, Jorabchi K. Pulsed Nano-ESI: Application in Ion Mobility-MS and Insights into Spray Dynamics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:488-497. [PMID: 31967817 DOI: 10.1021/jasms.9b00121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We have previously shown that pulsed nano-ESI offers direct ion introduction into an AP-IM cell in the absence of conventional gates and desolvation. Here, we further characterize this ion injection method and utilize it to gain insights into nano-ESI pulsed spray dynamics. We demonstrate that a pulsed nano-ESI operated at 20 Hz with ion generation pulses of 170-510 μs offers reproducible ion arrival times (0.09-0.21% RSD). Arrival times are then translated to effective collision cross sections (CCSs) using tetraalkylammonium ions as CCS internal standards. For ions with low solvent affinity, effective CCS values match those reported for fully desolvated ions. For amino acids and a series of alkylamine homologues, the effective CCS values are higher than those for fully desolvated ions and correlate with solvent affinity, suggesting that ions with high hydration affinities traverse the mobility cell as hydrated ions. Notably, hydrates are not observed in the MS spectra due to ion activation during the transport into vacuum. Using these observations as a framework to interpret effective CCS values, we investigate the impact of nano-ESI pulse duration on ion properties. We observe that longer pulse durations lead to the enhancement of ion abundance for low-ionization-efficiency analytes and a reduction in clustering. However, effective CCSs are not significantly altered by spray pulse duration, implying that similar ion structures emerge rapidly at all investigated pulse durations. Ion abundance results suggest a temporal evolution of droplets in pulsed nano-ESI where droplets emitted later in the spray formation appear to be smaller, providing enhanced ionization.
Collapse
Affiliation(s)
- William P McMahon
- Department of Chemistry, Georgetown University, Washington, D.C. 20057 United States
| | - Rohan Dalvi
- Department of Chemistry, Georgetown University, Washington, D.C. 20057 United States
| | - Joseph E Lesniewski
- Department of Chemistry, Georgetown University, Washington, D.C. 20057 United States
| | - Zara Y Hall
- Department of Chemistry, Georgetown University, Washington, D.C. 20057 United States
| | - Kaveh Jorabchi
- Department of Chemistry, Georgetown University, Washington, D.C. 20057 United States
| |
Collapse
|
304
|
Ekelöf M, Dodds J, Khodjaniyazova S, Garrard KP, Baker ES, Muddiman DC. Coupling IR-MALDESI with Drift Tube Ion Mobility-Mass Spectrometry for High-Throughput Screening and Imaging Applications. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:642-650. [PMID: 31971795 PMCID: PMC7263366 DOI: 10.1021/jasms.9b00081] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Because of its high degree of selectivity and chemical resolution, mass spectrometry (MS) is rapidly becoming the analytical method of choice for high-throughput evaluations and clinical diagnostics. While advances in MS resolving power have increased by an order of magnitude over the past decade, advances in sample introduction are still needed for high-throughput screening applications where the time frame of chromatographic separation would limit the duty cycle. Infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) is an ambient ionization source that has been shown to be applicable for direct analyses and mass spectrometry imaging (MSI) of complex biological samples in a high-throughput manner. To increase a range of detectable features in IR-MALDESI experiments, we integrated the home-built ion source with a commercially available drift tube ion mobility spectrometer-mass spectrometer (IMS-MS) and analyzed small polar molecules, lipids, carbohydrates, and intact proteins. We also describe in detail how the pulsed ionization source was synchronized with IMS-MS.
Collapse
Affiliation(s)
- Måns Ekelöf
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - James Dodds
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Sitora Khodjaniyazova
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Kenneth P Garrard
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
- Precision Engineering Consortium, Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Erin S Baker
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - David C Muddiman
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
- Molecular Education, Technology, and Research Innovation Center (METRIC), North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
305
|
Liu FC, Cropley TC, Ridgeway ME, Park MA, Bleiholder C. Structural Analysis of the Glycoprotein Complex Avidin by Tandem-Trapped Ion Mobility Spectrometry-Mass Spectrometry (Tandem-TIMS/MS). Anal Chem 2020; 92:4459-4467. [PMID: 32083467 DOI: 10.1021/acs.analchem.9b05481] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Glycoproteins play a central role in many biological processes including disease mechanisms. Nevertheless, because glycoproteins are heterogeneous entities, it remains unclear how glycosylation modulates the protein structure and function. Here, we assess the ability of tandem-trapped ion mobility spectrometry-mass spectrometry (tandem-TIMS/MS) to characterize the structure and sequence of the homotetrameric glycoprotein avidin. We show that (1) tandem-TIMS/MS retains native-like avidin tetramers with deeply buried solvent particles; (2) applying high activation voltages in the interface of tandem-TIMS results in collision-induced dissociation (CID) of avidin tetramers into compact monomers, dimers, and trimers with cross sections consistent with X-ray structures and reports from surface-induced dissociation (SID); (3) avidin oligomers are best described as heterogeneous ensembles with (essentially) random combinations of monomer glycoforms; (4) native top-down sequence analysis of the avidin tetramer is possible by CID in tandem-TIMS. Overall, our results demonstrate that tandem-TIMS/MS has the potential to correlate individual proteoforms to variations in protein structure.
Collapse
Affiliation(s)
- Fanny C Liu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Tyler C Cropley
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Mark E Ridgeway
- Bruker Daltonics Inc., 40 Manning Road, Billerica, Massachusetts 01821, United States
| | - Melvin A Park
- Bruker Daltonics Inc., 40 Manning Road, Billerica, Massachusetts 01821, United States
| | - Christian Bleiholder
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States.,Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306-4390, United States
| |
Collapse
|
306
|
Dodds JN, Hopkins ZR, Knappe DRU, Baker ES. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry-Mass Spectrometry (IMS-MS). Anal Chem 2020; 92:4427-4435. [PMID: 32011866 DOI: 10.1021/acs.analchem.9b05364] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are an ensemble of persistent organic pollutants of global interest because of their associations with adverse health outcomes. Currently, environmental PFAS pollution is prolific as a result of the widespread manufacturing of these compounds and their chemical persistence. In this work, we demonstrate the advantages of adding ion mobility spectrometry (IMS) separation to existing LC-MS workflows for PFAS analysis. Using a commercially available drift tube IMS-MS, we characterized PFAS species and isomeric content in both analytical standards and environmental water samples. Molecular trendlines based on intrinsic mass and structural relationships were also explored for individual PFAS subclasses (e.g. PFSA, PFCA, etc.). Results from rapid IMS-MS analyses provided a link between mass and collision cross sections (CCS) for specific PFAS families and are linked to compositional differences in molecular structure. In addition, CCS values provide additional confidence of annotating prioritized features in untargeted screening studies for potential environmental pollutants. Results from this study show that the IMS separation provides novel information to support traditional LC-MS PFAS analyses and will greatly benefit the evaluation of unknown pollutants in future environmental studies.
Collapse
Affiliation(s)
- James N Dodds
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Zachary R Hopkins
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, North Carolina 27696, United States
| | - Detlef R U Knappe
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, North Carolina 27696, United States
| | - Erin S Baker
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
307
|
France AP, Migas LG, Sinclair E, Bellina B, Barran PE. Using Collision Cross Section Distributions to Assess the Distribution of Collision Cross Section Values. Anal Chem 2020; 92:4340-4348. [DOI: 10.1021/acs.analchem.9b05130] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Aidan P. France
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology and Photon Science Institute, University of Manchester, 131 Princess Street, Manchester, M1 7DN, U.K
| | - Lukasz G. Migas
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology and Photon Science Institute, University of Manchester, 131 Princess Street, Manchester, M1 7DN, U.K
| | - Eleanor Sinclair
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology and Photon Science Institute, University of Manchester, 131 Princess Street, Manchester, M1 7DN, U.K
| | - Bruno Bellina
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology and Photon Science Institute, University of Manchester, 131 Princess Street, Manchester, M1 7DN, U.K
| | - Perdita E. Barran
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology and Photon Science Institute, University of Manchester, 131 Princess Street, Manchester, M1 7DN, U.K
| |
Collapse
|
308
|
Fenclova M, Stranska-Zachariasova M, Benes F, Novakova A, Jonatova P, Kren V, Vitek L, Hajslova J. Liquid chromatography-drift tube ion mobility-mass spectrometry as a new challenging tool for the separation and characterization of silymarin flavonolignans. Anal Bioanal Chem 2020; 412:819-832. [PMID: 31919606 DOI: 10.1007/s00216-019-02274-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/29/2019] [Accepted: 11/11/2019] [Indexed: 12/30/2022]
Abstract
Silymarin, milk thistle (Silybum marianum) extract, contains a mixture of mostly isomeric bioactive flavonoids and flavonolignans that are extensively studied, especially for their possible liver-protective and anticancer effects. Because of the differing bioactivities of individual isomeric compounds, characterization of their proportion in a mixture is highly important for predicting its effect on health. However, because of silymarin's complexity, this is hardly feasible by common analytical techniques. In this work, ultraperformance liquid chromatography coupled with drift tube ion mobility spectrometry and quadrupole time-of-flight mass spectrometry was used. Eleven target silymarin compounds (taxifolin, isosilychristin, silychristins A and B, silydianin, silybins A and B, 2,3-cis-silybin B, isosilybins A and B and 2,3-dehydrosilybin) and five unknown flavonolignan isomers detected in the milk thistle extract were fully separated in a 14.5-min analysis run. All the compounds were characterized on the basis of their accurate mass, retention time, drift time, collision cross section and fragmentation spectra. The quantitative approach based on evaluation of the ion mobility data demonstrated lower detection limits, an extended linear range and total separation of interferences from the compounds of interest compared with the traditional approach based on evaluation of liquid chromatography-quadrupole time-of-flight mass spectrometry data. The following analysis of a batch of milk thistle-based food supplements revealed significant variability in the silymarin pattern, especially in the content of silychristin A and silybins A and B. This newly developed method might have high application potential, especially for the characterization of materials intended for bioactivity studies in which information on the exact silymarin composition plays a crucial role. Graphical Abstract.
Collapse
Affiliation(s)
- Marie Fenclova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technická 3, 16628, Prague 6, Czech Republic
| | - Milena Stranska-Zachariasova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technická 3, 16628, Prague 6, Czech Republic.
| | - Frantisek Benes
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technická 3, 16628, Prague 6, Czech Republic
| | - Alena Novakova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technická 3, 16628, Prague 6, Czech Republic
| | - Petra Jonatova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technická 3, 16628, Prague 6, Czech Republic
| | - Vladimir Kren
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - Libor Vitek
- Institute of Medical Biochemistry and Laboratory Diagnostics and 4th Department of Internal Medicine, 1st Faculty of Medicine and Faculty General Hospital, Charles University, Katerinska 32, 12108, Prague 2, Czech Republic
| | - Jana Hajslova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technická 3, 16628, Prague 6, Czech Republic
| |
Collapse
|
309
|
Mlynek F, Himmelsbach M, Buchberger W, Klampfl CW. A new analytical workflow using HPLC with drift-tube ion-mobility quadrupole time-of-flight/mass spectrometry for the detection of drug-related metabolites in plants. Anal Bioanal Chem 2020; 412:1817-1824. [PMID: 31965248 PMCID: PMC7048865 DOI: 10.1007/s00216-020-02429-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/08/2020] [Accepted: 01/15/2020] [Indexed: 12/31/2022]
Abstract
Investigations into the interaction of xenobiotics with plants (and in particular edible plants) have gained substantial interest, as water scarcity due to climate-change-related droughts requires the more frequent use of reclaimed wastewaters for irrigation in agriculture. Non-steroidal anti-inflammatory drugs are common contaminants found in wastewater treatment plant effluents. For this reason, the interaction of nine edible plants with diclofenac (DCF), a widely used representative of this group of drugs, was investigated. For this purpose, plants were hydroponically grown in a medium containing DCF. For the detection of unknown DCF-related metabolites formed in the plant upon uptake of the parent drug‚ a new workflow based on the use of HPLC coupled to drift-tube ion-mobility quadrupole time-of-flight/mass spectrometry (DTIM QTOF-MS) was developed. Thereby‚ for chromatographic peaks eluting from the HPLC, drift times were recorded, and analytes were subsequently fragmented in the DTIM QTOF-MS to provide significant fragments. All information available (retention times, drift times, fragment spectra, accurate mass) was finally combined‚ allowing the suggestion of molecular formulas for 30 DCF-related metabolites formed in the plant, whereby 23 of them were not yet known from the literature.
Collapse
Affiliation(s)
- Franz Mlynek
- Institute of Analytical Chemistry, Johannes Kepler University Linz, Altenberger Strasse 69, 4040, Linz, Austria.
| | - Markus Himmelsbach
- Institute of Analytical Chemistry, Johannes Kepler University Linz, Altenberger Strasse 69, 4040, Linz, Austria
| | - Wolfgang Buchberger
- Institute of Analytical Chemistry, Johannes Kepler University Linz, Altenberger Strasse 69, 4040, Linz, Austria
| | - Christian W Klampfl
- Institute of Analytical Chemistry, Johannes Kepler University Linz, Altenberger Strasse 69, 4040, Linz, Austria
| |
Collapse
|
310
|
Trapped ion mobility spectrometry and PASEF enable in-depth lipidomics from minimal sample amounts. Nat Commun 2020; 11:331. [PMID: 31949144 PMCID: PMC6965134 DOI: 10.1038/s41467-019-14044-x] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 12/12/2019] [Indexed: 01/08/2023] Open
Abstract
A comprehensive characterization of the lipidome from limited starting material remains very challenging. Here we report a high-sensitivity lipidomics workflow based on nanoflow liquid chromatography and trapped ion mobility spectrometry (TIMS). Taking advantage of parallel accumulation–serial fragmentation (PASEF), we fragment on average 15 precursors in each of 100 ms TIMS scans, while maintaining the full mobility resolution of co-eluting isomers. The acquisition speed of over 100 Hz allows us to obtain MS/MS spectra of the vast majority of isotope patterns. Analyzing 1 µL of human plasma, PASEF increases the number of identified lipids more than three times over standard TIMS-MS/MS, achieving attomole sensitivity. Building on high intra- and inter-laboratory precision and accuracy of TIMS collisional cross sections (CCS), we compile 1856 lipid CCS values from plasma, liver and cancer cells. Our study establishes PASEF in lipid analysis and paves the way for sensitive, ion mobility-enhanced lipidomics in four dimensions. Trapped ion mobility (TIMS)-mass spectrometry with parallel accumulation-serial fragmentation (PASEF) facilitates high-sensitivity proteomics experiments. Here, the authors expand TIMS and PASEF to small molecules and demonstrate fast and comprehensive lipidomics of low biological sample amounts.
Collapse
|
311
|
Masike K, de Villiers A, Hoffman EW, Brand DJ, Causon T, Stander MA. Detailed Phenolic Characterization of Protea Pure and Hybrid Cultivars by Liquid Chromatography-Ion Mobility-High Resolution Mass Spectrometry (LC-IM-HR-MS). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:485-502. [PMID: 31805232 DOI: 10.1021/acs.jafc.9b06361] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this study we report a detailed investigation of the polyphenol composition of Protea pure (P. cynaroides and P. neriifolia) and hybrid cultivars (Black beauty and Limelight). Aqueous methanol extracts of leaf and bract tissues were analyzed by ultrahigh pressure liquid chromatography hyphenated to photodiode array and ion mobility-high resolution mass spectrometric (UHPLC-PDA-IM-HR-MS) detection. A total of 67 metabolites were characterized based on their relative reversed phase (RP) retention, UV-vis spectra, low and high collision energy HR-MS data, and collisional cross section (CCS) values. These metabolites included 41 phenolic acid esters and 25 flavonoid derivatives, including 5 anthocyanins. In addition, an undescribed hydroxycinnamic acid-polygalatol ester, caffeoyl-O-polygalatol (1,5-anhydro-[6-O-caffeoyl]-sorbitol(glucitol)) was isolated and characterized by 1D and 2D NMR for the first time. This compound and its isomer are shown to be potential chemo-taxonomic markers.
Collapse
Affiliation(s)
- Keabetswe Masike
- Department of Biochemistry , Stellenbosch University , Private Bag X1, Matieland , 7602 Stellenbosch , South Africa
| | - André de Villiers
- Department of Chemistry and Polymer Science , Stellenbosch University , Private Bag X1, Matieland , 7602 Stellenbosch , South Africa
| | - Eleanor W Hoffman
- Department of Horticultural Science , Stellenbosch University , Private Bag X1, Matieland , 7602 Stellenbosch , South Africa
| | - D Jacobus Brand
- Department of Chemistry, Central Analytical Facility (NMR Unit) , Stellenbosch University , Matieland, 7602 Stellenbosch , South Africa
| | - Tim Causon
- University of Natural Resources and Life Sciences (BOKU) , Department of Chemistry, Institute of Analytical Chemistry , 1180 Vienna , Austria
| | - Maria A Stander
- Department of Biochemistry , Stellenbosch University , Private Bag X1, Matieland , 7602 Stellenbosch , South Africa
- Central Analytical Facility , Stellenbosch University , Private Bag X1, Matieland , 7602 Stellenbosch , South Africa
| |
Collapse
|
312
|
Morris CB, Poland JC, May JC, McLean JA. Fundamentals of Ion Mobility-Mass Spectrometry for the Analysis of Biomolecules. Methods Mol Biol 2020; 2084:1-31. [PMID: 31729651 DOI: 10.1007/978-1-0716-0030-6_1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ion mobility-mass spectrometry (IM-MS) combines complementary size- and mass-selective separations into a single analytical platform. This chapter provides context for both the instrumental arrangements and key application areas that are commonly encountered in bioanalytical settings. New advances in these high-throughput strategies are described with description of complementary informatics tools to effectively utilize these data-intensive measurements. Rapid separations such as these are especially important in systems, synthetic, and chemical biology in which many small molecules are transient and correspond to various biological classes for integrated omics measurements. This chapter highlights the fundamentals of IM-MS and its applications toward biomolecular separations and discusses methods currently being used in the fields of proteomics, lipidomics, and metabolomics.
Collapse
Affiliation(s)
- Caleb B Morris
- Department of Chemistry, Center for Innovative Technology, Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt-Ingram Cancer Center, Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN, USA
| | - James C Poland
- Department of Chemistry, Center for Innovative Technology, Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt-Ingram Cancer Center, Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN, USA
| | - Jody C May
- Department of Chemistry, Center for Innovative Technology, Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt-Ingram Cancer Center, Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN, USA
| | - John A McLean
- Department of Chemistry, Center for Innovative Technology, Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA. .,Vanderbilt-Ingram Cancer Center, Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
313
|
Abstract
This chapter describes the developments in drift-tube ion mobility-mass spectrometry (DTIM-MS) that have driven application development in 'omics analyses. Harnessing the additional, orthogonal separation that DTIM provides increased confidence in compound identifications as the mass spectral complexity can be reduced and mobility-derived parameters (most prominently the collision cross section, CCS) used to support identity confirmation goals for a variety of 'omics application areas. Presented within this contribution is a methodology for improving the transmission and maintaining accurate determination of drift time-derived CCS (DTCCS) for low molecular weight compounds for a typical nontargeted 'omics (metabolomics) workflow using liquid chromatography in combination with DTIM-MS.
Collapse
Affiliation(s)
- Tim J Causon
- Institute of Analytical Chemistry, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria.
| | | | - Stephan Hann
- Institute of Analytical Chemistry, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| |
Collapse
|
314
|
Odenkirk MT, Baker ES. Utilizing Drift Tube Ion Mobility Spectrometry for the Evaluation of Metabolites and Xenobiotics. Methods Mol Biol 2020; 2084:35-54. [PMID: 31729652 DOI: 10.1007/978-1-0716-0030-6_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Metabolites and xenobiotics are small molecules with a molecular weight that often falls below 600 Da. Over the last few decades, multiple small molecule databases have been curated listing structures, masses, and fragmentation spectra possible in metabolomic and exposomic measurements. To date only a small portion of the spectra in these databases are experimentally derived due to the high expense of obtaining, synthesizing, and analyzing standards. A vast majority of spectra have thus been created using theoretical programs to fit the available experimental data. The errors associated with theoretical data have however caused problems with current small molecule identifications, and accurate quantitation as searching the databases using just one or two analysis dimensions (i.e., chromatography retention times and mass spectrometry (MS) m/z values) results in numerous annotations for each experimental feature. Additional analysis dimensions are therefore needed to better annotate and identify small molecules. Drift tube ion mobility spectrometry coupled with MS (DTIMS-MS) is a promising technique to address this challenge as it is able to perform rapid structural evaluations of small molecules in complex matrices by assessing the collision cross section values for each in addition to their m/z values. The use of IMS in conjunction with other separation techniques such as gas or liquid chromatography and MS has therefore enabled more accurate identifications for the small molecules present in complex biological and environmental samples. Here, we present a review of relevant parameter considerations for DTIMS application with emphasis on xenobiotics and metabolomics isomer separations.
Collapse
Affiliation(s)
- Melanie T Odenkirk
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - Erin S Baker
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
315
|
Reisdorph R, Michel C, Quinn K, Doenges K, Reisdorph N. Untargeted Differential Metabolomics Analysis Using Drift Tube Ion Mobility-Mass Spectrometry. Methods Mol Biol 2020; 2084:55-78. [PMID: 31729653 DOI: 10.1007/978-1-0716-0030-6_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mass spectrometry-based metabolomics is being increasingly applied to a number of applications, including the fields of clinical, industrial, plant, and nutritional science. Several improvements have advanced the field considerably over the past decade, including ultra-high performance liquid chromatography (uHPLC), column chemistries, instruments, software, and molecular databases. However, challenges remain, including how to separate small molecules that are part of highly complex samples; this can be accomplished using chromatographic techniques or through improved resolution in the gas phase. Ion mobility-mass spectrometry (IM-MS) provides an extra dimension of gas phase separation that can result in improvements to both quantitation and compound identification. Here we describe a typical drift tube IM-MS metabolomics workflow, which includes the following steps: (1) Data acquisition, (2) Data preprocessing, (3) Molecular feature finding, and (4) Differential analysis and Molecular annotation. Overall, these methods can help investigators from a variety of scientific fields use IM-MS metabolomics as part of their own workflow.
Collapse
Affiliation(s)
- Rick Reisdorph
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA.
| | - Cole Michel
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA
| | - Kevin Quinn
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA
| | - Katrina Doenges
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA
| | - Nichole Reisdorph
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA
| |
Collapse
|
316
|
Chen X, Zhou Z, Zhu ZJ. The Use of LipidIMMS Analyzer for Lipid Identification in Ion Mobility-Mass Spectrometry-Based Untargeted Lipidomics. Methods Mol Biol 2020; 2084:269-282. [PMID: 31729667 DOI: 10.1007/978-1-0716-0030-6_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Untargeted lipidomics aims to comprehensively measure and characterize all lipid species in biological systems. Ion mobility-mass spectrometry (IM-MS) has showed a great potential for untargeted lipidomic analysis. Coupling with liquid chromatography and data-independent tandem MS techniques, acquired IM-MS data set contains four-dimensional information for lipid identification, including m/z of MS1 ion, retention time (RT), collision cross section (CCS), and MS/MS spectra. In this protocol, we introduced a data processing workflow using an integrative web server, namely, LipidIMMS Analyzer, to support accurate lipid identification. The protocol demonstrated the integration of all four dimensional information to achieve unambiguous identifications of lipids in complex biological samples.
Collapse
Affiliation(s)
- Xi Chen
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhiwei Zhou
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zheng-Jiang Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
317
|
Schroeder M, Meyer SW, Heyman HM, Barsch A, Sumner LW. Generation of a Collision Cross Section Library for Multi-Dimensional Plant Metabolomics Using UHPLC-Trapped Ion Mobility-MS/MS. Metabolites 2019; 10:metabo10010013. [PMID: 31878231 PMCID: PMC7023306 DOI: 10.3390/metabo10010013] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/09/2019] [Accepted: 12/13/2019] [Indexed: 11/16/2022] Open
Abstract
The utility of metabolomics is well documented; however, its full scientific promise has not yet been realized due to multiple technical challenges. These grand challenges include accurate chemical identification of all observable metabolites and the limiting depth-of-coverage of current metabolomics methods. Here, we report a combinatorial solution to aid in both grand challenges using UHPLC-trapped ion mobility spectrometry coupled to tandem mass spectrometry (UHPLC-TIMS-TOF-MS). TIMS offers additional depth-of-coverage through increased peak capacities realized with the multi-dimensional UHPLC-TIMS separations. Metabolite identification confidence is simultaneously enhanced by incorporating orthogonal collision cross section (CCS) data matching. To facilitate metabolite identifications, we created a CCS library of 146 plant natural products. This library was generated using TIMS with N2 drift gas to record the TIMSCCSN2 of plant natural products with a high degree of reproducibility; i.e., average RSD = 0.10%. The robustness of TIMSCCSN2 data matching was tested using authentic standards spiked into complex plant extracts, and the precision of CCS measurements were determined to be independent of matrix affects. The utility of the UHPLC-TIMS-TOF-MS/MS in metabolomics was then demonstrated using extracts from the model legume Medicago truncatula and metabolites were confidently identified based on retention time, accurate mass, molecular formula, and CCS.
Collapse
Affiliation(s)
- Mark Schroeder
- Department of Biochemistry, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA;
| | - Sven W. Meyer
- Solutions Development, Bruker Daltonics, 28359 Bremen, Germany; (S.W.M.); (H.M.H.); (A.B.)
| | - Heino M. Heyman
- Solutions Development, Bruker Daltonics, 28359 Bremen, Germany; (S.W.M.); (H.M.H.); (A.B.)
| | - Aiko Barsch
- Solutions Development, Bruker Daltonics, 28359 Bremen, Germany; (S.W.M.); (H.M.H.); (A.B.)
| | - Lloyd W. Sumner
- Department of Biochemistry, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA;
- Correspondence: ; Tel.: +1-573-882-5486
| |
Collapse
|
318
|
Guntner AS, Thalhamer B, Klampfl C, Buchberger W. Collision cross sections obtained with ion mobility mass spectrometry as new descriptor to predict blood-brain barrier permeation by drugs. Sci Rep 2019; 9:19182. [PMID: 31844124 PMCID: PMC6915761 DOI: 10.1038/s41598-019-55856-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 12/04/2019] [Indexed: 11/22/2022] Open
Abstract
Evaluating the ability of a drug to permeate the blood-brain barrier is not a trivial task due to the structural complexity of the central nervous system. Nevertheless, it is of immense importance to identify related properties of the drugs either to be able to produce a desired effect in the brain or to avoid unwanted side effects there. In the past, multiple methods have been used for that purpose. However, these are sometimes methodologically problematic and do not claim universal validity. Therefore, additional new methods for judging blood-brain barrier penetration by drugs are advantageous. Accordingly, within the scope of this study, we tried to introduce a new structure-derived parameter to predict the blood-brain barrier permeation of small molecules based on ion mobility mass spectrometry experiments – the collision cross section, as an illustration of the branching and the molecular volume of a molecule. In detail, we used ion mobility quadrupole time-of-flight mass spectrometric data of 46 pharmacologically active small-molecules as well as literature-derived permeability and lipophilicity data to set up our model. For the first time we were able to show a strong correlation between the brain penetration of pharmacologically active ingredients and their mass spectrometric collision cross sections.
Collapse
Affiliation(s)
| | - Bernhard Thalhamer
- Johannes Kepler University Linz, Institute for Analytical Chemistry, Linz, 4040, Austria
| | - Christian Klampfl
- Johannes Kepler University Linz, Institute for Analytical Chemistry, Linz, 4040, Austria
| | - Wolfgang Buchberger
- Johannes Kepler University Linz, Institute for Analytical Chemistry, Linz, 4040, Austria
| |
Collapse
|
319
|
Nys G, Cobraiville G, Fillet M. Multidimensional performance assessment of micro pillar array column chromatography combined to ion mobility-mass spectrometry for proteome research. Anal Chim Acta 2019; 1086:1-13. [DOI: 10.1016/j.aca.2019.08.068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/23/2019] [Accepted: 08/27/2019] [Indexed: 01/23/2023]
|
320
|
Molecular basis for chirality-regulated Aβ self-assembly and receptor recognition revealed by ion mobility-mass spectrometry. Nat Commun 2019; 10:5038. [PMID: 31695027 PMCID: PMC6834639 DOI: 10.1038/s41467-019-12346-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 09/02/2019] [Indexed: 12/22/2022] Open
Abstract
Despite extensive efforts on probing the mechanism of Alzheimer’s disease (AD) and enormous investments into AD drug development, the lack of effective disease-modifying therapeutics and the complexity of the AD pathogenesis process suggest a great need for further insights into alternative AD drug targets. Herein, we focus on the chiral effects of truncated amyloid beta (Aβ) and offer further structural and molecular evidence for epitope region-specific, chirality-regulated Aβ fragment self-assembly and its potential impact on receptor-recognition. A multidimensional ion mobility-mass spectrometry (IM-MS) analytical platform and in-solution kinetics analysis reveal the comprehensive structural and molecular basis for differential Aβ fragment chiral chemistry, including the differential and cooperative roles of chiral Aβ N-terminal and C-terminal fragments in receptor recognition. Our method is applicable to many other systems and the results may shed light on the potential development of novel AD therapeutic strategies based on targeting the D-isomerized Aβ, rather than natural L-Aβ. Chiral inversion of amino acids is thought to modulate the structure and function of amyloid beta (Aβ) but these processes are poorly understood. Here, the authors develop an ion mobility-mass spectrometry based approach to study chirality-regulated structural features of Aβ fragments and their influence on receptor recognition.
Collapse
|
321
|
Dodds JN, Baker ES. Ion Mobility Spectrometry: Fundamental Concepts, Instrumentation, Applications, and the Road Ahead. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2185-2195. [PMID: 31493234 PMCID: PMC6832852 DOI: 10.1007/s13361-019-02288-2] [Citation(s) in RCA: 283] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/08/2019] [Accepted: 07/15/2019] [Indexed: 05/07/2023]
Abstract
Ion mobility spectrometry (IMS) is a rapid separation technique that has experienced exponential growth as a field of study. Interfacing IMS with mass spectrometry (IMS-MS) provides additional analytical power as complementary separations from each technique enable multidimensional characterization of detected analytes. IMS separations occur on a millisecond timescale, and therefore can be readily nested into traditional GC and LC/MS workflows. However, the continual development of novel IMS methods has generated some level of confusion regarding the advantages and disadvantages of each. In this critical insight, we aim to clarify some common misconceptions for new users in the community pertaining to the fundamental concepts of the various IMS instrumental platforms (i.e., DTIMS, TWIMS, TIMS, FAIMS, and DMA), while addressing the strengths and shortcomings associated with each. Common IMS-MS applications are also discussed in this review, such as separating isomeric species, performing signal filtering for MS, and incorporating collision cross-section (CCS) values into both targeted and untargeted omics-based workflows as additional ion descriptors for chemical annotation. Although many challenges must be addressed by the IMS community before mobility information is collected in a routine fashion, the future is bright with possibilities.
Collapse
Affiliation(s)
- James N Dodds
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Erin S Baker
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
322
|
Haynes IW, Wu G, Haque MA, Li H, Do TD. Conformational Preference of Macrocycles Investigated by Ion-Mobility Mass Spectrometry and Distance Geometry Modeling. Anal Chem 2019; 91:13439-13447. [DOI: 10.1021/acs.analchem.9b02100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Isaac W. Haynes
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Guangcheng Wu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Md. Ashraful Haque
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Hao Li
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Thanh D. Do
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
323
|
Oranzi NR, Lei J, Kemperman RHJ, Chouinard CD, Holmquist B, Garrett TJ, Yost RA. Rapid Quantitation of 25-Hydroxyvitamin D2 and D3 in Human Serum Using Liquid Chromatography/Drift Tube Ion Mobility-Mass Spectrometry. Anal Chem 2019; 91:13555-13561. [DOI: 10.1021/acs.analchem.9b02683] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nicholas R. Oranzi
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Jiajun Lei
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Robin H. J. Kemperman
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Christopher D. Chouinard
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida 32901, United States
| | | | - Timothy J. Garrett
- Department of Pathology, University of Florida, Gainesville, Florida 32610, United States
| | - Richard A. Yost
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
- Department of Pathology, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
324
|
Hennrich F, Schneider E, Weis P, Kappes MM. Comparing Empty and Filled Fullerene Cages with High-Resolution Trapped Ion Mobility Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1973-1980. [PMID: 31240563 DOI: 10.1007/s13361-019-02250-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/13/2019] [Accepted: 05/13/2019] [Indexed: 06/09/2023]
Abstract
We have used trapped ion mobility spectrometry (TIMS) to obtain highly accurate experimental collision cross sections (CCS) for the fullerene C80- and the endohedral metallofullerenes La2@C80-, Sc3N@C80-, and Er3N@C80- in molecular nitrogen. The CCS values of the endohedral fullerenes are 0.2% larger than that of the empty cage. Using a combination of density functional theory and trajectory calculations, we were able to reproduce these experimental findings theoretically. Two effects are discussed that contribute to the CCS differences: (i) a small increase in fullerene cage size upon endohedral doping and (ii) charge transfer from the encapsulated moieties to the cage thus increasing the attractive charge-induced dipole interaction between the (endohedral) fullerene ion and the nitrogen bath gas molecules.
Collapse
Affiliation(s)
- Frank Hennrich
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021, Karlsruhe, Germany
| | - Erik Schneider
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), P.O. Box 6980, 76049, Karlsruhe, Germany
| | - Patrick Weis
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), P.O. Box 6980, 76049, Karlsruhe, Germany.
| | - Manfred M Kappes
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021, Karlsruhe, Germany.
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), P.O. Box 6980, 76049, Karlsruhe, Germany.
| |
Collapse
|
325
|
Naylor CN, Reinecke T, Ridgeway ME, Park MA, Clowers BH. Validation of Calibration Parameters for Trapped Ion Mobility Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2152-2162. [PMID: 31392697 DOI: 10.1007/s13361-019-02289-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/11/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
Using contemporary theory for ion mobility spectrometry (IMS), gas-phase ion mobilities within a trapped ion mobility-mass spectrometer (TIMS) are not easily deduced using first principle equations due to non-linear pressure changes and consequently variations in E/N. It is for this reason that prior literature values have traditionally been used for TIMS calibration. Additionally, given that verified mobility standards currently do not exist and the that the exact conditions used to measure reported literature values may not always represent the environment within the TIMS, a direct approach to validating the behavior of the TIMS system is warranted. A calibration procedure is presented where an ambient pressure, ambient temperature, two-gate, printed circuit board drift-tube IMS (PCBIMS) is coupled to the front of a TIMS allowing reduced mobilities to be directly measured on the same instrument as the TIMS. These measured mobilities were used to evaluate the TIMS calibration procedure which correlates reduced mobility and TIMS elution voltages with literature values. When using the measured PCBIMS-reduced mobilities of tetraalkyl ammonium salts and tune mix for TIMS calibration of the alkyltrimethyl ammonium salts, the percent error is less than 1% as compared with using the reported literature K0 values where the percent error approaches 5%. This method provides a way to obtain accurate reference mobilities for ion mobility techniques that require a calibration step (i.e., TIMS and TWAVE).
Collapse
Affiliation(s)
- Cameron N Naylor
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Tobias Reinecke
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| | | | | | - Brian H Clowers
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
326
|
Wojcik R, Nagy G, Attah IK, Webb IK, Garimella SVB, Weitz KK, Hollerbach A, Monroe ME, Ligare MR, Nielson FF, Norheim RV, Renslow RS, Metz TO, Ibrahim YM, Smith RD. SLIM Ultrahigh Resolution Ion Mobility Spectrometry Separations of Isotopologues and Isotopomers Reveal Mobility Shifts due to Mass Distribution Changes. Anal Chem 2019; 91:11952-11962. [PMID: 31450886 PMCID: PMC7188075 DOI: 10.1021/acs.analchem.9b02808] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We report on separations of ion isotopologues and isotopomers using ultrahigh-resolution traveling wave-based Structures for Lossless Ion Manipulations with serpentine ultralong path and extended routing ion mobility spectrometry coupled to mass spectrometry (SLIM SUPER IMS-MS). Mobility separations of ions from the naturally occurring ion isotopic envelopes (e.g., [M], [M+1], [M+2], ... ions) showed the first and second isotopic peaks (i.e., [M+1] and [M+2]) for various tetraalkylammonium ions could be resolved from their respective monoisotopic ion peak ([M]) after SLIM SUPER IMS with resolving powers of ∼400-600. Similar separations were obtained for other compounds (e.g., tetrapeptide ions). Greater separation was obtained using argon versus helium drift gas, as expected from the greater reduced mass contribution to ion mobility described by the Mason-Schamp relationship. To more directly explore the role of isotopic substitutions, we studied a mixture of specific isotopically substituted (15N, 13C, and 2H) protonated arginine isotopologues. While the separations in nitrogen were primarily due to their reduced mass differences, similar to the naturally occurring isotopologues, their separations in helium, where higher resolving powers could also be achieved, revealed distinct additional relative mobility shifts. These shifts appeared correlated, after correction for the reduced mass contribution, with changes in the ion center of mass due to the different locations of heavy atom substitutions. The origin of these apparent mass distribution-induced mobility shifts was then further explored using a mixture of Iodoacetyl Tandem Mass Tag (iodoTMT) isotopomers (i.e., each having the same exact mass, but with different isotopic substitution sites). Again, the observed mobility shifts appeared correlated with changes in the ion center of mass leading to multiple monoisotopic mobilities being observed for some isotopomers (up to a ∼0.04% difference in mobility). These mobility shifts thus appear to reflect details of the ion structure, derived from the changes due to ion rotation impacting collision frequency or momentum transfer, and highlight the potential for new approaches for ion structural characterization.
Collapse
Affiliation(s)
- Roza Wojcik
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Gabe Nagy
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Isaac. K. Attah
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Ian K. Webb
- Department of Chemistry, Indiana University Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Sandilya V. B. Garimella
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Karl K. Weitz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Adam Hollerbach
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Matthew E. Monroe
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Marshall R. Ligare
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Felicity F. Nielson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Randolph V. Norheim
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Ryan S. Renslow
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Thomas O. Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Yehia M. Ibrahim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
327
|
Zhang W, Wu H, Zhang R, Fang X, Xu W. Structure and effective charge characterization of proteins by a mobility capillary electrophoresis based method. Chem Sci 2019; 10:7779-7787. [PMID: 31588326 PMCID: PMC6761862 DOI: 10.1039/c9sc02039j] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/02/2019] [Indexed: 12/18/2022] Open
Abstract
Measuring the conformations and effective charges of proteins in solution is critical for investigating protein bioactivity, but their rapid analysis remains a challenging problem. Here we report a mobility capillary electrophoresis (MCE) based method for the rapid analysis of protein stereo-structures and effective charges in different solution environments. With the capability of mixture separation, MCE measures the hydrodynamic radius of a protein through Taylor dispersion analysis and its effective charge through ion mobility analysis. The experimental results acquired from MCE are then utilized to restrain molecular dynamics simulations, so that the most probable conformation of that protein can be obtained. As proof-of-concept demonstrations, the charge states and structures of five proteins were analyzed under close to native environments. The conformation transitions and charge state variations of bovine serum albumin and lysozyme under different pH conditions were also investigated. This method is promising for high-throughput protein analysis, which could potentially be coupled with mass spectrometry for investigating protein stereo-structures and functions in top-down proteomics.
Collapse
Affiliation(s)
- Wenjing Zhang
- School of Life Science , Beijing Institute of Technology , No. 5 South Zhongguancun Street, Haidian Dist , Beijing , China .
| | - Haimei Wu
- School of Life Science , Beijing Institute of Technology , No. 5 South Zhongguancun Street, Haidian Dist , Beijing , China .
| | - Rongkai Zhang
- School of Life Science , Beijing Institute of Technology , No. 5 South Zhongguancun Street, Haidian Dist , Beijing , China .
| | - Xiang Fang
- National Institute of Metrology , No. 18, Bei San Huan Dong Lu, Chaoyang Dist , Beijing , China
| | - Wei Xu
- School of Life Science , Beijing Institute of Technology , No. 5 South Zhongguancun Street, Haidian Dist , Beijing , China .
| |
Collapse
|
328
|
Ropartz D, Fanuel M, Ujma J, Palmer M, Giles K, Rogniaux H. Structure Determination of Large Isomeric Oligosaccharides of Natural Origin through Multipass and Multistage Cyclic Traveling-Wave Ion Mobility Mass Spectrometry. Anal Chem 2019; 91:12030-12037. [PMID: 31449397 DOI: 10.1021/acs.analchem.9b03036] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Carbohydrate isomers with identical atomic composition cannot be distinguished by mass spectrometry. By separating the ions according to their conformation in the gas phase, ion mobility (IM) coupled to mass spectrometry is an attractive approach to overcome this issue and extend the limits of mass spectrometry in structural glycosciences. Recent technological developments have significantly increased the resolving power of ion mobility separators. One such instrument features a cyclic traveling-wave IM separator integrated in a quadrupole/time-of-flight mass spectrometer. This system allows for multipass ion separations and for pre-, intra-, and post-IM fragmentation. In the present study, we utilize this system to explore a complex mixture of oligoporphyrans derived from the enzymatic digestion of the cell wall of the red alga P. umbilicalis. We are able to deduce their complete structure using IM arrival times and the m/z of specific fragments. This approach was successfully applied for sequencing of oligoporphyrans of up to 1500 Da and included the positioning of the methyl ether and sulfate groups. The structures defined in this study by IM-MS/MS agree with those found in the past but use much more time-consuming analytical approaches. This study also revealed some so far undescribed structures, present at very low abundance. In addition, the results made it possible to compare the abundance of the different isomers released by the enzyme and to draw further conclusions on the specificity of β-porphyranase and more particularly on its accommodation tolerance of anhydro-bridges in subsites. Finally, a separation of two isomers with very similar mobility was obtained after 58 passes around the cIM, with an estimated resolving power of 920 for these triply charged species, confirming the structures attributed to these two isomers.
Collapse
Affiliation(s)
- David Ropartz
- INRA , UR1268 Biopolymers Interactions Assemblies, La Géraudière B.P. 71627 , F-44316 Nantes , France
| | - Mathieu Fanuel
- INRA , UR1268 Biopolymers Interactions Assemblies, La Géraudière B.P. 71627 , F-44316 Nantes , France
| | - Jakub Ujma
- Waters Corporation , Stamford Avenue, Altrincham Road , Wilmslow SK9 4AX , United Kingdom
| | - Martin Palmer
- Waters Corporation , Stamford Avenue, Altrincham Road , Wilmslow SK9 4AX , United Kingdom
| | - Kevin Giles
- Waters Corporation , Stamford Avenue, Altrincham Road , Wilmslow SK9 4AX , United Kingdom
| | - Hélène Rogniaux
- INRA , UR1268 Biopolymers Interactions Assemblies, La Géraudière B.P. 71627 , F-44316 Nantes , France
| |
Collapse
|
329
|
Ultrahigh-pressure liquid chromatography-mass spectrometry: An overview of the last decade. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.05.044] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
330
|
Nye LC, Williams JP, Munjoma NC, Letertre MP, Coen M, Bouwmeester R, Martens L, Swann JR, Nicholson JK, Plumb RS, McCullagh M, Gethings LA, Lai S, Langridge JI, Vissers JP, Wilson ID. A comparison of collision cross section values obtained via travelling wave ion mobility-mass spectrometry and ultra high performance liquid chromatography-ion mobility-mass spectrometry: Application to the characterisation of metabolites in rat urine. J Chromatogr A 2019; 1602:386-396. [DOI: 10.1016/j.chroma.2019.06.056] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 01/01/2023]
|
331
|
Venter P, Causon T, Pasch H, de Villiers A. Comprehensive analysis of chestnut tannins by reversed phase and hydrophilic interaction chromatography coupled to ion mobility and high resolution mass spectrometry. Anal Chim Acta 2019; 1088:150-167. [PMID: 31623711 DOI: 10.1016/j.aca.2019.08.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/29/2019] [Accepted: 08/16/2019] [Indexed: 12/16/2022]
Abstract
In this study, we report a methodology based on reversed phase LC (RP-LC) and hydrophilic interaction chromatography (HILIC) separations coupled to ion mobility (IM) and high resolution mass spectrometry (HR-MS) for the detailed analysis of hydrolysable tannins. The application of this approach to the analysis of an industrial chestnut (Castanea sativa, wood chips) tannin extract is demonstrated. A total of 38 molecular species, including a large number or isomers, were identified in this sample based on HR-MS(E) and UV absorption spectral information as well as retention behaviour in both separation modes. In total, 128 and 90 isomeric species were resolved by RP- and HILIC-LC-IM-TOF-MS, respectively. The combination of low- and high collision energy mass spectral data with complementary chromatographic separations allowed tentative and putative identification of twenty molecular species, comprising 78 isomers, in chestnut for the first time. Ion mobility resolved six new dimeric and trimeric vescalagin conformers with unique arrival (drift) times, including new conformers of roburin A-D which were not separated using either RP-LC or HILIC. HILIC was found to be the preferred separation mode for the analysis of vescalagin derivatives, while RP-LC is preferred for the analysis of ellagitannins with a cyclic glucose core. For the complete separation of the galloyl glucose species, comprehensive HILIC × RP-LC separation would be required.
Collapse
Affiliation(s)
- Pieter Venter
- Stellenbosch University, Department of Chemistry and Polymer Science, Private Bag X1, Matieland, 7602, South Africa
| | - Tim Causon
- University of Natural Resources and Life Sciences (BOKU), Department of Chemistry, Division of Analytical Chemistry, Vienna, Austria
| | - Harald Pasch
- Stellenbosch University, Department of Chemistry and Polymer Science, Private Bag X1, Matieland, 7602, South Africa
| | - André de Villiers
- Stellenbosch University, Department of Chemistry and Polymer Science, Private Bag X1, Matieland, 7602, South Africa.
| |
Collapse
|
332
|
Hernández-Mesa M, Ropartz D, García-Campaña AM, Rogniaux H, Dervilly-Pinel G, Le Bizec B. Ion Mobility Spectrometry in Food Analysis: Principles, Current Applications and Future Trends. Molecules 2019; 24:E2706. [PMID: 31349571 PMCID: PMC6696101 DOI: 10.3390/molecules24152706] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/18/2019] [Accepted: 07/22/2019] [Indexed: 12/11/2022] Open
Abstract
In the last decade, ion mobility spectrometry (IMS) has reemerged as an analytical separation technique, especially due to the commercialization of ion mobility mass spectrometers. Its applicability has been extended beyond classical applications such as the determination of chemical warfare agents and nowadays it is widely used for the characterization of biomolecules (e.g., proteins, glycans, lipids, etc.) and, more recently, of small molecules (e.g., metabolites, xenobiotics, etc.). Following this trend, the interest in this technique is growing among researchers from different fields including food science. Several advantages are attributed to IMS when integrated in traditional liquid chromatography (LC) and gas chromatography (GC) mass spectrometry (MS) workflows: (1) it improves method selectivity by providing an additional separation dimension that allows the separation of isobaric and isomeric compounds; (2) it increases method sensitivity by isolating the compounds of interest from background noise; (3) and it provides complementary information to mass spectra and retention time, the so-called collision cross section (CCS), so compounds can be identified with more confidence, either in targeted or non-targeted approaches. In this context, the number of applications focused on food analysis has increased exponentially in the last few years. This review provides an overview of the current status of IMS technology and its applicability in different areas of food analysis (i.e., food composition, process control, authentication, adulteration and safety).
Collapse
Affiliation(s)
- Maykel Hernández-Mesa
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, E-18071 Granada, Spain.
- INRA, UR1268 Biopolymers Interactions Assemblies, F-44316 Nantes, France.
- Laboratoire d'Etude des Résidus et Contaminants dans les Aliments (LABERCA), Oniris, INRA UMR 1329, Route de Gachet-CS 50707, F-44307 Nantes CEDEX 3, France.
| | - David Ropartz
- INRA, UR1268 Biopolymers Interactions Assemblies, F-44316 Nantes, France
| | - Ana M García-Campaña
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, E-18071 Granada, Spain
| | - Hélène Rogniaux
- INRA, UR1268 Biopolymers Interactions Assemblies, F-44316 Nantes, France
| | - Gaud Dervilly-Pinel
- Laboratoire d'Etude des Résidus et Contaminants dans les Aliments (LABERCA), Oniris, INRA UMR 1329, Route de Gachet-CS 50707, F-44307 Nantes CEDEX 3, France
| | - Bruno Le Bizec
- Laboratoire d'Etude des Résidus et Contaminants dans les Aliments (LABERCA), Oniris, INRA UMR 1329, Route de Gachet-CS 50707, F-44307 Nantes CEDEX 3, France
| |
Collapse
|
333
|
Moghadamchargari Z, Huddleston J, Shirzadeh M, Zheng X, Clemmer DE, M Raushel F, Russell DH, Laganowsky A. Intrinsic GTPase Activity of K-RAS Monitored by Native Mass Spectrometry. Biochemistry 2019; 58:3396-3405. [PMID: 31306575 DOI: 10.1021/acs.biochem.9b00532] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mutations in RAS are associated with many different cancers and have been a therapeutic target for more than three decades. RAS cycles from an active to inactive state by both intrinsic and GTPase-activating protein (GAP)-stimulated hydrolysis. The activated enzyme interacts with downstream effectors, leading to tumor proliferation. Mutations in RAS associated with cancer are insensitive to GAP, and the rate of inactivation is limited to their intrinsic hydrolysis rate. Here, we use high-resolution native mass spectrometry (MS) to determine the kinetics and transition state thermodynamics of intrinsic hydrolysis for K-RAS and its oncogenic mutants. MS data reveal heterogeneity where both 2'-deoxy and 2'-hydroxy forms of GDP (guanosine diphosphate) and GTP (guanosine triphosphate) are bound to the recombinant enzyme. Intrinsic GTPase activity is directly monitored by the loss in mass of K-RAS bound to GTP, which corresponds to the release of phosphate. The rates determined from MS are in direct agreement with those measured using an established solution-based assay. Our results show that the transition state thermodynamics for the intrinsic GTPase activity of K-RAS is both enthalpically and entropically unfavorable. The oncogenic mutants G12C, Q61H, and G13D unexpectedly exhibit a 2'-deoxy GTP intrinsic hydrolysis rate higher than that for GTP.
Collapse
Affiliation(s)
- Zahra Moghadamchargari
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - Jamison Huddleston
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - Mehdi Shirzadeh
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - Xueyun Zheng
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - David E Clemmer
- Department of Chemistry , Indiana University , Bloomington , Indiana , 47405 , United States
| | - Frank M Raushel
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - David H Russell
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - Arthur Laganowsky
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| |
Collapse
|
334
|
Fundamental study of ion trapping and multiplexing using drift tube-ion mobility time-of-flight mass spectrometry for non-targeted metabolomics. Anal Bioanal Chem 2019; 411:6265-6274. [DOI: 10.1007/s00216-019-02021-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/21/2019] [Accepted: 07/04/2019] [Indexed: 02/07/2023]
|
335
|
Hinz C, Liggi S, Mocciaro G, Jung S, Induruwa I, Pereira M, Bryant CE, Meckelmann SW, O'Donnell VB, Farndale RW, Fjeldsted J, Griffin JL. A Comprehensive UHPLC Ion Mobility Quadrupole Time-of-Flight Method for Profiling and Quantification of Eicosanoids, Other Oxylipins, and Fatty Acids. Anal Chem 2019; 91:8025-8035. [PMID: 31074960 PMCID: PMC7613057 DOI: 10.1021/acs.analchem.8b04615] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Analysis of oxylipins by liquid chromatography mass spectrometry (LC/MS) is challenging because of the small mass range occupied by this diverse lipid class, the presence of numerous structural isomers, and their low abundance in biological samples. Although highly sensitive LC/MS/MS methods are commonly used, further separation is achievable by using drift tube ion mobility coupled with high-resolution mass spectrometry (DTIM-MS). Herein, we present a combined analytical and computational method for the identification of oxylipins and fatty acids. We use a reversed-phase LC/DTIM-MS workflow able to profile and quantify (based on chromatographic peak area) the oxylipin and fatty acid content of biological samples while simultaneously acquiring full scan and product ion spectra. The information regarding accurate mass, collision-cross-section values in nitrogen (DTCCSN2), and retention times of the species found are compared to an internal library of lipid standards as well as the LIPID MAPS Structure Database by using specifically developed processing tools. Features detected within the DTCCSN2 and m/ z ranges of the analyzed standards are flagged as oxylipin-like species, which can be further characterized using drift-time alignment of product and precursor ions distinctive of DTIM-MS. This not only helps identification by reducing the number of annotations from LIPID MAPS but also guides discovery studies of potentially novel species. Testing the methodology on Salmonella enterica serovar Typhimurium-infected murine bone-marrow-derived macrophages and thrombin activated human platelets yields results in agreement with literature. This workflow has also annotated features as potentially novel oxylipins, confirming its ability in providing further insights into lipid analysis of biological samples.
Collapse
Affiliation(s)
- Christine Hinz
- Department of Biochemistry and Cambridge Systems Biology Centre , University of Cambridge , Cambridge CB2 1GA , United Kingdom
| | - Sonia Liggi
- Department of Biochemistry and Cambridge Systems Biology Centre , University of Cambridge , Cambridge CB2 1GA , United Kingdom
| | - Gabriele Mocciaro
- Department of Biochemistry and Cambridge Systems Biology Centre , University of Cambridge , Cambridge CB2 1GA , United Kingdom
| | - Stephanie Jung
- Department of Biochemistry , University of Cambridge , Downing Site, Cambridge CB2 1QW , United Kingdom
| | - Isuru Induruwa
- Department of Clinical Neurosciences , University of Cambridge , Cambridge CB2 0QQ , United Kingdom
| | - Milton Pereira
- Department of Veterinary Medicine , University of Cambridge , Cambridge CB3 0ES , United Kingdom
| | - Clare E Bryant
- Department of Veterinary Medicine , University of Cambridge , Cambridge CB3 0ES , United Kingdom
| | - Sven W Meckelmann
- Faculty of Chemistry, Applied Analytical Chemistry , University of Duisburg-Essen , 45141 Essen , Germany
| | - Valerie B O'Donnell
- Systems Immunity Research Institute , Cardiff University , Cardiff CF14 4XN , United Kingdom
| | - Richard W Farndale
- Department of Biochemistry , University of Cambridge , Downing Site, Cambridge CB2 1QW , United Kingdom
| | - John Fjeldsted
- Agilent Technologies , Santa Clara , California 95051 , United States
| | - Julian L Griffin
- Department of Biochemistry and Cambridge Systems Biology Centre , University of Cambridge , Cambridge CB2 1GA , United Kingdom
| |
Collapse
|
336
|
Tu J, Zhou Z, Li T, Zhu ZJ. The emerging role of ion mobility-mass spectrometry in lipidomics to facilitate lipid separation and identification. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.03.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
337
|
Kirk SR, Liu FC, Cropley TC, Carlock HR, Bleiholder C. On the Preservation of Non-covalent Peptide Assemblies in a Tandem-Trapped Ion Mobility Spectrometer-Mass Spectrometer (TIMS-TIMS-MS). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1204-1212. [PMID: 31025294 DOI: 10.1007/s13361-019-02200-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 03/05/2019] [Accepted: 03/14/2019] [Indexed: 05/21/2023]
Abstract
Ion mobility spectrometry-mass spectrometry (IMS-MS) has demonstrated the ability to characterize structures of weakly-bound peptide assemblies. However, these assemblies can potentially dissociate during the IMS-MS measurement if they undergo energetic ion-neutral collisions. Here, we investigate the ability of tandem-trapped ion mobility spectrometry-mass spectrometry (TIMS-TIMS-MS) to retain weakly-bound peptide assemblies. We assess ion heating and dissociaton in the tandem-TIMS instrument using bradykinin and its assemblies as reference systems. Our data indicate that non-covalent bradykinin assemblies are largely preserved in TIMS-TIMS under carefully selected operating conditions. Importantly, we observe quadruply-charged bradykinin tetramers, which attests to the "softness" of our instrument. Graphical Abstract.
Collapse
Affiliation(s)
- Samuel R Kirk
- Department of Chemistry & Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL, 32306-4390, USA
| | - Fanny C Liu
- Department of Chemistry & Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL, 32306-4390, USA
| | - Tyler C Cropley
- Department of Chemistry & Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL, 32306-4390, USA
| | - Hunter R Carlock
- Department of Chemistry & Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL, 32306-4390, USA
| | - Christian Bleiholder
- Department of Chemistry & Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL, 32306-4390, USA.
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306-4390, USA.
| |
Collapse
|
338
|
|
339
|
Mairinger T, Kurulugama R, Causon TJ, Stafford G, Fjeldsted J, Hann S. Rapid screening methods for yeast sub-metabolome analysis with a high-resolution ion mobility quadrupole time-of-flight mass spectrometer. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33 Suppl 2:66-74. [PMID: 30801790 PMCID: PMC6618165 DOI: 10.1002/rcm.8420] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/15/2019] [Accepted: 02/18/2019] [Indexed: 06/08/2023]
Abstract
RATIONALE The wide chemical diversity and complex matrices inherent to metabolomics still pose a challenge to current analytical approaches for metabolite screening. Although dedicated front-end separation techniques combined with high-resolution mass spectrometry set the benchmark from an analytical point of view, the increasing number of samples and sample complexity demand for a compromise in terms of selectivity, sensitivity and high-throughput analyses. METHODS Prior to low-field drift tube ion mobility (IM) separation and quadrupole time-of-flight mass spectrometry (QTOFMS) detection, rapid ultrahigh-performance liquid chromatography separation was used for analysis of different concentration levels of dansylated metabolites present in a yeast cell extract. For identity confirmation of metabolites at the MS2 level, an alternating frame approach was chosen and two different strategies were tested: a data-independent all-ions acquisition and a quadrupole broad band isolation (Q-BBI) directed by IM drift separation. RESULTS For Q-BBI analysis, the broad mass range isolation was successfully optimized in accordance with the distinctive drift time to m/z correlation of the dansyl derivatives. To guarantee comprehensive sampling, a broad mass isolation window of 70 Da was employed. Fragmentation was performed via collision-induced dissociation, applying a collision energy ramp optimized for the dansyl derivatives. Both approaches were studied in terms of linear dynamic range and repeatability employing ethanolic extracts of Pichia pastoris spiked with 1 μM metabolite mixture. Example data obtained for histidine and glycine showed that drift time precision (<0.01 to 0.3% RSD, n = 5) compared very well with the data reported in an earlier IM-TOFMS-based study. CONCLUSIONS Chimeric mass spectra, inherent to data-independent analysis approaches, are reduced when using a drift time directed Q-BBI approach. Additionally, an improved linear dynamic working range was observed, representing, together with a rapid front-end separation, a powerful approach for metabolite screening.
Collapse
Affiliation(s)
- Teresa Mairinger
- Department of ChemistryUniversity of Natural Resources and Life Sciences – BOKU ViennaMuthgasse 181190ViennaAustria
| | - Ruwan Kurulugama
- Agilent Technologies5301 Stevens Creek BlvdSanta ClaraCA95051USA
| | - Tim J. Causon
- Department of ChemistryUniversity of Natural Resources and Life Sciences – BOKU ViennaMuthgasse 181190ViennaAustria
| | - George Stafford
- Agilent Technologies5301 Stevens Creek BlvdSanta ClaraCA95051USA
| | - John Fjeldsted
- Agilent Technologies5301 Stevens Creek BlvdSanta ClaraCA95051USA
| | - Stephan Hann
- Department of ChemistryUniversity of Natural Resources and Life Sciences – BOKU ViennaMuthgasse 181190ViennaAustria
| |
Collapse
|
340
|
Vallejo DD, Polasky DA, Kurulugama RT, Eschweiler JD, Fjeldsted JC, Ruotolo BT. A Modified Drift Tube Ion Mobility-Mass Spectrometer for Charge-Multiplexed Collision-Induced Unfolding. Anal Chem 2019; 91:8137-8146. [PMID: 31194508 DOI: 10.1021/acs.analchem.9b00427] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Collision-induced unfolding (CIU) of protein ions and their noncovalent complexes offers relatively rapid access to a rich portfolio of biophysical information, without the need to tag or purify proteins prior to analysis. Such assays have been characterized extensively for a range of therapeutic proteins, proving exquisitely sensitive to alterations in protein sequence, structure, and post-translational modification state. Despite advantages over traditional probes of protein stability, improving the throughput and information content of gas-phase protein unfolding assays remains a challenge for current instrument platforms. In this report, we describe modifications to an Agilent 6560 drift tube ion mobility-mass spectrometer in order to perform robust, simultaneous CIU across all precursor ions detected. This approach dramatically increases the speed associated with typical CIU assays, which typically involve mass selection of narrow m/ z regions prior to collisional activation, and thus their development requires a comprehensive assessment of charge-stripping reactions that can unintentionally pollute CIU data with chemical noise when more than one precursor ion is allowed to undergo simultaneous activation. By studying the unfolding and dissociation of intact antibody ions, a key analyte class associated with biotherapeutics, we reveal a predictive relationship between the precursor charge state, the amount of buffer components bound to the ions of interest, and the amount of charge stripping detected. We then utilize our knowledge of antibody charge stripping to rapidly capture CIU data for a range of antibody subclasses and subtypes across all charge states simultaneously, demonstrating a strong charge state dependence on the information content of CIU. Finally, we demonstrate that CIU data collection times can be further reduced by scanning fewer voltage steps, enabling us to optimize the throughput of our improved CIU methods and confidently differentiate antibody variant ions using ∼20% of the data typically collected during CIU. Taken together, our results characterize a new instrument platform for biotherapeutic stability measurements with dramatically improved throughput and information content.
Collapse
Affiliation(s)
- Daniel D Vallejo
- Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109 , United States
| | - Daniel A Polasky
- Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109 , United States
| | | | - Joseph D Eschweiler
- Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109 , United States.,AbbVie , North Chicago , Illinois 60064 , United States
| | - John C Fjeldsted
- Agilent Technologies , Santa Clara , California 95051 , United States
| | - Brandon T Ruotolo
- Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109 , United States
| |
Collapse
|
341
|
Monge ME, Dodds JN, Baker ES, Edison AS, Fernández FM. Challenges in Identifying the Dark Molecules of Life. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2019; 12:177-199. [PMID: 30883183 PMCID: PMC6716371 DOI: 10.1146/annurev-anchem-061318-114959] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Metabolomics is the study of the metabolome, the collection of small molecules in living organisms, cells, tissues, and biofluids. Technological advances in mass spectrometry, liquid- and gas-phase separations, nuclear magnetic resonance spectroscopy, and big data analytics have now made it possible to study metabolism at an omics or systems level. The significance of this burgeoning scientific field cannot be overstated: It impacts disciplines ranging from biomedicine to plant science. Despite these advances, the central bottleneck in metabolomics remains the identification of key metabolites that play a class-discriminant role. Because metabolites do not follow a molecular alphabet as proteins and nucleic acids do, their identification is much more time consuming, with a high failure rate. In this review, we critically discuss the state-of-the-art in metabolite identification with specific applications in metabolomics and how technologies such as mass spectrometry, ion mobility, chromatography, and nuclear magnetic resonance currently contribute to this challenging task.
Collapse
Affiliation(s)
- María Eugenia Monge
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1425FQD, Ciudad de Buenos Aires, Argentina
| | - James N Dodds
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Erin S Baker
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Arthur S Edison
- Department of Genetics, Department of Biochemistry and Molecular Biology, and Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, USA
| | - Facundo M Fernández
- School of Chemistry and Biochemistry, Georgia Institute of Technology and Petit Institute for Biochemistry and Bioscience, Atlanta, Georgia 30332, USA;
| |
Collapse
|
342
|
Giles K, Ujma J, Wildgoose J, Pringle S, Richardson K, Langridge D, Green M. A Cyclic Ion Mobility-Mass Spectrometry System. Anal Chem 2019; 91:8564-8573. [PMID: 31141659 DOI: 10.1021/acs.analchem.9b01838] [Citation(s) in RCA: 327] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Improvements in the performance and availability of commercial instrumentation have made ion mobility-mass spectrometry (IM-MS) an increasingly popular approach for the structural analysis of ionic species as well as for separation of complex mixtures. Here, a new research instrument is presented which enables complex experiments, extending the current scope of IM technology. The instrument is based on a Waters SYNAPT G2-S i IM-MS platform, with the IM separation region modified to accept a cyclic ion mobility (cIM) device. The cIM region consists of a 98 cm path length, closed-loop traveling wave (TW)-enabled IM separator positioned orthogonally to the main ion optical axis. A key part of this geometry and its flexibility is the interface between the ion optical axis and the cIM, where a planar array of electrodes provides control over the TW direction and subsequent ion motion. On either side of the array, there are ion guides used for injection, ejection, storage, and activation of ions. In addition to single and multipass separations around the cIM, providing selectable mobility resolution, the instrument design and control software enable a range of "multifunction" experiments such as mobility selection, activation, storage, IMS n, and importantly custom combinations of these functions. Here, the design and performance of the cIM-MS instrument is highlighted, with a mobility resolving power of approximately 750 demonstrated for 100 passes around the cIM device using a reverse sequence peptide pair. The multifunction capabilities are demonstrated through analysis of three isomeric pentasaccharide species and the small protein ubiquitin.
Collapse
Affiliation(s)
- Kevin Giles
- Waters Corporation , Stamford Avenue, Altrincham Road , Wilmslow SK9 4AX , U.K
| | - Jakub Ujma
- Waters Corporation , Stamford Avenue, Altrincham Road , Wilmslow SK9 4AX , U.K
| | - Jason Wildgoose
- Waters Corporation , Stamford Avenue, Altrincham Road , Wilmslow SK9 4AX , U.K
| | - Steven Pringle
- Waters Corporation , Stamford Avenue, Altrincham Road , Wilmslow SK9 4AX , U.K
| | - Keith Richardson
- Waters Corporation , Stamford Avenue, Altrincham Road , Wilmslow SK9 4AX , U.K
| | - David Langridge
- Waters Corporation , Stamford Avenue, Altrincham Road , Wilmslow SK9 4AX , U.K
| | - Martin Green
- Waters Corporation , Stamford Avenue, Altrincham Road , Wilmslow SK9 4AX , U.K
| |
Collapse
|
343
|
Morris CB, May JC, Leaptrot KL, McLean JA. Evaluating Separation Selectivity and Collision Cross Section Measurement Reproducibility in Helium, Nitrogen, Argon, and Carbon Dioxide Drift Gases for Drift Tube Ion Mobility-Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1059-1068. [PMID: 30887459 PMCID: PMC6520154 DOI: 10.1007/s13361-019-02151-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 05/04/2023]
Abstract
Previous ion mobility (IM) studies have demonstrated that varying the drift gas composition can be used to enhance chemical selectivity and resolution, yet there are few drift gas studies aimed at achieving quantitatively reproducible mobility measurements. Here, we critically evaluate the conditions necessary to achieve reproducible collision cross section (CCS) measurements in pure drift gases (helium, nitrogen, argon, and carbon dioxide) using a commercial uniform field drift tube instrument. Optimal experimental parameters are assessed based on the convergence of CCS measurements to reproducible values which are compared with literature values. A suite of calibration standards with diverse masses, biological classes, and charge states are examined to assess chemical selectivity and resolution achievable in each drift gas. Results indicate nitrogen and argon perform similarly and are sufficient for most applications where high resolving power and high peak capacity are desired. Carbon dioxide exhibits more selectivity for resolving structurally heterogeneous compounds, which may be preferable in specific analyte pair separations. Helium demonstrated modest separation capabilities but has utility for comparison to theoretical values and previously published work. In drift gases other than nitrogen, pressure differentials up to 230 mTorr between the drift tube and upstream chamber were optimal for improving correlation to literature values, while in nitrogen, the recommended pressure differential of 150 mTorr was found appropriate. We present recommended experimental parameters as well as gas-specific CCS measurements for structurally homogeneous sets of analytes which are suitable for use by other laboratories as standards for purposes of instrument calibration and overall assessment of IM separation performance.
Collapse
Affiliation(s)
- Caleb B Morris
- Center for Innovative Technology, Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | - Jody C May
- Center for Innovative Technology, Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | - Katrina L Leaptrot
- Center for Innovative Technology, Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | - John A McLean
- Center for Innovative Technology, Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
344
|
Morris CB, May JC, Leaptrot KL, McLean JA. Evaluating Separation Selectivity and Collision Cross Section Measurement Reproducibility in Helium, Nitrogen, Argon, and Carbon Dioxide Drift Gases for Drift Tube Ion Mobility-Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1059-1068. [PMID: 30887459 DOI: 10.1021/jasms.8b06014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 05/18/2023]
Abstract
Previous ion mobility (IM) studies have demonstrated that varying the drift gas composition can be used to enhance chemical selectivity and resolution, yet there are few drift gas studies aimed at achieving quantitatively reproducible mobility measurements. Here, we critically evaluate the conditions necessary to achieve reproducible collision cross section (CCS) measurements in pure drift gases (helium, nitrogen, argon, and carbon dioxide) using a commercial uniform field drift tube instrument. Optimal experimental parameters are assessed based on the convergence of CCS measurements to reproducible values which are compared with literature values. A suite of calibration standards with diverse masses, biological classes, and charge states are examined to assess chemical selectivity and resolution achievable in each drift gas. Results indicate nitrogen and argon perform similarly and are sufficient for most applications where high resolving power and high peak capacity are desired. Carbon dioxide exhibits more selectivity for resolving structurally heterogeneous compounds, which may be preferable in specific analyte pair separations. Helium demonstrated modest separation capabilities but has utility for comparison to theoretical values and previously published work. In drift gases other than nitrogen, pressure differentials up to 230 mTorr between the drift tube and upstream chamber were optimal for improving correlation to literature values, while in nitrogen, the recommended pressure differential of 150 mTorr was found appropriate. We present recommended experimental parameters as well as gas-specific CCS measurements for structurally homogeneous sets of analytes which are suitable for use by other laboratories as standards for purposes of instrument calibration and overall assessment of IM separation performance.
Collapse
Affiliation(s)
- Caleb B Morris
- Center for Innovative Technology, Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | - Jody C May
- Center for Innovative Technology, Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | - Katrina L Leaptrot
- Center for Innovative Technology, Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | - John A McLean
- Center for Innovative Technology, Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
345
|
Crescentini TM, May JC, McLean JA, Hercules DM. Alkali Metal Cation Adduct Effect on Polybutylene Adipate Oligomers: Ion Mobility-Mass Spectrometry. POLYMER 2019; 173:58-65. [PMID: 31839686 PMCID: PMC6910660 DOI: 10.1016/j.polymer.2019.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polyurethane (PU) di-block copolymers are one of the most versatile polymeric materials, comprised of hard and soft segments that contribute to PU's broad range of applications. Polybutylene adipate (PBA) is a commonly used soft segment in PU systems. Characterizing the structure of PBA polymers is essential to understanding complex heterogeneity within a PU sample. In this study, ion mobility-mass spectrometry (IM-MS) and tandem mass spectrometry (MS/MS) are used to structurally characterize a PBA standard (Mn = 2250) adducted with a combination of monovalent alkali cations (Li, Na, K, Rb, and Cs). IM-MS profiles show unique trends associated with each cation-adducted PBA sample. Charge state trends: +1, +2, and +3 were extracted for cation-adducted PBA oligomers, and investigated to study gas-phase transitional folding. To quantitatively assess the gas-phase structural similarities and differences, a statistical test (ANOVA) was used to compare PBA oligomer-cation collisional cross sections (CCS). Fragmentation studies (MS/MS) identified the unique behavior of Li and Na for promoting 1,5 H-shift and 1,3 H-shift fragmentation, whereas the PBA precursor preferentially loses the larger K, Rb, and Cs cations as the ion activation energy is increased. The combination of adducted alkali cations, IM-MS, and MS/MS allow for unique structural characterization of this important PBA system.
Collapse
Affiliation(s)
- Tiffany M. Crescentini
- Department of Chemistry, Vanderbilt University, Nashville, TN 37240, USA
- Center for Innovative Technology, Vanderbilt University, Nashville, TN 37240, USA
- Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37240, USA
- Institute for Integrated Biosystems Research and Education, Vanderbilt University, Nashville, TN 37240, USA
| | - Jody C. May
- Department of Chemistry, Vanderbilt University, Nashville, TN 37240, USA
- Center for Innovative Technology, Vanderbilt University, Nashville, TN 37240, USA
- Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37240, USA
- Institute for Integrated Biosystems Research and Education, Vanderbilt University, Nashville, TN 37240, USA
| | - John A. McLean
- Department of Chemistry, Vanderbilt University, Nashville, TN 37240, USA
- Center for Innovative Technology, Vanderbilt University, Nashville, TN 37240, USA
- Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37240, USA
- Institute for Integrated Biosystems Research and Education, Vanderbilt University, Nashville, TN 37240, USA
| | - David M. Hercules
- Department of Chemistry, Vanderbilt University, Nashville, TN 37240, USA
| |
Collapse
|
346
|
Paglia G, Astarita G. Traveling Wave Ion Mobility Mass Spectrometry: Metabolomics Applications. Methods Mol Biol 2019; 1978:39-53. [PMID: 31119656 DOI: 10.1007/978-1-4939-9236-2_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Ion mobility (IM) spectrometry can separate gas-phase ions according to their charge, molecular shape, and size. In recent years, several IM technologies have been integrated with mass spectrometry (MS) and launched as commercially available instrumentation for metabolomics analysis. The addition of IM to MS-based metabolomics workflows provides an additional degree of separation to chromatography and MS resolving power, improving peak capacity and signal-to-noise ratio. Moreover, it makes possible to experimentally derive collision cross section (CCS), which can be used as an additional coordinate for metabolite identification, together with accurate mass and fragmentation information. The addition of CCS to current metabolome database would allow to filter and score molecules based on their CCS values, adding more confidence in the identification process during metabolomics experiments.In this chapter, we present procedures for the integration of travelling-wave (TW)-IM into traditional MS-based metabolomics workflows.
Collapse
Affiliation(s)
| | - Giuseppe Astarita
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, USA
| |
Collapse
|
347
|
Evaluating the structural complexity of isomeric bile acids with ion mobility spectrometry. Anal Bioanal Chem 2019; 411:4673-4682. [PMID: 31098744 DOI: 10.1007/s00216-019-01869-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/13/2019] [Accepted: 04/24/2019] [Indexed: 12/14/2022]
Abstract
Bile acids (BAs) play an integral role in digestion through the absorption of nutrients, emulsification of fats and fat-soluble vitamins, and maintenance of cholesterol levels. Metabolic disruption, diabetes, colorectal cancer, and numerous other diseases have been linked with BA disruption, making improved BA analyses essential. To date, most BA measurements are performed using liquid chromatography separations in conjunction with mass spectrometry measurements (LC-MS). However, 10-40 min LC gradients are often used for BA analyses and these may not even be sufficient for distinguishing all the important isomers present in the human body. Ion mobility spectrometry (IMS) is a promising tool for BA evaluations due to its ability to quickly separate isomeric molecules with subtle structural differences. In this study, we utilized drift tube IMS (DTIMS) coupled with MS to characterize 56 different unlabeled BA standards and 16 deuterated versions. In the DTIMS-MS analyses of 12 isomer groups, BAs with smaller m/z values were easily separated in either their deprotonated or sodiated forms (or both). However, as the BAs grew in m/z value, they became more difficult to separate with two isomer groups being inseparable. Metal ions such as copper and zinc were then added to the overlapping BAs, and due to different binding sites, the resulting complexes were separable. Thus, the rapid structural measurements possible with DTIMS-MS show great potential for BAs measurements with and without prior LC separations.
Collapse
|
348
|
Emhofer L, Himmelsbach M, Buchberger W, Klampfl CW. High-performance liquid chromatography drift-tube ion-mobility quadrupole time-of-flight/mass spectrometry for the identity confirmation and characterization of metabolites from three statins (lipid-lowering drugs) in the model plant cress (Lepidium sativum) after uptake from water. J Chromatogr A 2019; 1592:122-132. [DOI: 10.1016/j.chroma.2019.01.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/14/2019] [Accepted: 01/17/2019] [Indexed: 10/27/2022]
|
349
|
Gabelica V, Shvartsburg AA, Afonso C, Barran P, Benesch JL, Bleiholder C, Bowers MT, Bilbao A, Bush MF, Campbell JL, Campuzano ID, Causon T, Clowers BH, Creaser CS, De Pauw E, Far J, Fernandez‐Lima F, Fjeldsted JC, Giles K, Groessl M, Hogan CJ, Hann S, Kim HI, Kurulugama RT, May JC, McLean JA, Pagel K, Richardson K, Ridgeway ME, Rosu F, Sobott F, Thalassinos K, Valentine SJ, Wyttenbach T. Recommendations for reporting ion mobility Mass Spectrometry measurements. MASS SPECTROMETRY REVIEWS 2019; 38:291-320. [PMID: 30707468 PMCID: PMC6618043 DOI: 10.1002/mas.21585] [Citation(s) in RCA: 323] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/01/2018] [Accepted: 11/02/2018] [Indexed: 05/02/2023]
Abstract
Here we present a guide to ion mobility mass spectrometry experiments, which covers both linear and nonlinear methods: what is measured, how the measurements are done, and how to report the results, including the uncertainties of mobility and collision cross section values. The guide aims to clarify some possibly confusing concepts, and the reporting recommendations should help researchers, authors and reviewers to contribute comprehensive reports, so that the ion mobility data can be reused more confidently. Starting from the concept of the definition of the measurand, we emphasize that (i) mobility values (K0 ) depend intrinsically on ion structure, the nature of the bath gas, temperature, and E/N; (ii) ion mobility does not measure molecular surfaces directly, but collision cross section (CCS) values are derived from mobility values using a physical model; (iii) methods relying on calibration are empirical (and thus may provide method-dependent results) only if the gas nature, temperature or E/N cannot match those of the primary method. Our analysis highlights the urgency of a community effort toward establishing primary standards and reference materials for ion mobility, and provides recommendations to do so. © 2019 The Authors. Mass Spectrometry Reviews Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Valérie Gabelica
- University of Bordeaux, INSERM and CNRS, ARNA Laboratory, IECB site2 rue Robert Escarpit, 33600PessacFrance
| | | | | | - Perdita Barran
- Michael Barber Centre for Collaborative Mass SpectrometryManchester Institute for Biotechnology, University of ManchesterManchesterUK
| | - Justin L.P. Benesch
- Department of Chemistry, Chemistry Research LaboratoryUniversity of Oxford, Mansfield Road, OX1 3TAOxfordUK
| | - Christian Bleiholder
- Department of Chemistry and BiochemistryFlorida State UniversityTallahasseeFlorida32311
| | | | - Aivett Bilbao
- Biological Sciences DivisionPacific Northwest National LaboratoryRichlandWashington
| | - Matthew F. Bush
- Department of ChemistryUniversity of WashingtonSeattleWashington
| | | | | | - Tim Causon
- University of Natural Resources and Life Sciences (BOKU)Department of Chemistry, Division of Analytical ChemistryViennaAustria
| | - Brian H. Clowers
- Department of ChemistryWashington State UniversityPullmanWashington
| | - Colin S. Creaser
- Centre for Analytical ScienceDepartment of Chemistry, Loughborough UniversityLoughboroughUK
| | - Edwin De Pauw
- Laboratoire de spectrométrie de masse (L.S.M.) − Molecular SystemsUniversité de LiègeLiègeBelgium
| | - Johann Far
- Laboratoire de spectrométrie de masse (L.S.M.) − Molecular SystemsUniversité de LiègeLiègeBelgium
| | | | | | | | - Michael Groessl
- Department of Nephrology and Hypertension and Department of BioMedical ResearchInselspital, Bern University Hospital, University of Bern, Switzerland and TofwerkThunSwitzerland
| | | | - Stephan Hann
- University of Natural Resources and Life Sciences (BOKU)Department of Chemistry, Division of Analytical ChemistryViennaAustria
| | - Hugh I. Kim
- Department of ChemistryKorea UniversitySeoulKorea
| | | | - Jody C. May
- Department of ChemistryCenter for Innovative Technology, Vanderbilt UniversityNashvilleTennessee
| | - John A. McLean
- Department of ChemistryCenter for Innovative Technology, Vanderbilt UniversityNashvilleTennessee
| | - Kevin Pagel
- Freie Universitaet BerlinInstitute for Chemistry and BiochemistryBerlinGermany
| | | | | | - Frédéric Rosu
- CNRS, INSERM and University of BordeauxInstitut Européen de Chimie et BiologiePessacFrance
| | - Frank Sobott
- Antwerp UniversityBiomolecular & Analytical Mass SpectrometryAntwerpBelgium
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsUK
- School of Molecular and Cellular BiologyUniversity of LeedsLeedsUK
| | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, Division of BiosciencesUniversity College LondonLondonWC1E 6BTUK
- United Kingdom and Institute of Structural and Molecular BiologyDepartment of Biological Sciences, Birkbeck College, University of LondonLondonWC1E 7HXUK
| | - Stephen J. Valentine
- C. Eugene Bennett Department of ChemistryWest Virginia UniversityMorgantownWest Virginia
| | | |
Collapse
|
350
|
Hamdi A, Enjalbal C, Drobecq H, Boukherroub R, Melnyk O, Ezzaouia H, Coffinier Y. Fast and facile preparation of nanostructured silicon surfaces for laser desorption/ionization mass spectrometry of small compounds. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33 Suppl 1:66-74. [PMID: 30048019 DOI: 10.1002/rcm.8245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/13/2018] [Accepted: 07/16/2018] [Indexed: 06/08/2023]
Abstract
RATIONALE Many important biological processes rely on specific biomarkers (such as metabolites, drugs, proteins or peptides, carbohydrates, lipids, ...) that need to be monitored in various fluids (blood, plasma, urine, cell cultures, tissue homogenates, …). Although mass spectrometry (MS) hyphenated to liquid chromatography (LC) is widely accepted as a 'gold-standard' method for identifying such synthetic chemicals or biological products, their robust fast sensitive detection from complex matrices still constitutes a highly challenging matter. METHODS In order to circumvent the constraints intrinsic to LC/MS technology in terms of prior sample treatment, analysis time and overall method development to optimize ionization efficiency affecting the detection threshold, we investigated laser desorption/ionization mass spectrometry (LDI-MS) by directly depositing the sample under study onto cheap inert nanostructures made of silicon to perform straightforward sensitive and rapid screening of targeted low mass biomarkers on a conventional MALDI platform. RESULTS The investigated silicon nanostructures were found to act as very efficient ion-promoting surfaces exhibiting high performance for the detection of different classes of organic compounds, including glutathione, glucose, peptides and antibiotics. Achieving such broad detection was compulsory to develop a SALDI-MS-based pre-screening tool. CONCLUSIONS The key contribution of the described analytical strategy consists of designing inert surfaces that are fast (minute preparation) and cheap to produce, easy to handle and able to detect small organic compounds in matrix-free LDI-MS prerequisite for biomarkers pre-screening from body fluids without the recourse of any separation step.
Collapse
Affiliation(s)
- Abderrahmane Hamdi
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, IEMN, UMR CNRS 8520, Avenue Poincaré, BP 60069, 59652, Villeneuve d'Ascq, France
- Laboratory of Semi-conductors, Nano-structures and Advanced Technologies, Research and Technology Centre of Energy, Borj-Cedria Science and Technology Park, BP 95, 2050, Hammam-Lif, Tunisia
- Faculty of Science of Bizerte, University of Carthage, 7021, Zarzouna, Tunisia
| | - Christine Enjalbal
- Univ. Montpellier, Institut des Biomolécules Max Mousseron, Place Eugène Bataillon, 34095, Montpellier, France
| | - Hervé Drobecq
- Institut de biologie de Lille, UMR CNRS 8160, 59000, Lille, France
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, IEMN, UMR CNRS 8520, Avenue Poincaré, BP 60069, 59652, Villeneuve d'Ascq, France
| | - Oleg Melnyk
- Institut de biologie de Lille, UMR CNRS 8160, 59000, Lille, France
| | - Hatem Ezzaouia
- Laboratory of Semi-conductors, Nano-structures and Advanced Technologies, Research and Technology Centre of Energy, Borj-Cedria Science and Technology Park, BP 95, 2050, Hammam-Lif, Tunisia
| | - Yannick Coffinier
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, IEMN, UMR CNRS 8520, Avenue Poincaré, BP 60069, 59652, Villeneuve d'Ascq, France
| |
Collapse
|