301
|
Zheng T, Pu J, Chen Y, Mao Y, Guo Z, Pan H, Zhang L, Zhang H, Sun B, Zhang B. Plasma Exosomes Spread and Cluster Around β-Amyloid Plaques in an Animal Model of Alzheimer's Disease. Front Aging Neurosci 2017; 9:12. [PMID: 28203202 PMCID: PMC5285341 DOI: 10.3389/fnagi.2017.00012] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/17/2017] [Indexed: 12/17/2022] Open
Abstract
Exosomes, a type of extracellular vesicle, have been shown to be involved in many disorders, including Alzheimer’s disease (AD). Exosomes may contribute to the spread of misfolded proteins such as amyloid-β (Aβ) and α-synuclein. However, the specific diffusion process of exosomes and their final destination in brain are still unclear. In the present study, we isolated exosomes from peripheral plasma and injected them into the hippocampus of an AD mouse model, and investigated exosome diffusion. We found that injected exosomes can spread from the dentate gyrus (DG) to other regions of hippocampus and to the cortex. Exosomes targeted microglia preferentially; this phenomenon is stable and is not affected by age. In AD mice, microglia take up lower levels of exosomes. More interestingly, plasma exosomes cluster around the Aβ plaques and are engulfed by activated microglia nearby. Our data indicate that exosomes can diffuse throughout the brain and may play a role in the dynamics of amyloid deposition in AD through microglia.
Collapse
Affiliation(s)
- Tingting Zheng
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University Hangzhou, China
| | - Jiali Pu
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University Hangzhou, China
| | - Yanxing Chen
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University Hangzhou, China
| | - Yanfang Mao
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University Hangzhou, China
| | - Zhangyu Guo
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University Hangzhou, China
| | - Hongyu Pan
- Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Key Laboratory of Neurobiology of Zhejiang Province, Zhejiang University School of Medicine Hangzhou, China
| | - Ling Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Key Laboratory of Neurobiology of Zhejiang Province, Zhejiang University School of Medicine Hangzhou, China
| | - Heng Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Key Laboratory of Neurobiology of Zhejiang Province, Zhejiang University School of Medicine Hangzhou, China
| | - Binggui Sun
- Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Key Laboratory of Neurobiology of Zhejiang Province, Zhejiang University School of Medicine Hangzhou, China
| | - Baorong Zhang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University Hangzhou, China
| |
Collapse
|
302
|
Borland H, Vilhardt F. Prelysosomal Compartments in the Unconventional Secretion of Amyloidogenic Seeds. Int J Mol Sci 2017; 18:ijms18010227. [PMID: 28124989 PMCID: PMC5297856 DOI: 10.3390/ijms18010227] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/09/2017] [Accepted: 01/16/2017] [Indexed: 12/18/2022] Open
Abstract
A mechanistic link between neuron-to-neuron transmission of secreted amyloid and propagation of protein malconformation cytopathology and disease has recently been uncovered in animal models. An enormous interest in the unconventional secretion of amyloids from neurons has followed. Amphisomes and late endosomes are the penultimate maturation products of the autophagosomal and endosomal pathways, respectively, and normally fuse with lysosomes for degradation. However, under conditions of perturbed membrane trafficking and/or lysosomal deficiency, prelysosomal compartments may instead fuse with the plasma membrane to release any contained amyloid. After a brief introduction to the endosomal and autophagosomal pathways, we discuss the evidence for autophagosomal secretion (exophagy) of amyloids, with a comparative emphasis on Aβ1-42 and α-synuclein, as luminal and cytosolic amyloids, respectively. The ESCRT-mediated import of cytosolic amyloid into late endosomal exosomes, a known vehicle of transmission of macromolecules between cells, is also reviewed. Finally, mechanisms of lysosomal dysfunction, deficiency, and exocytosis are exemplified in the context of genetically identified risk factors, mainly for Parkinson's disease. Exocytosis of prelysosomal or lysosomal organelles is a last resort for clearance of cytotoxic material and alleviates cytopathy. However, they also represent a vehicle for the concentration, posttranslational modification, and secretion of amyloid seeds.
Collapse
Affiliation(s)
- Helena Borland
- Department of Neurodegeneration In Vitro, H. Lundbeck A/S, 2500 Valby, Denmark.
| | - Frederik Vilhardt
- Department of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, 2200N Copenhagen, Denmark.
| |
Collapse
|
303
|
Strain-specific Fibril Propagation by an Aβ Dodecamer. Sci Rep 2017; 7:40787. [PMID: 28098204 PMCID: PMC5241678 DOI: 10.1038/srep40787] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/09/2016] [Indexed: 01/12/2023] Open
Abstract
Low molecular weight oligomers of amyloid-β (Aβ) have emerged as the primary toxic agents in the etiology of Alzheimer disease (AD). Polymorphism observed within the aggregation end products of fibrils are known to arise due to microstructural differences among the oligomers. Diversity in aggregate morphology correlates with the differences in AD, cementing the idea that conformational strains of oligomers could be significant in phenotypic outcomes. Therefore, it is imperative to determine the ability of strains to faithfully propagate their structure. Here we report fibril propagation of an Aβ42 dodecamer called large fatty acid-derived oligomers (LFAOs). The LFAO oligomeric strain selectively induces acute cerebral amyloid angiopathy (CAA) in neonatally-injected transgenic CRND8 mice. Propagation in-vitro occurs as a three-step process involving the association of LFAO units. LFAO-seeded fibrils possess distinct morphology made of repeating LFAO units that could be regenerated upon sonication. Overall, these data bring forth an important mechanistic perspective into strain-specific propagation of oligomers that has remained elusive thus far.
Collapse
|
304
|
Cohen M, Appleby B, Safar JG. Distinct prion-like strains of amyloid beta implicated in phenotypic diversity of Alzheimer's disease. Prion 2017; 10:9-17. [PMID: 26809345 DOI: 10.1080/19336896.2015.1123371] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Vast evidence on human prions demonstrates that variable disease phenotypes, rates of propagation, and targeting of distinct brain structures are determined by unique conformers (strains) of pathogenic prion protein (PrP(Sc)). Recent progress in the development of advanced biophysical tools that inventory structural characteristics of amyloid beta (Aβ) in the brain cortex of phenotypically diverse Alzheimer's disease (AD) patients, revealed unique spectrum of oligomeric particles in the cortex of rapidly progressive cases, implicating these structures in variable rates of propagation in the brain, and in distict disease manifestation. Since only ∼30% of phenotypic diversity of AD can be explained by polymorphisms in risk genes, these and transgenic bioassay data argue that structurally distinct Aβ particles play a major role in the diverse pathogenesis of AD, and may behave as distinct prion-like strains encoding diverse phenotypes. From these observations and our growing understanding of prions, there is a critical need for new strain-specific diagnostic strategies for misfolded proteins causing these elusive disorders. Since targeted drug therapy can induce mutation and evolution of prions into new strains, effective treatments of AD will require drugs that enhance clearance of pathogenic conformers, reduce the precursor protein, or inhibit the conversion of precursors into prion-like states.
Collapse
Affiliation(s)
- Mark Cohen
- a National Prion Disease Pathology Surveillance Center, Case Western Reserve University School of Medicine , Cleveland , OH , USA.,b Department of Pathology , Case Western Reserve University School of Medicine , Cleveland , OH , USA
| | - Brian Appleby
- a National Prion Disease Pathology Surveillance Center, Case Western Reserve University School of Medicine , Cleveland , OH , USA.,c Department of Neurology , Case Western Reserve University School of Medicine , Cleveland , OH , USA.,d Department of Psychiatry , Case Western Reserve University School of Medicine , Cleveland , OH , USA
| | - Jiri G Safar
- a National Prion Disease Pathology Surveillance Center, Case Western Reserve University School of Medicine , Cleveland , OH , USA.,b Department of Pathology , Case Western Reserve University School of Medicine , Cleveland , OH , USA.,c Department of Neurology , Case Western Reserve University School of Medicine , Cleveland , OH , USA
| |
Collapse
|
305
|
Abstract
Human prion diseases are rare neurodegenerative diseases that have become the subject of public and scientific interest because of concerns about interspecies transmission and the unusual biological properties of the causal agents: prions. These diseases are unique in that they occur in sporadic, hereditary, and infectious forms that are characterized by an extended incubation period between exposure to infection and the development of clinical illness. Silent infection can be present in peripheral tissues during the incubation period, which poses a challenge to public health, especially because prions are relatively resistant to standard decontamination procedures. Despite intense research efforts, no effective treatment has been developed for human prion diseases, which remain uniformly fatal.
Collapse
Affiliation(s)
- Robert G Will
- National Creutzfeldt-Jakob Disease Research and Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| | - James W Ironside
- National Creutzfeldt-Jakob Disease Research and Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| |
Collapse
|
306
|
Abstract
Prion diseases are a group of invariably fatal and transmissible neurodegenerative disorders that are associated with the misfolding of the normal cellular prion protein, with the misfolded conformers constituting an infectious unit referred to as a "prion". Prions can spread within an affected organism by directly propagating this misfolding within and between cells and can transmit disease between animals of the same and different species. Prion diseases have a range of clinical phenotypes in humans and animals, with a principle determinant of this attributed to different conformations of the misfolded protein, referred to as prion strains. This chapter will describe the different clinical manifestations of prion diseases, the evidence that these diseases can be transmitted by an infectious protein and how the misfolding of this protein causes disease.
Collapse
|
307
|
Takada LT, Kim MO, Cleveland RW, Wong K, Forner SA, Gala II, Fong JC, Geschwind MD. Genetic prion disease: Experience of a rapidly progressive dementia center in the United States and a review of the literature. Am J Med Genet B Neuropsychiatr Genet 2017; 174:36-69. [PMID: 27943639 PMCID: PMC7207989 DOI: 10.1002/ajmg.b.32505] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 10/04/2016] [Indexed: 12/21/2022]
Abstract
Although prion diseases are generally thought to present as rapidly progressive dementias with survival of only a few months, the phenotypic spectrum for genetic prion diseases (gPrDs) is much broader. The majority have a rapid decline with short survival, but many patients with gPrDs present as slowly progressive ataxic or parkinsonian disorders with progression over a few to several years. A few very rare mutations even present as neuropsychiatric disorders, sometimes with systemic symptoms such as gastrointestinal disorders and neuropathy, progressing over years to decades. gPrDs are caused by mutations in the prion protein gene (PRNP), and have been historically classified based on their clinicopathological features as genetic Jakob-Creutzfeldt disease (gJCD), Gerstmann-Sträussler-Scheinker (GSS), or Fatal Familial Insomnia (FFI). Mutations in PRNP can be missense, nonsense, and octapeptide repeat insertions or a deletion, and present with diverse clinical features, sensitivities of ancillary testing, and neuropathological findings. We present the UCSF gPrD cohort, including 129 symptomatic patients referred to and/or seen at UCSF between 2001 and 2016, and compare the clinical features of the gPrDs from 22 mutations identified in our cohort with data from the literature, as well as perform a literature review on most other mutations not represented in our cohort. E200K is the most common mutation worldwide, is associated with gJCD, and was the most common in the UCSF cohort. Among the GSS-associated mutations, P102L is the most commonly reported and was also the most common at UCSF. We also had several octapeptide repeat insertions (OPRI), a rare nonsense mutation (Q160X), and three novel mutations (K194E, E200G, and A224V) in our UCSF cohort. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Leonel T. Takada
- Cognitive and Behavioral Neurology Unit, Department of Neurology, University of São Paulo, São Paulo, Brazil
| | - Mee-Ohk Kim
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94107
| | - Ross W. Cleveland
- Department of Pediatrics, The University of Vermont Children’s Hospital, University of Vermont, Burlington, VT 05401
| | - Katherine Wong
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94107
| | - Sven A. Forner
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94107
| | - Ignacio Illán Gala
- Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Jamie C. Fong
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94107
| | - Michael D. Geschwind
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94107
| |
Collapse
|
308
|
Monzón M. Approaches to therapy against prion diseases focused on the individual defence system. AIMS MOLECULAR SCIENCE 2017. [DOI: 10.3934/molsci.2017.3.241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
309
|
Höglund K, Kern S, Zettergren A, Börjesson-Hansson A, Zetterberg H, Skoog I, Blennow K. Preclinical amyloid pathology biomarker positivity: effects on tau pathology and neurodegeneration. Transl Psychiatry 2017; 7:e995. [PMID: 28072416 PMCID: PMC5545720 DOI: 10.1038/tp.2016.252] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 06/01/2016] [Accepted: 06/30/2016] [Indexed: 11/15/2022] Open
Abstract
Brain autopsy and biomarker studies indicate that the pathology of Alzheimer's disease (AD) is initiated at least 10-20 years before clinical symptoms. This provides a window of opportunity to initiate preventive treatment. However, this emphasizes the necessity for biomarkers that identify individuals at risk for developing AD later in life. In this cross-sectional study, originating from three epidemiologic studies in Sweden (n=1428), the objective was to examine whether amyloid pathology, as determined by low cerebrospinal fluid (CSF) concentration of the 42 amino acid form of β-amyloid (Aβ42), is associated with biomarker evidence of other pathological changes in cognitively healthy elderly. A total of 129 patients were included and CSF levels of Aβ42, total tau, tau phosphorylated at threonine 181 (p-tau), neurogranin, VILIP-1, VEGF, FABP3, Aβ40, neurofilament light, MBP, orexin A, BDNF and YKL-40 were measured. Among these healthy elderly, 35.6% (N=46) had CSF Aβ42 levels below 530 pg ml-1. These individuals displayed significantly higher CSF concentrations of t-tau (P<0.001), p-tau (181) (P<0.001), neurogranin (P=0.009) and FABP3 (P=0.044) compared with amyloid-negative individuals. Our study indicates that there is a subpopulation among healthy older individuals who have amyloid pathology along with signs of ongoing neuronal and synaptic degeneration, as well as tangle pathology. Previous studies have demonstrated that increase in CSF tau and p-tau is a specific sign of AD progression that occurs downstream of the deposition of Aβ. On the basis of this, our data suggest that these subjects are at risk for developing AD. We also confirm the association between APOE ɛ4 and amyloid pathology in healthy older individuals.
Collapse
Affiliation(s)
- K Höglund
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, Centre for ageing and Health, AgeCap, University of Gothenburg, Sahlgrenska University Hospital, Mölndal, Sweden,Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Disease Research, Neurogeriatrics Division, Karolinska Institutet, Novum, Stockholm, Sweden,Clinical Neurochemistry Laboratory, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at University of Gothenburg, Sahlgrenska University Hospital, Mölndal SE-431 80, Sweden. E-mail:
| | - S Kern
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, Centre for ageing and Health, AgeCap, University of Gothenburg, Sahlgrenska University Hospital, Mölndal, Sweden,Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| | - A Zettergren
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, Centre for ageing and Health, AgeCap, University of Gothenburg, Sahlgrenska University Hospital, Mölndal, Sweden,Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| | - A Börjesson-Hansson
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, Centre for ageing and Health, AgeCap, University of Gothenburg, Sahlgrenska University Hospital, Mölndal, Sweden,Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| | - H Zetterberg
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, Centre for ageing and Health, AgeCap, University of Gothenburg, Sahlgrenska University Hospital, Mölndal, Sweden,Neuropsychiatric Epidemiology Unit, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, Centre for Ageing and Health, AgeCap, University of Gothenburg, Mölndal, Sweden
| | - I Skoog
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, Centre for ageing and Health, AgeCap, University of Gothenburg, Sahlgrenska University Hospital, Mölndal, Sweden,Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| | - K Blennow
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, Centre for ageing and Health, AgeCap, University of Gothenburg, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
310
|
Riek R, Eisenberg DS. The activities of amyloids from a structural perspective. Nature 2016; 539:227-235. [PMID: 27830791 DOI: 10.1038/nature20416] [Citation(s) in RCA: 342] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/14/2016] [Indexed: 12/16/2022]
Abstract
The aggregation of proteins into structures known as amyloids is observed in many neurodegenerative diseases, including Alzheimer's disease. Amyloids are composed of pairs of tightly interacting, many stranded and repetitive intermolecular β-sheets, which form the cross-β-sheet structure. This structure enables amyloids to grow by recruitment of the same protein and its repetition can transform a weak biological activity into a potent one through cooperativity and avidity. Amyloids therefore have the potential to self-replicate and can adapt to the environment, yielding cell-to-cell transmissibility, prion infectivity and toxicity.
Collapse
Affiliation(s)
- Roland Riek
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zürich, Switzerland
| | - David S Eisenberg
- UCLA-DOE Institute, Los Angeles, California 90095-1570, USA.,Howard Hughes Medical Institute, Los Angeles, California 90095-1570, USA
| |
Collapse
|
311
|
Collinge J. Mammalian prions and their wider relevance in neurodegenerative diseases. Nature 2016; 539:217-226. [PMID: 27830781 DOI: 10.1038/nature20415] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/09/2016] [Indexed: 02/07/2023]
Abstract
Prions are notorious protein-only infectious agents that cause invariably fatal brain diseases following silent incubation periods that can span a lifetime. These diseases can arise spontaneously, through infection or be inherited. Remarkably, prions are composed of self-propagating assemblies of a misfolded cellular protein that encode information, generate neurotoxicity and evolve and adapt in vivo. Although parallels have been drawn with Alzheimer's disease and other neurodegenerative conditions involving the deposition of assemblies of misfolded proteins in the brain, insights are now being provided into the usefulness and limitations of prion analogies and their aetiological and therapeutic relevance.
Collapse
Affiliation(s)
- John Collinge
- Medical Research Council Prion Unit, University College London Institute of Neurology, London WC1N 3BG, UK.,Department of Neurodegenerative Disease, University College London Institute of Neurology, London WC1N 3BG, UK
| |
Collapse
|
312
|
Luk C, Jones S, Thomas C, Fox NC, Mok TH, Mead S, Collinge J, Jackson GS. Diagnosing Sporadic Creutzfeldt-Jakob Disease by the Detection of Abnormal Prion Protein in Patient Urine. JAMA Neurol 2016; 73:1454-1460. [PMID: 27699415 PMCID: PMC5701732 DOI: 10.1001/jamaneurol.2016.3733] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
IMPORTANCE Creutzfeldt-Jakob disease (CJD) is a fatal neurodegenerative disorder associated with the accumulation of infectious abnormal prion protein through a mechanism of templated misfolding. A recent report has described the detection of abnormal prion protein in the urine of patients with variant CJD (vCJD) using protein misfolding by cyclic amplification, which was apparently absent in the more common sporadic form of CJD (sCJD). A noninvasive diagnostic test could improve early diagnosis of sCJD and, by screening donations, mitigate the potential risks of prion transmission through human urine-derived pharmaceuticals. Here, we describe the adaptation of the direct detection assay, developed originally as a blood test for vCJD, for the detection of disease-associated prion protein in urine samples from patients with sCJD. OBJECTIVE To determine the feasibility of sCJD diagnosis by adaptation of an established vCJD diagnostic blood test to urine. DESIGN, SETTING, AND PARTICIPANTS This retrospective, cross-sectional study included anonymized urine samples from healthy nonneurological control individuals (n = 91), patients with non-prion neurodegenerative diseases (n = 34), and patients with prion disease (n = 37) of which 20 had sCJD. Urine samples obtained during the Medical Research Council PRION-1 Trial, the National Prion Monitoring Cohort Study, and/or referred to the National Prion Clinic or Dementia Research Centre at the National Hospital for Neurology and Neurosurgery in the United Kingdom. MAIN OUTCOMES AND MEASURES Presence of sCJD infection determined by an assay that captures, enriches, and detects disease-associated prion protein isoforms. RESULTS A total of 162 samples were analyzed, composed of 91 normal control individuals (51 male, 33 female, and 7 not recorded), 34 neurological disease control individuals (19 male and 15 female), and 37 with prion disease (22 male and 15 female). The assay's specificity for prion disease was 100% (95% CI, 97%-100%), with no false-positive reactions from 125 control individuals, including 34 from a range of neurodegenerative diseases. In contrast to a previous study, which used a different method, sensitivity to vCJD infection was low (7.7%; 95% CI, 0.2%-36%), with only 1 of 13 patients with positive test results, while sensitivity to sCJD was unexpectedly high at 40% (95% CI, 19%-64%). CONCLUSIONS AND RELEVANCE We determined 40% of sCJD urine sample results as positive. To our knowledge, this is the first demonstration of an assay that can detect sCJD infection in urine or any target analyte outside of the central nervous system. Urine detection could allow the development of rapid, molecular diagnostics for sCJD and has implications for other neurodegenerative diseases where disease-related assemblies of misfolded proteins might also be present in urine.
Collapse
Affiliation(s)
- Connie Luk
- MRC Prion Unit, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Samantha Jones
- MRC Prion Unit, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Claire Thomas
- MRC Prion Unit, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Nick C Fox
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Tze H Mok
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London WC1N 3BG, UK
| | - Simon Mead
- MRC Prion Unit, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London WC1N 3BG, UK
| | - John Collinge
- MRC Prion Unit, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London WC1N 3BG, UK
| | - Graham S Jackson
- MRC Prion Unit, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
313
|
Xu F, Fu Z, Dass S, Kotarba AE, Davis J, Smith SO, Van Nostrand WE. Cerebral vascular amyloid seeds drive amyloid β-protein fibril assembly with a distinct anti-parallel structure. Nat Commun 2016; 7:13527. [PMID: 27869115 PMCID: PMC5121328 DOI: 10.1038/ncomms13527] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 10/12/2016] [Indexed: 02/08/2023] Open
Abstract
Cerebrovascular accumulation of amyloid β-protein (Aβ), a condition known as cerebral amyloid angiopathy (CAA), is a common pathological feature of patients with Alzheimer's disease. Familial Aβ mutations, such as Dutch-E22Q and Iowa-D23N, can cause severe cerebrovascular accumulation of amyloid that serves as a potent driver of vascular cognitive impairment and dementia. The distinctive features of vascular amyloid that underlie its unique pathological properties remain unknown. Here, we use transgenic mouse models producing CAA mutants (Tg-SwDI) or overproducing human wild-type Aβ (Tg2576) to demonstrate that CAA-mutant vascular amyloid influences wild-type Aβ deposition in brain. We also show isolated microvascular amyloid seeds from Tg-SwDI mice drive assembly of human wild-type Aβ into distinct anti-parallel β-sheet fibrils. These findings indicate that cerebrovascular amyloid can serve as an effective scaffold to promote rapid assembly and strong deposition of Aβ into a unique structure that likely contributes to its distinctive pathology.
Collapse
Affiliation(s)
- Feng Xu
- Departments of Neurosurgery and Medicine, Stony Brook University, Stony Brook, New York 11794, USA
| | - Ziao Fu
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794, USA
| | - Sharmila Dass
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794, USA
| | - AnnMarie E. Kotarba
- Departments of Neurosurgery and Medicine, Stony Brook University, Stony Brook, New York 11794, USA
| | - Judianne Davis
- Departments of Neurosurgery and Medicine, Stony Brook University, Stony Brook, New York 11794, USA
| | - Steven O. Smith
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794, USA
| | - William E. Van Nostrand
- Departments of Neurosurgery and Medicine, Stony Brook University, Stony Brook, New York 11794, USA
| |
Collapse
|
314
|
Howitt J, Hill AF. Exosomes in the Pathology of Neurodegenerative Diseases. J Biol Chem 2016; 291:26589-26597. [PMID: 27852825 DOI: 10.1074/jbc.r116.757955] [Citation(s) in RCA: 201] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
More than 30 years ago, two unexpected findings were discovered that challenged conventional thinking in biology. The first was the identification of a misfolded protein with transmissible properties associated with a group of neurodegenerative diseases known as transmissible spongiform encephalopathies. The second was the discovery of a new pathway used for the extracellular release of biomolecules, including extracellular vesicles called exosomes. Two decades later, the convergence of these pathways was shown when exosomes were found to play a significant role in both the transmission and propagation of protein aggregates in disease. Recent research has now revealed that the majority of proteins involved in neurodegenerative diseases are transported in exosomes, and that external stresses due to age-related impairment of protein quality control mechanisms can promote the transcellular flux of these proteins in exosomes. Significantly, exosomes provide an environment that can induce the conformational conversion of native proteins into aggregates that can be transmitted to otherwise aggregate-free cells in the brain. Here we review the current roles of exosomes in the pathology of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jason Howitt
- From the Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010 and
| | - Andrew F Hill
- the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia
| |
Collapse
|
315
|
Connor JR, Patton SM, Oexle K, Allen RP. Iron and restless legs syndrome: treatment, genetics and pathophysiology. Sleep Med 2016; 31:61-70. [PMID: 28057495 DOI: 10.1016/j.sleep.2016.07.028] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 07/22/2016] [Accepted: 07/29/2016] [Indexed: 12/13/2022]
Abstract
In this article, we review the original findings from MRI and autopsy studies that demonstrated brain iron status is insufficient in individuals with restless legs syndrome (RLS). The concept of deficient brain iron status is supported by proteomic studies from cerebrospinal fluid (CSF) and from the clinical findings where intervention with iron, either dietary or intravenous, can improve RLS symptoms. Therefore, we include a section on peripheral iron status and how peripheral status may influence both the RLS symptoms and treatment strategy. Given the impact of iron in RLS, we have evaluated genetic data to determine if genes are directly involved in iron regulatory pathways. The result was negative. In fact, even the HFE mutation C282Y could not be shown to have a protective effect. Lastly, a consistent finding in conditions of low iron is increased expression of proteins in the hypoxia pathway. Although there is lack of clinical data that RLS patients are hypoxic, there are intriguing observations that environmental hypoxic conditions worsen RLS symptoms; in this chapter we review very compelling data for activation of hypoxic pathways in the brain in RLS patients. In general, the data in RLS point to a pathophysiology that involves decreased acquisition of iron by cells in the brain. Whether the decreased ability is genetically driven, activation of pathways (eg, hypoxia) that are designed to limit cellular uptake is unknown at this time; however, the data strongly support a functional rather than structural defect in RLS, suggesting that an effective treatment is possible.
Collapse
Affiliation(s)
- James R Connor
- Department of Neurosurgery, Penn State Hershey Medical Center, Hershey, PA, USA.
| | - Stephanie M Patton
- Department of Neurosurgery, Penn State Hershey Medical Center, Hershey, PA, USA
| | - Konrad Oexle
- Institut für Humangenetik, Technische Universität, Munich, Germany
| | - Richard P Allen
- The Johns Hopkins University, Dep of neuroloy, Baltimore, MD USA
| |
Collapse
|
316
|
Imberdis T, Heeres JT, Yueh H, Fang C, Zhen J, Rich CB, Glicksman M, Beeler AB, Harris DA. Identification of Anti-prion Compounds using a Novel Cellular Assay. J Biol Chem 2016; 291:26164-26176. [PMID: 27803163 DOI: 10.1074/jbc.m116.745612] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/19/2016] [Indexed: 11/06/2022] Open
Abstract
Prion diseases are devastating neurodegenerative disorders with no known cure. One strategy for developing therapies for these diseases is to identify compounds that block conversion of the cellular form of the prion protein (PrPC) into the infectious isoform (PrPSc). Most previous efforts to discover such molecules by high-throughput screening methods have utilized, as a read-out, a single kind of cellular assay system: neuroblastoma cells that are persistently infected with scrapie prions. Here, we describe the use of an alternative cellular assay based on suppressing the spontaneous cytotoxicity of a mutant form of PrP (Δ105-125). Using this assay, we screened 75,000 compounds, and identified a group of phenethyl piperidines (exemplified by LD7), which reduces the accumulation of PrPSc in infected neuroblastoma cells by >90% at low micromolar doses, and inhibits PrPSc-induced synaptotoxicity in hippocampal neurons. By analyzing the structure-activity relationships of 35 chemical derivatives, we defined the pharmacophore of LD7, and identified a more potent derivative. Active compounds do not alter total or cell-surface levels of PrPC, and do not bind to recombinant PrP in surface plasmon resonance experiments, although at high concentrations they inhibit PrPSc-seeded conversion of recombinant PrP to a misfolded state in an in vitro reaction (RT-QuIC). This class of small molecules may provide valuable therapeutic leads, as well as chemical biological tools to identify cellular pathways underlying PrPSc metabolism and PrPC function.
Collapse
Affiliation(s)
- Thibaut Imberdis
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - James T Heeres
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Han Yueh
- the Department of Chemistry, Boston University, Boston, Massachusetts 02115, and
| | - Cheng Fang
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Jessie Zhen
- the Department of Chemistry, Boston University, Boston, Massachusetts 02115, and
| | - Celeste B Rich
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Marcie Glicksman
- the Laboratory for Drug Discovery in Neurodegeneration, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139
| | - Aaron B Beeler
- the Department of Chemistry, Boston University, Boston, Massachusetts 02115, and
| | - David A Harris
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118,
| |
Collapse
|
317
|
Pre-amyloid oligomers budding:a metastatic mechanism of proteotoxicity. Sci Rep 2016; 6:35865. [PMID: 27775057 PMCID: PMC5075897 DOI: 10.1038/srep35865] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 10/05/2016] [Indexed: 12/25/2022] Open
Abstract
The pathological hallmark of misfolded protein diseases and aging is the accumulation of proteotoxic aggregates. However, the mechanisms of proteotoxicity and the dynamic changes in fiber formation and dissemination remain unclear, preventing a cure. Here we adopted a reductionist approach and used atomic force microscopy to define the temporal and spatial changes of amyloid aggregates, their modes of dissemination and the biochemical changes that may influence their growth. We show that pre-amyloid oligomers (PAO) mature to form linear and circular protofibrils, and amyloid fibers, and those can break reforming PAO that can migrate invading neighbor structures. Simulating the effect of immunotherapy modifies the dynamics of PAO formation. Anti-fibers as well as anti-PAO antibodies fragment the amyloid fibers, however the fragmentation using anti-fibers antibodies favored the migration of PAO. In conclusion, we provide evidence for the mechanisms of misfolded protein maturation and propagation and the effects of interventions on the resolution and dissemination of amyloid pathology.
Collapse
|
318
|
The Structure of Mammalian Prions and Their Aggregates. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 329:277-301. [PMID: 28109330 DOI: 10.1016/bs.ircmb.2016.08.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Prion diseases, such as Creutzfeldt-Jakob disease in humans, bovine spongiform encephalopathy in cattle, chronic wasting disease in cervids (i.e., deer, elk, moose, and reindeer), and sheep scrapie, are caused by the misfolding of the cellular prion protein (PrPC) into a disease-causing conformer (PrPSc). PrPC is a normal, GPI-anchored protein that is expressed on the surface of neurons and other cell types. The structure of PrPC is well understood, based on studies of recombinant PrP, which closely mimics the structure of native PrPC. In contrast, PrPSc is prone to aggregate into a variety of quaternary structures, such as oligomers, amorphous aggregates, and amyloid fibrils. The propensity of PrPSc to assemble into these diverse forms of aggregates is also responsible for our limited knowledge about its structure. Then again, the repeating nature of certain regular PrPSc aggregates has allowed (lower resolution) insights into the structure of the infectious conformer, establishing a four-rung β-solenoid structure as a key element of its architecture.
Collapse
|
319
|
Hamlett ED, Goetzl EJ, Ledreux A, Vasilevko V, Boger HA, LaRosa A, Clark D, Carroll SL, Carmona-Iragui M, Fortea J, Mufson EJ, Sabbagh M, Mohammed AH, Hartley D, Doran E, Lott IT, Granholm AC. Neuronal exosomes reveal Alzheimer's disease biomarkers in Down syndrome. Alzheimers Dement 2016; 13:541-549. [PMID: 27755974 DOI: 10.1016/j.jalz.2016.08.012] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/18/2016] [Accepted: 08/26/2016] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Individuals with Down syndrome (DS) exhibit Alzheimer's disease (AD) neuropathology and dementia early in life. Blood biomarkers of AD neuropathology would be valuable, as non-AD intellectual disabilities of DS and AD dementia overlap clinically. We hypothesized that elevations of amyloid β (Aβ) peptides and phosphorylated-tau in neuronal exosomes may document preclinical AD. METHODS AD neuropathogenic proteins Aβ1-42, P-T181-tau, and P-S396-tau were quantified by enzyme-linked immunosorbent assays in extracts of neuronal exosomes purified from blood of individuals with DS and age-matched controls. RESULTS Neuronal exosome levels of Aβ1-42, P-T181-tau, and P-S396-tau were significantly elevated in individuals with DS compared with age-matched controls at all ages beginning in childhood. No significant gender differences were observed. DISCUSSION These early increases in Aβ1-42, P-T181-tau, and P-S396-tau in individuals with DS may provide a basis for early intervention as targeted treatments become available.
Collapse
Affiliation(s)
- Eric D Hamlett
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA; The Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, USA
| | - Edward J Goetzl
- Geriatric Research Center of the Jewish Home of San Francisco, San Francisco, CA, USA; Department of Medicine, University of California, San Francisco, CA, USA
| | - Aurélie Ledreux
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA; The Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, USA
| | - Vitaly Vasilevko
- University of California, Irvine Institute for Memory Impairment and Neurological Disorders, Irvine, CA, USA
| | - Heather A Boger
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA; The Center on Aging, Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Angela LaRosa
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - David Clark
- Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
| | - Steven L Carroll
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - María Carmona-Iragui
- Memory Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau-Biomedical Research Institute Sant Pau, Barcelona, Spain; Down Medical Center, Fundacío Catalana Síndrome de Down, Barcelona, Spain
| | - Juan Fortea
- Memory Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau-Biomedical Research Institute Sant Pau, Barcelona, Spain; Down Medical Center, Fundacío Catalana Síndrome de Down, Barcelona, Spain
| | - Elliott J Mufson
- Barrow Neurological Institute, Department of Neurobiology, Phoenix, AZ, USA
| | - Marwan Sabbagh
- Barrow Neurological Institute, Department of Neurobiology, Phoenix, AZ, USA
| | - Abdul H Mohammed
- Department of Psychology, Linnaeus University, Växjo, Sweden; Center for Alzheimer Research, Karolinska Institutet, Huddinge, Sweden
| | | | - Eric Doran
- Department of Pediatrics, School of Medicine, University of California, Irvine, Orange, CA, USA
| | - Ira T Lott
- Department of Pediatrics, School of Medicine, University of California, Irvine, Orange, CA, USA
| | - Ann-Charlotte Granholm
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA; The Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, USA; The Center on Aging, Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA; Center for Alzheimer Research, Karolinska Institutet, Huddinge, Sweden.
| |
Collapse
|
320
|
Barron RM, King D, Jeffrey M, McGovern G, Agarwal S, Gill AC, Piccardo P. PrP aggregation can be seeded by pre-formed recombinant PrP amyloid fibrils without the replication of infectious prions. Acta Neuropathol 2016; 132:611-24. [PMID: 27376534 PMCID: PMC5023723 DOI: 10.1007/s00401-016-1594-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/08/2016] [Accepted: 06/26/2016] [Indexed: 12/22/2022]
Abstract
Mammalian prions are unusual infectious agents, as they are thought to consist solely of aggregates of misfolded prion protein (PrP). Generation of synthetic prions, composed of recombinant PrP (recPrP) refolded into fibrils, has been utilised to address whether PrP aggregates are, indeed, infectious prions. In several reports, neurological disease similar to transmissible spongiform encephalopathy (TSE) has been described following inoculation and passage of various forms of fibrils in transgenic mice and hamsters. However, in studies described here, we show that inoculation of recPrP fibrils does not cause TSE disease, but, instead, seeds the formation of PrP amyloid plaques in PrP-P101L knock-in transgenic mice (101LL). Importantly, both WT-recPrP fibrils and 101L-recPrP fibrils can seed plaque formation, indicating that the fibrillar conformation, and not the primary sequence of PrP in the inoculum, is important in initiating seeding. No replication of infectious prions or TSE disease was observed following both primary inoculation and subsequent subpassage. These data, therefore, argue against recPrP fibrils being infectious prions and, instead, indicate that these pre-formed seeds are acting to accelerate the formation of PrP amyloid plaques in 101LL Tg mice. In addition, these data reproduce a phenotype which was previously observed in 101LL mice following inoculation with brain extract containing in vivo-generated PrP amyloid fibrils, which has not been shown for other synthetic prion models. These data are reminiscent of the "prion-like" spread of aggregated forms of the beta-amyloid peptide (Aβ), α-synuclein and tau observed following inoculation of transgenic mice with pre-formed seeds of each misfolded protein. Hence, even when the protein is PrP, misfolding and aggregation do not reproduce the full clinicopathological phenotype of disease. The initiation and spread of protein aggregation in transgenic mouse lines following inoculation with pre-formed fibrils may, therefore, more closely resemble a seeded proteinopathy than an infectious TSE disease.
Collapse
Affiliation(s)
- Rona M Barron
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland, UK.
| | - Declan King
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland, UK
| | - Martin Jeffrey
- Animal and Plant Health Agency, Pentlands Science Park, Midlothian, Scotland, UK
| | - Gillian McGovern
- Animal and Plant Health Agency, Pentlands Science Park, Midlothian, Scotland, UK
| | - Sonya Agarwal
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland, UK
| | - Andrew C Gill
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland, UK
| | - Pedro Piccardo
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland, UK
| |
Collapse
|
321
|
Moore RA, Choi YP, Head MW, Ironside JW, Faris R, Ritchie DL, Zanusso G, Priola SA. Relative Abundance of apoE and Aβ1–42 Associated with Abnormal Prion Protein Differs between Creutzfeldt-Jakob Disease Subtypes. J Proteome Res 2016; 15:4518-4531. [DOI: 10.1021/acs.jproteome.6b00633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Roger A. Moore
- Rocky Mountain Laboratories, National Institute of Allergy & Infectious Disease, National Institutes of Health, Hamilton, Montana 59840, United States
| | - Young Pyo Choi
- Laboratory
Animal Center, Research Division, Korea Brain Research Institute, Daegu 41068, Republic of Korea
| | - Mark W. Head
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, School of Clinical Sciences, University of Edinburgh, Edinburgh EH8 9YL, U.K
| | - James W. Ironside
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, School of Clinical Sciences, University of Edinburgh, Edinburgh EH8 9YL, U.K
| | - Robert Faris
- Rocky Mountain Laboratories, National Institute of Allergy & Infectious Disease, National Institutes of Health, Hamilton, Montana 59840, United States
| | - Diane L. Ritchie
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, School of Clinical Sciences, University of Edinburgh, Edinburgh EH8 9YL, U.K
| | - Gianluigi Zanusso
- Department
of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Verona 37129, Italy
| | - Suzette A. Priola
- Rocky Mountain Laboratories, National Institute of Allergy & Infectious Disease, National Institutes of Health, Hamilton, Montana 59840, United States
| |
Collapse
|
322
|
Inactivation of Prions and Amyloid Seeds with Hypochlorous Acid. PLoS Pathog 2016; 12:e1005914. [PMID: 27685252 PMCID: PMC5042475 DOI: 10.1371/journal.ppat.1005914] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/04/2016] [Indexed: 11/19/2022] Open
Abstract
Hypochlorous acid (HOCl) is produced naturally by neutrophils and other cells to kill conventional microbes in vivo. Synthetic preparations containing HOCl can also be effective as microbial disinfectants. Here we have tested whether HOCl can also inactivate prions and other self-propagating protein amyloid seeds. Prions are deadly pathogens that are notoriously difficult to inactivate, and standard microbial disinfection protocols are often inadequate. Recommended treatments for prion decontamination include strongly basic (pH ≥~12) sodium hypochlorite bleach, ≥1 N sodium hydroxide, and/or prolonged autoclaving. These treatments are damaging and/or unsuitable for many clinical, agricultural and environmental applications. We have tested the anti-prion activity of a weakly acidic aqueous formulation of HOCl (BrioHOCl) that poses no apparent hazard to either users or many surfaces. For example, BrioHOCl can be applied directly to skin and mucous membranes and has been aerosolized to treat entire rooms without apparent deleterious effects. Here, we demonstrate that immersion in BrioHOCl can inactivate not only a range of target microbes, including spores of Bacillus subtilis, but also prions in tissue suspensions and on stainless steel. Real-time quaking-induced conversion (RT-QuIC) assays showed that BrioHOCl treatments eliminated all detectable prion seeding activity of human Creutzfeldt-Jakob disease, bovine spongiform encephalopathy, cervine chronic wasting disease, sheep scrapie and hamster scrapie; these findings indicated reductions of ≥103- to 106-fold. Transgenic mouse bioassays showed that all detectable hamster-adapted scrapie infectivity in brain homogenates or on steel wires was eliminated, representing reductions of ≥~105.75-fold and >104-fold, respectively. Inactivation of RT-QuIC seeding activity correlated with free chlorine concentration and higher order aggregation or destruction of proteins generally, including prion protein. BrioHOCl treatments had similar effects on amyloids composed of human α-synuclein and a fragment of human tau. These results indicate that HOCl can block the self-propagating activity of prions and other amyloids. Many serious diseases have been linked to pathogenic states of various proteins. These naturally occurring proteins can be corrupted to form aggregates such as prions and amyloids that propagate in and between tissues by acting as seeds that convert the normal form of the protein into more of the pathological form. For example, corrupted prion protein can cause fatal transmissible neurodegenerative diseases such as Creutzfeldt-Jakob disease in humans, chronic wasting disease in cervids and bovine spongiform encephalopathy. Other amyloid-forming protein aggregates are pathogenic in Parkinson’s, Alzheimer’s, and other diseases. The fact that prions and amyloids are composed predominantly of tough, tightly packed proteins makes them unusually resistant to conventional microbial disinfection procedures. Infectious prions can persist indefinitely in, or on, a variety of materials such as tissues, fluids, tools, instruments, and environmental surfaces, making it important to identify decontaminants that are effective without being dangerous or damaging. Here we show that hypochlorous acid, a disinfectant that is produced naturally by certain cells within the body, has strong anti-prion and anti-amyloid activity. We find that a non-irritating and broadly applicable hypochlorous acid preparation can disinfect prions in tissue homogenates and on stainless steel wires serving as surrogates for surgical instruments.
Collapse
|
323
|
Neuroinvasion of α-Synuclein Prionoids after Intraperitoneal and Intraglossal Inoculation. J Virol 2016; 90:9182-93. [PMID: 27489279 PMCID: PMC5044858 DOI: 10.1128/jvi.01399-16] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 07/25/2016] [Indexed: 11/26/2022] Open
Abstract
α-Synuclein is a soluble, cellular protein that in a number of neurodegenerative diseases, including Parkinson's disease and multiple system atrophy, forms pathological deposits of protein aggregates. Because misfolded α-synuclein has some characteristics that resemble those of prions, we investigated its potential to induce disease after intraperitoneal or intraglossal challenge injection into bigenic Tg(M83+/−:Gfap-luc+/−) mice, which express the A53T mutant of human α-synuclein and firefly luciferase. After a single intraperitoneal injection with α-synuclein fibrils, four of five mice developed paralysis and α-synuclein pathology in the central nervous system, with a median incubation time of 229 ± 17 days. Diseased mice accumulated aggregates of Sarkosyl-insoluble and phosphorylated α-synuclein in the brain and spinal cord, which colocalized with ubiquitin and p62 and were accompanied by gliosis. In contrast, only one of five mice developed α-synuclein pathology in the central nervous system after intraglossal injection with α-synuclein fibrils, after 285 days. These findings are novel and important because they show that, similar to prions, α-synuclein prionoids can neuroinvade the central nervous system after intraperitoneal or intraglossal injection and can cause neuropathology and disease.
IMPORTANCE Synucleinopathies are neurodegenerative diseases that are characterized by the pathological presence of aggregated α-synuclein in cells of the nervous system. Previous studies have shown that α-synuclein aggregates made of recombinant protein or derived from brains of patients can spread in the central nervous system in a spatiotemporal manner when inoculated into the brains of animals and can induce pathology and neurologic disease, suggesting that misfolded α-synuclein can behave similarly to prions. Here we show that α-synuclein inoculation into the peritoneal cavity or the tongue in mice overexpressing α-synuclein causes neurodegeneration after neuroinvasion from the periphery, which further corroborates the prionoid character of misfolded α-synuclein.
Collapse
|
324
|
Amyloid-β transmission or unexamined bias? Nature 2016; 537:E7-9. [PMID: 27629649 DOI: 10.1038/nature19086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 06/21/2016] [Indexed: 11/08/2022]
|
325
|
Collinge J, Jaunmuktane Z, Mead S, Rudge P, Brandner S. Collinge et al. reply. Nature 2016; 537:E7-9. [PMID: 27629648 DOI: 10.1038/nature19087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 06/21/2016] [Indexed: 01/14/2023]
Affiliation(s)
- John Collinge
- Medical Research Council Prion Unit, Queen Square, London WC1N 3BG, UK.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK.,National Prion Clinic, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London WC1N 3BG, UK
| | - Zane Jaunmuktane
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London WC1N 3BG, UK
| | - Simon Mead
- Medical Research Council Prion Unit, Queen Square, London WC1N 3BG, UK.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK.,National Prion Clinic, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London WC1N 3BG, UK
| | - Peter Rudge
- Medical Research Council Prion Unit, Queen Square, London WC1N 3BG, UK.,National Prion Clinic, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London WC1N 3BG, UK
| | - Sebastian Brandner
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK.,Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
326
|
Goedert M, Masuda-Suzukake M, Falcon B. Like prions: the propagation of aggregated tau and α-synuclein in neurodegeneration. Brain 2016; 140:266-278. [PMID: 27658420 DOI: 10.1093/brain/aww230] [Citation(s) in RCA: 229] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 07/13/2016] [Accepted: 07/15/2016] [Indexed: 12/14/2022] Open
Abstract
The abnormal aggregation of a small number of known proteins underlies the most common human neurodegenerative diseases. In tauopathies and synucleinopathies, the normally soluble intracellular proteins tau and α-synuclein become insoluble and filamentous. In recent years, non-cell autonomous mechanisms of aggregate formation have come to the fore, suggesting that nucleation-dependent aggregation may occur in a localized fashion in human tauopathies and synucleinopathies, followed by seed-dependent propagation. There is a long prodromal phase between the formation of protein aggregates and the appearance of the first clinical symptoms, which manifest only after extensive propagation, opening novel therapeutic avenues.
Collapse
Affiliation(s)
- Michel Goedert
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | | | - Benjamin Falcon
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
327
|
da Silva DC, Fontes GN, Erthal LCS, Lima LMTR. Amyloidogenesis of the amylin analogue pramlintide. Biophys Chem 2016; 219:1-8. [PMID: 27665170 DOI: 10.1016/j.bpc.2016.09.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 09/13/2016] [Accepted: 09/17/2016] [Indexed: 12/31/2022]
Abstract
Amylin is a pancreatic peptide hormone co-secreted along with insulin by the β-cells. It is found in amyloid deposits in both type 2 diabetic individuals and elder non-diabetic. The triple proline amylinomimetic compound (25,28,29-Pro-human amylin) named pramlintide was designed aiming to solve the solubility and amyloid characteristics of human amylin. We have found by using ion mobility spectrometry-based mass spectrometry that pramlintide is able to assembly into multimers. Pramlintide formed amyloid fibrils in vitro in a pH-dependent kinetic process within a few hours, as followed by thioflavin T, quantification of soluble peptide and further characterized by transmission electron microscopy, atomic force microscopy and X-ray diffraction. These data indicate that pramlintide can form amyloid fibers.
Collapse
Affiliation(s)
- Dayana Cabral da Silva
- School of Pharmacy, Federal University of Rio de Janeiro - UFRJ, CCS, Bss24, Ilha do Fundão, 21941-590 Rio de Janeiro, RJ, Brazil
| | - Giselle N Fontes
- Laboratory for Macromolecules (LAMAC-DIMAV), Brazilian National Institute of Metrology, Quality and Technology - INMETRO, Av. N. Sa. das Graças, 50 - Xerém, Duque de Caxias 25250-020, Rio de Janeiro, Brazil
| | - Luiza C S Erthal
- School of Pharmacy, Federal University of Rio de Janeiro - UFRJ, CCS, Bss24, Ilha do Fundão, 21941-590 Rio de Janeiro, RJ, Brazil
| | - Luís Maurício T R Lima
- School of Pharmacy, Federal University of Rio de Janeiro - UFRJ, CCS, Bss24, Ilha do Fundão, 21941-590 Rio de Janeiro, RJ, Brazil; Laboratory for Macromolecules (LAMAC-DIMAV), Brazilian National Institute of Metrology, Quality and Technology - INMETRO, Av. N. Sa. das Graças, 50 - Xerém, Duque de Caxias 25250-020, Rio de Janeiro, Brazil; National Institute of Science and Technology for Structural Biology and Bioimaging (INBEB-INCT), Federal University of Rio de Janeiro, Rio de Janeiro 21941-590, Brazil.
| |
Collapse
|
328
|
Ugalde CL, Finkelstein DI, Lawson VA, Hill AF. Pathogenic mechanisms of prion protein, amyloid-β and α-synuclein misfolding: the prion concept and neurotoxicity of protein oligomers. J Neurochem 2016; 139:162-180. [PMID: 27529376 DOI: 10.1111/jnc.13772] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 07/24/2016] [Accepted: 08/09/2016] [Indexed: 12/21/2022]
Abstract
Proteinopathies represent a group of diseases characterized by the unregulated misfolding and aggregation of proteins. Accumulation of misfolded protein in the central nervous system (CNS) is associated with neurodegenerative diseases, such as the transmissible spongiform encephalopathies (or prion diseases), Alzheimer's disease, and the synucleinopathies (the most common of which is Parkinson's disease). Of these, the pathogenic mechanisms of prion diseases are particularly striking where the transmissible, causative agent of disease is the prion, or proteinaceous infectious particle. Prions are composed almost exclusively of PrPSc ; a misfolded isoform of the normal cellular protein, PrPC , which is found accumulated in the CNS in disease. Today, mounting evidence suggests other aggregating proteins, such as amyloid-β (Aβ) and α-synuclein (α-syn), proteins associated with Alzheimer's disease and synucleinopathies, respectively, share similar biophysical and biochemical properties with PrPSc that influences how they misfold, aggregate, and propagate in disease. In this regard, the definition of a 'prion' may ultimately expand to include other pathogenic proteins. Unifying knowledge of folded proteins may also reveal common mechanisms associated with other features of disease that are less understood, such as neurotoxicity. This review discusses the common features Aβ and α-syn share with PrP and neurotoxic mechanisms associated with these misfolded proteins. Several proteins are known to misfold and accumulate in the central nervous system causing a range of neurodegenerative diseases, such as Alzheimer's, Parkinson's, and the prion diseases. Prions are transmissible misfolded conformers of the prion protein, PrP, which seed further generation of infectious proteins. Similar effects have recently been observed in proteins associated with Alzheimer's disease and the synucleinopathies, leading to the proposition that the definition of a 'prion' may ultimately expand to include other pathogenic proteins. Unifying knowledge of misfolded proteins may also reveal common mechanisms associated with other features of disease that are less understood, such as neurotoxicity.
Collapse
Affiliation(s)
- Cathryn L Ugalde
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Vic., Australia.,Howard Florey Institute of Neuroscience and Mental Health, Parkville, Vic., Australia.,Department of Pathology, University of Melbourne, Parkville, Vic., Australia.,Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Vic., Australia
| | - David I Finkelstein
- Howard Florey Institute of Neuroscience and Mental Health, Parkville, Vic., Australia
| | - Victoria A Lawson
- Department of Pathology, University of Melbourne, Parkville, Vic., Australia
| | - Andrew F Hill
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Vic., Australia. .,Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Vic., Australia.
| |
Collapse
|
329
|
Abstract
PURPOSE OF REVIEW This article presents an update on the clinical aspects of human prion disease, including the wide spectrum of their presentations. RECENT FINDINGS Prion diseases, a group of disorders caused by abnormally shaped proteins called prions, occur in sporadic (Jakob-Creutzfeldt disease), genetic (genetic Jakob-Creutzfeldt disease, Gerstmann-Sträussler-Scheinker syndrome, and fatal familial insomnia), and acquired (kuru, variant Jakob-Creutzfeldt disease, and iatrogenic Jakob-Creutzfeldt disease) forms. This article presents updated information on the clinical features and diagnostic methods for human prion diseases. New antemortem potential diagnostic tests based on amplifying prions in order to detect them are showing very high specificity. Understanding of the diversity of possible presentations of human prion diseases continues to evolve, with some genetic forms progressing slowly over decades, beginning with dysautonomia and neuropathy and progressing to a frontal-executive dementia with pathology of combined prionopathy and tauopathy. Unfortunately, to date, all human prion disease clinical trials have failed to show survival benefit. A very rare polymorphism in the prion protein gene recently has been identified that appears to protect against prion disease; this finding, in addition to providing greater understanding of the prionlike mechanisms of neurodegenerative disorders, might lead to potential treatments. SUMMARY Sporadic Jakob-Creutzfeldt disease is the most common form of human prion disease. Genetic prion diseases, resulting from mutations in the prion-related protein gene (PRNP), are classified based on the mutation, clinical phenotype, and neuropathologic features and can be difficult to diagnose because of their varied presentations. Perhaps most relevant to this Continuum issue on neuroinfectious diseases, acquired prion diseases are caused by accidental transmission to humans, but fortunately, they are the least common form and are becoming rarer as awareness of transmission risk has led to implementation of measures to prevent such occurrences.
Collapse
|
330
|
Eraña H, Venegas V, Moreno J, Castilla J. Prion-like disorders and Transmissible Spongiform Encephalopathies: An overview of the mechanistic features that are shared by the various disease-related misfolded proteins. Biochem Biophys Res Commun 2016; 483:1125-1136. [PMID: 27590581 DOI: 10.1016/j.bbrc.2016.08.166] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/04/2016] [Accepted: 08/29/2016] [Indexed: 02/06/2023]
Abstract
Prion diseases or Transmissible Spongiform Encephalopathies (TSEs) are a group of fatal neurodegenerative disorders affecting several mammalian species. Its causative agent, disease-associated prion protein (PrPd), is a self-propagating β-sheet rich aberrant conformation of the cellular prion protein (PrPC) with neurotoxic and aggregation-prone properties, capable of inducing misfolding of PrPC molecules. PrPd is the major constituent of prions and, most importantly, is the first known example of a protein with infectious attributes. It has been suggested that similar molecular mechanisms could be shared by other proteins implicated in diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis or systemic amyloidoses. Accordingly, several terms have been proposed to collectively group all these disorders. Through the stringent evaluation of those aspects that characterise TSE-causing prions, in particular propagation and spread, strain variability or transmissibility, we will discuss whether terms such as "prion", "prion-like", "prionoid" or "propagon" can be used when referring to the aetiological agents of the above other disorders. Moreover, it will also be discussed whether the term "infectious", which defines a prion essential trait, is currently misused when referring to the other misfolded proteins.
Collapse
Affiliation(s)
- Hasier Eraña
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160, Derio, Spain
| | - Vanesa Venegas
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160, Derio, Spain
| | - Jorge Moreno
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160, Derio, Spain
| | - Joaquín Castilla
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160, Derio, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, 48011, Bizkaia, Spain.
| |
Collapse
|
331
|
|
332
|
Alzheimer Disease and Its Growing Epidemic: Risk Factors, Biomarkers, and the Urgent Need for Therapeutics. Neurol Clin 2016; 34:941-953. [PMID: 27720002 DOI: 10.1016/j.ncl.2016.06.009] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alzheimer disease (AD) represents one of the greatest medical challenges of this century; the condition is becoming increasingly prevalent worldwide and no effective treatments have been developed for this terminal disease. Because the disease manifests at a late stage after a long period of clinically silent neurodegeneration, knowledge of the modifiable risk factors and the implementation of biomarkers is crucial in the primary prevention of the disease and presymptomatic detection of AD, respectively. This article discusses the growing epidemic of AD and antecedent risk factors in the disease process. Disease biomarkers are discussed, and the implications that this may have for the treatment of this currently incurable disease.
Collapse
|
333
|
Abstract
There are around 30 human diseases associated with protein misfolding and amyloid formation, each one caused by a certain protein or peptide. Many of these diseases are lethal and together they pose an enormous burden to society. The prion protein has attracted particular interest as being shown to be the pathogenic agent in transmissible diseases such as kuru, Creutzfeldt-Jakob disease and bovine spongiform encephalopathy. Whether similar transmission could occur also in other amyloidoses such as Alzheimer's disease, Parkinson's disease and serum amyloid A amyloidosis is a matter of intense research and debate. Furthermore, it has been suggested that novel biomaterials such as artificial spider silk are potentially amyloidogenic. Here, we provide a brief introduction to amyloid, prions and other proteins involved in amyloid disease and review recent evidence for their potential transmission. We discuss the similarities and differences between amyloid and silk, as well as the potential hazards associated with protein-based biomaterials.
Collapse
Affiliation(s)
- L O Tjernberg
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Huddinge, Sweden
| | - A Rising
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Huddinge, Sweden.,Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - J Johansson
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Huddinge, Sweden.,Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - K Jaudzems
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | - P Westermark
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
334
|
Significant association of cadaveric dura mater grafting with subpial Aβ deposition and meningeal amyloid angiopathy. Acta Neuropathol 2016; 132:313-315. [PMID: 27314593 DOI: 10.1007/s00401-016-1588-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/08/2016] [Accepted: 06/08/2016] [Indexed: 12/18/2022]
|
335
|
Abstract
Although the prevalence of dementia continues to increase worldwide, incidence in the western world might have decreased as a result of better vascular care and improved brain health. Alzheimer's disease, the most prevalent cause of dementia, is still defined by the combined presence of amyloid and tau, but researchers are gradually moving away from the simple assumption of linear causality as proposed in the original amyloid hypothesis. Age-related, protective, and disease-promoting factors probably interact with the core mechanisms of the disease. Amyloid β42, and tau proteins are established core cerebrospinal biomarkers; novel candidate biomarkers include amyloid β oligomers and synaptic markers. MRI and fluorodeoxyglucose PET are established imaging techniques for diagnosis of Alzheimer's disease. Amyloid PET is gaining traction in the clinical arena, but validity and cost-effectiveness remain to be established. Tau PET might offer new insights and be of great help in differential diagnosis and selection of patients for trials. In the search for understanding the disease mechanism and keys to treatment, research is moving increasingly into the earliest phase of disease. Preclinical Alzheimer's disease is defined as biomarker evidence of Alzheimer's pathological changes in cognitively healthy individuals. Patients with subjective cognitive decline have been identified as a useful population in whom to look for preclinical Alzheimer's disease. Moderately positive results for interventions targeting several lifestyle factors in non-demented elderly patients and moderately positive interim results for lowering amyloid in pre-dementia Alzheimer's disease suggest that, ultimately, there will be a future in which specific anti-Alzheimer's therapy will be combined with lifestyle interventions targeting general brain health to jointly combat the disease. In this Seminar, we discuss the main developments in Alzheimer's research.
Collapse
Affiliation(s)
- Philip Scheltens
- Department of Neurology & Alzheimer Center, VU University Medical Center, Amsterdam, Netherlands.
| | - Kaj Blennow
- Clinical Neurochemistry Lab, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Monique M B Breteler
- German Center for Neurodegenerative diseases (DZNE), and Institute for Medical Biometry, Informatics and Epidemiology, University of Bonn, Bonn, Germany
| | - Bart de Strooper
- VIB Center for the Biology of Disease, VIB-Leuven, Leuven, Belgium; KU Leuven Center for Human Genetics, LIND en Universitaire ziekenhuizen, Leuven, Belgium; Institute of Neurology, University College London, London, UK
| | - Giovanni B Frisoni
- University Hospitals and University of Geneva, Geneva, Switzerland; IRCCS Fatebenefratelli, Brescia, Italy
| | - Stephen Salloway
- Warren Alpert Medical School, Brown University, Providence, RI, USA
| | | |
Collapse
|
336
|
Walsh DM, Selkoe DJ. A critical appraisal of the pathogenic protein spread hypothesis of neurodegeneration. Nat Rev Neurosci 2016; 17:251-60. [PMID: 26988744 DOI: 10.1038/nrn.2016.13] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There has been an explosion in the number of papers discussing the hypothesis of 'pathogenic spread' in neurodegenerative disease - the idea that abnormal forms of disease-associated proteins, such as tau or α-synuclein, physically move from neuron to neuron to induce disease progression. However, whether inter-neuronal spread of protein aggregates actually occurs in humans and, if so, whether it causes symptom onset remain uncertain. Even if pathogenic spread is proven in humans, it is unclear how much this would alter the specific therapeutic approaches that are in development. A critical appraisal of this increasingly popular hypothesis thus seems both important and timely.
Collapse
Affiliation(s)
- Dominic M Walsh
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Dennis J Selkoe
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
337
|
Vadakkan KI. Neurodegenerative disorders share common features of "loss of function" states of a proposed mechanism of nervous system functions. Biomed Pharmacother 2016; 83:412-430. [PMID: 27424323 DOI: 10.1016/j.biopha.2016.06.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/07/2016] [Accepted: 06/25/2016] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative disorders are highly heterogeneous for the locations affected and the nature of the aggregated proteins. Nearly 80% of the neurodegenerative disorders occur sporadically, indicating that certain factors must combine to initiate the degenerative changes. The contiguous extension of degenerative changes from cell to cell, the association with viral fusion proteins, loss of dendritic spines (postsynaptic terminals), and the eventual degeneration of cells indicate the presence of a unique mechanism for inter-cellular spread of pathology. It is not known whether the "loss of function" states of the still unknown normal nervous system operations can lead to neurodegenerative disorders. Here, the possible loss of function states of a proposed normal nervous system function are examined. A reversible inter-postsynaptic functional LINK (IPL) mechanism, consisting of transient inter-postsynaptic membrane (IPM) hydration exclusion and partial to complete IPM hemifusions, was proposed as a critical step necessary for the binding process and the induction of internal sensations of higher brain functions. When various findings from different neurodegenerative disorders are systematically organized and examined, disease features match the effects of loss of function states of different IPLs. Changes in membrane composition, enlargement of dendritic spines by dopamine and viral fusion proteins are capable of altering the IPLs to form IPM fusion. The latter can lead to the observed lateral spread of pathology, inter-neuronal cytoplasmic content mixing and abnormal protein aggregation. Since both the normal mechanism of reversible IPM hydration exclusion and the pathological process of transient IPM fusion can evade detection, testing their occurrence may provide preventive and therapeutic opportunities for these disorders.
Collapse
|
338
|
Affiliation(s)
- John Collinge
- Medical Research Council Prion Unit, Queen Square, London WC1N 3BG, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
- National Prion Clinic, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London WC1N 3BG, UK
| | - Zane Jaunmuktane
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London WC1N 3BG, UK
| | - Simon Mead
- Medical Research Council Prion Unit, Queen Square, London WC1N 3BG, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
- National Prion Clinic, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London WC1N 3BG, UK
| | - Peter Rudge
- Medical Research Council Prion Unit, Queen Square, London WC1N 3BG, UK
- National Prion Clinic, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London WC1N 3BG, UK
| | - Sebastian Brandner
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
339
|
Coulthart MB, Jansen GH, Cashman NR. Evidence for transmissibility of Alzheimer disease pathology: Cause for concern? CMAJ 2016; 188:E210-E212. [PMID: 26833733 PMCID: PMC4938704 DOI: 10.1503/cmaj.151257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Michael B Coulthart
- Canadian Creuztfeldt-Jakob Disease Surveillance System (Coulthart), Public Health Agency of Canada, Ottawa, Ont.; Department of Pathology and Laboratory Medicine (Jansen), The Ottawa Hospital - Civic Campus, Ottawa, Ont.; Brain Research Centre (Cashman), University of British Columbia, Vancouver, BC
| | - Gerard H Jansen
- Canadian Creuztfeldt-Jakob Disease Surveillance System (Coulthart), Public Health Agency of Canada, Ottawa, Ont.; Department of Pathology and Laboratory Medicine (Jansen), The Ottawa Hospital - Civic Campus, Ottawa, Ont.; Brain Research Centre (Cashman), University of British Columbia, Vancouver, BC
| | - Neil R Cashman
- Canadian Creuztfeldt-Jakob Disease Surveillance System (Coulthart), Public Health Agency of Canada, Ottawa, Ont.; Department of Pathology and Laboratory Medicine (Jansen), The Ottawa Hospital - Civic Campus, Ottawa, Ont.; Brain Research Centre (Cashman), University of British Columbia, Vancouver, BC
| |
Collapse
|
340
|
Aguzzi A, Altmeyer M. Phase Separation: Linking Cellular Compartmentalization to Disease. Trends Cell Biol 2016; 26:547-558. [DOI: 10.1016/j.tcb.2016.03.004] [Citation(s) in RCA: 230] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 03/04/2016] [Accepted: 03/08/2016] [Indexed: 12/29/2022]
|
341
|
Walker LC, Schelle J, Jucker M. The Prion-Like Properties of Amyloid-β Assemblies: Implications for Alzheimer's Disease. Cold Spring Harb Perspect Med 2016; 6:cshperspect.a024398. [PMID: 27270558 DOI: 10.1101/cshperspect.a024398] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Since the discovery that prion diseases can be transmitted to experimental animals by inoculation with afflicted brain matter, researchers have speculated that the brains of patients suffering from other neurodegenerative diseases might also harbor causative agents with transmissible properties. Foremost among these disorders is Alzheimer's disease (AD), the most common cause of dementia in the elderly. A growing body of research supports the concept that the pathogenesis of AD is initiated and sustained by the endogenous, seeded misfolding and aggregation of the protein fragment amyloid-β (Aβ). At the molecular level, this mechanism of nucleated protein self-assembly is virtually identical to that of prions consisting of the prion protein (PrP). The formation, propagation, and spread of Aβ seeds within the brain can thus be considered a fundamental feature of AD pathogenesis.
Collapse
Affiliation(s)
- Lary C Walker
- Yerkes National Primate Research Center and Department of Neurology, Emory University, Atlanta, Georgia 30322
| | - Juliane Schelle
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, D-72076 Tübingen, Germany German Center for Neurodegenerative Diseases (DZNE), D-72076 Tübingen, Germany
| | - Mathias Jucker
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, D-72076 Tübingen, Germany German Center for Neurodegenerative Diseases (DZNE), D-72076 Tübingen, Germany
| |
Collapse
|
342
|
Tetz G, Tetz V. Bacteriophage infections of microbiota can lead to leaky gut in an experimental rodent model. Gut Pathog 2016; 8:33. [PMID: 27340433 PMCID: PMC4918031 DOI: 10.1186/s13099-016-0109-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/19/2016] [Indexed: 02/08/2023] Open
Abstract
Increased intestinal permeability and translocation of gut microbiota from the intestinal lumen to the systemic circulation predispose patients to various diseases and may be one of the main triggers thereof. The role of microbiota in increased intestinal permeability is under intensive investigation. Here, we studied alterations in the host and increased intestinal permeability as a direct effect of treatment with a bacteriophage cocktail. After 10 days of challenge, the rats showed weight loss, messy hair, and decreased activity. Additionally, they displayed a significantly elevated lactulose:mannitol ratio and the level of circulating immune complexes. To our knowledge, this study demonstrates for the first time that increased intestinal permeability may be induced by bacteriophages that affect the microbiota.
Collapse
Affiliation(s)
- George Tetz
- Human Microbiology Institute, 303 5th Avenue, Suite 2012, New York, NY 10016 USA
| | - Victor Tetz
- Human Microbiology Institute, 303 5th Avenue, Suite 2012, New York, NY 10016 USA
| |
Collapse
|
343
|
Luo J, Wärmländer SKTS, Gräslund A, Abrahams JP. Cross-interactions between the Alzheimer Disease Amyloid-β Peptide and Other Amyloid Proteins: A Further Aspect of the Amyloid Cascade Hypothesis. J Biol Chem 2016; 291:16485-93. [PMID: 27325705 DOI: 10.1074/jbc.r116.714576] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Many protein folding diseases are intimately associated with accumulation of amyloid aggregates. The amyloid materials formed by different proteins/peptides share many structural similarities, despite sometimes large amino acid sequence differences. Some amyloid diseases constitute risk factors for others, and the progression of one amyloid disease may affect the progression of another. These connections are arguably related to amyloid aggregates of one protein being able to directly nucleate amyloid formation of another, different protein: the amyloid cross-interaction. Here, we discuss such cross-interactions between the Alzheimer disease amyloid-β (Aβ) peptide and other amyloid proteins in the context of what is known from in vitro and in vivo experiments, and of what might be learned from clinical studies. The aim is to clarify potential molecular associations between different amyloid diseases. We argue that the amyloid cascade hypothesis in Alzheimer disease should be expanded to include cross-interactions between Aβ and other amyloid proteins.
Collapse
Affiliation(s)
- Jinghui Luo
- From the Chemical Research Laboratory, University of Oxford, Oxford OX1 3TA, United Kingdom,
| | | | - Astrid Gräslund
- the Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
| | - Jan Pieter Abrahams
- the Biozentrum, University of Basel, CH-4056 Basel, Switzerland, and the Laboratory of Biomolecular Research, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| |
Collapse
|
344
|
Huang SW, Wang W, Zhang MY, Liu QB, Luo SY, Peng Y, Sun B, Wu DL, Song SJ. The effect of ethyl acetate extract from persimmon leaves on Alzheimer's disease and its underlying mechanism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:694-704. [PMID: 27235708 DOI: 10.1016/j.phymed.2016.03.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 03/03/2016] [Accepted: 03/19/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is one of the most prevalent neurodegenerative disorders characterized by neuronal loss in the brain and cognitive impairment. AD is now considered to be the third major cause of death in developed countries, after cardiovascular disease and cancer. Persimmon leaves are used as a popular folk medicine to treat hypertension, angina and internal haemorrhage in Cyangbhina, and it has been reported that ethyl acetate extract of persimmon leaves (EAPL) displays a potential therapeutic effect on neurodegenerative diseases. HYPOTHESIS/PURPOSE This study was designed to investigate the effects of EAPL on AD, to clarify the possible mechanism by which EAPL exerts its beneficial effects and prevents AD, and to determine the major constituents involved. STUDY DESIGN AD model was established by bilateral injection of Aβ1-42 into the hippocampus of rats. The cognitive performance was determined by the Morris water maze and step-down tests. Superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), malondialdehyde (MDA), apoptosis, total and phosphorylated c-Jun NH2-terminal kinase (JNK/p-JNK), caspase-3, Bax and Bcl-2 were determined. In addition, a sensitive and reliable LC-QTOF-MS method was applied to identify the major compounds present in EAPL. RESULTS EAPL at doses of 200mg/kg, 400mg/kg could markedly reduce the latency, significantly increase the time in the first quadrant and number of the target crossing times in Morris water maze test, markedly increase the latency and reduce the number of errors in the step-down test, significantly inhibit the reductions in SOD and GSH-Px activities, and increase the level of MDA. In addition, EAPL treatment attenuated neuronal apoptosis in the hippocampus, reduced the expression of p-JNK, caspase-3, and the relative ratio of Bax/Bcl-2. Meanwhile, 32 constituents were identified by LC-QTOF-MS/MS assays. CONCLUSION The results indicate that EAPL has a potent protective effect on cognitive deficits induced by Aβ in rats and this effect appears to be associated with the regulation of the antioxidative defense system and the mechanism of mitochondrial-mediated apoptosis. Furthermore, analysis of the LC-MS data suggests that flavonoids and triterpenoids may be responsible for the potential biological effects of EAPL.
Collapse
Affiliation(s)
- Shun-Wang Huang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University. Shenyang 110016, China; Anhui Institute of Food and Drug Control, Hefei 230022, China
| | - Wei Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University. Shenyang 110016, China
| | - Meng-Yu Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qing-Bo Liu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University. Shenyang 110016, China
| | - Sheng-Yong Luo
- China. Anhui Academy of Medical Sciences, Hefei, 230061, China
| | - Ying Peng
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bei Sun
- Anhui Institute of Food and Drug Control, Hefei 230022, China
| | - De-Ling Wu
- Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Shao-Jiang Song
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University. Shenyang 110016, China.
| |
Collapse
|
345
|
de Pedro-Cuesta J, Martínez-Martín P, Rábano A, Ruiz-Tovar M, Alcalde-Cabero E, Calero M. Etiologic Framework for the Study of Neurodegenerative Disorders as Well as Vascular and Metabolic Comorbidities on the Grounds of Shared Epidemiologic and Biologic Features. Front Aging Neurosci 2016; 8:138. [PMID: 27378910 PMCID: PMC4904010 DOI: 10.3389/fnagi.2016.00138] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 05/27/2016] [Indexed: 12/12/2022] Open
Abstract
Background: During the last two decades, protein aggregation at all organismal levels, from viruses to humans, has emerged from a neglected area of protein science to become a central issue in biology and biomedicine. This article constitutes a risk-based review aimed at supporting an etiologic scenario of selected, sporadic, protein-associated, i.e., conformational, neurodegenerative disorders (NDDs), and their vascular- and metabolic-associated ailments. Methods: A rationale is adopted, to incorporate selected clinical data and results from animal-model research, complementing epidemiologic evidences reported in two prior articles. Findings: Theory is formulated assuming an underlying conformational transmission mechanism, mediated either by horizontal transfer of mammalian genes coding for specific aggregation-prone proteins, or by xeno-templating between bacterial and host proteins. We build a few population-based and experimentally-testable hypotheses focusing on: (1) non-disposable surgical instruments for sporadic Creutzfeldt-Jakob disease (sCJD) and other rapid progressive neurodegenerative dementia (sRPNDd), multiple system atrophy (MSA), and motor neuron disease (MND); and (2) specific bacterial infections such as B. pertussis and E. coli for all forms, but particularly for late-life sporadic conformational, NDDs, type 2 diabetes mellitus (T2DM), and atherosclerosis where natural protein fibrils present in such organisms as a result of adaptation to the human host induce prion-like mechanisms. Conclusion: Implications for cohort alignment and experimental animal research are discussed and research lines proposed.
Collapse
Affiliation(s)
- Jesús de Pedro-Cuesta
- Department of Applied Epidemiology, National Center for Epidemiology, Carlos III Institute of HealthMadrid, Spain; Consortium for Biomedical Research in Neurodegenerative Diseases (CIBERNED), National Institute of Health Carlos IIIMadrid, Spain
| | - Pablo Martínez-Martín
- Department of Applied Epidemiology, National Center for Epidemiology, Carlos III Institute of HealthMadrid, Spain; Consortium for Biomedical Research in Neurodegenerative Diseases (CIBERNED), National Institute of Health Carlos IIIMadrid, Spain
| | - Alberto Rábano
- Alzheimer Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Center Madrid, Spain
| | - María Ruiz-Tovar
- Department of Applied Epidemiology, National Center for Epidemiology, Carlos III Institute of HealthMadrid, Spain; Consortium for Biomedical Research in Neurodegenerative Diseases (CIBERNED), National Institute of Health Carlos IIIMadrid, Spain
| | - Enrique Alcalde-Cabero
- Department of Applied Epidemiology, National Center for Epidemiology, Carlos III Institute of HealthMadrid, Spain; Consortium for Biomedical Research in Neurodegenerative Diseases (CIBERNED), National Institute of Health Carlos IIIMadrid, Spain
| | - Miguel Calero
- Consortium for Biomedical Research in Neurodegenerative Diseases (CIBERNED), National Institute of Health Carlos IIIMadrid, Spain; Alzheimer Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer CenterMadrid, Spain; Chronic Disease Programme, Carlos III Institute of Health, MajadahondaMadrid, Spain
| |
Collapse
|
346
|
Silva JL, Cordeiro Y. The "Jekyll and Hyde" Actions of Nucleic Acids on the Prion-like Aggregation of Proteins. J Biol Chem 2016; 291:15482-90. [PMID: 27288413 DOI: 10.1074/jbc.r116.733428] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Protein misfolding results in devastating degenerative diseases and cancer. Among the culprits involved in these illnesses are prions and prion-like proteins, which can propagate by converting normal proteins to the wrong conformation. For spongiform encephalopathies, a real prion can be transmitted among individuals. In other disorders, the bona fide prion characteristics are still under investigation. Besides inducing misfolding of native proteins, prions bind nucleic acids and other polyanions. Here, we discuss how nucleic acid binding might influence protein misfolding for both disease-related and benign, functional prions and why the line between bad and good amyloids might be more subtle than previously thought.
Collapse
Affiliation(s)
- Jerson L Silva
- From the Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, and
| | - Yraima Cordeiro
- the Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| |
Collapse
|
347
|
Karran E, De Strooper B. The amyloid cascade hypothesis: are we poised for success or failure? J Neurochem 2016; 139 Suppl 2:237-252. [DOI: 10.1111/jnc.13632] [Citation(s) in RCA: 250] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/17/2016] [Accepted: 03/30/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Eric Karran
- Alzheimer's Research UK Research; Cambridge Cambridgeshire UK
- VIB Center for the Biology of Disease; VIB-Leuven; Leuven Belgium
- Institute of Neurology; University College London; London UK
| | - Bart De Strooper
- VIB Center for the Biology of Disease; VIB-Leuven; Leuven Belgium
- Center for Human Genetics; Universitaire ziekenhuizen and LIND; KU Leuven; Leuven Belgium
- Institute of Neurology; University College London; London UK
| |
Collapse
|
348
|
Kovacs GG, Lutz MI, Ricken G, Ströbel T, Höftberger R, Preusser M, Regelsberger G, Hönigschnabl S, Reiner A, Fischer P, Budka H, Hainfellner JA. Dura mater is a potential source of Aβ seeds. Acta Neuropathol 2016; 131:911-23. [PMID: 27016065 PMCID: PMC4865536 DOI: 10.1007/s00401-016-1565-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 12/14/2022]
Abstract
Deposition of amyloid-β (Aβ) in the brain parenchyma and vessels is one of the hallmarks of Alzheimer disease (AD). Recent observations of Aβ deposition in iatrogenic Creutzfeldt-Jakob disease (iCJD) after dural grafting or treatment with pituitary extracts raised concerns whether Aβ is capable of transmitting disease as seen in prion diseases by the disease-associated prion protein. To address this issue, we re-sampled and re-evaluated archival material, including the grafted dura mater of two cases with iCJD (28 and 33-years-old) without mutations in the AβPP, PSEN1 and PSEN2 genes, and carrying ε3/ε3 alleles of the APOE gene. In addition, we evaluated 84 dura mater samples obtained at autopsy (mean age 84.9 ± 0.3) in the community-based VITA study for the presence of Aβ deposition. We show that the dura mater may harbor Aβ deposits (13 %) in the form of cerebral amyloid angiopathy or amorphous aggregates. In both iCJD cases, the grafted dura mater had accumulated Aβ. The morphology and distribution pattern of cerebral Aβ deposition together with the lack of tau pathology distinguishes the Aβ proteinopathy in iCJD from AD, from that seen in young individuals without cognitive decline carrying one or two APOE4 alleles, and from that related to traumatic brain injury. Our novel findings of Aβ deposits in the dura mater, including the grafted dura, and the distinct cerebral Aβ distribution in iCJD support the seeding properties of Aβ. However, in contrast to prion diseases, our study suggests that such Aβ seeding is unable to reproduce the full clinicopathological phenotype of AD.
Collapse
Affiliation(s)
- Gabor G Kovacs
- Institute of Neurology, Medical University Vienna, AKH 4J, Währinger Gürtel 18-20, 1097, Vienna, Austria.
| | - Mirjam I Lutz
- Institute of Neurology, Medical University Vienna, AKH 4J, Währinger Gürtel 18-20, 1097, Vienna, Austria
| | - Gerda Ricken
- Institute of Neurology, Medical University Vienna, AKH 4J, Währinger Gürtel 18-20, 1097, Vienna, Austria
| | - Thomas Ströbel
- Institute of Neurology, Medical University Vienna, AKH 4J, Währinger Gürtel 18-20, 1097, Vienna, Austria
| | - Romana Höftberger
- Institute of Neurology, Medical University Vienna, AKH 4J, Währinger Gürtel 18-20, 1097, Vienna, Austria
| | - Matthias Preusser
- Department of Medicine I and Comprehensive Cancer Center CNS Unit, Medical University Vienna, Vienna, Austria
| | - Günther Regelsberger
- Institute of Neurology, Medical University Vienna, AKH 4J, Währinger Gürtel 18-20, 1097, Vienna, Austria
| | | | - Angelika Reiner
- Institute of Pathology, Danube Hospital Vienna, Vienna, Austria
| | - Peter Fischer
- Psychiatric Department, Medical Research Society Vienna, D.C., Danube Hospital, Vienna, Austria
| | - Herbert Budka
- Institute of Neurology, Medical University Vienna, AKH 4J, Währinger Gürtel 18-20, 1097, Vienna, Austria
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | - Johannes A Hainfellner
- Institute of Neurology, Medical University Vienna, AKH 4J, Währinger Gürtel 18-20, 1097, Vienna, Austria
| |
Collapse
|
349
|
Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer's disease at 25 years. EMBO Mol Med 2016; 8:595-608. [PMID: 27025652 PMCID: PMC4888851 DOI: 10.15252/emmm.201606210] [Citation(s) in RCA: 4152] [Impact Index Per Article: 461.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/24/2016] [Accepted: 03/10/2016] [Indexed: 12/12/2022] Open
Abstract
Despite continuing debate about the amyloid β-protein (or Aβ hypothesis, new lines of evidence from laboratories and clinics worldwide support the concept that an imbalance between production and clearance of Aβ42 and related Aβ peptides is a very early, often initiating factor in Alzheimer's disease (AD). Confirmation that presenilin is the catalytic site of γ-secretase has provided a linchpin: all dominant mutations causing early-onset AD occur either in the substrate (amyloid precursor protein, APP) or the protease (presenilin) of the reaction that generates Aβ. Duplication of the wild-type APP gene in Down's syndrome leads to Aβ deposits in the teens, followed by microgliosis, astrocytosis, and neurofibrillary tangles typical of AD Apolipoprotein E4, which predisposes to AD in > 40% of cases, has been found to impair Aβ clearance from the brain. Soluble oligomers of Aβ42 isolated from AD patients' brains can decrease synapse number, inhibit long-term potentiation, and enhance long-term synaptic depression in rodent hippocampus, and injecting them into healthy rats impairs memory. The human oligomers also induce hyperphosphorylation of tau at AD-relevant epitopes and cause neuritic dystrophy in cultured neurons. Crossing human APP with human tau transgenic mice enhances tau-positive neurotoxicity. In humans, new studies show that low cerebrospinal fluid (CSF) Aβ42 and amyloid-PET positivity precede other AD manifestations by many years. Most importantly, recent trials of three different Aβ antibodies (solanezumab, crenezumab, and aducanumab) have suggested a slowing of cognitive decline in post hoc analyses of mild AD subjects. Although many factors contribute to AD pathogenesis, Aβ dyshomeostasis has emerged as the most extensively validated and compelling therapeutic target.
Collapse
Affiliation(s)
- Dennis J Selkoe
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - John Hardy
- Reta Lila Weston Institute and Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| |
Collapse
|
350
|
Boone C, Goodwin CR, Anderson WS. Iatrogenic Alzheimer Disease? Amyloid-β Protein Transmission Between Humans. Neurosurgery 2016; 78:N17-8. [DOI: 10.1227/01.neu.0000484057.12676.e3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|