301
|
Hess Michelini R, Doedens AL, Goldrath AW, Hedrick SM. Differentiation of CD8 memory T cells depends on Foxo1. ACTA ACUST UNITED AC 2013; 210:1189-200. [PMID: 23712431 PMCID: PMC3674697 DOI: 10.1084/jem.20130392] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The transcription factor Foxo1 is required for the differentiation of memory CD8+ T cells, and its absence hinders clearance of secondary infections. The forkhead O transcription factors (FOXO) integrate a range of extracellular signals, including growth factor signaling, inflammation, oxidative stress, and nutrient availability, to substantially alter the program of gene expression and modulate cell survival, cell cycle progression, and many yet to be unraveled cell type–specific responses. Naive antigen-specific CD8+ T cells undergo a rapid expansion and arming of effector function within days of pathogen exposure. In addition, by the peak of expansion, they form precursors to memory T cells capable of self-renewal and indefinite survival. Using lymphocytic choriomeningitis virus Armstrong to probe the response to infection, we found that Foxo1−/− CD8+ T cells expand normally with no defects in effector differentiation, but continue to exhibit characteristics of effector T cells long after antigen clearance. The KLRG1lo CD8+ T cells that are normally enriched for memory-precursor cells retain Granzyme B and CD69 expression, and fail to up-regulate TCF7, EOMES, and other memory signature genes. As a correlate, Foxo1−/− CD8+ T cells were virtually unable to expand upon secondary infection. Collectively, these results demonstrate an intrinsic role for FOXO1 in establishing the post-effector memory program that is essential to forming long-lived memory cells capable of immune reactivation.
Collapse
Affiliation(s)
- Rodrigo Hess Michelini
- Molecular Biology Section, Division of Biological Sciences, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | | | | |
Collapse
|
302
|
Masson F, Minnich M, Olshansky M, Bilic I, Mount AM, Kallies A, Speed TP, Busslinger M, Nutt SL, Belz GT. Id2-mediated inhibition of E2A represses memory CD8+ T cell differentiation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 190:4585-94. [PMID: 23536629 PMCID: PMC3631715 DOI: 10.4049/jimmunol.1300099] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 02/20/2013] [Indexed: 01/13/2023]
Abstract
The transcription factor inhibitor of DNA binding (Id)2 modulates T cell fate decisions, but the molecular mechanism underpinning this regulation is unclear. In this study we show that loss of Id2 cripples effector differentiation and instead programs CD8(+) T cells to adopt a memory fate with increased Eomesodermin and Tcf7 expression. We demonstrate that Id2 restrains CD8(+) T cell memory differentiation by inhibiting E2A-mediated direct activation of Tcf7 and that Id2 expression level mirrors T cell memory recall capacity. As a result of the defective effector differentiation, Id2-deficient CD8(+) T cells fail to induce sufficient Tbx21 expression to generate short-lived effector CD8(+) T cells. Our findings reveal that the Id2/E2A axis orchestrates T cell differentiation through the induction or repression of downstream transcription factors essential for effector and memory T cell differentiation.
Collapse
Affiliation(s)
- Frederick Masson
- Division of Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia
| | - Martina Minnich
- Research Institute of Molecular Pathology, Vienna Biocenter, 1030 Vienna, Austria
| | - Moshe Olshansky
- Division of Bioinformatics, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia
| | - Ivan Bilic
- Research Institute of Molecular Pathology, Vienna Biocenter, 1030 Vienna, Austria
| | - Adele M. Mount
- Research Institute of Molecular Pathology, Vienna Biocenter, 1030 Vienna, Austria
| | - Axel Kallies
- Division of Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3010, Australia; and
| | - Terence P. Speed
- Division of Bioinformatics, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia
- Department of Mathematics and Statistics, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Meinrad Busslinger
- Research Institute of Molecular Pathology, Vienna Biocenter, 1030 Vienna, Austria
| | - Stephen L. Nutt
- Division of Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3010, Australia; and
| | - Gabrielle T. Belz
- Division of Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3010, Australia; and
| |
Collapse
|
303
|
MicroRNA-17~92 regulates effector and memory CD8 T-cell fates by modulating proliferation in response to infections. Blood 2013; 121:4473-83. [PMID: 23596046 DOI: 10.1182/blood-2012-06-435412] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The precise microRNAs and their target cellular processes involved in generation of durable T-cell immunity remain undefined. Here we show a dynamic regulation of microRNAs as CD8 T cells differentiate from naïve to effector and memory states, with short-lived effectors transiently expressing higher levels of oncogenic miR-17-92 compared with the relatively less proliferating memory-fated effectors. Conditional CD8 T-cell-intrinsic gain or loss of expression of miR-17-92 in mature cells after activation resulted in striking reciprocal effects compared with wild-type counterparts in the same infection milieu-miR-17-92 deletion resulted in lesser proliferation of antigen-specific cells during primary expansion while favoring enhanced IL-7Rα and Bcl-2 expression and multicytokine polyfunctionality; in contrast, constitutive expression of miR-17-92 promoted terminal effector differentiation, with decreased formation of polyfunctional lymphoid memory cells. Increased proliferation upon miR-17-92 overexpression correlated with decreased expression of tumor suppressor PTEN and increased PI3K-AKT-mTOR signaling. Thus, these studies identify miR17-92 as a critical regulator of CD8 T-cell expansion and effector and memory lineages in the physiological context of acute infection, and present miR-17-92 as a potential target for modulating immunologic outcome after vaccination or immunotherapeutic treatments of cancer, chronic infections, or autoimmune disorders.
Collapse
|
304
|
Sorting through subsets: which T-cell populations mediate highly effective adoptive immunotherapy? J Immunother 2013; 35:651-60. [PMID: 23090074 DOI: 10.1097/cji.0b013e31827806e6] [Citation(s) in RCA: 220] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
CD8(+) T cells have been described as being naive or one of 4 antigen (Ag)-experienced subtypes representing a continuum of differentiation and maturation: T memory stem cell, central memory T cell, effector memory T cell, and terminally differentiated effector T cells. In mice, adoptive cell transfer of less-differentiated naive T cells, T memory stem cell, and central memory T cell subsets have consistently demonstrated superior in vivo expansion, persistence, and antitumor capacities relative to the more differentiated effector memory T cell and effector T cell subsets. Retrospective analyses from human adoptive cell transfer trials have confirmed that transfer of less-differentiated T-cell subsets is highly correlated with objective clinical responses. These findings, combined with the recent ability to convey de novo Ag reactivity with high efficiency through genetic engineering of exogenous T-cell or chimeric Ag receptors, now challenge the field with 3 important questions: (1) how should less-differentiated T-cell subsets be isolated for human clinical trials?; (2) what is the best means of expanding T cells ex vivo in such a way as to not corrupt the beneficial traits of the younger subsets?; and (3) is it necessary to physically separate younger subsets from their more differentiated counterparts? Answering these questions will allow for the rational development of the next generation of highly effective and potentially curative T-cell therapies for the treatment of cancer.
Collapse
|
305
|
Choi YS, Yang JA, Yusuf I, Johnston RJ, Greenbaum J, Peters B, Crotty S. Bcl6 expressing follicular helper CD4 T cells are fate committed early and have the capacity to form memory. THE JOURNAL OF IMMUNOLOGY 2013; 190:4014-26. [PMID: 23487426 DOI: 10.4049/jimmunol.1202963] [Citation(s) in RCA: 187] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Follicular helper CD4 T (Tfh) cells are a distinct type of differentiated CD4 T cells uniquely specialized for B cell help. In this study, we examined Tfh cell fate commitment, including distinguishing features of Tfh versus Th1 proliferation and survival. Using cell transfer approaches at early time points after an acute viral infection, we demonstrate that early Tfh cells and Th1 cells are already strongly cell fate committed by day 3. Nevertheless, Tfh cell proliferation was tightly regulated in a TCR-dependent manner. The Tfh cells still depend on extrinsic cell fate cues from B cells in their physiological in vivo environment. Unexpectedly, we found that Tfh cells share a number of phenotypic parallels with memory precursor CD8 T cells, including selective upregulation of IL-7Rα and a collection of coregulated genes. As a consequence, the early Tfh cells can progress to robustly form memory cells. These data support the hypothesis that CD4 and CD8 T cells share core aspects of a memory cell precursor gene expression program involving Bcl6, and a strong relationship exists between Tfh cells and memory CD4 T cell development.
Collapse
Affiliation(s)
- Youn Soo Choi
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
306
|
Buchholz VR, Gräf P, Busch DH. The smallest unit: effector and memory CD8(+) T cell differentiation on the single cell level. Front Immunol 2013; 4:31. [PMID: 23424063 PMCID: PMC3573211 DOI: 10.3389/fimmu.2013.00031] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 01/26/2013] [Indexed: 12/16/2022] Open
Abstract
CD8+ T cell immune responses provide immediate protection against primary infection and durable memory capable of rapidly fighting off re-infection. Immediate protection and lasting memory are implemented by phenotypically and functionally distinct T cell subsets. While it is now widely accepted that these diverge from a common source of naïve T cells (Tn), the developmental relation and succession of effector and memory T cell subsets is still under intense debate. Recently, a distinct memory T cell subset has been suggested to possess stem cell-like features, sparking the hope to harness its capacity for self-renewal and diversification for successful therapy of chronic infections or malignant diseases. In this review we highlight current developmental models of memory generation, T cell subset diversification and T cell stemness. We discuss the importance of single cell monitoring techniques for adequately mapping these developmental processes and take a brief look at signaling components active in the putative stem cell-like memory T cell compartment.
Collapse
Affiliation(s)
- Veit R Buchholz
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München Munich, Germany
| | | | | |
Collapse
|
307
|
Best JA, Blair DA, Knell J, Yang E, Mayya V, Doedens A, Dustin ML, Goldrath AW. Transcriptional insights into the CD8(+) T cell response to infection and memory T cell formation. Nat Immunol 2013; 14:404-12. [PMID: 23396170 PMCID: PMC3689652 DOI: 10.1038/ni.2536] [Citation(s) in RCA: 266] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 12/21/2012] [Indexed: 12/14/2022]
Abstract
After infection, many factors coordinate the population expansion and differentiation of CD8+ effector and memory T cells. Using data of unparalleled breadth from the Immunological Genome Project, we analyzed the CD8+ T cell transcriptome throughout infection to establish gene-expression signatures and identify putative transcriptional regulators. Notably, we found that the expression of key gene signatures can be used to predict the memory-precursor potential of CD8+ effector cells. Long-lived memory CD8+ cells ultimately expressed a small subset of genes shared by natural killer T and γδ T cells. Although distinct inflammatory milieu and T cell precursor frequencies influenced the differentiation of CD8+ effector and memory populations, core transcriptional signatures were regulated similarly, whether polyclonal or transgenic, and whether responding to bacterial or viral model pathogens. Our results provide insights into the transcriptional regulation that influence memory formation and CD8+ T cell immunity.
Collapse
Affiliation(s)
- J Adam Best
- Division of Biological Sciences, University of California San Diego, La Jolla, California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
308
|
Kurtulus S, Tripathi P, Hildeman DA. Protecting and rescuing the effectors: roles of differentiation and survival in the control of memory T cell development. Front Immunol 2013; 3:404. [PMID: 23346085 PMCID: PMC3552183 DOI: 10.3389/fimmu.2012.00404] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 12/15/2012] [Indexed: 12/31/2022] Open
Abstract
Vaccines, arguably the single most important intervention in improving human health, have exploited the phenomenon of immunological memory. The elicitation of memory T cells is often an essential part of successful long-lived protective immunity. Our understanding of T cell memory has been greatly aided by the development of TCR Tg mice and MHC tetrameric staining reagents that have allowed the precise tracking of antigen-specific T cell responses. Indeed, following acute infection or immunization, naïve T cells undergo a massive expansion culminating in the generation of a robust effector T cell population. This peak effector response is relatively short-lived and, while most effector T cells die by apoptosis, some remain and develop into memory cells. Although the molecular mechanisms underlying this cell fate decision remain incompletely defined, substantial progress has been made, particularly with regards to CD8(+) T cells. For example, the effector CD8(+) T cells generated during a response are heterogeneous, consisting of cells with more or less potential to develop into full-fledged memory cells. Development of CD8(+) T cell memory is regulated by the transcriptional programs that control the differentiation and survival of effector T cells. While the type of antigenic stimulation and level of inflammation control effector CD8(+) T cell differentiation, availability of cytokines and their ability to control expression and function of Bcl-2 family members governs their survival. These distinct differentiation and survival programs may allow for finer therapeutic intervention to control both the quality and quantity of CD8(+) T cell memory. Effector to memory transition of CD4(+) T cells is less well characterized than CD8(+) T cells, emerging details will be discussed. This review will focus on the recent progress made in our understanding of the mechanisms underlying the development of T cell memory with an emphasis on factors controlling survival of effector T cells.
Collapse
Affiliation(s)
- Sema Kurtulus
- Division of Cellular and Molecular Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati Cincinnati, OH, USA
| | | | | |
Collapse
|
309
|
Knell J, Best JA, Lind NA, Yang E, D'Cruz LM, Goldrath AW. Id2 influences differentiation of killer cell lectin-like receptor G1(hi) short-lived CD8+ effector T cells. THE JOURNAL OF IMMUNOLOGY 2013; 190:1501-9. [PMID: 23325888 PMCID: PMC3563862 DOI: 10.4049/jimmunol.1200750] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD8(+) T cells play a crucial role in the clearance of intracellular pathogens through the generation of cytotoxic effector cells that eliminate infected cells and long-lived memory cells that provide enhanced protection against reinfection. We have previously shown that the inhibitor of E protein transcription factors, Id2, is necessary for accumulation of effector and memory CD8(+) T cells during infection. In this study, we show that CD8(+) T cells lacking Id2 did not generate a robust terminally differentiated killer cell lectin-like receptor G1 (KLRG1)(hi) effector population, but displayed a cell-surface phenotype and cytokine profile consistent with memory precursors, raising the question as to whether loss of Id2 impairs the differentiation and/or survival of effector memory cells. We found that deletion of Bim rescued Id2-deficient CD8(+) cell survival during infection. However, the dramatic reduction in KLRG1(hi) cells caused by loss of Id2 remained in the absence of Bim, such that Id2/Bim double-deficient cells form an exclusively KLRG1(lo)CD127(hi) memory precursor population. Thus, we describe a role for Id2 in both the survival and differentiation of normal CD8(+) effector and memory populations.
Collapse
Affiliation(s)
- Jamie Knell
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | |
Collapse
|
310
|
Abstract
A fundamental property of the adaptive immune system is the ability to generate antigen-specific memory, which protects against repeated infections with the same pathogens and determines the success of vaccination. Immune memory is built up alongside a response providing direct protection during the course of a primary immune response. For CD8 T cells, this involves the generation of two distinct types of effector cells. Short lived effector cells (SLECs) confer immediate protection, but contribute little to the memory repertoire. Memory precursor effector cells (MPECs) have the ability to respond to survival signals and develop into memory cells. These two types of cells can be distinguished on the basis of surface markers and express distinct genetic programs. A single naive CD8 T cell can give rise to both MPEC and SLEC daughter cells. This may involve an initial asymmetric division or depend on later instructive signals acting on equipotent daughter cells. Strong inflammatory signals favor the generation of SLECs and weaker inflammation favors the generation of MPECs. A distinguishing feature of MPECs is their ability to persist when most effector cells die. This survival depends on signals from the IL-7 receptor, which induce expression of anti-apoptotic factors. MPECs are therefore characterized by expression of the IL-7 receptor as well as the CCR7 chemokine receptor, which allows homing to areas in lymphoid organs where IL-7 is produced. Critical for persistence of MPECs is further their responsiveness to myeloid cell derived IL-15, which instructs these cells to switch their metabolic programs from glycolysis associated with rapid proliferation to fatty acid oxidation required during a more resting state. As the mechanisms determining generation of immunological memory are unraveled, opportunities will emerge for the improvement of vaccination strategies.
Collapse
|
311
|
Russ BE, Denton AE, Hatton L, Croom H, Olson MR, Turner SJ. Defining the molecular blueprint that drives CD8(+) T cell differentiation in response to infection. Front Immunol 2012; 3:371. [PMID: 23267358 PMCID: PMC3525900 DOI: 10.3389/fimmu.2012.00371] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 11/21/2012] [Indexed: 12/25/2022] Open
Abstract
A cardinal feature of adaptive, cytotoxic T lymphocyte (CTL)-mediated immunity is the ability of naïve CTLs to undergo a program of differentiation and proliferation upon activation resulting in the acquisition of lineage-specific T cell functions and eventual establishment of immunological memory. In this review, we examine the molecular factors that shape both the acquisition and maintenance of lineage-specific effector function in virus-specific CTL during both the effector and memory phases of immunity.
Collapse
Affiliation(s)
- Brendan E Russ
- Department of Microbiology and Immunology, University of Melbourne Parkville, VIC, Australia
| | | | | | | | | | | |
Collapse
|
312
|
Mueller SN, Gebhardt T, Carbone FR, Heath WR. Memory T cell subsets, migration patterns, and tissue residence. Annu Rev Immunol 2012; 31:137-61. [PMID: 23215646 DOI: 10.1146/annurev-immunol-032712-095954] [Citation(s) in RCA: 616] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tissues such as the skin and mucosae are frequently exposed to microbial pathogens. Infectious agents must be quickly and efficiently controlled by our immune system, but the low frequency of naive T cells specific for any one pathogen means dependence on primary responses initiated in draining lymph nodes, often allowing time for serious infection to develop. These responses imprint effectors with the capacity to home to infected tissues; this process, combined with inflammatory signals, ensures the effective targeting of primary immunity. Upon vaccination or previous pathogen exposure, increased pathogen-specific T cell numbers together with altered migratory patterns of memory T cells can greatly improve immune efficacy, ensuring infections are prevented or at least remain subclinical. Until recently, memory T cell populations were considered to comprise central memory T cells (TCM), which are restricted to the secondary lymphoid tissues and blood, and effector memory T cells (TEM), which broadly migrate between peripheral tissues, the blood, and the spleen. Here we review evidence for these two memory populations, highlight a relatively new player, the tissue-resident memory T cell (TRM), and emphasize the potential differences between the migratory patterns of CD4(+) and CD8(+) T cells. This new understanding raises important considerations for vaccine design and for the measurement of immune parameters critical to the control of infectious disease, autoimmunity, and cancer.
Collapse
Affiliation(s)
- Scott N Mueller
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | | | | | | |
Collapse
|
313
|
Hamilton SE, Jameson SC. CD8 T cell memory: it takes all kinds. Front Immunol 2012; 3:353. [PMID: 23230436 PMCID: PMC3515884 DOI: 10.3389/fimmu.2012.00353] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 11/06/2012] [Indexed: 12/12/2022] Open
Abstract
Understanding the mechanisms that regulate the differentiation and maintenance of CD8+ memory T cells is fundamental to the development of effective T cell-based vaccines. Memory cell differentiation is influenced by the cytokines that accompany T cell priming, the history of previous antigen encounters, and the tissue sites into which memory cells migrate. These cues combine to influence the developing CD8+ memory pool, and recent work has revealed the importance of multiple transcription factors, metabolic molecules, and surface receptors in revealing the type of memory cell that is generated. Paired with increasingly meticulous subsetting and sorting of memory populations, we now know the CD8+ memory pool to be phenotypically and functionally heterogeneous in nature. This includes both recirculating and tissue-resident memory populations, and cells with varying degrees of inherent longevity and protective function. These data point to the importance of tailored vaccine design. Here we discuss how the diversity of the memory CD8+ T cell pool challenges the notion that “one size fits all” for pathogen control, and how distinct memory subsets may be suited for distinct aspects of protective immunity.
Collapse
Affiliation(s)
- Sara E Hamilton
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School Minneapolis, MN, USA
| | | |
Collapse
|
314
|
D'Cruz LM, Lind KC, Wu BB, Fujimoto JK, Goldrath AW. Loss of E protein transcription factors E2A and HEB delays memory-precursor formation during the CD8+ T-cell immune response. Eur J Immunol 2012; 42:2031-41. [PMID: 22585759 PMCID: PMC3702188 DOI: 10.1002/eji.201242497] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The transcription factors E2A and HEB (members of the E protein family) have been shown to play essential roles in lymphocyte development, while their negative regulators, the Id proteins, have been implicated in both lymphocyte development and in the CD8(+) T-cell immune response. Here, we show that E proteins also influence CD8(+) T cells responding to infection. E protein expression was upregulated by CD8(+) T cells during the early stages of infection and increased E protein DNA-binding activity could be detected upon TCR stimulation. Deficiency in the E proteins, E2A and HEB, led to increased frequency of terminally differentiated effector KLRG1(hi) CD8(+) T cells in mice during infection, and decreased generation of longer-lived memory-precursor cells during the immune response. These data suggest a model whereby E protein transcription factor activity favors rapid memory-precursor T-cell formation while their negative regulators, Id2 and Id3, are both required for robust effector CD8(+) T-cell response during infection.
Collapse
Affiliation(s)
- Louise M D'Cruz
- Division of Biology, University of California San Diego, La Jolla, CA 92093, USA
| | | | | | | | | |
Collapse
|
315
|
Transcriptional control of effector and memory CD8+ T cell differentiation. Nat Rev Immunol 2012; 12:749-61. [PMID: 23080391 DOI: 10.1038/nri3307] [Citation(s) in RCA: 1164] [Impact Index Per Article: 89.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During an infection, T cells can differentiate into multiple types of effector and memory T cells, which help to mediate pathogen clearance and provide long-term protective immunity. These cells can vary in their phenotype, function and location, and in their long-term fate in terms of their ability to populate the memory T cell pool. Over the past decade, the signalling pathways and transcriptional programmes that regulate the formation of heterogeneous populations of effector and memory CD8(+) T cells have started to be characterized, and this Review discusses the major advances in these areas.
Collapse
|
316
|
Abstract
Reactive oxygen intermediates (ROI) generated in response to receptor stimulation play an important role in cellular responses. However, the effect of increased H(2)O(2) on an antigen-specific CD8(+) T cell response was unknown. Following T cell receptor (TCR) stimulation, the expression and oxidation of peroxiredoxin II (PrdxII), a critical antioxidant enzyme, increased in CD8(+) T cells. Deletion of PrdxII increased ROI, S phase entry, division, and death during in vitro division. During primary acute viral and bacterial infection, the number of effector CD8(+) T cells in PrdxII-deficient mice was increased, while the number of memory cells were similar to those of the wild-type cells. Adoptive transfer of P14 TCR transgenic cells demonstrated that the increased expansion of effector cells was T cell autonomous. After rechallenge, effector CD8(+) T cells in mutant animals were more skewed to memory phenotype than cells from wild-type mice, resulting in a larger secondary memory CD8(+) T cell pool. During chronic viral infection, increased antigen-specific CD8(+) T cells accumulated in the spleens of PrdxII mutant mice, causing mortality. These results demonstrate that PrdxII controls effector CD8(+) T cell expansion, secondary memory generation, and immunopathology.
Collapse
|
317
|
Nayar R, Enos M, Prince A, Shin H, Hemmers S, Jiang JK, Klein U, Thomas CJ, Berg LJ. TCR signaling via Tec kinase ITK and interferon regulatory factor 4 (IRF4) regulates CD8+ T-cell differentiation. Proc Natl Acad Sci U S A 2012; 109:E2794-802. [PMID: 23011795 PMCID: PMC3478592 DOI: 10.1073/pnas.1205742109] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
CD8(+) T-cell development in the thymus generates a predominant population of conventional naive cells, along with minor populations of "innate" T cells that resemble memory cells. Recent studies analyzing a variety of KO or knock-in mice have indicated that impairments in the T-cell receptor (TCR) signaling pathway produce increased numbers of innate CD8(+) T cells, characterized by their high expression of CD44, CD122, CXCR3, and the transcription factor, Eomesodermin (Eomes). One component of this altered development is a non-CD8(+) T cell-intrinsic role for IL-4. To determine whether reduced TCR signaling within the CD8(+) T cells might also contribute to this pathway, we investigated the role of the transcription factor, IFN regulatory factor 4 (IRF4). IRF4 is up-regulated following TCR stimulation in WT T cells; further, this up-regulation is impaired in T cells treated with a small-molecule inhibitor of the Tec family tyrosine kinase, IL-2 inducible T-cell kinase (ITK). In contrast to WT cells, activation of IRF4-deficient CD8(+) T cells leads to rapid and robust expression of Eomes, which is further enhanced by IL-4 stimulation. In addition, inhibition of ITK together with IL-4 increases Eomeso up-regulation. These data indicate that ITK signaling promotes IRF4 up-regulation following CD8(+) T-cell activation and that this signaling pathway normally suppresses Eomes expression, thereby regulating the differentiation pathway of CD8(+) T cells.
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cells, Cultured
- Female
- Flow Cytometry
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/immunology
- Forkhead Transcription Factors/metabolism
- Gene Expression/drug effects
- Interferon Regulatory Factors/genetics
- Interferon Regulatory Factors/immunology
- Interferon Regulatory Factors/metabolism
- Interleukin-4/pharmacology
- Lymphocyte Activation/immunology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/immunology
- Protein-Tyrosine Kinases/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Signal Transduction/genetics
- Signal Transduction/immunology
- T-Box Domain Proteins/genetics
- T-Box Domain Proteins/immunology
- T-Box Domain Proteins/metabolism
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Thymocytes/immunology
- Thymocytes/metabolism
- Thymus Gland/cytology
- Thymus Gland/immunology
- Thymus Gland/metabolism
Collapse
Affiliation(s)
- Ribhu Nayar
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Megan Enos
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Amanda Prince
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655
| | - HyunMu Shin
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Saskia Hemmers
- Department of Immunology, Memorial Sloan–Kettering Cancer Center, New York, NY 10065
| | - Jian-kang Jiang
- Chemical Genomics Center, National Institutes of Health, Rockville, MD 20850
| | - Ulf Klein
- Department of Microbiology and Immunology, Columbia University, New York, NY 10032; and
| | - Craig J. Thomas
- Chemical Genomics Center, National Institutes of Health, Rockville, MD 20850
| | - Leslie J. Berg
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655
| |
Collapse
|
318
|
The signal transducers STAT5 and STAT3 control expression of Id2 and E2-2 during dendritic cell development. Blood 2012; 120:4363-73. [PMID: 23033267 PMCID: PMC3507145 DOI: 10.1182/blood-2012-07-441311] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cytokines and transcription factors play key roles in dendritic cell (DC) development, yet information about regulatory interactions between these signals remains limited. Here we show that the cytokines GM-CSF and Flt3L induce the transcriptional mediators Id2 and E2-2 and control DC lineage diversification by STAT-dependent pathways. We found that STAT5 is required for tissue CD103(+) DC generation and plasmacytoid DC (pDC) suppression in steady state or response to GM-CSF. STAT5 stimulates GM-CSF-dependent expression of Id2, which controls CD103(+) DC production and pDC inhibition. By contrast, pDCs, but not CD103(+) DCs, are dependent on STAT3. Consistently, STAT3 stimulates Flt3L-responsive expression of the pDC regulator Tcf4 (E2-2). These data suggest that STATs contribute to DC development by controlling transcription factors involved in lineage differentiation.
Collapse
|
319
|
Abstract
Stem cells are defined by the ability to self-renew and to generate differentiated progeny, qualities that are maintained by evolutionarily conserved pathways that can lead to cancer when deregulated. There is now evidence that these stem cell-like attributes and signalling pathways are also shared among subsets of mature memory T lymphocytes. We discuss how using stem cell-like T cells can overcome the limitations of current adoptive T cell therapies, including inefficient T cell engraftment, persistence and ability to mediate prolonged immune attack. Conferring stemness to antitumour T cells might unleash the full potential of cellular therapies.
Collapse
Affiliation(s)
- Luca Gattinoni
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
320
|
Castro I, Dee MJ, Malek TR. Transient enhanced IL-2R signaling early during priming rapidly amplifies development of functional CD8+ T effector-memory cells. THE JOURNAL OF IMMUNOLOGY 2012; 189:4321-30. [PMID: 23018461 DOI: 10.4049/jimmunol.1202067] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Much is known concerning the cellular and molecular basis for CD8(+) T memory immune responses. Nevertheless, conditions that selectively support memory generation have remained elusive. In this study, we show that an immunization regimen that delivers TCR signals through a defined antigenic peptide, inflammatory signals through LPS, and growth and differentiation signals through the IL-2R initially favors Ag-specific CD8(+) T cells to develop rapidly and substantially into T effector-memory cells by TCR transgenic OVA-specific OT-I CD8(+) T cells. Amplified CD8(+) T memory development depends upon a critical frequency of Ag-specific T cells and direct responsiveness to IL-2. A homologous prime-boost immunization protocol with transiently enhanced IL-2R signaling in normal mice led to persistent polyclonal Ag-specific CD8(+) T cells that supported protective immunity to Listeria monocytogenes. These results identify a general approach for amplified T memory development that may be useful to optimize vaccines aimed at generating robust cell-mediated immunity.
Collapse
Affiliation(s)
- Iris Castro
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33101, USA
| | | | | |
Collapse
|
321
|
Oliver CH, Khaled WT, Frend H, Nichols J, Watson CJ. The Stat6-regulated KRAB domain zinc finger protein Zfp157 regulates the balance of lineages in mammary glands and compensates for loss of Gata-3. Genes Dev 2012; 26:1086-97. [PMID: 22588720 DOI: 10.1101/gad.184051.111] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Lineage commitment studies in mammary glands have focused on identifying cell populations that display stem or progenitor properties. However, the mechanisms that control cell fate have been incompletely explored. Herein we show that zinc finger protein 157 (Zfp157) is required to establish the balance between luminal alveolar pStat5- and Gata-3-expressing cells in the murine mammary gland. Using mice in which the zfp157 gene was disrupted, we found that alveologenesis was accelerated concomitantly with a dramatic skewing of the proportion of pStat5-expressing cells relative to Gata-3⁺ cells. This suppression of the Gata-3⁺ lineage was associated with increased expression of the inhibitor of helix-loop-helix protein Id2. Surprisingly, Gata-3 becomes dispensable in the absence of Zfp157, as mice deficient for both Zfp157 and Gata-3 lactate normally, although the glands display a mild epithelial dysplasia. These data suggest that the luminal alveolar compartment of the mammary gland is comprised of a number of distinct cell populations that, although interdependant, exhibit considerable cell fate plasticity.
Collapse
Affiliation(s)
- Carrie H Oliver
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | | | | | | | | |
Collapse
|
322
|
Lin YY, Jones-Mason ME, Inoue M, Lasorella A, Iavarone A, Li QJ, Shinohara ML, Zhuang Y. Transcriptional regulator Id2 is required for the CD4 T cell immune response in the development of experimental autoimmune encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2012; 189:1400-5. [PMID: 22745378 DOI: 10.4049/jimmunol.1200491] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An effective immune response to Ag challenge is critically dependent on the size of the effector cell population generated from clonal activation of Ag-specific T cells. The transcription network involved in regulating the size of the effector population, particularly for CD4 Th cells, is poorly understood. In this study, we investigate the role of Id2, an inhibitor of E protein transcription factors, in the generation of CD4 effectors. Using a T cell-specific conditional Id2 knockout mouse model, we show that inhibitor of DNA binding (Id)2 is essential for the development of experimental autoimmune encephalomyelitis. Although Ag-specific and IL-17-producing CD4 T cells are produced in these mice, the activated CD4 T cells form a smaller pool of effector cells in the peripheral lymphoid organs, exhibit reduced proliferation and increased cell death, and are largely absent in the CNS. In the absence of Id2, E protein targets, including the proapoptotic protein Bim and SOCS3, are expressed at higher levels among activated CD4 T cells. This study reveals a critical role of Id2 in the control of effector CD4 T cell population size and the development of a Th17-mediated autoimmune disease.
Collapse
Affiliation(s)
- Yen-Yu Lin
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|
323
|
Abstract
DCs have a vital role in the immune system by recognizing exogenous or self-antigens and eliciting appropriate stimulatory or tolerogenic adaptive immune responses. DCs also contribute to human autoimmune disease and, when depleted, to immunodeficiency. Moreover, DCs are being explored for potential use in clinical therapies including cancer treatment. Thus, understanding the molecular mechanisms that regulate DCs is crucial to improving treatments for human immune disease and cancer. DCs constitute a heterogeneous population including plasmacytoid (pDC) and classic (cDC) subsets; however, the majority of DCs residing in lymphoid organs and peripheral tissues in steady state share common progenitor populations, originating with hematopoietic stem cells. Like other hematopoietic lineages, DCs require extracellular factors including cytokines, as well as intrinsic transcription factors, to control lineage specification, commitment, and maturation. Here, we review recent findings on the roles for cytokines and cytokine-activated STAT transcription factors in DC subset development. We also discuss how cytokines and STATs intersect with lineage-regulatory transcription factors and how insight into the molecular basis of human disease has revealed transcriptional regulators of DCs. Whereas this is an emerging area with much work remaining, we anticipate that knowledge gained by delineating cytokine and transcription factor mechanisms will enable a better understanding of DC subset diversity, and the potential to manipulate these important immune cells for human benefit.
Collapse
Affiliation(s)
- Haiyan S Li
- Department of Immunology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | |
Collapse
|
324
|
Liu J, Liu S, Cao X. Highlights of the advances in basic immunology in 2011. Cell Mol Immunol 2012; 9:197-207. [PMID: 22522654 DOI: 10.1038/cmi.2012.12] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In this review, we summarize the major fundamental advances in immunological research reported in 2011. The highlights focus on the improved understanding of key questions in basic immunology, including the initiation and activation of innate responses as well as mechanisms for the development and function of various T-cell subsets. The research includes the identification of novel cytosolic RNA and DNA sensors as well as the identification of the novel regulators of the Toll-like receptor (TLR) and retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) signaling pathway. Moreover, remarkable advances have been made in the developmental and functional properties of innate lymphoid cells (ILCs). Helper T cells and regulatory T (Treg) cells play indispensable roles in orchestrating adaptive immunity. There have been exciting discoveries regarding the regulatory mechanisms of the development of distinct T-cell subsets, particularly Th17 cells and Treg cells. The emerging roles of microRNAs (miRNAs) in T cell immunity are discussed, as is the recent identification of a novel T-cell subset referred to as follicular regulatory T (TFR) cells.
Collapse
Affiliation(s)
- Juan Liu
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai, China.
| | | | | |
Collapse
|