301
|
Eun K, Ham SW, Kim H. Cancer stem cell heterogeneity: origin and new perspectives on CSC targeting. BMB Rep 2017; 50:117-125. [PMID: 27998397 PMCID: PMC5422023 DOI: 10.5483/bmbrep.2017.50.3.222] [Citation(s) in RCA: 251] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Indexed: 12/14/2022] Open
Abstract
Most of the cancers are still incurable human diseases. According to recent findings, especially targeting cancer stem cells (CSCs) is the most promising therapeutic strategy. CSCs take charge of a cancer hierarchy, harboring stem cell-like properties involving self-renewal and aberrant differentiation potential. Most of all, the presence of CSCs is closely associated with tumorigenesis and therapeutic resistance. Despite the numerous efforts to target CSCs, current anti-cancer therapies are still impeded by CSC-derived cancer malignancies; increased metastases, tumor recurrence, and even acquired resistance against the anti-CSC therapies developed in experimental models. One of the most forceful underlying reasons is a “cancer heterogeneity” due to “CSC plasticity” A comprehensive understanding of CSC-derived heterogeneity will provide novel insights into the establishment of efficient targeting strategies to eliminate CSCs. Here, we introduce findings on mechanisms of CSC reprogramming and CSC plasticity, which give rise to phenotypically varied CSCs. Also, we suggest concepts to improve CSC-targeted therapy in order to overcome therapeutic resistance caused by CSC plasticity and heterogeneity.
Collapse
Affiliation(s)
- Kiyoung Eun
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Seok Won Ham
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Hyunggee Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| |
Collapse
|
302
|
Tang J, Xie Y, Xu X, Yin Y, Jiang R, Deng L, Tan Z, Gangarapu V, Tang J, Sun B. Bidirectional transcription of Linc00441 and RB1 via H3K27 modification-dependent way promotes hepatocellular carcinoma. Cell Death Dis 2017; 8:e2675. [PMID: 28300839 PMCID: PMC5386573 DOI: 10.1038/cddis.2017.81] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 01/16/2017] [Accepted: 01/24/2017] [Indexed: 02/07/2023]
Abstract
The retinoblastoma gene (RB1), a known tumor-suppressor gene (TSG), was decreased in multiple cancers including hepatocellular carcinoma (HCC). Here we focused on the bidirectional transcripted long noncoding RNA (Linc00441) with neighbor gene RB1 to investigate whether Linc00441 is involved in the suppression of RB1 in HCC. We found that aberrant upregulated intranuclear Linc00441 was reversely correlated with RB1 expression in human HCC samples. The gain- and loss-of-function investigation revealed that Linc00441 could promote the proliferation of HCC cells in vitro and in vivo with an apoptosis suppression and cell cycle rearrangement. Furthermore, RNA pull-down assay indicated the decreased level of RB1 induced by Linc00441 was associated with the incidental methylation by DNMT3A recruited by Linc00441. On the contrary, the transcription factor (TCF-4) enhanced H3K27 acetylation and direct transcription factor for Linc00441 was responsible for the upregulation of Linc00441 in HCC. In conclusion, the epigenetic interaction between Linc00441 and bidirectional transcripted neighbor RB1 may be a de novo theory cutting-point for the inactivation of RB1 in HCC and may serve as targeting site for tumor therapy in the future.
Collapse
Affiliation(s)
- Junwei Tang
- Liver Transplantation Center, The First Affiliated Hospital and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yu Xie
- Liver Transplantation Center, The First Affiliated Hospital and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiaoliang Xu
- Liver Transplantation Center, The First Affiliated Hospital and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yin Yin
- Liver Transplantation Center, The First Affiliated Hospital and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Runqiu Jiang
- Liver Transplantation Center, The First Affiliated Hospital and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Lei Deng
- Liver Transplantation Center, The First Affiliated Hospital and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zhongming Tan
- Liver Transplantation Center, The First Affiliated Hospital and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Venkatanarayana Gangarapu
- Liver Transplantation Center, The First Affiliated Hospital and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jinhai Tang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Beicheng Sun
- Liver Transplantation Center, The First Affiliated Hospital and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
303
|
Chang YI, Kong G, Ranheim EA, Tu PS, Yu YS, Zhang J. Dnmt3a haploinsufficiency cooperates with oncogenic Kras to promote an early-onset T-cell acute lymphoblastic leukemia. Am J Transl Res 2017; 9:1326-1334. [PMID: 28386358 PMCID: PMC5376023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 02/08/2017] [Indexed: 06/07/2023]
Abstract
Mutations in DNA methyltransferase 3A (DNMT3A) are prevalent in various myeloid and lymphoid malignancies. The most common DNMT3A R882 mutations inhibit methyltransferase activity of the remaining wild-type DNMT3A proteins at a heterozygous state due to their dominant-negative activity. Reports and COSMIC database analysis reveal significantly different frequencies of R882 mutations in myeloid versus T-cell malignancies, inspiring us to investigate whether downregulation of DNMT3A regulates malignancies of different lineages in a dose-dependent manner. In a competitive transplant setting, the survival of recipients with KrasG12D/+ ; Dnmt3a+/- bone marrow (BM) cells was significantly shortened than that of recipients with KrasG12D/+ cells. Moreover, all of the recipients with KrasG12D/+ ; Dnmt3a+/- cells developed a lethal T-cell acute lymphoblastic leukemia (T-ALL) without significant myeloproliferative neoplasm (MPN) phenotypes, while ~20% of recipients with KrasG12D/+ cells developed MPN with or without T-ALL. This is in sharp contrast to the recipients with KrasG12D/+ ; Dnmt3a-/- cells, in which ~60% developed a lethal myeloid malignancy (MPN or acute myeloid leukemia [AML]). Our data suggest that in the context of oncogenic Kras, loss of Dnmt3a promotes myeloid malignancies, while Dnmt3a haploinsufficiency induces T-ALL. This dose-dependent phenotype is highly consistent with the prevalence of DNMT3A R882 mutations in AML versus T-ALL in human.
Collapse
Affiliation(s)
- Yuan-I Chang
- McArdle Laboratory for Cancer Research, University of Wisconsin-MadisonMadison, WI 53706, USA
- Department and Institute of Physiology, National Yang-Ming UniversityTaipei 11221, Taiwan
| | - Guangyao Kong
- McArdle Laboratory for Cancer Research, University of Wisconsin-MadisonMadison, WI 53706, USA
- National Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, P. R. China
| | - Erik A Ranheim
- Department of Pathology & Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin Carbone Cancer CenterMadison, WI 53792, USA
| | - Po-Shu Tu
- Department and Institute of Physiology, National Yang-Ming UniversityTaipei 11221, Taiwan
| | - Yi-Shan Yu
- Department and Institute of Physiology, National Yang-Ming UniversityTaipei 11221, Taiwan
| | - Jing Zhang
- McArdle Laboratory for Cancer Research, University of Wisconsin-MadisonMadison, WI 53706, USA
| |
Collapse
|
304
|
Zou Y, Liu FY, Wang LQ, Guo JB, Yang BC, Wan XD, Wang F, He M, Huang OP. Downregulation of DNA methyltransferase 3 alpha promotes cell proliferation and invasion of ectopic endometrial stromal cells in adenomyosis. Gene 2017; 604:41-47. [DOI: 10.1016/j.gene.2016.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 11/22/2016] [Accepted: 12/12/2016] [Indexed: 02/06/2023]
|
305
|
Epigenetic Guardian: A Review of the DNA Methyltransferase DNMT3A in Acute Myeloid Leukaemia and Clonal Haematopoiesis. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5473197. [PMID: 28286768 PMCID: PMC5329657 DOI: 10.1155/2017/5473197] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/18/2016] [Accepted: 11/14/2016] [Indexed: 12/25/2022]
Abstract
Acute myeloid leukaemia (AML) is a haematological malignancy characterized by clonal stem cell proliferation and aberrant block in differentiation. Dysfunction of epigenetic modifiers contributes significantly to the pathogenesis of AML. One frequently mutated gene involved in epigenetic modification is DNMT3A (DNA methyltransferase-3-alpha), a DNA methyltransferase that alters gene expression by de novo methylation of cytosine bases at CpG dinucleotides. Approximately 22% of AML and 36% of cytogenetically normal AML cases carry DNMT3A mutations and around 60% of these mutations affect the R882 codon. These mutations have been associated with poor prognosis and adverse survival outcomes for AML patients. Advances in whole-exome sequencing techniques have recently identified a large number of DNMT3A mutations present in clonal cells in normal elderly individuals with no features of haematological malignancy. Categorically distinct from other preleukaemic conditions, this disorder has been termed clonal haematopoiesis of indeterminate potential (CHIP). Further insight into the mutational landscape of CHIP may illustrate the consequence of particular mutations found in DNMT3A and identify specific “founder” mutations responsible for clonal expansion that may contribute to leukaemogenesis. This review will focus on current research and understanding of DNMT3A mutations in both AML and CHIP.
Collapse
|
306
|
Abstract
DNA methylation and specifically the DNA methyltransferase enzyme DNMT3A are involved in the pathogenesis of a variety of hematological diseases and in regulating the function of immune cells. Although altered DNA methylation patterns and mutations in DNMT3A correlate with mast cell proliferative disorders in humans, the role of DNA methylation in mast cell biology is not understood. By using mast cells lacking Dnmt3a, we found that this enzyme is involved in restraining mast cell responses to acute and chronic stimuli, both in vitro and in vivo. The exacerbated mast cell responses observed in the absence of Dnmt3a were recapitulated or enhanced by treatment with the demethylating agent 5-aza-2'-deoxycytidine as well as by down-modulation of Dnmt1 expression, further supporting the role of DNA methylation in regulating mast cell activation. Mechanistically, these effects were in part mediated by the dysregulated expression of the scaffold protein IQGAP2, which is characterized by the ability to regulate a wide variety of biological processes. Altogether, our data demonstrate that DNMT3A and DNA methylation are key modulators of mast cell responsiveness to acute and chronic stimulation.
Collapse
|
307
|
Abstract
DNA methylation is an epigenetic process involved in development, aging, and cancer. Although the advent of new molecular techniques has enhanced our knowledge of how DNA methylation alters chromatin and subsequently affects gene expression, a direct link between epigenetic marks and tumorigenesis has not been established. DNMT3A is a de novo DNA methyltransferase that has recently gained relevance because of its frequent mutation in a large variety of immature and mature hematologic neoplasms. DNMT3A mutations are early events during cancer development and seem to confer poor prognosis to acute myeloid leukemia (AML) patients making this gene an attractive target for new therapies. Here, we discuss the biology of DNMT3A and its role in controlling hematopoietic stem cell fate decisions. In addition, we review how mutant DNMT3A may contribute to leukemogenesis and the clinical relevance of DNMT3A mutations in hematologic cancers.
Collapse
Affiliation(s)
- Lorenzo Brunetti
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas 77030.,Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas 77030.,CREO, University of Perugia, 06123 Perugia, Italy
| | - Michael C Gundry
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas 77030.,Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas 77030.,Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Margaret A Goodell
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas 77030.,Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas 77030.,CREO, University of Perugia, 06123 Perugia, Italy.,Texas Children's Hospital, and Houston Methodist Hospital, Houston, Texas 77030
| |
Collapse
|
308
|
McKinzie PB, Revollo JR. Whole genome sequencing of mouse lymphoma L5178Y-3.7.2C (TK +/− ) reveals millions of mutations and genetic markers. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2017; 814:1-6. [DOI: 10.1016/j.mrgentox.2016.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 11/30/2016] [Accepted: 12/02/2016] [Indexed: 11/29/2022]
|
309
|
Heath EM, Chan SM, Minden MD, Murphy T, Shlush LI, Schimmer AD. Biological and clinical consequences of NPM1 mutations in AML. Leukemia 2017; 31:798-807. [PMID: 28111462 DOI: 10.1038/leu.2017.30] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 01/09/2017] [Accepted: 01/13/2017] [Indexed: 12/16/2022]
Abstract
Acute myeloid leukemia (AML) is characterized by accumulation of myeloid cells in the bone marrow because of impaired differentiation and proliferation, resulting in hematopoietic insufficiency. NPM1 is one of the most commonly mutated genes in AML, present in 20-30% of cases. Mutations in NPM1 represent a distinct entity in the World Health Organization (WHO) classification and commonly indicate a better risk prognosis. In this review, we discuss the many functions of NPM1, the consequence of mutations in NPM1 and possible mechanisms through which mutations lead to leukemogenesis. We also discuss clinical consequences of mutations, associated gene expression patterns and the role of NPM1 mutations in informing prognosis and therapeutic decisions and predicting relapse in AML.
Collapse
Affiliation(s)
- E M Heath
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Ontario, Canada
| | - S M Chan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - M D Minden
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Ontario, Canada
| | - T Murphy
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Ontario, Canada
| | - L I Shlush
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - A D Schimmer
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Ontario, Canada
| |
Collapse
|
310
|
Zhang W, Xu J. DNA methyltransferases and their roles in tumorigenesis. Biomark Res 2017; 5:1. [PMID: 28127428 PMCID: PMC5251331 DOI: 10.1186/s40364-017-0081-z] [Citation(s) in RCA: 235] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/03/2017] [Indexed: 01/13/2023] Open
Abstract
DNA methylation plays an important role in gene expression, chromatin stability, and genetic imprinting. In mammals, DNA methylation patterns are written and regulated by DNA methyltransferases (DNMTs), including DNMT1, DNMT3A and DNMT3B. Recent emerging evidence shows that defects in DNMTs are involved in tumor transformation and progression, thus indicating that epigenetic disruptions caused by DNMT abnormalities are associated with tumorigenesis. Herein, we review the latest findings related to DNMT alterations in cancer cells and discuss the contributions of these effects to oncogenic phenotypes.
Collapse
Affiliation(s)
- Wu Zhang
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital affiliated to Shanghai Jiao-Tong University School of Medicine, 197 Rui Jin Er Road, 200025 Shanghai, China
| | - Jie Xu
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital affiliated to Shanghai Jiao-Tong University School of Medicine, 197 Rui Jin Er Road, 200025 Shanghai, China
| |
Collapse
|
311
|
Chao MP, Gentles AJ, Chatterjee S, Lan F, Reinisch A, Corces MR, Xavy S, Shen J, Haag D, Chanda S, Sinha R, Morganti RM, Nishimura T, Ameen M, Wu H, Wernig M, Wu JC, Majeti R. Human AML-iPSCs Reacquire Leukemic Properties after Differentiation and Model Clonal Variation of Disease. Cell Stem Cell 2017; 20:329-344.e7. [PMID: 28089908 DOI: 10.1016/j.stem.2016.11.018] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 10/21/2016] [Accepted: 11/29/2016] [Indexed: 12/13/2022]
Abstract
Understanding the relative contributions of genetic and epigenetic abnormalities to acute myeloid leukemia (AML) should assist integrated design of targeted therapies. In this study, we generated induced pluripotent stem cells (iPSCs) from AML patient samples harboring MLL rearrangements and found that they retained leukemic mutations but reset leukemic DNA methylation/gene expression patterns. AML-iPSCs lacked leukemic potential, but when differentiated into hematopoietic cells, they reacquired the ability to give rise to leukemia in vivo and reestablished leukemic DNA methylation/gene expression patterns, including an aberrant MLL signature. Epigenetic reprogramming was therefore not sufficient to eliminate leukemic behavior. This approach also allowed us to study the properties of distinct AML subclones, including differential drug susceptibilities of KRAS mutant and wild-type cells, and predict relapse based on increased cytarabine resistance of a KRAS wild-type subclone. Overall, our findings illustrate the value of AML-iPSCs for investigating the mechanistic basis and clonal properties of human AML.
Collapse
Affiliation(s)
- Mark P Chao
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, CA 94305, USA; Department of Medicine, Division of Hematology, Stanford Medicine, CA 94305, USA.
| | - Andrew J Gentles
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, CA 94305, USA; Stanford Center for Cancer Systems Biology, Stanford Medicine, CA 94305, USA
| | - Susmita Chatterjee
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, CA 94305, USA
| | - Feng Lan
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, CA 94305, USA
| | - Andreas Reinisch
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, CA 94305, USA
| | - M Ryan Corces
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, CA 94305, USA
| | - Seethu Xavy
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, CA 94305, USA
| | - Jinfeng Shen
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, CA 94305, USA
| | - Daniel Haag
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, CA 94305, USA
| | - Soham Chanda
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, CA 94305, USA
| | - Rahul Sinha
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, CA 94305, USA
| | - Rachel M Morganti
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, CA 94305, USA
| | - Toshinobu Nishimura
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, CA 94305, USA
| | - Mohamed Ameen
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, CA 94305, USA
| | - Haodi Wu
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, CA 94305, USA
| | - Marius Wernig
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, CA 94305, USA
| | - Joseph C Wu
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, CA 94305, USA; Stanford Cardiovascular Institute, Stanford University, CA 94305, USA
| | - Ravindra Majeti
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, CA 94305, USA; Department of Medicine, Division of Hematology, Stanford Medicine, CA 94305, USA
| |
Collapse
|
312
|
Nguyen TB, Sakata-Yanagimoto M, Asabe Y, Matsubara D, Kano J, Yoshida K, Shiraishi Y, Chiba K, Tanaka H, Miyano S, Izutsu K, Nakamura N, Takeuchi K, Miyoshi H, Ohshima K, Minowa T, Ogawa S, Noguchi M, Chiba S. Identification of cell-type-specific mutations in nodal T-cell lymphomas. Blood Cancer J 2017; 7:e516. [PMID: 28157189 PMCID: PMC5301031 DOI: 10.1038/bcj.2016.122] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/07/2016] [Indexed: 12/26/2022] Open
Abstract
Recent genetic analysis has identified frequent mutations in ten-eleven translocation 2 (TET2), DNA methyltransferase 3A (DNMT3A), isocitrate dehydrogenase 2 (IDH2) and ras homolog family member A (RHOA) in nodal T-cell lymphomas, including angioimmunoblastic T-cell lymphoma and peripheral T-cell lymphoma, not otherwise specified. We examined the distribution of mutations in these subtypes of mature T-/natural killer cell neoplasms to determine their clonal architecture. Targeted sequencing was performed for 71 genes in tumor-derived DNA of 87 cases. The mutations were then analyzed in a programmed death-1 (PD1)-positive population enriched with tumor cells and CD20-positive B cells purified by laser microdissection from 19 cases. TET2 and DNMT3A mutations were identified in both the PD1+ cells and the CD20+ cells in 15/16 and 4/7 cases, respectively. All the RHOA and IDH2 mutations were confined to the PD1+ cells, indicating that some, including RHOA and IDH2 mutations, being specific events in tumor cells. Notably, we found that all NOTCH1 mutations were detected only in the CD20+ cells. In conclusion, we identified both B- as well as T-cell-specific mutations, and mutations common to both T and B cells. These findings indicate the expansion of a clone after multistep and multilineal acquisition of gene mutations.
Collapse
Affiliation(s)
- T B Nguyen
- Department of Hematology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Department of Hematology, Faculty of Medicine, University of Medicine and Pharmacy, Ho Chi Minh City, Vietnam.,Stem Cell Transplantation Zone, Blood Transfusion Hematology Hospital, Ho Chi Minh City, Vietnam
| | - M Sakata-Yanagimoto
- Department of Hematology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Department of Hematology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Department of Hematology, University of Tsukuba Hospital, Tsukuba, Ibaraki, Japan
| | - Y Asabe
- Department of Hematology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - D Matsubara
- Department of Integrative Pathology, Jichii Medical University, Shimotsuke, Tochigi, Japan
| | - J Kano
- Department of Pathology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - K Yoshida
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Y Shiraishi
- Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - K Chiba
- Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - H Tanaka
- Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - S Miyano
- Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - K Izutsu
- Department of Hematology, Toranomon Hospital, Tokyo, Japan.,Okinaka Memorial Institute for Medical Research, Tokyo, Japan
| | - N Nakamura
- Department of Pathology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - K Takeuchi
- Pathology Project for Molecular Targets, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - H Miyoshi
- Department of Pathology, Kurume University, Kurume, Fukuoka, Japan
| | - K Ohshima
- Department of Pathology, Kurume University, Kurume, Fukuoka, Japan
| | - T Minowa
- Nanotechnology Innovation Station, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
| | - S Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - M Noguchi
- Department of Pathology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - S Chiba
- Department of Hematology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Department of Hematology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Department of Hematology, University of Tsukuba Hospital, Tsukuba, Ibaraki, Japan
| |
Collapse
|
313
|
Misregulation of DNA Methylation Regulators in Cancer. DNA AND HISTONE METHYLATION AS CANCER TARGETS 2017. [DOI: 10.1007/978-3-319-59786-7_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
314
|
Sperling AS, Gibson CJ, Ebert BL. The genetics of myelodysplastic syndrome: from clonal haematopoiesis to secondary leukaemia. Nat Rev Cancer 2017; 17:5-19. [PMID: 27834397 PMCID: PMC5470392 DOI: 10.1038/nrc.2016.112] [Citation(s) in RCA: 406] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Myelodysplastic syndrome (MDS) is a clonal disease that arises from the expansion of mutated haematopoietic stem cells. In a spectrum of myeloid disorders ranging from clonal haematopoiesis of indeterminate potential (CHIP) to secondary acute myeloid leukaemia (sAML), MDS is distinguished by the presence of peripheral blood cytopenias, dysplastic haematopoietic differentiation and the absence of features that define acute leukaemia. More than 50 recurrently mutated genes are involved in the pathogenesis of MDS, including genes that encode proteins involved in pre-mRNA splicing, epigenetic regulation and transcription. In this Review we discuss the molecular processes that lead to CHIP and further clonal evolution to MDS and sAML. We also highlight the ways in which these insights are shaping the clinical management of MDS, including classification schemata, prognostic scoring systems and therapeutic approaches.
Collapse
Affiliation(s)
- Adam S Sperling
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | - Christopher J Gibson
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | - Benjamin L Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| |
Collapse
|
315
|
Patnaik MM, Barraco D, Lasho TL, Finke CM, Hanson CA, Ketterling RP, Gangat N, Tefferi A. DNMT3A mutations are associated with inferior overall and leukemia-free survival in chronic myelomonocytic leukemia. Am J Hematol 2017; 92:56-61. [PMID: 27733013 DOI: 10.1002/ajh.24581] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 10/11/2016] [Indexed: 12/21/2022]
Abstract
DNMT3A mutations are seen in ∼5% of patients with chronic myelomonocytic leukemia (CMML) and thus far, have had an indeterminate prognostic impact on survival. We carried out this study to assess the prognostic impact of DNMT3A mutations on a larger informative cohort of CMML patients (n = 261). DNMT3A mutations were seen in 6% (n = 16); 56% (n = 9) male, with a median age of 64 years. Eighty-one % of DNMT3A mutations were missense, with the Arg882 mutational hot spot accounting for 63% of all changes. Five (31%) patients had an abnormal karyotype whereas concurrent gene mutations (SF3B1/SRSF2/U2AF1-56%, TET2-50%, and ASXL1-25%) were seen in all patients. Apart from a higher frequency of SF3B1 (P = 0.0001) and PTPN11 (P = 0.005) mutations and a lower frequency of SRSF2 (P = 0.004) mutations, there were no significant differences between DNMT3A mutated patients and their wildtype counterparts. In univariate analysis, survival was shorter in DNMT3A mutated (median 8 months) versus wildtype (median 27 months) patients (P = 0.0007; HR 2.9, 95% CI 1.5-5.7); with other variables of significance including lower hemoglobin (P = 0.002), higher leukocyte count (P = 0.0009), higher monocyte count (P = 0.0012), circulating blast % (P = 0.001), circulating immature myeloid cells (P = 0.01), bone marrow blast % (P = 0.045), abnormal karyotype (P = 0.02), and ASXL1 (P = 0.01) mutations. In a multivariable model that included the aforementioned variables, when both DNMT3A and ASXL1 mutations were added, only DNMT3A (P < 0.0001) and ASXL1 (P = 0.004) mutations remained significant. DNMT3A mutations were also predictive of a shortened leukemia-free survival. These findings warrant inclusion of DNMT3A mutations in molecularly integrated CMML prognostic models. Am. J. Hematol. 92:56-61, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | | | - Terra L. Lasho
- Division of Hematology; Mayo Clinic; Rochester Minnesota
| | | | - Curtis A. Hanson
- Division of Hematopathology Department of Laboratory Medicine; Mayo Clinic; Rochester Minnesota
| | - Rhett P. Ketterling
- Division of Hematopathology Department of Laboratory Medicine; Mayo Clinic; Rochester Minnesota
| | - Naseema Gangat
- Division of Hematology; Mayo Clinic; Rochester Minnesota
| | - Ayalew Tefferi
- Division of Hematology; Mayo Clinic; Rochester Minnesota
| |
Collapse
|
316
|
Shao Z, Xu P, Xu W, Li L, Liu S, Zhang R, Liu YC, Zhang C, Chen S, Luo C. Discovery of novel DNA methyltransferase 3A inhibitors via structure-based virtual screening and biological assays. Bioorg Med Chem Lett 2017; 27:342-346. [DOI: 10.1016/j.bmcl.2016.11.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/08/2016] [Accepted: 11/10/2016] [Indexed: 11/25/2022]
|
317
|
Arruga F, Gizdic B, Bologna C, Cignetto S, Buonincontri R, Serra S, Vaisitti T, Gizzi K, Vitale N, Garaffo G, Mereu E, Diop F, Neri F, Incarnato D, Coscia M, Allan J, Piva R, Oliviero S, Furman RR, Rossi D, Gaidano G, Deaglio S. Mutations in NOTCH1 PEST domain orchestrate CCL19-driven homing of chronic lymphocytic leukemia cells by modulating the tumor suppressor gene DUSP22. Leukemia 2016; 31:1882-1893. [DOI: 10.1038/leu.2016.383] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/03/2016] [Accepted: 11/28/2016] [Indexed: 12/26/2022]
|
318
|
Zheng Y, Zhang H, Wang Y, Li X, Lu P, Dong F, Pang Y, Ma S, Cheng H, Hao S, Tang F, Yuan W, Zhang X, Cheng T. Loss of Dnmt3b accelerates MLL-AF9 leukemia progression. Leukemia 2016; 30:2373-2384. [PMID: 27133822 DOI: 10.1038/leu.2016.112] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/20/2016] [Accepted: 04/25/2016] [Indexed: 12/11/2022]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous hematopoietic disorder with a poor prognosis. Abnormal DNA methylation is involved in the initiation and progression of AML. The de novo methyltransferases Dnmt3a and Dnmt3b are responsible for the generation of genomic methylation patterns. While DNMT3A is frequently mutated in hematological malignancies, DNMT3B is rarely mutated. Although it has been previously reported that Dnmt3b functions as a tumor suppressor in a mouse model of Myc-induced lymphomagenesis, its function in AML is yet to be determined. In this study, we demonstrated that deletion of Dnmt3b accelerated the progression of MLL-AF9 leukemia by increasing stemness and enhancing cell cycle progression. Gene profiling analysis revealed upregulation of the oncogenic gene set and downregulation of the cell differentiation gene set. Furthermore, loss of Dnmt3b was able to synergize with Dnmt3a deficiency in leukemia development. Taken together, these results demonstrate that Dnmt3b plays a tumor suppressive role in MLL-AF9 AML progression, thereby providing new insights into the roles of DNA methylation in leukemia development.
Collapse
Affiliation(s)
- Y Zheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - H Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Y Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - X Li
- Biodynamic Optical Imaging Center, College of Life Sciences, Peking University, Beijing, China
| | - P Lu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - F Dong
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Y Pang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - S Ma
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - H Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - S Hao
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - F Tang
- Biodynamic Optical Imaging Center, College of Life Sciences, Peking University, Beijing, China
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Peking University, Beijing, China
| | - W Yuan
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - X Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Department of Medicine, Loma Linda University, Loma Linda, CA, USA
- Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin, China
| | - T Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
- Collaborative Innovation Center for Cancer Medicine, Tianjin, China
| |
Collapse
|
319
|
Kyono Y, Sachs LM, Bilesimo P, Wen L, Denver RJ. Developmental and Thyroid Hormone Regulation of the DNA Methyltransferase 3a Gene in Xenopus Tadpoles. Endocrinology 2016; 157:4961-4972. [PMID: 27779916 PMCID: PMC5133355 DOI: 10.1210/en.2016-1465] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/21/2016] [Indexed: 11/19/2022]
Abstract
Thyroid hormone is essential for normal development in vertebrates. In amphibians, T3 controls metamorphosis by inducing tissue-specific gene regulation programs. A hallmark of T3 action is the modification of chromatin structure, which underlies changes in gene transcription. We found that mRNA for the de novo DNA methyltransferase (DNMT) dnmt3a, but not dnmt1, increased in the brain of Xenopus tadpoles during metamorphosis in parallel with plasma [T3]. Addition of T3 to the rearing water caused a time-dependent increase in dnmt3a mRNA in tadpole brain, tail, and hind limb. By analyzing data from a genome-wide analysis of T3 receptor (TR) binding in tadpole tail, we identified several putative T3 response elements (TREs) within the dnmt3a locus. Using in vitro DNA binding, transient transfection-reporter, and chromatin immunoprecipitation assays for TRs, we identified two functional TREs at -7.1 kb and +5.1 kb relative to the dnmt3a transcription start site. Sequence alignment showed that these TREs are conserved between two related frog species, X. laevis and X. tropicalis, but not with amniotes. Our previous findings showed that this gene is directly regulated by liganded TRs in mouse brain, and whereas the two mouse TREs are conserved among Eutherian mammals, they are not conserved in Xenopus species. Thus, although T3 regulation of dnmt3a may be an ancient pathway in vertebrates, the genomic sites responsible for hormone regulation may have diverged or arisen by convergent evolution. We hypothesize that direct T3 regulation of dnmt3a may be an important mechanism for modulating global changes in DNA methylation.
Collapse
Affiliation(s)
- Yasuhiro Kyono
- Neuroscience Graduate Program (Y.K.), The University of Michigan, Ann Arbor, Michigan 48109-1048; UMR-7221, Centre National de la Recherche Scientifique (L.M.S., P.B.), Muséum National d'Histoire Naturelle, 75005 Paris, France; and Department of Molecular, Cellular, and Developmental Biology (L.W., R.J.D.), The University of Michigan, Ann Arbor, Michigan 48109-1048
| | - Laurent M Sachs
- Neuroscience Graduate Program (Y.K.), The University of Michigan, Ann Arbor, Michigan 48109-1048; UMR-7221, Centre National de la Recherche Scientifique (L.M.S., P.B.), Muséum National d'Histoire Naturelle, 75005 Paris, France; and Department of Molecular, Cellular, and Developmental Biology (L.W., R.J.D.), The University of Michigan, Ann Arbor, Michigan 48109-1048
| | - Patrice Bilesimo
- Neuroscience Graduate Program (Y.K.), The University of Michigan, Ann Arbor, Michigan 48109-1048; UMR-7221, Centre National de la Recherche Scientifique (L.M.S., P.B.), Muséum National d'Histoire Naturelle, 75005 Paris, France; and Department of Molecular, Cellular, and Developmental Biology (L.W., R.J.D.), The University of Michigan, Ann Arbor, Michigan 48109-1048
| | - Luan Wen
- Neuroscience Graduate Program (Y.K.), The University of Michigan, Ann Arbor, Michigan 48109-1048; UMR-7221, Centre National de la Recherche Scientifique (L.M.S., P.B.), Muséum National d'Histoire Naturelle, 75005 Paris, France; and Department of Molecular, Cellular, and Developmental Biology (L.W., R.J.D.), The University of Michigan, Ann Arbor, Michigan 48109-1048
| | - Robert J Denver
- Neuroscience Graduate Program (Y.K.), The University of Michigan, Ann Arbor, Michigan 48109-1048; UMR-7221, Centre National de la Recherche Scientifique (L.M.S., P.B.), Muséum National d'Histoire Naturelle, 75005 Paris, France; and Department of Molecular, Cellular, and Developmental Biology (L.W., R.J.D.), The University of Michigan, Ann Arbor, Michigan 48109-1048
| |
Collapse
|
320
|
Sun L, Fang J. Epigenetic regulation of epithelial-mesenchymal transition. Cell Mol Life Sci 2016; 73:4493-4515. [PMID: 27392607 PMCID: PMC5459373 DOI: 10.1007/s00018-016-2303-1] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/10/2016] [Accepted: 06/30/2016] [Indexed: 12/12/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is an essential process for morphogenesis and organ development which reversibly enables polarized epithelial cells to lose their epithelial characteristics and to acquire mesenchymal properties. It is now evident that the aberrant activation of EMT is also a critical mechanism to endow epithelial cancer cells with migratory and invasive capabilities associated with metastatic competence. This dedifferentiation program is mediated by a small cohort of pleiotropic transcription factors which orchestrate a complex array of epigenetic mechanisms for the wide-spread changes in gene expression. Here, we review major epigenetic mechanisms with an emphasis on histone modifications and discuss their implications in EMT and tumor progression. We also highlight mechanisms underlying transcription regulation concerted by various chromatin-modifying proteins and EMT-inducing transcription factors at different molecular layers. Owing to the reversible nature of epigenetic modifications, a thorough understanding of their functions in EMT will not only provide new insights into our knowledge of cancer progression and metastasis, but also facilitate the development of diagnostic and therapeutic strategies for human malignancy.
Collapse
Affiliation(s)
- Lidong Sun
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Jia Fang
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|
321
|
DNMT3A mutations promote anthracycline resistance in acute myeloid leukemia via impaired nucleosome remodeling. Nat Med 2016; 22:1488-1495. [PMID: 27841873 PMCID: PMC5359771 DOI: 10.1038/nm.4210] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 09/16/2016] [Indexed: 01/16/2023]
Abstract
Although the majority of patients with acute myeloid leukemia (AML) initially respond to chemotherapy, many of them subsequently relapse, and the mechanistic basis for AML persistence following chemotherapy has not been determined. Recurrent somatic mutations in DNA methyltransferase 3A (DNMT3A), most frequently at arginine 882 (DNMT3AR882), have been observed in AML and in individuals with clonal hematopoiesis in the absence of leukemic transformation. Patients with DNMT3AR882 AML have an inferior outcome when treated with standard-dose daunorubicin-based induction chemotherapy, suggesting that DNMT3AR882 cells persist and drive relapse. We found that Dnmt3a mutations induced hematopoietic stem cell expansion, cooperated with mutations in the FMS-like tyrosine kinase 3 gene (Flt3ITD) and the nucleophosmin gene (Npm1c) to induce AML in vivo, and promoted resistance to anthracycline chemotherapy. In patients with AML, the presence of DNMT3AR882 mutations predicts minimal residual disease, underscoring their role in AML chemoresistance. DNMT3AR882 cells showed impaired nucleosome eviction and chromatin remodeling in response to anthracycline treatment, which resulted from attenuated recruitment of histone chaperone SPT-16 following anthracycline exposure. This defect led to an inability to sense and repair DNA torsional stress, which resulted in increased mutagenesis. Our findings identify a crucial role for DNMT3AR882 mutations in driving AML chemoresistance and highlight the importance of chromatin remodeling in response to cytotoxic chemotherapy.
Collapse
|
322
|
Di Napoli A, Jain P, Duranti E, Margolskee E, Arancio W, Facchetti F, Alobeid B, Santanelli di Pompeo F, Mansukhani M, Bhagat G. Targeted next generation sequencing of breast implant-associated anaplastic large cell lymphoma reveals mutations in JAK/STAT signalling pathway genes, TP53 and DNMT3A. Br J Haematol 2016; 180:741-744. [PMID: 27859003 DOI: 10.1111/bjh.14431] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Arianna Di Napoli
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Sapienza University, Rome, Italy
| | - Preti Jain
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York Presbyterian Hospital, New York, NY, USA
| | - Enrico Duranti
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Sapienza University, Rome, Italy
| | - Elizabeth Margolskee
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York Presbyterian Hospital, New York, NY, USA
| | - Walter Arancio
- Tumour Immunology Unit, Human Pathology Section, Department of Health Science, Palermo University, Palermo, Italy
| | - Fabio Facchetti
- Pathology Section, Department of Molecular and Translational Medicine, University-Spedali Civili of Brescia, Spedali Civili di Brescia, Brescia, Italy
| | - Bachir Alobeid
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York Presbyterian Hospital, New York, NY, USA
| | | | - Mahesh Mansukhani
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York Presbyterian Hospital, New York, NY, USA
| | - Govind Bhagat
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York Presbyterian Hospital, New York, NY, USA
| |
Collapse
|
323
|
Abstract
Cancer results from multistep pathogenesis, yet the pre-malignant states that precede the development of many hematologic malignancies have been difficult to identify. Recent genomic studies of blood DNA from tens of thousands of people have revealed the presence of remarkably common, age-associated somatic mutations in genes associated with hematologic malignancies. These somatic mutations drive the expansion from a single founding cell to a detectable hematopoietic clone. Owing to the admixed nature of blood that provides a sampling of blood cell production throughout the body, clonal hematopoiesis is a rare view into the biology of pre-malignancy and the direct effects of pre-cancerous lesions on organ dysfunction. Indeed, clonal hematopoiesis is associated not only with increased risk of hematologic malignancy, but also with cardiovascular disease and overall mortality. Here we review rapid advances in the genetic understanding of clonal hematopoiesis and nascent evidence implicating clonal hematopoiesis in malignant and non-malignant age-related disease.
Collapse
Affiliation(s)
- Max Jan
- Department of Pathology, Massachusetts General Hospital, Boston, MA
| | - Benjamin L Ebert
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Broad Institute of MIT and Harvard, Cambridge, MA.
| | - Siddhartha Jaiswal
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.
| |
Collapse
|
324
|
Massive and parallel expression profiling using microarrayed single-cell sequencing. Nat Commun 2016; 7:13182. [PMID: 27739429 PMCID: PMC5067491 DOI: 10.1038/ncomms13182] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 09/11/2016] [Indexed: 01/06/2023] Open
Abstract
Single-cell transcriptome analysis overcomes problems inherently associated with averaging gene expression measurements in bulk analysis. However, single-cell analysis is currently challenging in terms of cost, throughput and robustness. Here, we present a method enabling massive microarray-based barcoding of expression patterns in single cells, termed MASC-seq. This technology enables both imaging and high-throughput single-cell analysis, characterizing thousands of single-cell transcriptomes per day at a low cost (0.13 USD/cell), which is two orders of magnitude less than commercially available systems. Our novel approach provides data in a rapid and simple way. Therefore, MASC-seq has the potential to accelerate the study of subtle clonal dynamics and help provide critical insights into disease development and other biological processes. Currently available single-cell transcriptomic analyses are expensive and low throughput. Here, Vickovic et al. describe a new method called MASC-seq that is based on microarray barcoding of expression pattern and of low cost with high robustness.
Collapse
|
325
|
Wassef M, Margueron R. The Multiple Facets of PRC2 Alterations in Cancers. J Mol Biol 2016; 429:1978-1993. [PMID: 27742591 DOI: 10.1016/j.jmb.2016.10.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/04/2016] [Accepted: 10/05/2016] [Indexed: 12/12/2022]
Abstract
Genome sequencing of large cohorts of tumors has revealed that mutations in genes encoding chromatin regulators are frequent in cancer. However, the precise contribution of these mutations to tumor development often remains elusive. Here, we review the current knowledge concerning the alterations of the Polycomb machinery in cancer, with a particular focus on the Polycomb repressive complex 2 (PRC2), a key chromatin modifier involved in the maintenance of transcriptional silencing. A broad variety of alterations can impair PRC2 activity; yet, overall, only one type of alteration is found in a given class of tumor. We discuss the potential impact of the various types of PRC2 alterations on gene expression. We propose that the distinct set of genes regulated by PRC2, depending on tumor etiology, constrain the type of alteration of PRC2 that can fuel tumor development. Beyond this specificity, we propose that PRC2 and, more generally, chromatin regulators act as gatekeepers of transcriptional integrity, a role that often confers a tumor-suppressive function.
Collapse
Affiliation(s)
- M Wassef
- Institut Curie, PSL Research University, - 26, rue d'Ulm, 75005 Paris, France; INSERM U934, CNRS UMR3215, Paris, France, 75005
| | - R Margueron
- Institut Curie, PSL Research University, - 26, rue d'Ulm, 75005 Paris, France; INSERM U934, CNRS UMR3215, Paris, France, 75005.
| |
Collapse
|
326
|
Shahrabi S, Khosravi A, Shahjahani M, Rahim F, Saki N. Genetics and Epigenetics of Myelodysplastic Syndromes and Response to Drug Therapy: New Insights. Oncol Rev 2016; 10:311. [PMID: 28058097 PMCID: PMC5178845 DOI: 10.4081/oncol.2016.311] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 12/06/2016] [Indexed: 12/12/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are a heterogeneous group of hematologic neoplasms ocurring mostly in the elderly. The clinical outcome of MDS patients is still poor despite progress in treatment approaches. About 90% of patients harbor at least one somatic mutation. This review aimed to assess the potential of molecular abnormalities in understanding pathogenesis, prognosis, diagnosis and in guiding choice of proper therapy in MDS patients. Papers related to this topic from 2000 to 2016 in PubMed and Scopus databases were searched and studied. The most common molecular abnormalities were TET2, ASXL1 as well as molecules involved in spliceosome machinery (U2AF1, SRSF2 and SF3B1). Patients with defects in TET2 molecule show better response to treatment with azacitidine. IDH and DNMT3A mutations are associated with a good response to decitabine therapy. In addition, patients with del5q subtype harboring TP53 mutation do not show a good response to lenalidomide therapy. In general, the results of this study show that molecular abnormalities can be associated with the occurrence of a specific morphological phenotype in patients. Therefore, considering the morphology of patients, different gene profiling methods can be selected to choice the most appropriate therapeutic measure in these patients in addition to faster and more cost-effective diagnosis of molecular abnormalities.
Collapse
Affiliation(s)
- Saeid Shahrabi
- Department of Biochemistry and Hematology, Semnan University of Medical Sciences, Semnan
| | - Abbas Khosravi
- Health Research Institute, Thalassemia and Hemoglobinopathy Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz
| | - Mohammad Shahjahani
- Colestan Hospital Clinical Research Development Unit. Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fakher Rahim
- Health Research Institute, Thalassemia and Hemoglobinopathy Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz
| | - Najmaldin Saki
- Health Research Institute, Thalassemia and Hemoglobinopathy Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz
- Colestan Hospital Clinical Research Development Unit. Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
327
|
Benetatos L, Vartholomatos G. On the potential role of DNMT1 in acute myeloid leukemia and myelodysplastic syndromes: not another mutated epigenetic driver. Ann Hematol 2016; 95:1571-82. [PMID: 26983918 DOI: 10.1007/s00277-016-2636-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/04/2016] [Indexed: 12/19/2022]
Abstract
DNA methylation is the most common epigenetic modification in the mammalian genome. DNA methylation is governed by the DNA methyltransferases mainly DNMT1, DNMT3A, and DNMT3B. DNMT1 methylates hemimethylated DNA ensuring accurate DNA methylation maintenance. DNMT1 is involved in the proper differentiation of hematopoietic stem cells (HSCs) through the interaction with effector molecules. DNMT1 is deregulated in acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) as early as the leukemic stem cell stage. Through the interaction with fundamental transcription factors, non-coding RNAs, fusion oncogenes and by modulating core members of signaling pathways, it can affect leukemic cells biology. DNMT1 action might be also catalytic-independent highlighting a methylation-independent mode of action. In this review, we have gathered some current facts of DNMT1 role in AML and MDS and we also propose some perspectives for future studies.
Collapse
|
328
|
Persistent DNMT3A mutation burden in DNMT3A mutated adult cytogenetically normal acute myeloid leukemia patients in long-term remission. Leuk Res 2016; 49:102-7. [DOI: 10.1016/j.leukres.2016.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 08/09/2016] [Accepted: 09/01/2016] [Indexed: 11/22/2022]
|
329
|
Yao X, Xing M, Ooi WF, Tan P, Teh BT. Epigenomic Consequences of Coding and Noncoding Driver Mutations. Trends Cancer 2016; 2:585-605. [PMID: 28741489 DOI: 10.1016/j.trecan.2016.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/30/2016] [Accepted: 09/02/2016] [Indexed: 12/27/2022]
Abstract
Chromatin alterations are integral to the pathogenic process of cancer, as demonstrated by recent discoveries of frequent mutations in chromatin-modifier genes and aberrant DNA methylation states in different cancer types. Progress is being made on elucidating how chromatin alterations, and how proteins catalyzing these alterations, mechanistically contribute to tissue-specific tumorigenesis. In parallel, technologies enabling the genome-wide profiling of histone modifications have revealed the existence of noncoding driver genetic alterations in cancer. In this review, we survey the current knowledge of coding and noncoding cancer drivers, and discuss their impact on the chromatin landscape. Translational implications of these findings for novel cancer therapies are also presented.
Collapse
Affiliation(s)
- Xiaosai Yao
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore
| | - Manjie Xing
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 5 Lower Kent Ridge Road, Singapore 119074, Singapore; Cancer and Stem Cell Biology Program, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Wen Fong Ooi
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore
| | - Patrick Tan
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore; Cancer and Stem Cell Biology Program, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore; National Cancer Centre, 11 Hospital Drive, Singapore 169610, Singapore; Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, #12-01, Singapore 117599, Singapore; SingHealth/Duke-NUS Precision Medicine Institute, Singapore 168752, Singapore.
| | - Bin Tean Teh
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore; National Cancer Centre, 11 Hospital Drive, Singapore 169610, Singapore; Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, #12-01, Singapore 117599, Singapore; SingHealth/Duke-NUS Precision Medicine Institute, Singapore 168752, Singapore; Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673.
| |
Collapse
|
330
|
Haney SL, Upchurch GM, Opavska J, Klinkebiel D, Hlady RA, Roy S, Dutta S, Datta K, Opavsky R. Dnmt3a Is a Haploinsufficient Tumor Suppressor in CD8+ Peripheral T Cell Lymphoma. PLoS Genet 2016; 12:e1006334. [PMID: 27690235 PMCID: PMC5045215 DOI: 10.1371/journal.pgen.1006334] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 08/31/2016] [Indexed: 12/29/2022] Open
Abstract
DNA methyltransferase 3A (DNMT3A) is an enzyme involved in DNA methylation that is frequently mutated in human hematologic malignancies. We have previously shown that inactivation of Dnmt3a in hematopoietic cells results in chronic lymphocytic leukemia in mice. Here we show that 12% of Dnmt3a-deficient mice develop CD8+ mature peripheral T cell lymphomas (PTCL) and 29% of mice are affected by both diseases. 10% of Dnmt3a+/- mice develop lymphomas, suggesting that Dnmt3a is a haploinsufficient tumor suppressor in PTCL. DNA methylation was deregulated genome-wide with 10-fold more hypo- than hypermethylated promoters and enhancers, demonstrating that hypomethylation is a major event in the development of PTCL. Hypomethylated promoters were enriched for binding sites of transcription factors AML1, NF-κB and OCT1, implying the transcription factors potential involvement in Dnmt3a-associated methylation. Whereas 71 hypomethylated genes showed an increased expression in PTCL, only 3 hypermethylated genes were silenced, suggesting that cancer-specific hypomethylation has broader effects on the transcriptome of cancer cells than hypermethylation. Interestingly, transcriptomes of Dnmt3a+/- and Dnmt3aΔ/Δ lymphomas were largely conserved and significantly overlapped with those of human tumors. Importantly, we observed downregulation of tumor suppressor p53 in Dnmt3a+/- and Dnmt3aΔ/Δ lymphomas as well as in pre-tumor thymocytes from 9 months old but not 6 weeks old Dnmt3a+/- tumor-free mice, suggesting that p53 downregulation is chronologically an intermediate event in tumorigenesis. Decrease in p53 is likely an important event in tumorigenesis because its overexpression inhibited proliferation in mouse PTCL cell lines, suggesting that low levels of p53 are important for tumor maintenance. Altogether, our data link the haploinsufficient tumor suppressor function of Dnmt3a in the prevention of mouse mature CD8+ PTCL indirectly to a bona fide tumor suppressor of T cell malignancies p53. Global deregulation of cytosine methylation is an epigenetic hallmark of hematologic malignancies that may promote tumorigenesis by silencing tumor suppressor genes, upregulating oncogenes, and inducing genomic instability. DNA methyltransferase 3a (DNMT3A) is one of the three catalytically active enzymes responsible for cytosine methylation and one of the most frequently mutated genes in myeloid and T cell malignancies. Its role in malignant hematopoiesis, however, remains poorly understood. Here we show that Dnmt3a is a haploinsufficient tumor suppressor in the prevention of peripheral T cell lymphomas in mice. Our molecular studies identified a large number of genes deregulated in the absence of Dnmt3a that may be putative drivers of oncogenesis. We also show that downregulation of the tumor suppressor p53 is an important event in the development of mouse T cell lymphomas. Thus, this study establishes a novel mouse model to elucidate how epigenetic deregulation of transcription contributes to the pathogenesis of T cell lymphomas.
Collapse
Affiliation(s)
- Staci L. Haney
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - G. Michael Upchurch
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Jana Opavska
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - David Klinkebiel
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Ryan A. Hlady
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Sohini Roy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Samikshan Dutta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Kaustubh Datta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Rene Opavsky
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Center for Leukemia and Lymphoma Research, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
331
|
Possible role of intragenic DNA hypermethylation in gene silencing of the tumor suppressor gene NR4A3 in acute myeloid leukemia. Leuk Res 2016; 50:85-94. [PMID: 27697661 DOI: 10.1016/j.leukres.2016.09.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 08/09/2016] [Accepted: 09/26/2016] [Indexed: 12/29/2022]
Abstract
Expression of the tumor suppressor gene NR4A3 is silenced in the blasts of acute myeloid leukemia (AML), irrespective of the karyotype. Although the transcriptional reactivation of NR4A3 is considered to have a broad-spectrum anti-leukemic effect, the therapeutic modalities targeting this gene have been hindered by our minimal understanding of the transcriptional mechanisms regulating its expression, particularly in human AML. Here we show the role of intragenic DNA hypermethylation in reducing the expression of NR4A3 in AML. Bisulfite sequencing analysis revealed that CpG sites at the intragenic region encompassing exon 3 of NR4A3, but not the promoter region, are hypermethylated in AML cell lines and primary AML cells. A DNA methyltransferase inhibitor restored the expression of NR4A3 following a reduction in DNA methylation levels at intragenic CpG sites. The in silico data revealed an enrichment of H3K4me1 and H2A.Z at exon 3 of NR4A3 in human non-malignant cells but that was excluded specifically in leukemia cells with CpG hypermethylation. This suggests that exon 3 represents a functional regulatory element involved in the transcriptional regulation of NR4A3. Our findings improve the current understanding of the mechanism underlying NR4A3 silencing and facilitate the development of NR4A3-targeted therapy.
Collapse
|
332
|
Expression of immunoproteasome genes is regulated by cell-intrinsic and -extrinsic factors in human cancers. Sci Rep 2016; 6:34019. [PMID: 27659694 PMCID: PMC5034284 DOI: 10.1038/srep34019] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 09/06/2016] [Indexed: 01/07/2023] Open
Abstract
Based on transcriptomic analyses of thousands of samples from The Cancer Genome Atlas, we report that expression of constitutive proteasome (CP) genes (PSMB5, PSMB6, PSMB7) and immunoproteasome (IP) genes (PSMB8, PSMB9, PSMB10) is increased in most cancer types. In breast cancer, expression of IP genes was determined by the abundance of tumor infiltrating lymphocytes and high expression of IP genes was associated with longer survival. In contrast, IP upregulation in acute myeloid leukemia (AML) was a cell-intrinsic feature that was not associated with longer survival. Expression of IP genes in AML was IFN-independent, correlated with the methylation status of IP genes, and was particularly high in AML with an M5 phenotype and/or MLL rearrangement. Notably, PSMB8 inhibition led to accumulation of polyubiquitinated proteins and cell death in IPhigh but not IPlow AML cells. Co-clustering analysis revealed that genes correlated with IP subunits in non-M5 AMLs were primarily implicated in immune processes. However, in M5 AML, IP genes were primarily co-regulated with genes involved in cell metabolism and proliferation, mitochondrial activity and stress responses. We conclude that M5 AML cells can upregulate IP genes in a cell-intrinsic manner in order to resist cell stress.
Collapse
|
333
|
Abstract
Understanding the molecular pathogenesis of peripheral T cell lymphomas (PTCLs) has lagged behind that of B cell lymphomas due to disease rarity. However, novel approaches are gradually clarifying these mechanisms, and gene profiling has identified specific signaling pathways governing PTCL cell survival and growth. For example, genetic alterations have been discovered, including signal transducer and activator of transcription (STAT)3 and STAT5b mutations in several PTCLs, disease-specific ras homolog family member A (RHOA) mutations in angioimmunoblastic T cell lymphoma (AITL), and recurrent translocations at the dual specificity phosphatase 22 (DUSP22) locus in anaplastic lymphoma receptor tyrosine kinase (ALK)-negative anaplastic large cell lymphomas (ALCLs). Intriguingly, some PTCL-relevant mutations are seen in apparently normal blood cells as well as tumor cells, while others are confined to tumor cells. These data have dramatically changed our understanding of PTCL origins: once considered to originate from mature T lymphocytes, some PTCLs are now believed to emerge from immature hematopoietic progenitor cells.
Collapse
Affiliation(s)
- Mamiko Sakata-Yanagimoto
- Department of Hematology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Shigeru Chiba
- Department of Hematology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| |
Collapse
|
334
|
Ho C, Kluk MJ. Molecular Pathology: Predictive, Prognostic, and Diagnostic Markers in Lymphoid Neoplasms. Surg Pathol Clin 2016; 9:489-521. [PMID: 27523974 DOI: 10.1016/j.path.2016.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Lymphoid neoplasms show great diversity in morphology, immunophenotypic profile, and postulated cells of origin, which also reflects the variety of genetic alterations within this group of tumors. This review discusses many of the currently known genetic alterations in selected mature B-cell and T-cell lymphoid neoplasms, and their significance as diagnostic, prognostic, and therapeutic markers. Given the rapidly increasing number of genetic alterations that have been described in this group of tumors, and that the clinical significance of many is still being studied, this is not an entirely exhaustive review of all of the genetic alterations that have been reported.
Collapse
Affiliation(s)
- Caleb Ho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Michael J Kluk
- Department of Pathology, Weill Cornell Medical College, 525 East 68th Street, Mailbox #79, F-540, New York, NY 10065, USA.
| |
Collapse
|
335
|
Kyono Y, Subramani A, Ramadoss P, Hollenberg AN, Bonett RM, Denver RJ. Liganded Thyroid Hormone Receptors Transactivate the DNA Methyltransferase 3a Gene in Mouse Neuronal Cells. Endocrinology 2016; 157:3647-57. [PMID: 27387481 PMCID: PMC5007891 DOI: 10.1210/en.2015-1529] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 07/01/2016] [Indexed: 12/11/2022]
Abstract
Thyroid hormone (T3) is essential for proper neurological development. The hormone, bound to its receptors, regulates gene transcription in part by modulating posttranslational modifications of histones. Methylation of DNA, which is established by the de novo DNA methyltransferase (DNMT)3a and DNMT3b, and maintained by DNMT1 is another epigenetic modification influencing gene transcription. The expression of Dnmt3a, but not other Dnmt genes, increases in mouse brain in parallel with the postnatal rise in plasma [T3]. We found that treatment of the mouse neuroblastoma cell line Neuro2a[TRβ1] with T3 caused rapid induction of Dnmt3a mRNA, which was resistant to protein synthesis inhibition, supporting that it is a direct T3-response gene. Injection of T3 into postnatal day 6 mice increased Dnmt3a mRNA in the brain by 1 hour. Analysis of two chromatin immunoprecipitation-sequencing datasets, and targeted analyses using chromatin immunoprecipitation, transfection-reporter assays, and in vitro DNA binding identified 2 functional T3-response elements (TREs) at the mouse Dnmt3a locus located +30.3 and +49.3 kb from the transcription start site. Thyroid hormone receptors associated with both of these regions in mouse brain chromatin, but with only 1 (+30.3 kb) in Neuro2a[TRβ1] cells. Deletion of the +30.3-kb TRE using CRISPR/Cas9 genome editing eliminated or strongly reduced the Dnmt3a mRNA response to T3. Bioinformatics analysis showed that both TREs are highly conserved among eutherian mammals. Thyroid regulation of Dnmt3a may be an evolutionarily conserved mechanism for modulating global changes in DNA methylation during postnatal neurological development.
Collapse
Affiliation(s)
- Yasuhiro Kyono
- Neuroscience Graduate Program (Y.K., R.J.D.) and Department of Molecular, Cellular and Developmental Biology (A.S., R.J.D.), The University of Michigan, Ann Arbor, Michigan 48109; Division of Endocrinology, Diabetes and Metabolism (P.R., A.N.H.), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115; and Department of Biological Science (R.M.B.), The University of Tulsa, Tulsa, Oklahoma 74104
| | - Arasakumar Subramani
- Neuroscience Graduate Program (Y.K., R.J.D.) and Department of Molecular, Cellular and Developmental Biology (A.S., R.J.D.), The University of Michigan, Ann Arbor, Michigan 48109; Division of Endocrinology, Diabetes and Metabolism (P.R., A.N.H.), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115; and Department of Biological Science (R.M.B.), The University of Tulsa, Tulsa, Oklahoma 74104
| | - Preeti Ramadoss
- Neuroscience Graduate Program (Y.K., R.J.D.) and Department of Molecular, Cellular and Developmental Biology (A.S., R.J.D.), The University of Michigan, Ann Arbor, Michigan 48109; Division of Endocrinology, Diabetes and Metabolism (P.R., A.N.H.), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115; and Department of Biological Science (R.M.B.), The University of Tulsa, Tulsa, Oklahoma 74104
| | - Anthony N Hollenberg
- Neuroscience Graduate Program (Y.K., R.J.D.) and Department of Molecular, Cellular and Developmental Biology (A.S., R.J.D.), The University of Michigan, Ann Arbor, Michigan 48109; Division of Endocrinology, Diabetes and Metabolism (P.R., A.N.H.), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115; and Department of Biological Science (R.M.B.), The University of Tulsa, Tulsa, Oklahoma 74104
| | - Ronald M Bonett
- Neuroscience Graduate Program (Y.K., R.J.D.) and Department of Molecular, Cellular and Developmental Biology (A.S., R.J.D.), The University of Michigan, Ann Arbor, Michigan 48109; Division of Endocrinology, Diabetes and Metabolism (P.R., A.N.H.), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115; and Department of Biological Science (R.M.B.), The University of Tulsa, Tulsa, Oklahoma 74104
| | - Robert J Denver
- Neuroscience Graduate Program (Y.K., R.J.D.) and Department of Molecular, Cellular and Developmental Biology (A.S., R.J.D.), The University of Michigan, Ann Arbor, Michigan 48109; Division of Endocrinology, Diabetes and Metabolism (P.R., A.N.H.), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115; and Department of Biological Science (R.M.B.), The University of Tulsa, Tulsa, Oklahoma 74104
| |
Collapse
|
336
|
Upchurch GM, Haney SL, Opavsky R. Aberrant Promoter Hypomethylation in CLL: Does It Matter for Disease Development? Front Oncol 2016; 6:182. [PMID: 27563627 PMCID: PMC4980682 DOI: 10.3389/fonc.2016.00182] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/27/2016] [Indexed: 12/11/2022] Open
Abstract
Over the last 30 years, studies of aberrant DNA methylation in hematologic malignancies have been dominated by the primary focus of understanding promoter hypermethylation. These efforts not only resulted in a better understanding of the basis of epigenetic silencing of tumor suppressor genes but also resulted in approval of hypomethylating agents for the treatment of several malignancies, such as myelodysplastic syndrome and acute myeloid leukemia. Recent advances in global methylation profiling coupled with the use of mouse models suggest that aberrant promoter hypomethylation is also a frequent event in hematologic malignancies, particularly in chronic lymphocytic leukemia (CLL). Promoter hypomethylation affects gene expression and, therefore, may play an important role in disease pathogenesis. Here, we review recent findings and discuss the potential involvement of aberrant promoter hypomethylation in CLL.
Collapse
Affiliation(s)
- Garland Michael Upchurch
- Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center , Omaha, NE , USA
| | - Staci L Haney
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center , Omaha, NE , USA
| | - Rene Opavsky
- Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA; Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA; Center for Leukemia and Lymphoma Research, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
337
|
Abstract
Enhancer elements function as the logic gates of the genetic regulatory circuitry. One of their most important functions is the integration of extracellular signals with intracellular cell fate information to generate cell type-specific transcriptional responses. Mutations occurring in cancer often misregulate enhancers that normally control the signal-dependent expression of growth-related genes. This misregulation can result from trans-acting mechanisms, such as activation of the transcription factors or epigenetic regulators that control enhancer activity, or can be caused in cis by direct mutations that alter the activity of the enhancer or its target gene specificity. These processes can generate tumour type-specific super-enhancers and establish a 'locked' gene regulatory state that drives the uncontrolled proliferation of cancer cells. Here, we review the role of enhancers in cancer, and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Inderpreet Sur
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, and Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Jussi Taipale
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, and Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm SE-171 77, Sweden
- Genome-Scale Biology Program, University of Helsinki, Biomedicum, PO Box 63, Helsinki 00014, Finland
| |
Collapse
|
338
|
Abstract
Mammalian embryonic development is a tightly regulated process that, from a single zygote, produces a large number of cell types with hugely divergent functions. Distinct cellular differentiation programmes are facilitated by tight transcriptional and epigenetic regulation. However, the contribution of epigenetic regulation to tissue homeostasis after the completion of development is less well understood. In this Review, we explore the effects of epigenetic dysregulation on adult stem cell function. We conclude that, depending on the tissue type and the epigenetic regulator affected, the consequences range from negligible to stem cell malfunction and disruption of tissue homeostasis, which may predispose to diseases such as cancer.
Collapse
|
339
|
Lu R, Wang P, Parton T, Zhou Y, Chrysovergis K, Rockowitz S, Chen WY, Abdel-Wahab O, Wade PA, Zheng D, Wang GG. Epigenetic Perturbations by Arg882-Mutated DNMT3A Potentiate Aberrant Stem Cell Gene-Expression Program and Acute Leukemia Development. Cancer Cell 2016; 30:92-107. [PMID: 27344947 PMCID: PMC4945461 DOI: 10.1016/j.ccell.2016.05.008] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 03/03/2016] [Accepted: 05/19/2016] [Indexed: 12/19/2022]
Abstract
DNA methyltransferase 3A (DNMT3A) is frequently mutated in hematological cancers; however, the underlying oncogenic mechanism remains elusive. Here, we report that the DNMT3A mutational hotspot at Arg882 (DNMT3A(R882H)) cooperates with NRAS mutation to transform hematopoietic stem/progenitor cells and induce acute leukemia development. Mechanistically, DNMT3A(R882H) directly binds to and potentiates transactivation of stemness genes critical for leukemogenicity including Meis1, Mn1, and Hoxa gene cluster. DNMT3A(R882H) induces focal epigenetic alterations, including CpG hypomethylation and concurrent gain of active histone modifications, at cis-regulatory elements such as enhancers to facilitate gene transcription. CRISPR/Cas9-mediated ablation of a putative Meis1 enhancer carrying DNMT3A(R882H)-induced DNA hypomethylation impairs Meis1 expression. Importantly, DNMT3A(R882H)-induced gene-expression programs can be repressed through Dot1l inhibition, providing an attractive therapeutic strategy for DNMT3A-mutated leukemias.
Collapse
MESH Headings
- Animals
- Arginine/genetics
- DNA (Cytosine-5-)-Methyltransferases/genetics
- DNA Methylation
- DNA Methyltransferase 3A
- Epigenesis, Genetic
- Gene Expression Profiling
- Gene Expression Regulation, Leukemic
- Genes, ras
- Homeodomain Proteins/genetics
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Methyltransferases/antagonists & inhibitors
- Mice
- Mutation
- Myeloid Ecotropic Viral Integration Site 1 Protein
- Neoplasm Proteins/genetics
- Neoplasms, Experimental
- Promoter Regions, Genetic
- Stem Cells/cytology
- Stem Cells/pathology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Rui Lu
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Ping Wang
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Trevor Parton
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Yang Zhou
- Department of Pathology and Laboratory Medicine, McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Kaliopi Chrysovergis
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, NC 27709, USA
| | - Shira Rockowitz
- Departments of Genetics and Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Wei-Yi Chen
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Paul A Wade
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, NC 27709, USA
| | - Deyou Zheng
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Departments of Genetics and Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
340
|
Chisholm RH, Lorenzi T, Clairambault J. Cell population heterogeneity and evolution towards drug resistance in cancer: Biological and mathematical assessment, theoretical treatment optimisation. Biochim Biophys Acta Gen Subj 2016; 1860:2627-45. [PMID: 27339473 DOI: 10.1016/j.bbagen.2016.06.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/25/2016] [Accepted: 06/05/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND Drug-induced drug resistance in cancer has been attributed to diverse biological mechanisms at the individual cell or cell population scale, relying on stochastically or epigenetically varying expression of phenotypes at the single cell level, and on the adaptability of tumours at the cell population level. SCOPE OF REVIEW We focus on intra-tumour heterogeneity, namely between-cell variability within cancer cell populations, to account for drug resistance. To shed light on such heterogeneity, we review evolutionary mechanisms that encompass the great evolution that has designed multicellular organisms, as well as smaller windows of evolution on the time scale of human disease. We also present mathematical models used to predict drug resistance in cancer and optimal control methods that can circumvent it in combined therapeutic strategies. MAJOR CONCLUSIONS Plasticity in cancer cells, i.e., partial reversal to a stem-like status in individual cells and resulting adaptability of cancer cell populations, may be viewed as backward evolution making cancer cell populations resistant to drug insult. This reversible plasticity is captured by mathematical models that incorporate between-cell heterogeneity through continuous phenotypic variables. Such models have the benefit of being compatible with optimal control methods for the design of optimised therapeutic protocols involving combinations of cytotoxic and cytostatic treatments with epigenetic drugs and immunotherapies. GENERAL SIGNIFICANCE Gathering knowledge from cancer and evolutionary biology with physiologically based mathematical models of cell population dynamics should provide oncologists with a rationale to design optimised therapeutic strategies to circumvent drug resistance, that still remains a major pitfall of cancer therapeutics. This article is part of a Special Issue entitled "System Genetics" Guest Editor: Dr. Yudong Cai and Dr. Tao Huang.
Collapse
Affiliation(s)
- Rebecca H Chisholm
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Tommaso Lorenzi
- School of Mathematics and Statistics, University of St Andrews, North Haugh, KY16 9SS, St Andrews, Scotland, United Kingdom. http://www.tommasolorenzi.com
| | - Jean Clairambault
- INRIA Paris, MAMBA team, 2, rue Simone Iff, CS 42112, 75589 Paris Cedex 12, France; Sorbonne Universités, UPMC Univ. Paris 6, UMR 7598, Laboratoire Jacques-Louis Lions, Boîte courrier 187, 4 Place Jussieu, 75252 Paris Cedex 05, France.
| |
Collapse
|
341
|
Yang L, Rodriguez B, Mayle A, Park HJ, Lin X, Luo M, Jeong M, Curry CV, Kim SB, Ruau D, Zhang X, Zhou T, Zhou M, Rebel VI, Challen GA, Gottgens B, Lee JS, Rau R, Li W, Goodell MA. DNMT3A Loss Drives Enhancer Hypomethylation in FLT3-ITD-Associated Leukemias. Cancer Cell 2016; 29:922-934. [PMID: 27300438 PMCID: PMC4908977 DOI: 10.1016/j.ccell.2016.05.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 02/29/2016] [Accepted: 05/10/2016] [Indexed: 10/21/2022]
Abstract
DNMT3A, the gene encoding the de novo DNA methyltransferase 3A, is among the most frequently mutated genes in hematologic malignancies. However, the mechanisms through which DNMT3A normally suppresses malignancy development are unknown. Here, we show that DNMT3A loss synergizes with the FLT3 internal tandem duplication in a dose-influenced fashion to generate rapid lethal lymphoid or myeloid leukemias similar to their human counterparts. Loss of DNMT3A leads to reduced DNA methylation, predominantly at hematopoietic enhancer regions in both mouse and human samples. Myeloid and lymphoid diseases arise from transformed murine hematopoietic stem cells. Broadly, our findings support a role for DNMT3A as a guardian of the epigenetic state at enhancer regions, critical for inhibition of leukemic transformation.
Collapse
Affiliation(s)
- Liubin Yang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Benjamin Rodriguez
- Dan L. Duncan Cancer Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Allison Mayle
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Hyun Jung Park
- Dan L. Duncan Cancer Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Xueqiu Lin
- Dan L. Duncan Cancer Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Bioinformatics, School of Life sciences and Technology, Tongji University, Shanghai 20092, China
| | - Min Luo
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Mira Jeong
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Choladda V. Curry
- Department of Pathology and Immunology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Sang-Bae Kim
- Department of Systems Biology, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - David Ruau
- Wellcome Trust/MRC Stem Cell Institute, Cambridge CB2 0XY, UK
| | - Xiaotian Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Ting Zhou
- Greehey Children's Cancer Research Institute and Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | - Vivienne I. Rebel
- Greehey Children's Cancer Research Institute and Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Grant A. Challen
- Division of Oncology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | - Ju-Seog Lee
- Department of Systems Biology, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Rachel Rau
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Wei Li
- Dan L. Duncan Cancer Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Margaret A. Goodell
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Dan L. Duncan Cancer Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Systems Biology, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
342
|
Siraj AK, Masoodi T, Bu R, Beg S, Al-Sobhi SS, Al-Dayel F, Al-Dawish M, Alkuraya FS, Al-Kuraya KS. Genomic Profiling of Thyroid Cancer Reveals a Role for Thyroglobulin in Metastasis. Am J Hum Genet 2016; 98:1170-1180. [PMID: 27236916 DOI: 10.1016/j.ajhg.2016.04.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/26/2016] [Indexed: 01/30/2023] Open
Abstract
Papillary thyroid carcinoma (PTC) has a wide geographic variation in incidence; it is most common in Saudi Arabia, where it is only second to breast cancer as the most common cancer among females. Genomic profiling of PTC from Saudi Arabia has not been attempted previously. We performed whole-exome sequencing of 101 PTC samples and the corresponding genomic DNA to identify genes with recurrent somatic mutations, then sequenced these genes by using a next-generation gene-panel approach in an additional 785 samples. In addition to BRAF, N-RAS, and H-RAS, which have previously been shown to be recurrently mutated in PTC, our analysis highlights additional genes, including thyroglobulin (TG), which harbored somatic mutations in 3% of the entire cohort. Surprisingly, although TG mutations were not exclusive to mutations in the RAS-MAP kinase pathway, their presence was associated with a significantly worse clinical outcome, which suggests a pathogenic role beyond driving initial oncogenesis. Analysis of metastatic PTC tissue revealed significant enrichment for TG mutations (p < 0.001), including events of apparent clonal expansion. Our results suggest a previously unknown role of TG somatic mutations in the pathogenesis of PTC and its malignant evolution.
Collapse
|
343
|
Wiedmeier JE, Kato C, Zhang Z, Lee H, Dunlap J, Nutt E, Rattray R, McKay S, Eide C, Press R, Mori M, Druker B, Dao KH. Clonal hematopoiesis as determined by the HUMARA assay is a marker for acquired mutations in epigenetic regulators in older women. Exp Hematol 2016; 44:857-865.e5. [PMID: 27235757 DOI: 10.1016/j.exphem.2016.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 05/12/2016] [Accepted: 05/12/2016] [Indexed: 01/07/2023]
Abstract
Recent large cohort studies revealed that healthy older individuals harbor somatic mutations that increase their risk for hematologic malignancy and all-cause cardiovascular deaths. The majority of these mutations are in chromatin and epigenetic regulatory genes (CERGs). CERGs play a key role in regulation of DNA methylation (DNMT3A and TET2) and histone function (ASXL1) and in clonal proliferation of hematopoietic stem cells. We hypothesize that older women manifesting clonal hematopoiesis, defined here as a functional phenomenon in which a hematopoietic stem cell has acquired a survival and proliferative advantage, harbor a higher frequency of somatic mutations in CERGs. The human androgen receptor gene (HUMARA) assay was used in our study to detect the presence of nonrandom X inactivation in women, a marker for clonal hematopoiesis. In our pilot study, we tested 127 blood samples from women ≥65 years old without a history of invasive cancer or hematologic malignancies. Applying stringent qualitative criteria, we found that 26% displayed clonal hematopoiesis; 52.8% displayed polyclonal hematopoiesis; and 21.3% had indeterminate patterns (too close to call by qualitative assessment). Using Illumina MiSeq next-generation sequencing, we identified somatic mutations in CERGs in 15.2% of subjects displaying clonal hematopoiesis (three ASXL1 and two DNMT3A mutations with an average variant allele frequency of 15.7%, range: 6.3%-23.3%). In a more limited sequencing analysis, we evaluated the frequency of ASXL1 mutations by Sanger sequencing and found mutations in 9.7% of the clonal samples and 0% of the polyclonal samples. By comparing several recent studies (with some caveats as described), we determined the fold enrichment of detecting CERG mutations by using the HUMARA assay as a functional screen for clonal hematopoiesis. We conclude that a functional assay of clonal hematopoiesis is enriching for older women with somatic mutations in CERGs, particularly for ASXL1 and TET2 mutations and less so for DNMT3A mutations.
Collapse
Affiliation(s)
- Julia Erin Wiedmeier
- Knight Cancer Institute, Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR, USA
| | - Catherine Kato
- Knight Cancer Institute, Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR, USA
| | - Zhenzhen Zhang
- School of Public Health, Oregon Health & Science University, Portland, OR, USA
| | - Hyunjung Lee
- Knight Cancer Institute, Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR, USA
| | - Jennifer Dunlap
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; Department of Pathology, Oregon Health & Science University, Portland, OR, USA
| | - Eric Nutt
- Department of Pathology, Oregon Health & Science University, Portland, OR, USA
| | - Rogan Rattray
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; Department of Pathology, Oregon Health & Science University, Portland, OR, USA
| | - Sarah McKay
- Knight Cancer Institute, Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR, USA
| | - Christopher Eide
- Knight Cancer Institute, Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR, USA; Howard Hughes Medical Institute, Portland, OR, USA
| | - Richard Press
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; Department of Pathology, Oregon Health & Science University, Portland, OR, USA
| | - Motomi Mori
- School of Public Health, Oregon Health & Science University, Portland, OR, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Brian Druker
- Knight Cancer Institute, Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR, USA; Howard Hughes Medical Institute, Portland, OR, USA
| | - Kim-Hien Dao
- Knight Cancer Institute, Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
344
|
Yuan XQ, Peng L, Zeng WJ, Jiang BY, Li GC, Chen XP. DNMT3A R882 Mutations Predict a Poor Prognosis in AML: A Meta-Analysis From 4474 Patients. Medicine (Baltimore) 2016; 95:e3519. [PMID: 27149454 PMCID: PMC4863771 DOI: 10.1097/md.0000000000003519] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
DNA (cytosine-5)-methyltransferase 3 alpha (DNMT3A) mutations were widely believed to be independently associated with inferior prognosis in acute myeloid leukemia (AML) patients. As dominant missense alterations in DNMT3A mutations, R882 mutations cause the focal hypomethylation phenotype. However, there remains debate on the influence of R882 mutations on AML prognosis. Thus, this meta-analysis aimed at further illustrating the prognostic power of DNMT3A R882 mutations in AML patients.Eligible studies were identified from 5 databases containing PubMed, Embase, Web of Science, Clinical Trials, and the Cochrane Library (up to October 25, 2015). Effects (hazard ratios [HRs] with 95% confidence interval [CI]) of relapse-free survival (RFS) and overall survival (OS) were pooled to estimate the prognostic power of mutant DNMT3A R882 in overall patients and subgroups of AML patients.Eight competent studies with 4474 AML patients including 694 with DNMT3A R882 mutations were included. AML patients with DNMT3A R882 mutations showed significant shorter RFS (HR = 1.40, 95% CI = 1.24-1.59, P < 0.001) and OS (HR = 1.47, 95% CI = 1.17-1.86, P = 0.001) in the overall population. DNMT3A R882 mutations predicted worse RFS and OS among the subgroups of patients under age 60 (RFS: HR = 1.44, 95% CI = 1.25-1.66, P < 0.001; OS: HR = 1.48, 95% CI = 1.15-1.90, P = 0.002), over age 60 (RFS: HR = 2.03, 95% CI = 1.40-2.93, P < 0.001; OS: HR = 1.85, 95% CI = 1.36-2.53, P < 0.001), cytogenetically normal (CN)-AML (RFS: HR = 1.52, 95% CI = 1.26-1.83, P < 0.001; OS: HR = 1.67, 95% CI = 1.16-2.41, P = 0.006), and non-CN-AML (RFS: HR = 1.96, 95% CI = 1.20-3.21, P = 0.006; OS: HR = 2.51, 95% CI = 1.52-4.15, P = 0.0038).DNMT3A R882 mutations possessed significant unfavorable prognostic influence on RFS and OS in AML patients.
Collapse
Affiliation(s)
- Xiao-Qing Yuan
- From the Department of Clinical Pharmacology, Xiangya Hospital; Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics (X-QY, W-JZ, X-PC); Cancer Research Institute, Central South University; Key Laboratory of Carcinogenesis, National Health and Family Planning Commission; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha (LP, B-YJ, G-CL); and Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang, P.R. China (X-PC)
| | | | | | | | | | | |
Collapse
|
345
|
Haney SL, Upchurch GM, Opavska J, Klinkebiel D, Hlady RA, Suresh A, Pirruccello SJ, Shukla V, Lu R, Costinean S, Rizzino A, Karpf AR, Joshi S, Swanson P, Opavsky R. Promoter Hypomethylation and Expression Is Conserved in Mouse Chronic Lymphocytic Leukemia Induced by Decreased or Inactivated Dnmt3a. Cell Rep 2016; 15:1190-201. [PMID: 27134162 DOI: 10.1016/j.celrep.2016.04.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/18/2016] [Accepted: 03/28/2016] [Indexed: 01/06/2023] Open
Abstract
DNA methyltransferase 3a (DNMT3A) catalyzes the formation of 5-methyl-cytosine in mammalian genomic DNA, and it is frequently mutated in human hematologic malignancies. Bi-allelic loss of Dnmt3a in mice results in leukemia and lymphoma, including chronic lymphocytic leukemia (CLL). Here, we investigate whether mono-allelic loss of Dnmt3a is sufficient to induce disease. We show that, by 16 months of age, 65% of Dnmt3a(+/-) mice develop a CLL-like disease, and 15% of mice develop non-malignant myeloproliferation. Genome-wide methylation analysis reveals that reduced Dnmt3a levels induce promoter hypomethylation at similar loci in Dnmt3a(+/-) and Dnmt3a(Δ/Δ) CLL, suggesting that promoters are particularly sensitive to Dnmt3a levels. Gene expression analysis identified 26 hypomethylated and overexpressed genes common to both Dnmt3a(+/-) and Dnmt3a(Δ/Δ) CLL as putative oncogenic drivers. Our data provide evidence that Dnmt3a is a haplo-insufficient tumor suppressor in CLL and highlights the importance of deregulated molecular events in disease pathogenesis.
Collapse
Affiliation(s)
- Staci L Haney
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - G Michael Upchurch
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jana Opavska
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - David Klinkebiel
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ryan A Hlady
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Abhinav Suresh
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Samuel J Pirruccello
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Center for Leukemia and Lymphoma Research, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Vipul Shukla
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Runqing Lu
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Stefan Costinean
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Angie Rizzino
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Adam R Karpf
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Shantaram Joshi
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA; Center for Leukemia and Lymphoma Research, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Patrick Swanson
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE 68102, USA
| | - Rene Opavsky
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; Center for Leukemia and Lymphoma Research, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
346
|
Development and validation of a comprehensive genomic diagnostic tool for myeloid malignancies. Blood 2016; 128:e1-9. [PMID: 27121471 DOI: 10.1182/blood-2015-11-683334] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 04/21/2016] [Indexed: 12/22/2022] Open
Abstract
The diagnosis of hematologic malignancies relies on multidisciplinary workflows involving morphology, flow cytometry, cytogenetic, and molecular genetic analyses. Advances in cancer genomics have identified numerous recurrent mutations with clear prognostic and/or therapeutic significance to different cancers. In myeloid malignancies, there is a clinical imperative to test for such mutations in mainstream diagnosis; however, progress toward this has been slow and piecemeal. Here we describe Karyogene, an integrated targeted resequencing/analytical platform that detects nucleotide substitutions, insertions/deletions, chromosomal translocations, copy number abnormalities, and zygosity changes in a single assay. We validate the approach against 62 acute myeloid leukemia, 50 myelodysplastic syndrome, and 40 blood DNA samples from individuals without evidence of clonal blood disorders. We demonstrate robust detection of sequence changes in 49 genes, including difficult-to-detect mutations such as FLT3 internal-tandem and mixed-lineage leukemia (MLL) partial-tandem duplications, and clinically significant chromosomal rearrangements including MLL translocations to known and unknown partners, identifying the novel fusion gene MLL-DIAPH2 in the process. Additionally, we identify most significant chromosomal gains and losses, and several copy neutral loss-of-heterozygosity mutations at a genome-wide level, including previously unreported changes such as homozygosity for DNMT3A R882 mutations. Karyogene represents a dependable genomic diagnosis platform for translational research and for the clinical management of myeloid malignancies, which can be readily adapted for use in other cancers.
Collapse
|
347
|
Bronzini I, Aresu L, Paganin M, Marchioretto L, Comazzi S, Cian F, Riondato F, Marconato L, Martini V, Te Kronnie G. DNA methylation and targeted sequencing of methyltransferases family genes in canine acute myeloid leukaemia, modelling human myeloid leukaemia. Vet Comp Oncol 2016; 15:910-918. [PMID: 27098563 DOI: 10.1111/vco.12231] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/11/2016] [Accepted: 03/11/2016] [Indexed: 01/13/2023]
Abstract
Tumours shows aberrant DNA methylation patterns, being hypermethylated or hypomethylated compared with normal tissues. In human acute myeloid leukaemia (hAML) mutations in DNA methyltransferase (DNMT3A) are associated to a more aggressive tumour behaviour. As AML is lethal in dogs, we defined global DNA methylation content, and screened the C-terminal domain of DNMT3 family of genes for sequence variants in 39 canine acute myeloid leukaemia (cAML) cases. A heterogeneous pattern of DNA methylation was found among cAML samples, with subsets of cases being hypermethylated or hypomethylated compared with healthy controls; four recurrent single nucleotide variations (SNVs) were found in DNMT3L gene. Although SNVs were not directly correlated to whole genome DNA methylation levels, all hypomethylated cAML cases were homozygous for the deleterious mutation at p.Arg222Trp. This study contributes to understand genetic modifications of cAML, leading up to studies that will elucidate the role of methylome alterations in the pathogenesis of AML in dogs.
Collapse
Affiliation(s)
- I Bronzini
- Oncohematology Laboratory, Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - L Aresu
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
| | - M Paganin
- Oncohematology Laboratory, Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - L Marchioretto
- Department of Cellular Biotechnology and Hematology, Sapienza University of Rome, Rome, Italy
| | - S Comazzi
- Department of Veterinary Science and Public Health, University of Milan, Milano, Italy
| | - F Cian
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - F Riondato
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - L Marconato
- Centro Oncologico Veterinario, Sasso Marconi, Bologna, Italy
| | - V Martini
- Department of Veterinary Science and Public Health, University of Milan, Milano, Italy
| | - G Te Kronnie
- Oncohematology Laboratory, Department of Women's and Children's Health, University of Padova, Padova, Italy
| |
Collapse
|
348
|
Yan B, Ng C, Moshi G, Ban K, Lee PL, Seah E, Chiu L, Koay ESC, Liu TC, Ng CH, Chng WJ, Koh LP. Myelodysplastic features in a patient with germline CEBPA-mutant acute myeloid leukaemia. J Clin Pathol 2016; 69:652-4. [PMID: 27010436 DOI: 10.1136/jclinpath-2016-203672] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/07/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Benedict Yan
- Department of Laboratory Medicine, Molecular Diagnosis Centre, National University Health System, Singapore, Singapore
| | - Christopher Ng
- Department of Laboratory Medicine, Molecular Diagnosis Centre, National University Health System, Singapore, Singapore
| | - Grace Moshi
- Department of Laboratory Medicine, Haematology Division, National University Health System, Singapore, Singapore
| | - Kenneth Ban
- Department of Biochemistry, National University of Singapore, Singapore, Singapore Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Peak-Ling Lee
- Department of Laboratory Medicine, Molecular Diagnosis Centre, National University Health System, Singapore, Singapore
| | - Elaine Seah
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore, Singapore
| | - Lily Chiu
- Department of Laboratory Medicine, Molecular Diagnosis Centre, National University Health System, Singapore, Singapore
| | - Evelyn S C Koay
- Department of Laboratory Medicine, Molecular Diagnosis Centre, National University Health System, Singapore, Singapore Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Te-Chih Liu
- Department of Laboratory Medicine, Haematology Division, National University Health System, Singapore, Singapore
| | - Chin Hin Ng
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore, Singapore
| | - Wee-Joo Chng
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore, Singapore Cancer Science Institute, National University of Singapore, Singapore, Singapore Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Liang Piu Koh
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore, Singapore
| |
Collapse
|
349
|
Lukashevich OV, Cherepanova NA, Jurkovska RZ, Jeltsch A, Gromova ES. Conserved motif VIII of murine DNA methyltransferase Dnmt3a is essential for methylation activity. BMC BIOCHEMISTRY 2016; 17:7. [PMID: 27001594 PMCID: PMC4802922 DOI: 10.1186/s12858-016-0064-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 03/02/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND Dnmt3a is a DNA methyltransferase that establishes de novo DNA methylation in mammals. The structure of the Dnmt3a C-terminal domain is similar to the bacterial M. HhaI enzyme, a well-studied prokaryotic DNA methyltransferase. No X-ray structure is available for the complex of Dnmt3a with DNA and the mechanistic details of DNA recognition and catalysis by mammalian Dnmts are not completely understood. RESULTS Mutant variants of the catalytic domain of the murine Dnmt3a carrying substitutions of highly conserved N167, R200, and R202 have been generated by site directed mutagenesis and purified. Their methylation activity, DNA binding affinity, ability to flip the target cytosine out of the DNA double helix and covalent complex formation with DNA have been examined. Substitutions of N167 lead to reduced catalytic activity and reduced base flipping. Catalytic activity, base flipping, and covalent conjugate formation were almost completely abolished for the mutant enzymes with substitutions of R200 or R202. CONCLUSIONS We conclude that R202 plays a similar role in catalysis in Dnmt3a-CD as R232 in M.SssI and R165 in M.HhaI, which could be positioning of the cytosine for nucleophilic attack by a conserved Cys. R200 of Dnmt3a-CD is important in both catalysis and cytosine flipping. Both conserved R200 and R202 are involved in creating and stabilizing of the transient covalent intermediate of the methylation reaction. N167 might contribute to the positioning of the residues from the motif VI, but does not play a direct role in catalysis.
Collapse
Affiliation(s)
- Olga V Lukashevich
- Department of Chemistry, Moscow State University, 119991, Moscow, Russia
| | | | - Renata Z Jurkovska
- BioMedX Innovation Center, Im Neuenheimer Feld 583, 69120, Heidelberg, Germany
| | - Albert Jeltsch
- Institute of Biochemistry, Faculty of Chemistry, University Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | | |
Collapse
|
350
|
DNA methylation in normal and malignant hematopoiesis. Int J Hematol 2016; 103:617-26. [PMID: 26943352 DOI: 10.1007/s12185-016-1957-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 02/08/2016] [Indexed: 01/08/2023]
Abstract
The study of DNA methylation has been a rapidly expanding field since its dawn in the 1960s. DNA methylation is an epigenetic modification that plays a crucial role in guiding the differentiation of stem cells to their destined lineage, and in maintaining tissue homeostasis. Moreover, aberrant DNA methylation has been well characterized as a significant contributing factor in the pathogenesis of a variety of cancers. Hematopoiesis is a process that is uniquely susceptible to epigenetic changes due to the small pool of actively cycling stem cells that give rise to the entire mature immune-hematopoietic system. Mutations in DNA methyltransferase enzymes have been shown to be initiating events in the development of hematological malignancies such as acute myeloid leukemia and, therefore, have become targets for improved diagnostics and therapy. The spatial and temporal regulation of DNA methylation in the hematopoietic developmental hierarchy is critical to hematopoietic homeostasis. An improved understanding of the roles that DNA methylation plays in normal and malignant hematopoiesis will have a significant impact on the future of regenerative stem cell therapy and clinical treatment of hematopoietic malignancies. This review aims to highlight current developments in the field and prioritize future research directions.
Collapse
|