301
|
Ma Y, Zhang X, Wang YZ, Tian H, Xu S. Research progress of circular RNAs in lung cancer. Cancer Biol Ther 2018; 20:123-129. [PMID: 30403899 DOI: 10.1080/15384047.2018.1523848] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Lung cancer is one of the most common cancers and the leading cause of cancer-related death worldwide. Despite encouraging results achieved with targeted therapy in recent years, the early diagnosis and treatment of lung cancer remains a major problem. Circular RNA (circRNA), a type of RNA with covalently closed continuous loop structures, has structural stability and certain tissue specificity. Recent studies have found that circRNAs have an important role in tumor development and are expected to be revealed as new targets for tumor prediction and treatment. Research on the biological functions and regulation mechanisms of circRNAs in lung cancer is in its infancy but is gathering momentum. In this review, we discuss the properties, biogenesis, biological function, and research progress of circRNAs in lung cancer to provide a theoretical foundation and new directions for studies on circRNAs in lung cancer.
Collapse
Affiliation(s)
- Yi Ma
- a Department of thoracic surgery , First Affiliated Hospital of China Medical University , Shenyang , Liaoning , China
| | - Xin Zhang
- a Department of thoracic surgery , First Affiliated Hospital of China Medical University , Shenyang , Liaoning , China
| | - Yi-Zhi Wang
- a Department of thoracic surgery , First Affiliated Hospital of China Medical University , Shenyang , Liaoning , China
| | - Hao Tian
- a Department of thoracic surgery , First Affiliated Hospital of China Medical University , Shenyang , Liaoning , China
| | - Shun Xu
- a Department of thoracic surgery , First Affiliated Hospital of China Medical University , Shenyang , Liaoning , China
| |
Collapse
|
302
|
Chen Y, Wei S, Wang X, Zhu X, Han S. Progress in research on the role of circular RNAs in lung cancer. World J Surg Oncol 2018; 16:215. [PMID: 30400981 PMCID: PMC6220476 DOI: 10.1186/s12957-018-1515-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 10/18/2018] [Indexed: 02/08/2023] Open
Abstract
Background Circular RNA (circRNA), as a covalently closed circular RNA molecule, is widely present, which is recognized as a competing endogenous RNA. A large number of differentially expressed circRNAs have been identified and are recognized as potential biomarkers for the diagnosis of tumors. Main body CircRNAs play an important role in the regulation of cell signaling pathways. The main biological functions of circRNAs include acting as miRNA sponges, regulating the transcription of the parental genes, and acting as adapters to regulate the interactions between proteins and encoding proteins. Compared with normal tissues, there are differentially expressed circRNAs in lung cancer tissue, and the expression levels of circRNAs are correlated with clinicopathological features of lung cancer. Their roles in pathway regulation are described, and the diagnostic and prognostic values are further evaluated. Conclusion In lung cancer, circRNAs participate in the proliferation, migration, and invasion, acting as a competitive endogenous RNA. Differentially expressed circRNAs may serve as non-invasive diagnostic markers for lung cancers. Further investigation of the roles of circRNAs in the pathogenesis and regulatory pathways is conducive to the development of novel approaches for the diagnosis and accurate treatment of lung cancers.
Collapse
Affiliation(s)
- Yang Chen
- Medical School of Southeast University, Nanjing, China
| | - Shuzhen Wei
- Department of Respiratory, Zhongda Hospital, Southeast University, Nanjing, China
| | - Xiyong Wang
- Medical School of Southeast University, Nanjing, China
| | - Xiaoli Zhu
- Department of Respiratory, Zhongda Hospital, Southeast University, Nanjing, China.,Medical School of Southeast University, Nanjing, China
| | - Shuhua Han
- Department of Respiratory, Zhongda Hospital, Southeast University, Nanjing, China. .,Medical School of Southeast University, Nanjing, China.
| |
Collapse
|
303
|
The potential roles of circRNAs in osteoarthritis: a coming journey to find a treasure. Biosci Rep 2018; 38:BSR20180542. [PMID: 30279209 PMCID: PMC6209588 DOI: 10.1042/bsr20180542] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 09/12/2018] [Accepted: 09/18/2018] [Indexed: 12/16/2022] Open
Abstract
Osteoarthritis (OA), a common joint disease in elderly, causes serious social and economic burdens worldwide. Previous studies indicated that some differentially expressed circular RNAs (circRNAs) participated in the initiation and progression of OA. These findings suggested that circRNAs may act as promising diagnostic biomarkers and therapeutic targets for OA. In this review, we summarize the biogenesis and biological functions of circRNAs and explore the underlying roles of circRNAs in OA, which may enlighten further studies and contribute to the early diagnosis and intervention of OA.
Collapse
|
304
|
A peptide encoded by circular form of LINC-PINT suppresses oncogenic transcriptional elongation in glioblastoma. Nat Commun 2018; 9:4475. [PMID: 30367041 PMCID: PMC6203777 DOI: 10.1038/s41467-018-06862-2] [Citation(s) in RCA: 511] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 10/02/2018] [Indexed: 01/12/2023] Open
Abstract
Circular RNAs (circRNAs) are a large class of transcripts in the mammalian genome. Although the translation of circRNAs was reported, additional coding circRNAs and the functions of their translated products remain elusive. Here, we demonstrate that an endogenous circRNA generated from a long noncoding RNA encodes regulatory peptides. Through ribosome nascent-chain complex-bound RNA sequencing (RNC-seq), we discover several peptides potentially encoded by circRNAs. We identify an 87-amino-acid peptide encoded by the circular form of the long intergenic non-protein-coding RNA p53-induced transcript (LINC-PINT) that suppresses glioblastoma cell proliferation in vitro and in vivo. This peptide directly interacts with polymerase associated factor complex (PAF1c) and inhibits the transcriptional elongation of multiple oncogenes. The expression of this peptide and its corresponding circRNA are decreased in glioblastoma compared with the levels in normal tissues. Our results establish the existence of peptides encoded by circRNAs and demonstrate their potential functions in glioblastoma tumorigenesis. Functional peptides can be encoded by short open reading frames in non-coding RNA. Here, the authors identify a 87aa peptide encoded by the circular form of the long intergenic non-protein-coding RNA p53-induced transcript (LINC-PINT) that can reduce glioblastoma proliferation via interaction with PAF1 which sequentially inhibits the transcriptional elongation of some oncogenes.
Collapse
|
305
|
Altesha M, Ni T, Khan A, Liu K, Zheng X. Circular RNA in cardiovascular disease. J Cell Physiol 2018; 234:5588-5600. [DOI: 10.1002/jcp.27384] [Citation(s) in RCA: 393] [Impact Index Per Article: 56.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/17/2018] [Indexed: 12/18/2022]
Affiliation(s)
| | - Tiffany Ni
- Department of Physiology Western University Ontario Canada
| | - Afaan Khan
- Faculty of Applied Health Sciences University of Waterloo Ontario Canada
| | - Kexiang Liu
- Department of Cardiovascular Surgery The second Hospital of Jilin University Jilin China
| | - Xiufen Zheng
- Department of Pathology Western University Ontario Canada
- Department of Surgery General Surgery Division, Western University Ontario Canada
- Department of Oncology Western University Ontario Canada
- Multiple Organ Transplant Program, Lawson Health Research Institute Ontario Canada
- Department of Surgery, London Health Sciences Centre Ontario Canada
| |
Collapse
|
306
|
Bei Y, Yang T, Wang L, Holvoet P, Das S, Sluijter JPG, Monteiro MC, Liu Y, Zhou Q, Xiao J. Circular RNAs as Potential Theranostics in the Cardiovascular System. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 13:407-418. [PMID: 30368217 PMCID: PMC6205062 DOI: 10.1016/j.omtn.2018.09.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 09/27/2018] [Accepted: 09/27/2018] [Indexed: 12/11/2022]
Abstract
Cardiovascular diseases (CVDs) represent the largest contributor to mortality worldwide. Identification of novel therapeutic targets and biomarkers for CVDs is urgently needed. Circular RNAs (circRNAs) are endogenous, abundant, and stable non-coding RNAs formed by back-splicing events. Their role as regulators of gene expression has been increasingly reported. Notably, circRNAs mediate essential physiological and pathological processes in the cardiovascular system. Our first aim, therefore, is to summarize recent advances in the role of circRNAs in cardiac development as well as in pathogenesis of various CVDs. Because circRNAs are stable in circulation and their dynamic changes may reflect different disease stages, they are considered ideal biomarkers. Therefore, our second aim is to review studies that have identified circulating circRNAs as biomarkers for CVDs. Finally, we discuss the shortage of functional studies and the limitations of available clinical studies and provide future perspectives.
Collapse
Affiliation(s)
- Yihua Bei
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Tingting Yang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Lijun Wang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Paul Holvoet
- Department of Cardiovascular Sciences, Experimental Cardiology, KU Leuven, 3000 Leuven, Belgium
| | - Saumya Das
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Joost P G Sluijter
- Department of Cardiology, Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht 3508GA, the Netherlands; UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, Utrecht 3508GA, the Netherlands
| | - Marta Chagas Monteiro
- Pharmaceutical Science Post-Graduation Program, Health Science Institute, Federal University of Pará/UFPA, Belém, PA 66075900, Brazil
| | - Yang Liu
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Qiulian Zhou
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
307
|
Wang Y, Lu T, Wang Q, Liu J, Jiao W. Circular RNAs: Crucial regulators in the human body (Review). Oncol Rep 2018; 40:3119-3135. [PMID: 30272328 PMCID: PMC6196641 DOI: 10.3892/or.2018.6733] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 09/07/2018] [Indexed: 12/14/2022] Open
Abstract
Circular RNAs (circRNAs) belong to a new type of endogenous non‑coding RNAs (ncRNAs) that are derived from exons and/or introns, and are widely distributed in mammals. The majority of circRNAs have a specific expression profile in cells or tissues, as well as during different stages of development. CircRNAs were originally thought to be the products of mis‑splicing. However, with the assistance of bioinformatics tools and the rapid development of high‑throughput sequencing, an increasing body of evidence has suggested that circRNAs bind micro(mi)RNAs, and have a role as miRNA sponges, thereby regulating target mRNA splicing and transcription. Human diseases are closely associated with circRNAs, especially in cancer as their expression is typically altered during the progression of cancer; this may provide a novel type of biomarker for cancer diagnosis and prognosis. CircRNAs are becoming a key area of interest within the field of cancer research. In the present review, we summarize the known molecular mechanisms and biological origin of circRNAs, as well as their functions, especially those related to human tumors.
Collapse
Affiliation(s)
- Yuanyong Wang
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao 266003, P.R. China
| | - Tong Lu
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao 266003, P.R. China
| | - Qian Wang
- College of Nursing, Weifang Medical University, Weifang 261053, P.R. China
| | - Jia Liu
- School of Pharmacy, Qingdao University, Qingdao 266003, P.R. China
| | - Wenjie Jiao
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao 266003, P.R. China
| |
Collapse
|
308
|
The circular RNA circ-ITCH suppresses ovarian carcinoma progression through targeting miR-145/RASA1 signaling. Biochem Biophys Res Commun 2018; 505:222-228. [PMID: 30243714 DOI: 10.1016/j.bbrc.2018.09.060] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 09/10/2018] [Indexed: 11/23/2022]
Abstract
As the leading cause of death for gynecological cancers, ovarian cancer (OC) ranks fifth overall for cancer-related death among women. Emerging evidence has indicated that circular RNA (circRNA), recognized as functional non-coding transcripts in eukaryotic cells, may be involved in many physiological or pathological processes. It was reported that circ-ITCH is downregulated in multi cancers and serves as a powerful tumor suppressor among through a competing endogenous RNA (ceRNA) pathway. However, the existence and the role of circ-ITCH in OC was not reported. Here, we found a broad down-regulation of circ-ITCH in OC tissues and cells, which correlates with a worse prognosis in OC patients. Functional studies suggest that circ-ITCH overexpression inhibits the cell viability and motility by CCK8, cell cycle, wound healing assay and invasion assay. It also inhibits the tumorigenesis ability in xenograft NOD mice in vivo. Mechanically, we demonstrated that circ-TCH acts as a ceRNA to sponge miR-145, increases the level of RASA1, and inhibits the malignant progression of OC cells via the circ-ITCH-miR-145-RASA1 axis in vitro and in vivo. Taken together, our findings provide a novel tumor suppressive role regarding circ-ITCH function in the malignant progression of OC.
Collapse
|
309
|
Carrara M, Fuschi P, Ivan C, Martelli F. Circular RNAs: Methodological challenges and perspectives in cardiovascular diseases. J Cell Mol Med 2018; 22:5176-5187. [PMID: 30277664 PMCID: PMC6201346 DOI: 10.1111/jcmm.13789] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/03/2018] [Accepted: 06/12/2018] [Indexed: 12/22/2022] Open
Abstract
Circular RNAs are generated by back‐splicing of precursor‐mRNAs. Although they have been known for many years, only recently we have started to appreciate their widespread expression and their regulatory functions in a variety of biological processes. Not surprisingly, circular RNA dysregulation and participation in the pathogenic mechanisms have started to emerge in many instances, including cardiovascular diseases. Detection, differential expression analysis and validation are the three critical points for the characterization of any RNA, and circular RNAs are no exception. Their characteristics, however, generate several problems that are yet to be completely addressed, and literature still lacks comprehensive definitions of well‐defined best practices. We present a map of the current knowledge regarding circular RNAs and the critical issues limiting our understanding of their regulation and function. The goal was to provide the readers with the tools to critically decide which of the many approaches available is most suitable to their experimental plan. Although particularly focused on cardiovascular diseases, most critical issues concerning circular RNAs are common to many other fields of investigation.
Collapse
Affiliation(s)
- Matteo Carrara
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Milan, Italy
| | - Paola Fuschi
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Milan, Italy
| | - Cristina Ivan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas.,The Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Milan, Italy
| |
Collapse
|
310
|
Dhamija S, Menon MB. Non-coding transcript variants of protein-coding genes - what are they good for? RNA Biol 2018; 15:1025-1031. [PMID: 30146915 DOI: 10.1080/15476286.2018.1511675] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The total number of protein-coding genes in the human genome is not significantly higher than those in much simpler eukaryotes, despite a general increase in genome size proportionate to the organismal complexity. The large non-coding transcriptome and extensive differential splicing, are increasingly being accepted as the factors contributing to the complex mammalian physiology and architecture. Recent studies reveal additional layers of functional complexity: some long non-coding RNAs have been re-defined as micropeptide or microprotein encoding transcripts, and in turn some protein-coding RNAs are bifunctional and display also non-coding functions. Moreover, several protein-coding genes express long non-coding RNA splice-forms and generate circular RNAs in addition to their canonical mRNA transcripts, revoking the strict definition of a gene as coding or non-coding. In this mini review, we discuss the current understanding of these hybrid genes and their possible roles and relevance.
Collapse
Affiliation(s)
- Sonam Dhamija
- a Division of Cancer Research, Department of Thoracic Surgery , Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg , Freiburg , Germany.,b Division of RNA Biology & Cancer , German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Manoj B Menon
- c Institute of Cell Biochemistry , Hannover Medical School , Hannover , Germany
| |
Collapse
|
311
|
Zhao G. Significance of non-coding circular RNAs and micro RNAs in the pathogenesis of cardiovascular diseases. J Med Genet 2018; 55:713-720. [PMID: 30177556 PMCID: PMC6252363 DOI: 10.1136/jmedgenet-2018-105387] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 12/20/2022]
Abstract
Heart failure, coronary artery disease and myocardial infarction are the most prominent cardiovascular diseases contributing significantly to death worldwide. In the majority of situations, except for surgical interventions and transplantation, there are no reliable therapeutic approaches available to address these health problem. Despite several advances that led to the development of biomarkers and therapies based on the renin–angiotensin system, adrenergic pathways, etc, more definitive and consistent biomarkers and specific target based molecular therapies are still being sought. Recent advances in the field of genomic research has helped in identifying non-coding RNAs, including circular RNAs, piRNAs, micro RNAs, and long non-coding RNAs, that play a significant role in the regulation of gene expression and function and have direct impact on pathophysiological mechanisms. This new knowledge is currently being explored with much hope for the development of novel treatments and biomarkers. Circular RNAs and micro RNAs have been described in myocardium and aortic valves and were shown to be involved in the regulation of pathophysiological processes that potentially contribute to cardiovascular diseases. Approximately 32 000 human exonic circular RNAs have been catalogued and their functions are still being ascertained. In the heart, circular RNAs were shown to bind micro RNAs in a specific manner and regulate the expression of transcription factors and stress response genes, and expression of these non-coding RNAs were found to change in conditions such as cardiac hypertrophy, heart failure and cardiac remodelling, reflecting their significance as diagnostic and prognostic biomarkers. In this review, we address the present state of understanding on the biogenesis, regulation and pathophysiological roles of micro and circular RNAs in cardiovascular diseases, and on the potential future perspectives on their use as biomarkers and therapeutic agents.
Collapse
Affiliation(s)
- Guoan Zhao
- The Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
312
|
Tang Z, Li X, Zhao J, Qian F, Feng C, Li Y, Zhang J, Jiang Y, Yang Y, Wang Q, Li C. TRCirc: a resource for transcriptional regulation information of circRNAs. Brief Bioinform 2018; 20:2327-2333. [DOI: 10.1093/bib/bby083] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 08/01/2018] [Accepted: 08/14/2018] [Indexed: 01/07/2023] Open
Abstract
Abstract
In recent years, high-throughput genomic technologies like chromatin immunoprecipitation sequencing (ChIp-seq) and transcriptome sequencing (RNA-seq) have been becoming both more refined and less expensive, making them more accessible. Many circular RNAs (circRNAs) that originate from back-spliced exons have been identified in various cell lines across different species. However, the regulatory mechanism for transcription of circRNAs remains unclear. Therefore, there is an urgent need to construct a database detailing the transcriptional regulation of circRNAs. TRCirc (http://www.licpathway.net/TRCirc) provides a resource for efficient retrieval, browsing and visualization of transcriptional regulation information of circRNAs. The current version of TRCirc documents 92 375 circRNAs and 161 transcription factors (TFs) from more than 100 cell types and together represent more than 765 000 TF–circRNA regulatory relationships. Furthermore, TRCirc provides other regulatory information about transcription of circRNAs, including their expression, methylation levels, H3K27ac signals in regulation regions and super-enhancers associated with circRNAs. TRCirc provides a convenient, user-friendly interface to search, browse and visualize detailed information about these circRNAs.
Collapse
Affiliation(s)
- Zhidong Tang
- School of Medical Informatics, Daqing Campus, Harbin Medical University
| | - Xuecang Li
- School of Medical Informatics, Daqing Campus, Harbin Medical University
| | - Jianmei Zhao
- School of Medical Informatics, Daqing Campus, Harbin Medical University
| | - Fengcui Qian
- School of Medical Informatics, Daqing Campus, Harbin Medical University
| | - Chenchen Feng
- School of Medical Informatics, Daqing Campus, Harbin Medical University
| | - Yanyu Li
- student at the School of Medical Informatics, Daqing Campus, Harbin Medical University
| | - Jian Zhang
- School of Medical Informatics, Daqing Campus, Harbin Medical University
| | - Yong Jiang
- School of Medical Informatics, Daqing Campus, Harbin Medical University
| | - Yongsan Yang
- School of Medical Informatics, Daqing Campus, Harbin Medical University
| | - Qiuyu Wang
- School of Nursing, Daqing Campus, Harbin Medical University
| | - Chunquan Li
- School of Medical Informatics, Daqing Campus, Harbin Medical University
| |
Collapse
|
313
|
The emerging landscape of circular RNA in cardiovascular diseases. J Mol Cell Cardiol 2018; 122:134-139. [DOI: 10.1016/j.yjmcc.2018.08.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 06/30/2018] [Accepted: 08/13/2018] [Indexed: 12/22/2022]
|
314
|
Wang X, Fang L. Advances in circular RNAs and their roles in breast Cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:206. [PMID: 30157902 PMCID: PMC6116371 DOI: 10.1186/s13046-018-0870-8] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 04/08/2018] [Indexed: 12/21/2022]
Abstract
Circular RNAs (circRNAs) are a type of noncoding RNAs with a closed loop structure. With the development of high-throughput sequencing, massive circRNAs have been discovered in tumorous tissues. Emerging evidence suggests that the biological functions of circRNAs including serving as ceRNAs or miRNA sponges, interacting with proteins, regulating gene transcription and translation, suggesting that circRNAs will be novel biomarkers and targets for the diagnosis and prognosis of diseases. Breast cancer is the most frequently occurring cancer and the leading cause of cancer-related death among women worldwide. It is vital to understand the molecular pathways involved in the pathogenesis of proliferation and progression. In this review, we summarize the current knowledge on human circRNAs and their potential clinical implications on breast cancer.
Collapse
Affiliation(s)
- Xuehui Wang
- Nanjing Medical University, Nanjing, 211166, China.,Department of Thyroid and Breast Surgery, Shanghai Tenth People's Hospital, Shanghai, 200070, China
| | - Lin Fang
- Department of Thyroid and Breast Surgery, Shanghai Tenth People's Hospital, Shanghai, 200070, China.
| |
Collapse
|
315
|
Dong R, Ma XK, Li GW, Yang L. CIRCpedia v2: An Updated Database for Comprehensive Circular RNA Annotation and Expression Comparison. GENOMICS PROTEOMICS & BIOINFORMATICS 2018; 16:226-233. [PMID: 30172046 PMCID: PMC6203687 DOI: 10.1016/j.gpb.2018.08.001] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 07/17/2018] [Accepted: 08/10/2018] [Indexed: 12/17/2022]
Abstract
Circular RNAs (circRNAs) from back-splicing of exon(s) have been recently identified to be broadly expressed in eukaryotes, in tissue- and species-specific manners. Although functions of most circRNAs remain elusive, some circRNAs are shown to be functional in gene expression regulation and potentially relate to diseases. Due to their stability, circRNAs can also be used as biomarkers for diagnosis. Profiling circRNAs by integrating their expression among different samples thus provides molecular basis for further functional study of circRNAs and their potential application in clinic. Here, we report CIRCpedia v2, an updated database for comprehensive circRNA annotation from over 180 RNA-seq datasets across six different species. This atlas allows users to search, browse, and download circRNAs with expression features in various cell types/tissues, including disease samples. In addition, the updated database incorporates conservation analysis of circRNAs between humans and mice. Finally, the web interface also contains computational tools to compare circRNA expression among samples. CIRCpedia v2 is accessible at http://www.picb.ac.cn/rnomics/circpedia.
Collapse
Affiliation(s)
- Rui Dong
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xu-Kai Ma
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guo-Wei Li
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Li Yang
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
316
|
Xu S, Zhou L, Ponnusamy M, Zhang L, Dong Y, Zhang Y, Wang Q, Liu J, Wang K. A comprehensive review of circRNA: from purification and identification to disease marker potential. PeerJ 2018; 6:e5503. [PMID: 30155370 PMCID: PMC6110255 DOI: 10.7717/peerj.5503] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/01/2018] [Indexed: 12/14/2022] Open
Abstract
Circular RNA (circRNA) is an endogenous noncoding RNA with a covalently closed cyclic structure. Based on their components, circRNAs are divided into exonic circRNAs, intronic circRNAs, and exon-intron circRNAs. CircRNAs have well-conserved sequences and often have high stability due to their resistance to exonucleases. Depending on their sequence, circRNAs are involved in different biological functions, including microRNA sponge activity, modulation of alternative splicing or transcription, interaction with RNA-binding proteins, and rolling translation, and are a derivative of pseudogenes. CircRNAs are involved in the development of a variety of pathological conditions, such as cardiovascular diseases, diabetes, neurological diseases, and cancer. Emerging evidence has shown that circRNAs are likely to be new potential clinical diagnostic markers or treatments for many diseases. Here we describe circRNA research methods and biological functions, and discuss the potential relationship between circRNAs and disease progression.
Collapse
Affiliation(s)
- Sheng Xu
- Center for Developmental Cardiology, Institute of Translational Medicine and School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - LuYu Zhou
- Center for Developmental Cardiology, Institute of Translational Medicine and School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Murugavel Ponnusamy
- Center for Developmental Cardiology, Institute of Translational Medicine and School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - LiXia Zhang
- Department of Inspection, The Medical Faculty of Qingdao University, Qingdao, Shandong, China
| | - YanHan Dong
- Center for Developmental Cardiology, Institute of Translational Medicine and School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - YanHui Zhang
- Center for Developmental Cardiology, Institute of Translational Medicine and School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Qi Wang
- Center for Developmental Cardiology, Institute of Translational Medicine and School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Jing Liu
- Center for Developmental Cardiology, Institute of Translational Medicine and School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Kun Wang
- Center for Developmental Cardiology, Institute of Translational Medicine and School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
317
|
Yao R, Zou H, Liao W. Prospect of Circular RNA in Hepatocellular Carcinoma: A Novel Potential Biomarker and Therapeutic Target. Front Oncol 2018; 8:332. [PMID: 30191143 PMCID: PMC6115511 DOI: 10.3389/fonc.2018.00332] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/01/2018] [Indexed: 12/19/2022] Open
Abstract
CircRNA, a kind of tissue specific and covalently closed circular non-coding RNA is very abundant in eukaryocyte. Generally, circRNA is generated by back-splicing of protein-coding genes' pre-mRNA. Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in the world. Due to the characteristics of poor prognosis and high recurrence, the pathogenesis of HCC is highly concerned by researchers worldwide. Recent studies demonstrated that numerous circRNAs were differentially expressed in HCC tissues and normal liver tissues, which is closely related with the development and prognosis of HCC. However, the mechanism of circRNA in HCC remains unclear. In this review, we summarized the abnormal expressions of circRNAs in HCC, discussed its role, and potential mechanisms, and tried to explore the prospective values of circRNA in the diagnosis, therapy, and prognosis of HCC.
Collapse
Affiliation(s)
- Renzhi Yao
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Haifan Zou
- Department of Science Experiment Center, Guilin Medical University, Guilin, China
| | - Weijia Liao
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| |
Collapse
|
318
|
Zhou J, Ge Y, Hu Y, Rong D, Fu K, Wang H, Cao H, Tang W. Circular RNAs as novel rising stars with huge potentials in development and disease. Cancer Biomark 2018; 22:597-610. [PMID: 29914009 DOI: 10.3233/cbm-181296] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jian Zhou
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuyuan Ge
- Department of Neurosurgery, Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yun Hu
- Department of General Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, China
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dawei Rong
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kai Fu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hanjin Wang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongyong Cao
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weiwei Tang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
319
|
Kumar R, Lahiri T. EcircPred: Sequence and secondary structural property based computational identification of exonic circular RNAs. Comput Biol Chem 2018; 77:28-35. [PMID: 30205354 DOI: 10.1016/j.compbiolchem.2018.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 07/09/2018] [Accepted: 08/10/2018] [Indexed: 10/28/2022]
Abstract
Circular RNAs are new class of stable non-coding RNAs, whose expressions are specific to tissues as well as developmental stages and reported to act as gene regulators. Conspicuous presences of some of them as biomarkers for cancers, aging etc. are well reported. Biogenesis of circular RNA competes with Pre-mRNA splicing using the same splicing machinery and gene loci. Also, some circular RNAs are reported to have open reading frames and internal ribosome entry site for ribosome binding, which increases the chance of overlapping features among circular and mRNA transcripts. Therefore, discriminating the Exonic circular RNAs and mRNAs solely through sequence properties is challenging. However, possible discriminating factors, such as, reports on non-canonical arrangement of exons in circular RNAs were cited. This study was dedicated to classify Circular RNAs from mRNAs by recruiting features extracted from sequences as well as predicted secondary structures and ANN classifier models for all these feature types. The features were statistics of di-nucleotide index, emission probability of RNA sequences and entropy of di-nucleotides. Finally a simple decision voting was applied to combine decisions obtained from multiple classifiers. After performing 10 fold cross validation we obtained average values of efficiency, sensitivity, specificity and Mathews correlation coefficient as 0.8374, 0.8544, 0.8203 and 0.6753 respectively. In the backdrop of few reports of identification of circular RNAs from constitutive exons and other long non-coding RNAs, this is the first report of discriminating exonic circular RNAs from mRNAs using sequence and sequence-derived properties.
Collapse
Affiliation(s)
- Rajnish Kumar
- Biomedical Informatics Lab CC2, Indian Institute of Information Technology Allahabad, 211015, Room No. 4302, Uttar Pradesh, India
| | - Tapobrata Lahiri
- Biomedical Informatics Lab CC2, Indian Institute of Information Technology Allahabad, 211015, Room No. 4302, Uttar Pradesh, India.
| |
Collapse
|
320
|
Li X, Wang J, Zhang C, Lin C, Zhang J, Zhang W, Zhang W, Lu Y, Zheng L, Li X. Circular RNA circITGA7 inhibits colorectal cancer growth and metastasis by modulating the Ras pathway and upregulating transcription of its host geneITGA7. J Pathol 2018; 246:166-179. [DOI: 10.1002/path.5125] [Citation(s) in RCA: 206] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 05/30/2018] [Accepted: 06/11/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Xiaomin Li
- Department of Pathology, School of Basic Medical Sciences; Southern Medical University; Guangzhou PR China
- Department of Pathology, Department of Histology and Embryology; Wannan Medical College; Wuhu PR China
| | - Jianjun Wang
- Department of Pathology, Department of Histology and Embryology; Wannan Medical College; Wuhu PR China
| | - Chao Zhang
- Department of Pathology; Sun Yat-Sen University Cancer Centre; Guangzhou PR China
| | - Chun Lin
- Department of Pathology, School of Basic Medical Sciences; Southern Medical University; Guangzhou PR China
| | - Jianming Zhang
- Department of Pathology, School of Basic Medical Sciences; Southern Medical University; Guangzhou PR China
| | - Wei Zhang
- Department of Pathology, School of Basic Medical Sciences; Southern Medical University; Guangzhou PR China
| | - Wenjuan Zhang
- Department of Pathology, School of Basic Medical Sciences; Southern Medical University; Guangzhou PR China
| | - Yanxia Lu
- Department of Pathology, School of Basic Medical Sciences; Southern Medical University; Guangzhou PR China
| | - Lin Zheng
- Department of Pathology, School of Basic Medical Sciences; Southern Medical University; Guangzhou PR China
| | - Xuenong Li
- Department of Pathology, School of Basic Medical Sciences; Southern Medical University; Guangzhou PR China
| |
Collapse
|
321
|
Ng WL, Mohd Mohidin TB, Shukla K. Functional role of circular RNAs in cancer development and progression. RNA Biol 2018; 15:995-1005. [PMID: 29954251 DOI: 10.1080/15476286.2018.1486659] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Circular RNAs (circRNAs) are a large class of endogenously expressed non-coding RNAs formed by covalently closed loops through back-splicing. High throughput sequencing technologies have identified thousands of circRNAs with high sequence conservation and cell type specific expression in eukaryotes. CircRNAs play multiple important roles in cellular physiology functioning as miRNA sponges, transcriptional regulators, RBP binding molecules, templates for protein translation, and immune regulators. In a clinical context, circRNAs expression is correlated with patient's clinicopathological features in cancers including breast, liver, gastric, colorectal, and lung cancer. Additionally, distinct properties of circRNAs, such as high stability, exonuclease resistance, and existence in body fluids, show promising role for circRNAs as molecular biomarkers for tumor diagnosis, non-invasive monitoring, prognosis, and therapeutic intervention. Therefore, it is critical to further understand the molecular mechanism underlying circRNAs interaction in tumors and the recent progress of this RNA species in cancer development. In this review, we provide a detailed description of biological functions, molecular role of circRNAs in different cancers, and its potential role as biomarkers in a clinical context.
Collapse
Affiliation(s)
- Wei Lun Ng
- a Institute of Biological Sciences, Faculty of Science , University of Malaya , Kuala Lumpur , Malaysia
| | - Taznim Begam Mohd Mohidin
- a Institute of Biological Sciences, Faculty of Science , University of Malaya , Kuala Lumpur , Malaysia
| | - Kirti Shukla
- b School of Science , Monash University Malaysia , Subang Jaya , Selangor , Malaysia
| |
Collapse
|
322
|
Circ2Disease: a manually curated database of experimentally validated circRNAs in human disease. Sci Rep 2018; 8:11018. [PMID: 30030469 PMCID: PMC6054656 DOI: 10.1038/s41598-018-29360-3] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/10/2018] [Indexed: 01/16/2023] Open
Abstract
Circular RNAs (circRNAs), a new class of regulatory noncoding RNAs, play important roles in human diseases. While a growing number of circRNAs have been characterized with biological functions, it is necessary to integrate all the information to facilitate studies on circRNA functions and regulatory networks in human diseases. Circ2Disease database contains 273 manually curated associations between 237 circRNAs and 54 human diseases with strong experimental evidence from 120 studies. Each association includes circRNA name, disease name, expression pattern, experimental method, a brief functional description of the circRNA-disease relationship, and other detailed information. The experimentally validated miRNAs that may be ‘sponged up’ by these circRNAs and their validated targets were also integrated to form a comprehensive regulatory network. Circ2Disease provides a user-friendly interface to browse, search, analyze regulatory network and download data. With the rapidly increasing interest in circRNAs, Circ2Disease will significantly improve our understanding of circRNA deregulation in diseases and is a useful resource for studying posttranscriptional regulatory roles of circRNAs in human diseases.
Collapse
|
323
|
The Nefarious Nexus of Noncoding RNAs in Cancer. Int J Mol Sci 2018; 19:ijms19072072. [PMID: 30018188 PMCID: PMC6073630 DOI: 10.3390/ijms19072072] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 07/12/2018] [Indexed: 02/07/2023] Open
Abstract
The past decade has witnessed enormous progress, and has seen the noncoding RNAs (ncRNAs) turn from the so-called dark matter RNA to critical functional molecules, influencing most physiological processes in development and disease contexts. Many ncRNAs interact with each other and are part of networks that influence the cell transcriptome and proteome and consequently the outcome of biological processes. The regulatory circuits controlled by ncRNAs have become increasingly more relevant in cancer. Further understanding of these complex network interactions and how ncRNAs are regulated, is paving the way for the identification of better therapeutic strategies in cancer.
Collapse
|
324
|
Sheng JQ, Liu L, Wang MR, Li PY. Circular RNAs in digestive system cancer: potential biomarkers and therapeutic targets. Am J Cancer Res 2018; 8:1142-1156. [PMID: 30094090 PMCID: PMC6079158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 06/22/2018] [Indexed: 06/08/2023] Open
Abstract
Circular RNAs (circRNAs) are a series of special closed circular RNA molecules with stability and conservatism. In recent years, advances in high-throughput RNA sequencing technology have led to explosive discovery of circRNAs in different types of species and cells. Moreover, circRNAs can accomplish a remarkable multitude of biological functions, such as regulating transcription or splicing, serving as miRNA sponges, interacting with RNA-binding proteins, and translating proteins. Meanwhile, circRNAs involve in the biogenesis and development of many diseases, including cardiovascular disorders, nervous system disorders, cancers, etc. Herein, we discuss the latest research progress of circRNA, as well as their diagnostic and prognostic significance in digestive system cancers. In addition, this paper highlights that circRNAs might serve as potential therapeutic targets for novel drugs by taking digestive system cancer as an illustrative example.
Collapse
Affiliation(s)
- Jia-Qi Sheng
- Division of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Lian Liu
- Division of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Mu-Ru Wang
- Division of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Pei-Yuan Li
- Division of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| |
Collapse
|
325
|
Yu CX, Sun S. An Emerging Role for Circular RNAs in Osteoarthritis. Yonsei Med J 2018; 59:349-355. [PMID: 29611396 PMCID: PMC5889986 DOI: 10.3349/ymj.2018.59.3.349] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/24/2017] [Accepted: 01/25/2018] [Indexed: 12/11/2022] Open
Abstract
Circular RNAs (circRNAs) are currently classed as non-coding RNAs that, unlike the better known canonical linear RNAs, form a covalently closed continuous loop without 5' or 3' polarities. With the development of high throughput sequencing technology, a large number of circRNAs have been discovered in many species. More importantly, growing evidence suggests that circRNAs are abundant, evolutionally conserved, and relatively stable in cells and tissues. Strikingly, recent studies have discovered that circRNAs can serve as microRNA sponges, interact with RNA-binding protein, and regulate gene transcription, as well as protein translation. Osteoarthritis (OA) is the most common chronic degenerative joint disease. CircRNAs are differentially expressed in OA cartilage. Moreover, some circRNAs are involved in multiple pathological processes during OA, mainly extracellular matrix degradation, inflammation, and apoptosis. In this review, we briefly delineate the biogenesis, characteristics, and biofunctions of circRNAs, and then, focus on the role of circRNAs in the occurrence and progression OA.
Collapse
Affiliation(s)
- Chen Xi Yu
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Shui Sun
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.
| |
Collapse
|
326
|
Zhou R, Wu Y, Wang W, Su W, Liu Y, Wang Y, Fan C, Li X, Li G, Li Y, Xiong W, Zeng Z. Circular RNAs (circRNAs) in cancer. Cancer Lett 2018; 425:134-142. [PMID: 29625140 DOI: 10.1016/j.canlet.2018.03.035] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 02/06/2023]
Abstract
Circular RNAs (circRNAs) are a class of non-coding RNAs that do not have 5' end caps or 3' end poly (A) tails. There are more than one hundred thousand genes that encode circRNAs. Clinical data show that there are differences in the expression of circRNAs in a variety of diseases, including cancer, suggesting that circRNA has a regulatory effect on some diseases. Further studies reveal that circRNA can be used as an endogenous competitive RNA, thereby regulating the proliferation, invasion or other physiological activities of tumor cells. In addition, some circRNAs located in the nucleus can regulate the transcription of the parental gene by binding to RNA polymerase II. circRNA can also combine with proteins to influence the cell cycle. Furthermore, recent studies have shown that circRNA can encode proteins, similarly to mRNA. circRNAs are found extensively in human cells and have tissue specificity. They have the potential to be used in clinical applications as tumor markers and therapeutic targets.
Collapse
Affiliation(s)
- Ruoyu Zhou
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yuwei Wu
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Wenxi Wang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenjia Su
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yicong Liu
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yumin Wang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Chunmei Fan
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yong Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Wei Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Zhaoyang Zeng
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
327
|
Lei W, Feng T, Fang X, Yu Y, Yang J, Zhao ZA, Liu J, Shen Z, Deng W, Hu S. Signature of circular RNAs in human induced pluripotent stem cells and derived cardiomyocytes. Stem Cell Res Ther 2018. [PMID: 29523209 PMCID: PMC5845222 DOI: 10.1186/s13287-018-0793-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background Circular RNAs (circRNAs) are regarded as a novel class of noncoding RNA regulators. Although a number of circRNAs have been identified by bioinformatics analysis of RNA-seq data, tissue and disease-specific circRNAs are still to be uncovered to promote their application in basic research and clinical practice. The purpose of this study was to explore the circRNA profiles in human induced pluripotent stem cells (hiPSCs) and hiPSC-derived cardiomyocytes (hiPSC-CMs), and to identify cardiac or disease-specific circRNAs. Methods hiPSCs were generated from fibroblasts, and then further differentiated to hiPSC-CMs by modulating WNT signaling in RPMI+B27 medium. Following high-throughput RNA sequencing, circRNAs were extracted and quantified by a combined strategy known as CIRCexplorer. Integrative analysis was performed to illuminate the correlation between circRNAs and their parental linear isoforms. Cardiac and disease-specific expression of circRNAs was confirmed by quantitative reverse-transcription PCR. Results In this study, a total of 5602 circRNAs were identified in hiPSCs and hiPSC-CMs. Our data indicated, for the first time, more enriched expression of circRNAs in differentiated cardiomyocytes than in undifferentiated hiPSCs. In addition to the host gene-dependent expression, our integrative analysis also identified a number of circRNAs showing host gene-independent expression in hiPSCs and hiPSC-CMs. CircRNAs including circSLC8A1, circCACNA1D, circSPHKAP and circALPK2 showed cardiac-selective expression during cardiac differentiation and human heart-specific enrichment in fetal tissues. Furthermore, circSLC8A1 abnormally increased in heart tissues from patients suffering from dilated cardiomyopathy. Conclusions CircRNAs are highly enriched in hiPSC-differentiated CMs, and cardiac-specific circRNAs such as circSLC8A1, circCACNA1D, circSPHKAP and circALPK2 may serve as biomarkers of CMs. Detection of the excessive expression of circSLC8A1 provides a potential approach for pathological status indication of heart disease. Electronic supplementary material The online version of this article (10.1186/s13287-018-0793-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei Lei
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, China.,Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Soochow University, Suzhou, China
| | - Tingting Feng
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, China.,Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Soochow University, Suzhou, China
| | - Xing Fang
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, China.,Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Soochow University, Suzhou, China
| | - You Yu
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, China.,Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Soochow University, Suzhou, China
| | - Junjie Yang
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, China.,Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Soochow University, Suzhou, China
| | - Zhen-Ao Zhao
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, China.,Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Soochow University, Suzhou, China
| | - Junwei Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenya Shen
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, China. .,Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Soochow University, Suzhou, China.
| | - Wenbo Deng
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Shijun Hu
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, China. .,Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Soochow University, Suzhou, China.
| |
Collapse
|
328
|
Gomes CP, Salgado-Somoza A, Creemers EE, Dieterich C, Lustrek M, Devaux Y, Cardiolinc™ network. Circular RNAs in the cardiovascular system. Noncoding RNA Res 2018; 3:1-11. [PMID: 30159434 PMCID: PMC6084836 DOI: 10.1016/j.ncrna.2018.02.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/16/2018] [Accepted: 02/22/2018] [Indexed: 02/06/2023] Open
Abstract
Until recently considered as rare, circular RNAs (circRNAs) are emerging as important regulators of gene expression. They are ubiquitously expressed and represent a novel branch of the family of non-coding RNAs. Recent investigations showed that circRNAs are regulated in the cardiovascular system and participate in its physiological and pathological development. In this review article, we will provide an overview of the role of circRNAs in cardiovascular health and disease. After a description of the biogenesis of circRNAs, we will summarize what is known of the expression, regulation and function of circRNAs in the cardiovascular system. We will then address some technical aspects of circRNAs research, discussing how artificial intelligence may aid in circRNAs research. Finally, the potential of circRNAs as biomarkers of cardiovascular disease will be addressed and directions for future research will be proposed.
Collapse
Key Words
- Artificial intelligence
- Biomarker
- CRISPR, clustered regularly interspaced short palindromic repeats
- CV, cardiovascular
- Cardiovascular disease
- Cardiovascular system
- Circular RNAs
- DCM, dilated cardiomyopathy
- EMT, epithelial-mesenchymal transition
- Non-coding RNAs
- RNA-seq, RNA sequencing
- RPAD, RNase R treatment followed by polyadenylation and poly(A)+ RNA depletion
- RT-qPCR, reverse transcription quantitative polymerase chain reaction
- circRNAs, circular RNAs
- lncRNAs, long non-coding RNAs
- miRNAs, microRNAs
- ncRNAs, non-coding RNAs
Collapse
Affiliation(s)
- Clarissa P.C. Gomes
- Cardiovascular Research Unit, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | | | - Esther E. Creemers
- Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Christoph Dieterich
- German Center for Cardiovascular Research, University Hospital Heidelberg, Heidelberg, Germany
| | - Mitja Lustrek
- Department of Intelligent Systems, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Yvan Devaux
- Cardiovascular Research Unit, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | | |
Collapse
|
329
|
Coscujuela Tarrero L, Ferrero G, Miano V, De Intinis C, Ricci L, Arigoni M, Riccardo F, Annaratone L, Castellano I, Calogero RA, Beccuti M, Cordero F, De Bortoli M. Luminal breast cancer-specific circular RNAs uncovered by a novel tool for data analysis. Oncotarget 2018; 9:14580-14596. [PMID: 29581865 PMCID: PMC5865691 DOI: 10.18632/oncotarget.24522] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 02/12/2018] [Indexed: 12/31/2022] Open
Abstract
Circular RNAs are highly stable molecules present in all eukaryotes generated by distinct transcript processing. We have exploited poly(A-) RNA-Seq data generated in our lab in MCF-7 breast cancer cells to define a compilation of exonic circRNAs more comprehensive than previously existing lists. Development of a novel computational tool, named CircHunter, allowed us to more accurately characterize circRNAs and to quantitatively evaluate their expression in publicly available RNA-Seq data from breast cancer cell lines and tumor tissues. We observed and confirmed, by ChIP analysis, that exons involved in circularization events display significantly higher levels of the histone post-transcriptional modification H3K36me3 than non-circularizing exons. This result has potential impact on circRNA biogenesis since H3K36me3 has been involved in alternative splicing mechanisms. By analyzing an Ago-HITS-CLIP dataset we also found that circularizing exons overlapped with an unexpectedly higher number of Ago binding sites than non-circularizing exons. Finally, we observed that a subset of MCF-7 circRNAs are specific to tumor versus normal tissue, while others can distinguish Luminal from other tumor subtypes, thus suggesting that circRNAs can be exploited as novel biomarkers and drug targets for breast cancer.
Collapse
Affiliation(s)
- Lucia Coscujuela Tarrero
- Center for Molecular Systems Biology, University of Turin, Turin, Italy.,Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Giulio Ferrero
- Center for Molecular Systems Biology, University of Turin, Turin, Italy.,Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.,Department of Computer Science, University of Turin, Turin, Italy
| | - Valentina Miano
- Center for Molecular Systems Biology, University of Turin, Turin, Italy.,Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Carlo De Intinis
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Laura Ricci
- Center for Molecular Systems Biology, University of Turin, Turin, Italy.,Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Maddalena Arigoni
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Federica Riccardo
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Laura Annaratone
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Raffaele A Calogero
- Center for Molecular Systems Biology, University of Turin, Turin, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Marco Beccuti
- Department of Computer Science, University of Turin, Turin, Italy
| | - Francesca Cordero
- Center for Molecular Systems Biology, University of Turin, Turin, Italy.,Department of Computer Science, University of Turin, Turin, Italy
| | - Michele De Bortoli
- Center for Molecular Systems Biology, University of Turin, Turin, Italy.,Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| |
Collapse
|
330
|
Jiang W, Zhang X, Chu Q, Lu S, Zhou L, Lu X, Liu C, Mao L, Ye C, Timko MP, Fan L, Ju H. The Circular RNA Profiles of Colorectal Tumor Metastatic Cells. Front Genet 2018; 9:34. [PMID: 29479369 PMCID: PMC5811837 DOI: 10.3389/fgene.2018.00034] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/25/2018] [Indexed: 12/19/2022] Open
Abstract
Circular RNAs (circRNAs) have been reported that can be used as biomarkers for colorectal cancers (CRC) and other types of tumors. However, a limited number of studies have been performed investigating the potential role of circRNAs in tumor metastasis. Here, we examined the circRNAs in two CRC cell lines (a primary tumor cell SW480 and its metastasis cell SW620), and found a large set of circRNA (2,919 ncDECs) with significantly differential expression patterns relative to normal cells (NCM460). In addition, we uncovered a set of 623 pmDECs that differ between the primary CRC cells and its metastasis cells. Both differentially expressed circRNA (DEC) sets contain many previously unknown putative CRC-related circRNAs, thereby providing many new circRNAs as candidate biomarkers for CRC development and metastasis. These studies are the first large-scale identification of metastasis-related circRNAs for CRC and provide valuable candidate biomarkers for diagnostic and a starting point for additional investigations of CRC metastasis.
Collapse
Affiliation(s)
- Weiqin Jiang
- Cancer Biotherapy Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xingchen Zhang
- Department of Agronomy, Institute of Bioinformatics, Zhejiang University, Hangzhou, China.,Research Center for Air Pollution and Health, Hangzhou, China
| | - Qinjie Chu
- Department of Agronomy, Institute of Bioinformatics, Zhejiang University, Hangzhou, China
| | - Sen Lu
- Departments of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Linfu Zhou
- Medical Biotechnology Laboratory, Zhejiang University, Hangzhou, China
| | - Xingang Lu
- The 2nd Clinical Medical College, Zhejiang Chinese Medicine University, Hangzhou, China.,Zhejiang Cancer Hospital, Hangzhou, China
| | - Chen Liu
- Department of Agronomy, Institute of Bioinformatics, Zhejiang University, Hangzhou, China
| | - Lingfeng Mao
- Department of Agronomy, Institute of Bioinformatics, Zhejiang University, Hangzhou, China
| | - Chuyu Ye
- Department of Agronomy, Institute of Bioinformatics, Zhejiang University, Hangzhou, China
| | - Michael P Timko
- Departments of Biology and Public Health Science, University of Virginia, Charlottesville, VA, United States
| | - Longjiang Fan
- Department of Agronomy, Institute of Bioinformatics, Zhejiang University, Hangzhou, China.,Research Center for Air Pollution and Health, Hangzhou, China
| | - Haixing Ju
- Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
331
|
Huang MS, Zhu T, Li L, Xie P, Li X, Zhou HH, Liu ZQ. LncRNAs and CircRNAs from the same gene: Masterpieces of RNA splicing. Cancer Lett 2018; 415:49-57. [DOI: 10.1016/j.canlet.2017.11.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/23/2017] [Accepted: 11/23/2017] [Indexed: 01/16/2023]
|
332
|
Zhang M, Huang N, Yang X, Luo J, Yan S, Xiao F, Chen W, Gao X, Zhao K, Zhou H, Li Z, Ming L, Xie B, Zhang N. A novel protein encoded by the circular form of the SHPRH gene suppresses glioma tumorigenesis. Oncogene 2018; 37:1805-1814. [DOI: 10.1038/s41388-017-0019-9] [Citation(s) in RCA: 542] [Impact Index Per Article: 77.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 09/25/2017] [Accepted: 10/19/2017] [Indexed: 01/16/2023]
|
333
|
Chen B, Huang S. Circular RNA: An emerging non-coding RNA as a regulator and biomarker in cancer. Cancer Lett 2018; 418:41-50. [PMID: 29330104 DOI: 10.1016/j.canlet.2018.01.011] [Citation(s) in RCA: 234] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/22/2017] [Accepted: 01/05/2018] [Indexed: 02/06/2023]
Abstract
Circular RNA (circRNA) is a type of covalently closed non-coding RNA that may regulate gene expression in eukaryotes. The recent application of high-throughput RNA sequencing and bioinformatics approaches has revealed a large number of circRNAs in human cells. Emerging evidence indicates that many circRNAs have cell-type specific expression and are linked to physiological development and various diseases. Specially, circRNAs can either serve as oncogenic stimuli or tumor suppressors in cancer. circRNAs have also been shown to be enriched and stable in extracellular fluid, indicating the potential of circRNAs as cancer biomarkers. Here, we summarize the current knowledge of circRNAs, including their classification, biogenesis, properties, and databases, as well as their function and clinical implications in cancer.
Collapse
Affiliation(s)
- Bing Chen
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Shenglin Huang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
334
|
Abstract
The genome-wide expression patterns of circular RNAs (circRNAs) are of increasing interest for their potential roles in normal cellular homeostasis, development, and disease. Thousands of circRNAs have been annotated from various species in recent years. Analysis of publically available or user-generated rRNA-depleted total RNA-seq data can be performed to uncover new circRNA expression trends. Here we provide a primer for profiling circRNAs from RNA-seq datasets. The description is tailored for the wet lab scientist with limited or no experience in analyzing RNA-seq data. We begin by describing how to access and interpret circRNA annotations. Next, we cover converting circRNA annotations into junction sequences that are used as scaffolds to align RNA-seq reads. Lastly, we visit quantifying circRNA expression trends from the alignment data.
Collapse
Affiliation(s)
- Daphne A Cooper
- Department of Biology, University of Nevada, Reno, Reno, NV, USA.
| | | | - Pedro Miura
- Department of Biology, University of Nevada, Reno, Reno, NV, USA.
| |
Collapse
|
335
|
Abstract
Circular RNAs (circRNAs) are a class of noncoding RNA that are present in wide variety of cells in various tissue types across species. They are non-polyadenylated, single-stranded, covalently closed RNAs. CircRNAs are more stable than other RNAs due to lack of 5' or 3' end leading to resistance to exonuclease digestion. The length of circRNAs varies from 1 to 5 exons with retention of introns in mature circRNAs with ~25% frequency. They are primarily found in the cytosol within the cell although the mechanism of their nuclear export remains elusive. However, there is a subpopulation of circRNAs that remain in the nucleus and regulate RNA-Pol-II-mediated transcription. Bioinformatic approaches mining RNA sequencing data enabled genome-wide identification of circRNAs. In mammalian genome over 20% of the expressed genes in cells and tissues can produce these transcripts. Owing to their abundance, stability, and diverse expression profile, circRNAs likely play a pivotal role in regulatory pathways controlling lineage determination, cell differentiation, and function of various cell types. Yet, the impact of circRNA-mediated regulation on various cell transcriptome remains largely unknown. In this chapter, we will review the regulatory effects of circRNAs in the transcription of their own or other genes. Also, we will discuss the association of circRNAs with miRNAs and RNA-binding proteins (RBPs), with special reference to Drosophila circMbl and their role as an "mRNA trap," which might play a role in its regulatory potential transcriptionally or posttranscriptionally.
Collapse
|
336
|
Abstract
Thousands of unique non-coding RNA (ncRNA) sequences exist within cells. Work from the past decade has altered our perception of ncRNAs from 'junk' transcriptional products to functional regulatory molecules that mediate cellular processes including chromatin remodelling, transcription, post-transcriptional modifications and signal transduction. The networks in which ncRNAs engage can influence numerous molecular targets to drive specific cell biological responses and fates. Consequently, ncRNAs act as key regulators of physiological programmes in developmental and disease contexts. Particularly relevant in cancer, ncRNAs have been identified as oncogenic drivers and tumour suppressors in every major cancer type. Thus, a deeper understanding of the complex networks of interactions that ncRNAs coordinate would provide a unique opportunity to design better therapeutic interventions.
Collapse
Affiliation(s)
- Eleni Anastasiadou
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Leni S Jacob
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Frank J Slack
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| |
Collapse
|
337
|
Wang J, Samuels DC, Zhao S, Xiang Y, Zhao YY, Guo Y. Current Research on Non-Coding Ribonucleic Acid (RNA). Genes (Basel) 2017; 8:366. [PMID: 29206165 PMCID: PMC5748684 DOI: 10.3390/genes8120366] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/16/2017] [Accepted: 11/21/2017] [Indexed: 11/16/2022] Open
Abstract
Non-coding ribonucleic acid (RNA) has without a doubt captured the interest of biomedical researchers. The ability to screen the entire human genome with high-throughput sequencing technology has greatly enhanced the identification, annotation and prediction of the functionality of non-coding RNAs. In this review, we discuss the current landscape of non-coding RNA research and quantitative analysis. Non-coding RNA will be categorized into two major groups by size: long non-coding RNAs and small RNAs. In long non-coding RNA, we discuss regular long non-coding RNA, pseudogenes and circular RNA. In small RNA, we discuss miRNA, transfer RNA, piwi-interacting RNA, small nucleolar RNA, small nuclear RNA, Y RNA, single recognition particle RNA, and 7SK RNA. We elaborate on the origin, detection method, and potential association with disease, putative functional mechanisms, and public resources for these non-coding RNAs. We aim to provide readers with a complete overview of non-coding RNAs and incite additional interest in non-coding RNA research.
Collapse
Affiliation(s)
- Jing Wang
- Department of Biostatistics, Vanderbilt University, Medical Center, Nashville, TN 37232, USA.
| | - David C Samuels
- Department of Molecular Physiology and Biophysics, Vanderbilt Genetics Institute, Vanderbilt University Medical School, Nashville, TN 37232, USA.
| | - Shilin Zhao
- Department of Biostatistics, Vanderbilt University, Medical Center, Nashville, TN 37232, USA.
| | - Yu Xiang
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| | - Ying-Yong Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, School of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China.
| | - Yan Guo
- Key Laboratory of Resource Biology and Biotechnology in Western China, School of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China.
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87102, USA.
| |
Collapse
|
338
|
Circular RNAs: Biogenesis, Function, and a Role as Possible Cancer Biomarkers. Int J Genomics 2017; 2017:6218353. [PMID: 29349062 PMCID: PMC5733622 DOI: 10.1155/2017/6218353] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/29/2017] [Accepted: 09/28/2017] [Indexed: 01/17/2023] Open
Abstract
Circular RNAs (circRNAs) are a class of noncoding RNAs (ncRNAs) that form covalently closed continuous loop structures, lacking the terminal 5' and 3' ends. CircRNAs are generated in the process of back-splicing and can originate from different genomic regions. Their unique circular structure makes circRNAs more stable than linear RNAs. In addition, they also display insensitivity to ribonuclease activity. Generally, circRNAs function as microRNA (miRNA) sponges and have a regulatory role in transcription and translation. They may be also translated in a cap-independent manner in vivo, to generate specific proteins. In the last decade, next-generation sequencing techniques, especially RNA-seq, have revealed great abundance and also dysregulation of many circRNAs in various diseases, suggesting their involvement in disease development and progression. Regarding their high stability and relatively specific differential expression patterns in tissues and extracellular environment (e.g., body fluids), they are regarded as promising novel biomarkers in cancer. Therefore, we focus this review on describing circRNA biogenesis, function, and involvement in human cancer development and address the potential of circRNAs to be effectively used as novel cancer diagnostic and prognostic biomarkers.
Collapse
|
339
|
Li C, Li X, Ma Q, Zhang X, Cao Y, Yao Y, You S, Wang D, Quan R, Hou X, Liu Z, Zhan Q, Liu L, Zhang M, Yu S, Ni W, Hu S. Genome-wide analysis of circular RNAs in prenatal and postnatal pituitary glands of sheep. Sci Rep 2017; 7:16143. [PMID: 29170496 PMCID: PMC5700919 DOI: 10.1038/s41598-017-16344-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 11/10/2017] [Indexed: 12/11/2022] Open
Abstract
Circular RNAs (circRNAs) are a class of animal non-coding RNAs and play an impor-tant role in animal growth and development. However, the expression and function of circRNAs in the pituitary gland of sheep are unclear. Transcriptome profiling of circRNAs in the pituitary gland of sheep may enable us to understand their biological functions. In the present study, we identified 10,226 circRNAs from RNA-seq data in the pituitary gland of prenatal and postnatal sheep. Reverse transcription PCR and DNA sequencing analysis confirmed the presence of several circRNAs. Real-time RT-PCR analysis showed that sheep circRNAs are resistant to RNase R digestion and are expressed in prenatal and postnatal pituitary glands. GO and KEGG enrichment analysis showed that host genes of differentially expressed circRNAs are involved in the regulation of hormone secretion as well as in several pathways related to these processes. We determined that numerous circRNAs interact with pituitary-specific miRNAs that are involved in the biologic functions of the pituitary gland. Moreover, several circRNAs contain at least one IRES element and open reading frame, indicating their potential to encode proteins. Our study provides comprehensive expression profiles of circRNAs in the pituitary gland, thereby offering a valuable resource for circRNA biology in sheep.
Collapse
Affiliation(s)
- Cunyuan Li
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Xiaoyue Li
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Qiman Ma
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Xiangyu Zhang
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Yang Cao
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Yang Yao
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Shuang You
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Dawei Wang
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Renzhe Quan
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Xiaoxu Hou
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Zhijin Liu
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Qianqian Zhan
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Li Liu
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Mengdan Zhang
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Shuting Yu
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Wei Ni
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China.
| | - Shengwei Hu
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China.
| |
Collapse
|
340
|
Zhang Y, Liang W, Zhang P, Chen J, Qian H, Zhang X, Xu W. Circular RNAs: emerging cancer biomarkers and targets. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:152. [PMID: 29096676 PMCID: PMC5667461 DOI: 10.1186/s13046-017-0624-z] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/19/2017] [Indexed: 12/14/2022]
Abstract
CircRNAs are a class of RNA molecules that structurally form closed loops. CircRNAs are abundant in eukaryotic transcripts and show certain levels of tissue and cell specificity. CircRNAs have been suggested to regulate gene expression at transcriptional, post-transcriptional, and translational levels. An increasing number of studies have shown that circRNAs play important roles in the development and progression of diseases including cancer. In particular, circRNAs have shown great potential in cancer diagnosis, prognosis, and therapy. In this review, we provide an overview of the biogenesis and characteristics of circRNAs, succinctly describe their functions, and comprehensively discuss about the recent advances in the roles of circRNAs in cancer with an emphasis on their clinical values.
Collapse
Affiliation(s)
- Yu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China
| | - Wei Liang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China
| | - Peng Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China
| | - Jingyan Chen
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China
| | - Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China. .,Institute of Digestive Diseases, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, China.
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
341
|
Abstract
Representing a novel type of endogenous noncoding RNAs, circular RNAs (circRNAs) have recently gained much attention for their involvement in multiple biological processes. CircRNAs are ubiquitously expressed in eukaryotic cells and modulate gene expression by acting as sponges of microRNAs (miRNAs) or other proteins, such as RNA-binding proteins (RBPs). Due to their unique structure, circRNAs are more stable than linear RNAs. Expression profiles of circRNAs are associated with clinicopathological characteristics of colorectal cancer patients, such as differentiation, TNM classification and distant metastasis. Furthermore, circRNAs play crucial roles in multiple processes associated with malignant phenotypes, including cell proliferation/cycle, apoptosis and invasion. Improvements in RNA-sequencing methods have helped researchers to elucidate molecular interactions between circRNAs and colorectal cancer. This review provides a comprehensive overview of the features and functions of circRNAs, as well as insights into their roles in the onset and development of colorectal cancer. Combined with the reported results, the identification of circRNAs associated with colorectal cancer will certainly contribute to early detection and help to design treatment strategies for colorectal cancer. Screening for circRNAs may provide an accessible, noninvasive yet highly sensitive diagnosis for colorectal cancer. Furthermore, a better understanding of the roles of circRNAs may also provide a novel predictive feature in colorectal cancer therapy and prognosis.
Collapse
Affiliation(s)
- Penghui Wang
- a Department of General Surgery , Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College , Beijing , PR China
| | - Xiaodong He
- a Department of General Surgery , Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College , Beijing , PR China
| |
Collapse
|
342
|
Zhong C, Yu S, Han M, Chen J, Ning K. Heterogeneous circRNA expression profiles and regulatory functions among HEK293T single cells. Sci Rep 2017; 7:14393. [PMID: 29089539 PMCID: PMC5663837 DOI: 10.1038/s41598-017-14807-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 10/17/2017] [Indexed: 12/30/2022] Open
Abstract
The single-cell analysis is becoming a powerful method for early detection of the abnormal variant in tissues, especially for profiling a small number of heterogeneous cells. With the advancement of sequencing technologies, many types of non-coding elements including miRNAs and lncRNAs which shed light on their heterogeneous patterns and functions among cells, have been profiled at the single-cell level. However, the complete picture of circRNA profile at single-cell level is still lacking. In this study, RNA-Seq data obtained from single HEK293T cells have been used to analyze expressions and functions of heterogeneous circRNA profiles. The enrichment patterns of circRNAs, interactions with miRNAs and pathways such as ErbB signaling pathway and protein processing in endoplasmic reticulum, have also been investigated. The results showed that circRNAs had a specific distribution pattern which was implicated with expression, miRNA and functional profiles at single-cell level. This assessment study of the expressions and functions of circRNAs at single-cell level shed light on heterogeneities among single cells.
Collapse
Affiliation(s)
- Chaofang Zhong
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Shaojun Yu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Maozhen Han
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Jiahuan Chen
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kang Ning
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
| |
Collapse
|
343
|
Yang Y, Gao X, Zhang M, Yan S, Sun C, Xiao F, Huang N, Yang X, Zhao K, Zhou H, Huang S, Xie B, Zhang N. Novel Role of FBXW7 Circular RNA in Repressing Glioma Tumorigenesis. J Natl Cancer Inst 2017; 110:4097162. [PMID: 28903484 PMCID: PMC6019044 DOI: 10.1093/jnci/djx166] [Citation(s) in RCA: 819] [Impact Index Per Article: 102.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 07/25/2017] [Indexed: 12/27/2022] Open
Abstract
Background Circular RNAs (circRNAs) are RNA transcripts that are widespread in the eukaryotic genome. Recent evidence indicates that circRNAs play important roles in tissue development, gene regulation, and carcinogenesis. However, whether circRNAs encode functional proteins remains elusive, although translation of several circRNAs was recently reported. Methods CircRNA deep sequencing was performed by using 10 pathologically diagnosed glioblastoma samples and their paired adjacent normal brain tissues. Northern blotting, Sanger sequencing, antibody, and liquid chromatograph Tandem Mass Spectrometer were used to confirm the existence of circ-FBXW7 and its encoded protein in in two cell lines. Lentivirus-transfected stable U251 and U373 cells were used to assess the biological functions of the novel protein in vitro and in vivo (five mice per group). Clinical implications of circ-FBXW7 were assessed in 38 pathologically diagnosed glioblastoma samples and their paired periphery normal brain tissues by using quantitative polymerase chain reaction (two-sided log-rank test). Results Circ-FBXW7 is abundantly expressed in the normal human brain (reads per kilobase per million mapped reads [RPKM] = 9.31). The spanning junction open reading frame in circ-FBXW7 driven by internal ribosome entry site encodes a novel 21-kDa protein, which we termed FBXW7-185aa. Upregulation of FBXW7-185aa in cancer cells inhibited proliferation and cell cycle acceleration, while knockdown of FBXW7-185aa promoted malignant phenotypes in vitro and in vivo. FBXW7-185aa reduced the half-life of c-Myc by antagonizing USP28-induced c-Myc stabilization. Moreover, circ-FBXW7 and FBXW7-185aa levels were reduced in glioblastoma clinical samples compared with their paired tumor-adjacent tissues (P < .001). Circ-FBXW7 expression positively associated with glioblastoma patient overall survival (P = .03). Conclusions Endogenous circRNA encodes a functional protein in human cells, and circ-FBXW7 and FBXW7-185aa have potential prognostic implications in brain cancer.
Collapse
Affiliation(s)
- Yibing Yang
- Department of Neurosurgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Pituitary Tumor, Guangzhou, Guangdong Province, PR China; Department of Scientific Research Section, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, PR China; Department of Neurosurgery, The University of Texas, MD Anderson Cancer Center, Houston, TX; Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX; Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, PR China
| | - Xinya Gao
- Department of Neurosurgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Pituitary Tumor, Guangzhou, Guangdong Province, PR China; Department of Scientific Research Section, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, PR China; Department of Neurosurgery, The University of Texas, MD Anderson Cancer Center, Houston, TX; Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX; Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, PR China
| | - Maolei Zhang
- Department of Neurosurgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Pituitary Tumor, Guangzhou, Guangdong Province, PR China; Department of Scientific Research Section, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, PR China; Department of Neurosurgery, The University of Texas, MD Anderson Cancer Center, Houston, TX; Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX; Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, PR China
| | - Sheng Yan
- Department of Neurosurgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Pituitary Tumor, Guangzhou, Guangdong Province, PR China; Department of Scientific Research Section, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, PR China; Department of Neurosurgery, The University of Texas, MD Anderson Cancer Center, Houston, TX; Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX; Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, PR China
| | - Chengjun Sun
- Department of Neurosurgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Pituitary Tumor, Guangzhou, Guangdong Province, PR China; Department of Scientific Research Section, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, PR China; Department of Neurosurgery, The University of Texas, MD Anderson Cancer Center, Houston, TX; Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX; Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, PR China
| | - Feizhe Xiao
- Department of Neurosurgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Pituitary Tumor, Guangzhou, Guangdong Province, PR China; Department of Scientific Research Section, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, PR China; Department of Neurosurgery, The University of Texas, MD Anderson Cancer Center, Houston, TX; Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX; Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, PR China
| | - Nunu Huang
- Department of Neurosurgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Pituitary Tumor, Guangzhou, Guangdong Province, PR China; Department of Scientific Research Section, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, PR China; Department of Neurosurgery, The University of Texas, MD Anderson Cancer Center, Houston, TX; Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX; Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, PR China
| | - Xuesong Yang
- Department of Neurosurgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Pituitary Tumor, Guangzhou, Guangdong Province, PR China; Department of Scientific Research Section, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, PR China; Department of Neurosurgery, The University of Texas, MD Anderson Cancer Center, Houston, TX; Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX; Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, PR China
| | - Kun Zhao
- Department of Neurosurgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Pituitary Tumor, Guangzhou, Guangdong Province, PR China; Department of Scientific Research Section, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, PR China; Department of Neurosurgery, The University of Texas, MD Anderson Cancer Center, Houston, TX; Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX; Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, PR China
| | - Huangkai Zhou
- Department of Neurosurgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Pituitary Tumor, Guangzhou, Guangdong Province, PR China; Department of Scientific Research Section, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, PR China; Department of Neurosurgery, The University of Texas, MD Anderson Cancer Center, Houston, TX; Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX; Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, PR China
| | - Suyun Huang
- Department of Neurosurgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Pituitary Tumor, Guangzhou, Guangdong Province, PR China; Department of Scientific Research Section, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, PR China; Department of Neurosurgery, The University of Texas, MD Anderson Cancer Center, Houston, TX; Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX; Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, PR China
| | - Bo Xie
- Department of Neurosurgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Pituitary Tumor, Guangzhou, Guangdong Province, PR China; Department of Scientific Research Section, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, PR China; Department of Neurosurgery, The University of Texas, MD Anderson Cancer Center, Houston, TX; Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX; Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, PR China
| | - Nu Zhang
- Department of Neurosurgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Pituitary Tumor, Guangzhou, Guangdong Province, PR China; Department of Scientific Research Section, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, PR China; Department of Neurosurgery, The University of Texas, MD Anderson Cancer Center, Houston, TX; Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX; Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, PR China
| |
Collapse
|
344
|
Ouyang H, Chen X, Wang Z, Yu J, Jia X, Li Z, Luo W, Abdalla BA, Jebessa E, Nie Q, Zhang X. Circular RNAs are abundant and dynamically expressed during embryonic muscle development in chickens. DNA Res 2017; 25:71-86. [PMID: 29036326 PMCID: PMC5824844 DOI: 10.1093/dnares/dsx039] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 09/07/2017] [Indexed: 12/13/2022] Open
Abstract
The growth and development of skeletal muscle is regulated by proteins as well as non-coding RNAs. Circular RNAs (circRNAs) are universally expressed in various tissues and cell types, and regulate gene expression in eukaryotes. To identify the circRNAs during chicken embryonic skeletal muscle development, leg muscles of female Xinghua (XH) chicken at three developmental time points 11 embryo age (E11), 16 embryo age (E16) and 1 day post hatch (P1) were performed RNA sequencing. We identified 13,377 circRNAs with 3,036 abundantly expressed and most were derived from coding exons. A total of 462 differentially expressed circRNAs were identified (fold change > 2; q-value < 0.05). Parental genes of differentially expressed circRNAs were related to muscle biological processes. There were 946 exonic circRNAs have been found that harbored one or more miRNA-binding site for 150 known miRNAs. We validated that circRBFOX2s promoted cell proliferation through interacted with miR-206. These data collectively indicate that circRNAs are abundant and dynamically expressed during embryonic muscle development and could play key roles through sequestering miRNAs as well as other functions.
Collapse
Affiliation(s)
- Hongjia Ouyang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, People's Republic of China
| | - Xiaolan Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, People's Republic of China
| | - Zhijun Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, People's Republic of China
| | - Jiao Yu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, People's Republic of China
| | - Xinzheng Jia
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, People's Republic of China
| | - Zhenhui Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, People's Republic of China
| | - Wei Luo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, People's Republic of China
| | - Bahareldin Ali Abdalla
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, People's Republic of China
| | - Endashaw Jebessa
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, People's Republic of China
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, People's Republic of China
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, People's Republic of China
| |
Collapse
|
345
|
Di Liegro CM, Schiera G, Di Liegro I. Extracellular Vesicle-Associated RNA as a Carrier of Epigenetic Information. Genes (Basel) 2017; 8:genes8100240. [PMID: 28937658 PMCID: PMC5664090 DOI: 10.3390/genes8100240] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/08/2017] [Accepted: 09/20/2017] [Indexed: 12/19/2022] Open
Abstract
Post-transcriptional regulation of messenger RNA (mRNA) metabolism and subcellular localization is of the utmost importance both during development and in cell differentiation. Besides carrying genetic information, mRNAs contain cis-acting signals (zip codes), usually present in their 5'- and 3'-untranslated regions (UTRs). By binding to these signals, trans-acting factors, such as RNA-binding proteins (RBPs), and/or non-coding RNAs (ncRNAs), control mRNA localization, translation and stability. RBPs can also form complexes with non-coding RNAs of different sizes. The release of extracellular vesicles (EVs) is a conserved process that allows both normal and cancer cells to horizontally transfer molecules, and hence properties, to neighboring cells. By interacting with proteins that are specifically sorted to EVs, mRNAs as well as ncRNAs can be transferred from cell to cell. In this review, we discuss the mechanisms underlying the sorting to EVs of different classes of molecules, as well as the role of extracellular RNAs and the associated proteins in altering gene expression in the recipient cells. Importantly, if, on the one hand, RBPs play a critical role in transferring RNAs through EVs, RNA itself could, on the other hand, function as a carrier to transfer proteins (i.e., chromatin modifiers, and transcription factors) that, once transferred, can alter the cell's epigenome.
Collapse
Affiliation(s)
- Carlo Maria Di Liegro
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo (UNIPA), I-90128 Palermo, Italy.
| | - Gabriella Schiera
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo (UNIPA), I-90128 Palermo, Italy.
| | - Italia Di Liegro
- Department of Experimental Biomedicine and Clinical Neurosciences (BIONEC), University of Palermo,I-90127 Palermo,Italy.
| |
Collapse
|
346
|
Chu Q, Zhang X, Zhu X, Liu C, Mao L, Ye C, Zhu QH, Fan L. PlantcircBase: A Database for Plant Circular RNAs. MOLECULAR PLANT 2017; 10:1126-1128. [PMID: 28315753 DOI: 10.1016/j.molp.2017.03.003] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 02/28/2017] [Accepted: 03/07/2017] [Indexed: 05/23/2023]
Affiliation(s)
- Qinjie Chu
- Institute of Crop Science and Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Xingchen Zhang
- Institute of Crop Science and Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Xintian Zhu
- Institute of Crop Science and Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Chen Liu
- Institute of Crop Science and Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Lingfeng Mao
- Institute of Crop Science and Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Chuyu Ye
- Institute of Crop Science and Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia
| | - Longjiang Fan
- Institute of Crop Science and Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
347
|
Greene J, Baird AM, Brady L, Lim M, Gray SG, McDermott R, Finn SP. Circular RNAs: Biogenesis, Function and Role in Human Diseases. Front Mol Biosci 2017. [PMID: 28634583 PMCID: PMC5459888 DOI: 10.3389/fmolb.2017.00038] [Citation(s) in RCA: 427] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Circular RNAs (circRNAs) are currently classed as non-coding RNA (ncRNA) that, unlike linear RNAs, form covalently closed continuous loops and act as gene regulators in mammals. They were originally thought to represent errors in splicing and considered to be of low abundance, however, there is now an increased appreciation of their important function in gene regulation. circRNAs are differentially generated by backsplicing of exons or from lariat introns. Unlike linear RNA, the 3' and 5' ends normally present in an RNA molecule have been joined together by covalent bonds leading to circularization. Interestingly, they have been found to be abundant, evolutionally conserved and relatively stable in the cytoplasm. These features confer numerous potential functions to circRNAs, such as acting as miRNA sponges, or binding to RNA-associated proteins to form RNA-protein complexes that regulate gene transcription. It has been proposed that circRNA regulate gene expression at the transcriptional or post-transcriptional level by interacting with miRNAs and that circRNAs may have a role in regulating miRNA function in cancer initiation and progression. circRNAs appear to be more often downregulated in tumor tissue compared to normal tissue and this may be due to (i) errors in the back-splice machinery in malignant tissues, (ii) degradation of circRNAs by deregulated miRNAs in tumor tissue, or (iii) increasing cell proliferation leading to a reduction of circRNAs. circRNAs have been identified in exosomes and more recently, chromosomal translocations in cancer have been shown to generate aberrant fusion-circRNAs associated with resistance to drug treatments. In addition, though originally thought to be non-coding, there is now increasing evidence to suggest that select circRNAs can be translated into functional proteins. Although much remains to be elucidated about circRNA biology and mechanisms of gene regulation, these ncRNAs are quickly emerging as potential disease biomarkers and therapeutic targets in cancer.
Collapse
Affiliation(s)
- John Greene
- Department of Histopathology and Morbid Anatomy, School of Medicine, Trinity College DublinDublin, Ireland.,Department of Medical Oncology, Tallaght HospitalDublin, Ireland
| | - Anne-Marie Baird
- Department of Histopathology and Morbid Anatomy, School of Medicine, Trinity College DublinDublin, Ireland.,Thoracic Oncology Research Group, Trinity Translational Medical Institute, St. James's HospitalDublin, Ireland.,Department of Clinical Medicine, Trinity College DublinDublin, Ireland.,Cancer and Ageing Research Program, Institute of Health and Biomedical Innovation, Queensland University of TechnologyBrisbane, QLD, Australia
| | - Lauren Brady
- Department of Histopathology and Morbid Anatomy, School of Medicine, Trinity College DublinDublin, Ireland
| | - Marvin Lim
- Department of Medical Oncology, St. Vincent's University HospitalDublin, Ireland
| | - Steven G Gray
- Thoracic Oncology Research Group, Trinity Translational Medical Institute, St. James's HospitalDublin, Ireland.,Department of Clinical Medicine, Trinity College DublinDublin, Ireland.,HOPE Directorate, St. James's HospitalDublin, Ireland.,Labmed Directorate, St. James's HospitalDublin, Ireland
| | - Raymond McDermott
- Department of Medical Oncology, Tallaght HospitalDublin, Ireland.,Department of Medical Oncology, St. Vincent's University HospitalDublin, Ireland
| | - Stephen P Finn
- Department of Histopathology and Morbid Anatomy, School of Medicine, Trinity College DublinDublin, Ireland.,Thoracic Oncology Research Group, Trinity Translational Medical Institute, St. James's HospitalDublin, Ireland.,Department of Clinical Medicine, Trinity College DublinDublin, Ireland.,Department of Histopathology, St. James's HospitalDublin, Ireland
| |
Collapse
|
348
|
Circular RNAs: A novel type of biomarker and genetic tools in cancer. Oncotarget 2017; 8:64551-64563. [PMID: 28969093 PMCID: PMC5610025 DOI: 10.18632/oncotarget.18350] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/23/2017] [Indexed: 12/13/2022] Open
Abstract
Circular RNAs (circRNAs) are a novel type of universal and diverse endogenous noncoding RNAs (ncRNAs) and they form a covalently closed continuous loop without 5′ or 3′ tails unlike linear RNAs. Most circRNAs are presented with characteristics of abundance, stability, conservatism, and often exhibiting tissue/developmental-stage-specific expression. CircRNAs are generated either from exons or introns by back splicing or lariat introns. CircRNAs play important roles as miRNA sponges, gene transcription and expression regulators, RNA-binding protein (RBP) sponges and protein/peptide translators. Emerging evidence revealed the function of circRNAs in cancer and may potentially serve as a required novel biomarker and therapeutic target for cancer treatment. In this review, we discuss about the origins, characteristics and functions of circRNA and how they work as miRNA sponges, gene transcription and expression regulators, RBP sponges in cancer as well as current research methods of circRNAs, providing evidence for the significance of circRNAs in cancer diagnosis and clinical treatment.
Collapse
|
349
|
Devaux Y, Creemers EE, Boon RA, Werfel S, Thum T, Engelhardt S, Dimmeler S, Squire I. Circular RNAs in heart failure. Eur J Heart Fail 2017; 19:701-709. [DOI: 10.1002/ejhf.801] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/26/2017] [Accepted: 01/31/2017] [Indexed: 12/12/2022] Open
Affiliation(s)
- Yvan Devaux
- Cardiovascular Research Unit; Luxembourg Institute of Health; Luxembourg Luxembourg
| | - Esther E. Creemers
- Experimental Cardiology; Academic Medical Center; Amsterdam The Netherlands
| | - Reinier A. Boon
- Institute of Cardiovascular Regeneration; Goethe-University; Frankfurt Germany
- Department of Physiology; VU University Medical Center; Amsterdam The Netherlands
| | - Stanislas Werfel
- Institute of Pharmacology and Toxicology; Technical University Munich; Munich Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies; Hannover Medical School; Hannover Germany
- National Heart and Lung Institute; Imperial College London; London UK
| | - Stefan Engelhardt
- Institute of Pharmacology and Toxicology; Technical University Munich; Munich Germany
- German Center for Cardiovascular Research; partner site Munich Heart Alliance; Munich Germany
| | - Stefanie Dimmeler
- Institute of Cardiovascular Regeneration; Goethe-University; Frankfurt Germany
| | - Iain Squire
- Department of Cardiovascular Sciences; University of Leicester; Leicester UK
| | | |
Collapse
|
350
|
Dong Y, He D, Peng Z, Peng W, Shi W, Wang J, Li B, Zhang C, Duan C. Circular RNAs in cancer: an emerging key player. J Hematol Oncol 2017; 10:2. [PMID: 28049499 PMCID: PMC5210264 DOI: 10.1186/s13045-016-0370-2] [Citation(s) in RCA: 218] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/06/2016] [Indexed: 01/01/2023] Open
Abstract
Circular RNAs (circRNAs) are a class of endogendous RNAs that form a covalently closed continuous loop and exist extensively in mammalian cells. Majority of circRNAs are conserved across species and often show tissue/developmental stage-specific expression. CircRNAs were first thought to be the result of splicing error; however, subsequent research shows that circRNAs can function as microRNA (miRNA) sponges and regulate splicing and transcription. Emerging evidence shows that circRNAs possess closely associated with human diseases, especially cancers, and may serve as better biomarkers. After miRNA and long noncoding RNA (lncRNA), circRNAs are becoming a new hotspot in the field of RNA of cancer. Here, we review biogenesis and metabolism of circRNAs, their functions, and potential roles in cancer.
Collapse
Affiliation(s)
- Yeping Dong
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Xiangya Road 87th, Changsha, 410008, Hunan, People's Republic of China
| | - Dan He
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Xiangya Road 87th, Changsha, 410008, Hunan, People's Republic of China
| | - Zhenzi Peng
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Xiangya Road 87th, Changsha, 410008, Hunan, People's Republic of China
| | - Wei Peng
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Xiangya Road 87th, Changsha, 410008, Hunan, People's Republic of China
| | - Wenwen Shi
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Xiangya Road 87th, Changsha, 410008, Hunan, People's Republic of China
| | - Jun Wang
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Xiangya Road 87th, Changsha, 410008, Hunan, People's Republic of China
| | - Bin Li
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Xiangya Road 87th, Changsha, 410008, Hunan, People's Republic of China
| | - Chunfang Zhang
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Xiangya Road 87th, Changsha, 410008, Hunan, People's Republic of China
| | - Chaojun Duan
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Xiangya Road 87th, Changsha, 410008, Hunan, People's Republic of China. .,Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Xiangya Road 87th, Changsha, 410008, Hunan, People's Republic of China. .,Department of Thoracic Surgery, Xiangya Hospital, Central South University, Xiangya Road 87th, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|