301
|
TGF-β-induced miR-21 negatively regulates the antiproliferative activity but has no effect on EMT of TGF-β in HaCaT cells. Int J Biochem Cell Biol 2011; 44:366-76. [PMID: 22119803 DOI: 10.1016/j.biocel.2011.11.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 11/10/2011] [Accepted: 11/13/2011] [Indexed: 12/12/2022]
Abstract
The transforming growth factor-β (TGF-β) signaling pathway plays important roles in maintaining normal tissue homeostasis, and is tightly controlled by a network of biomolecules. MicroRNAs (miRNAs) are small noncoding RNAs of ∼22 nucleotides that regulate gene expression at posttranscriptional levels. Increasing evidence points to the important role of miRNAs in TGF-β signaling. OncomicroRNA miR-21 has been established as a key regulator of mesenchymal phenotype transition induced by TGF-β. However, the effects of miR-21 on epithelial biology involved in TGF-β signaling pathway such as cytostatic program and epithelial to mesenchymal transition (EMT) processes are unclear. Here we show that miR-21 is upregulated after TGF-β exposure in both growth inhibition and EMT models of HaCaT keratinocytes. To determine the potential roles of miR-21 in TGF-β-induced growth-arrest and EMT models, we showed that ectopic expression of miR-21 overcame TGF-β' growth-inhibitory effect and the knockdown of miR-21 potentialized this effect, but perturbation of miR-21 levels had little effect on EMT. Moreover, TGFBR2, PTEN, PDCD4, and TAp63 were identified as targets of miR-21 in HaCaT cells. And among them, TGFBR2, PTEN, and TAp63 were associated with TGF-β-induced cytostatic program. Thus, our results suggest that miR-21 regulates the ability of epithelial cells to respond to TGF-β, with potential impact on epithelium homeostasis, wound-healing and tumorigenesis.
Collapse
|
302
|
Karp SJ, Mannon RB. What's New, What's Hot in Solid Organ Transplantation? Summary of the American Transplant Congress 2011. Am J Transplant 2011; 11:2308-16. [PMID: 21967066 DOI: 10.1111/j.1600-6143.2011.03774.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Breakthroughs in basic and clinical science in solid organ transplantation were presented at the American Transplant Congress 2011. Key areas of presentation included the pathogenesis of late allograft failure, immune regulation and tolerance, pathways in allograft injury, electing appropriate patients for transplantation, determining the best allocation schemes to maximize effective utilization, organ preservation, monitoring the alloimmune response and immunosuppressive management. In this review, we present highlights of the meeting. These presentations demonstrate the exciting promise in translating from the bench to affect patient care.
Collapse
Affiliation(s)
- S J Karp
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | |
Collapse
|
303
|
Abstract
Acute kidney injury occurs with kidney transplantation and too frequently progresses to the clinical diagnosis of delayed graft function (DGF). Poor kidney function in the first week of graft life is detrimental to the longevity of the allograft. Challenges to understand the root cause of DGF include several pathologic contributors derived from the donor (ischemic injury, inflammatory signaling) and recipient (reperfusion injury, the innate immune response and the adaptive immune response). Progressive demand for renal allografts has generated new organ categories that continue to carry high risk for DGF for deceased donor organ transplantation. New therapies seek to subdue the inflammatory response in organs with high likelihood to benefit from intervention. Future success in suppressing the development of DGF will require a concerted effort to anticipate and treat tissue injury throughout the arc of the transplantation process.
Collapse
Affiliation(s)
- Andrew Siedlecki
- Nephrology Division, Department of Internal Medicine, Washington University in St. Louis School of Medicine, St Louis, MO
| | - William Irish
- CTI, Clinical Trial and Consulting Services, Raleigh, NC
| | - Daniel C. Brennan
- Nephrology Division, Department of Internal Medicine, Washington University in St. Louis School of Medicine, St Louis, MO
| |
Collapse
|
304
|
Fuchs TC, Hewitt P. Biomarkers for drug-induced renal damage and nephrotoxicity-an overview for applied toxicology. AAPS JOURNAL 2011; 13:615-31. [PMID: 21969220 DOI: 10.1208/s12248-011-9301-x] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 09/12/2011] [Indexed: 01/08/2023]
Abstract
The detection of acute kidney injury (AKI) and the monitoring of chronic kidney disease (CKD) is becoming more important in industrialized countries. Because of the direct relation of kidney damage to the increasing age of the population, as well as the connection to other diseases like diabetes mellitus and congestive heart failure, renal diseases/failure has increased in the last decades. In addition, drug-induced kidney injury, especially of patients in intensive care units, is very often a cause of AKI. The need for diagnostic tools to identify drug-induced nephrotoxicity has been emphasized by the ICH-regulated agencies. This has lead to multiple national and international projects focusing on the identification of novel biomarkers to enhance drug development. Several parameters related to AKI or CKD are known and have been used for several decades. Most of these markers deliver information only when renal damage is well established, as is the case for serum creatinine. The field of molecular toxicology has spawned new options of the detection of nephrotoxicity. These new developments lead to the identification of urinary protein biomarkers, including Kim-1, clusterin, osteopontin or RPA-1, and other transcriptional biomarkers which enable the earlier detection of AKI and deliver further information about the area of nephron damage or the underlying mechanism. These biomarkers were mainly identified and qualified in rat but also for humans, several biomarkers have been described and now have to be validated. This review will give an overview of traditional and novel tools for the detection of renal damage.
Collapse
|
305
|
Mitochondrial small RNAs that are up-regulated in hippocampus during olfactory discrimination training in mice. Mitochondrion 2011; 11:994-5. [PMID: 21925291 DOI: 10.1016/j.mito.2011.08.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 06/17/2011] [Accepted: 08/31/2011] [Indexed: 11/21/2022]
Abstract
Adult mice were trained to execute a nose-poke in a port containing one of two simultaneously present odors in order to obtain a reward. Hippocampus RNA of trained mice vs. controls was subjected to Illumina deep sequencing. Two mitochondrial RNAs (a tRNA and Mt-1) gave rise to 25-30-nt. small RNAs that showed a dramatic and specific increase with training (>50-fold relative to controls). Mt-1 is encoded within the termination association sequence (TAS) of the mitochondrial DNA control region. Small RNAs may link behavioral plasticity to protein synthesis and replication of mitochondria to support dendritic growth, spine stabilization, and synapse formation.
Collapse
|
306
|
Abstract
Kidney diseases manifest in progressive loss of renal function, which ultimately leads to complete kidney failure. The mechanisms underlying the origins and progression of kidney diseases are not fully understood. Multiple factors involved in the pathogenesis of kidney diseases have made the traditional candidate gene approach of limited value toward full understanding of the molecular mechanisms of these diseases. A systems biology approach that integrates computational modeling with large-scale data gathering of the molecular changes could be useful in identifying the multiple interacting genes and their products that drive kidney diseases. Advances in biotechnology now make it possible to gather large data sets to characterize the role of the genome, epigenome, transcriptome, proteome, and metabolome in kidney diseases. When combined with computational analyses, these experimental approaches will provide a comprehensive understanding of the underlying biological processes. Multiscale analysis that connects the molecular interactions and cell biology of different kidney cells to renal physiology and pathology can be utilized to identify modules of biological and clinical importance that are perturbed in disease processes. This integration of experimental approaches and computational modeling is expected to generate new knowledge that can help to identify marker sets to guide the diagnosis, monitor disease progression, and identify new therapeutic targets.
Collapse
|
307
|
Zhong X, Chung ACK, Chen HY, Meng XM, Lan HY. Smad3-mediated upregulation of miR-21 promotes renal fibrosis. J Am Soc Nephrol 2011; 22:1668-81. [PMID: 21852586 DOI: 10.1681/asn.2010111168] [Citation(s) in RCA: 337] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
TGF-β/Smad signaling plays a role in fibrogenesis, but therapies targeting TGF-β are ineffective in treating renal fibrosis. Here, we explored the therapeutic potential of targeting TGF-β-induced microRNA in the progression of renal fibrosis. Microarray analysis and real-time PCR revealed upregulation of miR-21 in tubular epithelial cells (TECs) in response to TGF-β. Lack of Smad3, but not lack of Smad2, prevented cells from upregulating miR-21 in response to TGF-β. In addition, Smad3-deficient mice were protected from upregulation of miR-21 and fibrosis in the unilateral ureteral obstruction model. In contrast, conditional knockout of Smad2 enhanced miR-21 expression and renal fibrosis. Furthermore, ultrasound-microbubble-mediated gene transfer of a miR-21-knockdown plasmid halted the progression of renal fibrosis in established obstructive nephropathy. In conclusion, these data demonstrate that Smad3, but not Smad2, signaling increases expression of miR-21, which promotes renal fibrosis. Inhibition of miR-21 may be a therapeutic approach to suppress renal fibrosis.
Collapse
Affiliation(s)
- Xiang Zhong
- Li Ka Shing Institute of Health Sciences, Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | | | | | | | | |
Collapse
|
308
|
Shapiro MD, Bagley J, Latz J, Godwin JG, Ge X, Tullius SG, Iacomini J. MicroRNA expression data reveals a signature of kidney damage following ischemia reperfusion injury. PLoS One 2011; 6:e23011. [PMID: 21887224 PMCID: PMC3156120 DOI: 10.1371/journal.pone.0023011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 07/04/2011] [Indexed: 11/18/2022] Open
Abstract
Ischemia reperfusion injury (IRI) is a leading cause of acute kidney injury, a common problem worldwide associated with significant morbidity and mortality. We have recently examined the role of microRNAs (miRs) in renal IRI using expression profiling. Here we conducted mathematical analyses to determine if differential expression of miRs can be used to define a biomarker of renal IRI. Principal component analysis (PCA) was combined with spherical geometry to determine whether samples that underwent renal injury as a result of IRI can be distinguished from controls based on alterations in miR expression using our data set consisting of time series measuring 571 miRs. Using PCA, we examined whether changes in miR expression in the kidney following IRI have a distinct direction when compared to controls based on the trajectory of the first three principal components (PCs) for our time series. We then used Monte Carlo methods and spherical geometry to assess the statistical significance of these directions. We hypothesized that if IRI and control samples exhibit distinct directions, then miR expression can be used as a biomarker of injury. Our data reveal that the pattern of miR expression in the kidney following IRI has a distinct direction based on the trajectory of the first three PCs and can be distinguished from changes observed in sham controls. Analyses of samples from immunodeficient mice indicated that the changes in miR expression observed following IRI were lymphocyte independent, and therefore represent a kidney intrinsic response to injury. Together, these data strongly support the notion that IRI results in distinct changes in miR expression that can be used as a biomarker of injury.
Collapse
Affiliation(s)
- Michael D. Shapiro
- Department of Pathology, Sackler School of Graduate Biomedical Sciences, Boston, Massachusetts, United States of America
| | - Jessamyn Bagley
- Translational Immunology Science Center, Molecular Cardiology Research Center, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Jeff Latz
- Department of Pathology, Sackler School of Graduate Biomedical Sciences, Boston, Massachusetts, United States of America
| | - Jonathan G. Godwin
- Department of Medicine, Brigham and Women's Hospital and Children's Hospital Boston, Boston, Massachusetts, United States of America
| | - Xupeng Ge
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Stefan G. Tullius
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - John Iacomini
- Translational Immunology Science Center, Molecular Cardiology Research Center, Tufts Medical Center, Boston, Massachusetts, United States of America
- Program in Immunology and Department of Pathology, Sackler School of Graduate Biomedical Sciences, Tufts Medical Center and Tufts University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
309
|
|
310
|
Cheung HH, Davis AJ, Lee TL, Pang AL, Nagrani S, Rennert OM, Chan WY. Methylation of an intronic region regulates miR-199a in testicular tumor malignancy. Oncogene 2011; 30:3404-15. [PMID: 21383689 PMCID: PMC3117973 DOI: 10.1038/onc.2011.60] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 02/03/2011] [Accepted: 02/04/2011] [Indexed: 02/07/2023]
Abstract
In the testicular cancer cell line, NT2, we previously demonstrated that differentially methylated regions were located in introns or intergenic regions, and postulated these might regulate non-coding RNAs. Three microRNAs and three small nucleolar RNAs were differentially methylated; one, miR-199a, was associated with the progression and prognosis of gastric and ovarian cancers. In this report we document, by epigenomic profiling of testicular tissue, that miR-199a is transcribed as antisense of dynamin 3 (chromosome 1q24.3), and hypermethylation of this region is correlated with miR-199a-5p/3p repression and tumor malignancy. Re-expression of miR-199a in testicular cancer cells led to suppression of cell growth, cancer migration, invasion and metastasis. The miR-199a-5p, one of two mature miRNA species derived from miR-199a, is associated with tumor malignancy. We further identified the embryonal carcinoma antigen podocalyxin-like protein 1 (PODXL), an anti-adhesive protein expressed in aggressive tumors, as a target of miR-199a-5p. We demonstrated PODXL is overexpressed in malignant testicular tumor, and cellular depletion of PODXL resulted in suppression of cancer invasion. The inverse relationship between PODXL and miR-199a-5p expression suggests PODXL is a downstream effector mediating the action of miR199a-5p. This report identifies DNA methylation, miR-199a dysregulation and PODXL as critical factors in tumor malignancy.
Collapse
Affiliation(s)
- H-H Cheung
- Section on Clinical and Developmental Genomics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - AJ Davis
- Section on Clinical and Developmental Genomics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - T-L Lee
- Section on Clinical and Developmental Genomics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - AL Pang
- Section on Clinical and Developmental Genomics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - S Nagrani
- Section on Clinical and Developmental Genomics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - OM Rennert
- Section on Clinical and Developmental Genomics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - W-Y Chan
- Section on Clinical and Developmental Genomics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Shatin, Hong Kong SAR
| |
Collapse
|
311
|
The reduction of Na/H exchanger-3 protein and transcript expression in acute ischemia-reperfusion injury is mediated by extractable tissue factor(s). Kidney Int 2011; 80:822-831. [PMID: 21814178 DOI: 10.1038/ki.2011.229] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ischemic renal injury is a formidable clinical problem, the pathophysiology of which is incompletely understood. As the Na/H exchanger-3 (NHE3) mediates the bulk of apical sodium transport and a significant fraction of oxygen consumption in the proximal tubule, we examined mechanisms by which ischemia-reperfusion affects the expression of NHE3. Ischemia-reperfusion dramatically decreased NHE3 protein and mRNA (immunohistochemistry, immunoblot, and RNA blot) in rat kidney cortex and medulla. The decrease in NHE3 protein was uniform throughout all tubules, including those appearing morphologically intact. In the kidney cortex, a decrease in NHE3 surface protein preceded that of NHE3 total protein and mRNA. Kidney homogenates from rats exposed to mild renal ischemia-reduced cell surface NHE3 protein expression in opossum kidney cells in vitro, whereas homogenates from animals with moderate-to-severe ischemia reduced both total NHE3 protein and mRNA. The decrease in total NHE3 protein was dependent on the proteasomal degradation associated with NHE3 ubiquitylation measured by coimmunoprecipitation. The transferable factor(s) from the ischemic homogenate that reduce NHE3 expression were found to be heat sensitive and to be associated with a lipid-enriched fraction, and did not include regulatory RNAs. Thus, transferable factor(s) mediate the ischemia-reperfusion injury-induced decrease in NHE3 of the kidney.
Collapse
|
312
|
Amrouche L, Bonifay R, Anglicheau D. [MicroRNAs in pathophysiology of renal disease: an increasing interest]. Med Sci (Paris) 2011; 27:398-404. [PMID: 21524405 DOI: 10.1051/medsci/2011274016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
MicroRNAs (miRNAs) are an abundant class of small noncoding RNAs, evolutionarily conserved, that post-transcriptionnaly regulate gene expression by promoting degradation or repressing translation of the targetted messenger RNA. Recent data suggest the implication of miRNAs in renal development, and in renal diseases pathophysiology including fibrogenesis, regulation of innate and adaptive immunity, autoimmune diseases and acute rejection of the renal allograft. Herein, we review the implication of miRNAs in renal pathophysiology.
Collapse
Affiliation(s)
- Lucile Amrouche
- Inserm UMR-S775, Université René Descartes, Centre universitaire des Saints- Pères, 45, rue des Saints-Pères, 75006, Paris, France
| | | | | |
Collapse
|
313
|
Bhatt K, Mi QS, Dong Z. microRNAs in kidneys: biogenesis, regulation, and pathophysiological roles. Am J Physiol Renal Physiol 2011; 300:F602-10. [PMID: 21228106 DOI: 10.1152/ajprenal.00727.2010] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNA) are endogenously produced, short RNAs that repress and thus regulate the expression of almost half of known protein-coding genes. miRNA-mediated gene repression is an important regulatory mechanism to modulate fundamental cellular processes such as the cell cycle, growth, proliferation, phenotype, and death, which in turn have major influences on pathophysiological outcomes. In kidneys, miRNAs are indispensable for renal development and homeostasis. Emerging evidence has further pinpointed the pathogenic roles played by miRNAs in major renal diseases, including diabetic nephropathy, acute kidney injury, renal carcinoma, polycystic kidney disease, and others. Although the field of renal miRNA research is still in its infancy and important questions remain, future investigation on miRNA regulation in kidneys has the potential to revolutionize both the diagnosis and treatment of major renal diseases.
Collapse
Affiliation(s)
- Kirti Bhatt
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta, GA, USA
| | | | | |
Collapse
|