301
|
Pasparakis M, Vandenabeele P. Necroptosis and its role in inflammation. Nature 2015. [DOI: 10.1038/nature14191 and 5626=5429-- ovbu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
302
|
|
303
|
|
304
|
|
305
|
|
306
|
|
307
|
|
308
|
Necroptosis and its role in inflammation. Nature 2015. [DOI: 10.1038/nature14191 order by 1-- cjtk] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
309
|
|
310
|
Necroptosis and its role in inflammation. Nature 2015. [DOI: 10.1038/nature14191 having 7000=9985# rdfe] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
311
|
Pasparakis M, Vandenabeele P. Necroptosis and its role in inflammation. Nature 2015. [DOI: 10.1038/nature14191 and 2945=2945#] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
312
|
|
313
|
Necroptosis and its role in inflammation. Nature 2015. [DOI: 10.1038/nature14191 having 1479=1479-- weoe] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
314
|
Pasparakis M, Vandenabeele P. Necroptosis and its role in inflammation. Nature 2015. [DOI: 10.1038/nature14191 and 2810=2810# ucdy] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
315
|
Pasparakis M, Vandenabeele P. Necroptosis and its role in inflammation. Nature 2015. [DOI: 10.1038/nature14191 and make_set(8676=4078,4078)-- vfqc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
316
|
|
317
|
|
318
|
Emerging Roles for RIPK1 and RIPK3 in Pathogen-Induced Cell Death and Host Immunity. Curr Top Microbiol Immunol 2015; 403:37-75. [PMID: 26385769 DOI: 10.1007/82_2015_449] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Receptor-interacting protein kinases 1 and 3 (RIPK1 and RIPK3 ) are homologous serine-threonine kinases that were recognized for their roles in directing programmed necrotic cell death or necroptosis under a broad range of pathologic settings. Emerging evidence suggests new physiologic roles for RIPK1 and RIPK3 in mediating cell death of innate immune responses. Our review discusses current evidence on the mechanisms and the impact of RIPK1- and/or RIPK3-dependent cell death in responses to a variety of viral and bacterial pathogens. Furthermore, the discussion also summarizes emerging roles for RIPK1 and RIPK3 in other facets of host immunity, including the maintenance of epithelial barrier function and pro-inflammatory processes that may, in some cases, manifest independent of cell death. Finally, we briefly consider the therapeutic opportunities in targeting RIPK1- and RIPK3-dependent processes in infection and immunity.
Collapse
|
319
|
Abstract
The presence of dying cells in inflamed tissues has been recognized since many years, but until recently cell death was considered primarily a consequence of inflammation. Recent data in mouse models suggest that cell death could provide a potent trigger of inflammation. The identification of necroptosis as a new type of regulated necrotic cell death that is induced by death receptors, toll like receptors and type I interferon receptor indicated that necroptosis could contribute to the proinflammatory properties of these receptors. This is particularly relevant to the skin, a tissue that provides a life-sustaining structural and immunological barrier with the environment and is constantly exposed to mechanical, chemical, and microbial insults. Studies in mouse models showed that sensitization of keratinocytes to apoptosis or necroptosis triggered by TNF and other stimuli causes severe chronic inflammatory skin lesions. In addition, keratinocyte death is a prominent histopathological feature of many inflammatory skin diseases, suggesting that death of epithelial cells could contribute to the pathogenesis of skin inflammation . Here we review recent studies in genetic mouse models providing evidence that keratinocyte death is a potent trigger of skin inflammation and discuss their potential relevance for human inflammatory skin diseases.
Collapse
|
320
|
Abstract
Cell proliferation and cell death are integral elements in maintaining homeostatic balance in metazoans. Disease pathologies ensue when these processes are disturbed. A plethora of evidence indicates that malfunction of cell death can lead to inflammation, autoimmunity, or immunodeficiency. Programmed necrosis or necroptosis is a form of nonapoptotic cell death driven by the receptor interacting protein kinase 3 (RIPK3) and its substrate, mixed lineage kinase domain-like (MLKL). RIPK3 partners with its upstream adaptors RIPK1, TRIF, or DAI to signal for necroptosis in response to death receptor or Toll-like receptor stimulation, pathogen infection, or sterile cell injury. Necroptosis promotes inflammation through leakage of cellular contents from damaged plasma membranes. Intriguingly, many of the signal adaptors of necroptosis have dual functions in innate immune signaling. This unique signature illustrates the cooperative nature of necroptosis and innate inflammatory signaling pathways in managing cell and organismal stresses from pathogen infection and sterile tissue injury.
Collapse
Affiliation(s)
- Francis Ka-Ming Chan
- Department of Pathology, Immunology and Microbiology Program, University of Massachusetts Medical School, Worcester, Massachusetts 01605;
| | | | | |
Collapse
|
321
|
Blander JM. A long-awaited merger of the pathways mediating host defence and programmed cell death. Nat Rev Immunol 2014; 14:601-18. [PMID: 25145756 DOI: 10.1038/nri3720] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Historically, cell death and inflammation have been closely linked, but the necessary divergence of the fields in the past few decades has enriched our molecular understanding of the signalling pathways that mediate various programmes of cell death and multiple types of inflammatory responses. The fields have now come together again demonstrating a surprising level of integration. Intimate interconnections at multiple levels are revealed between the cell death and inflammatory signal transduction pathways that are mobilized in response to the engagement of pattern recognition receptors during microbial infection. Molecules such as receptor-interacting protein kinase 1 (RIPK1), RIPK3, FAS-associated death domain protein (FADD), FLICE-like inhibitory protein (FLIP) and caspase 8 - which are associated with different forms of cell death - are incorporated into compatible and exceedingly dynamic Toll-like receptor, NOD-like receptor and RIG-I-like receptor signalling modules. These signalling modules have a high capacity to switch from inflammation to cell death, or a programmed execution of both, all in an orchestrated battle for host defence and survival.
Collapse
Affiliation(s)
- J Magarian Blander
- Immunology Institute and Tisch Cancer Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
322
|
Antimicrobial inflammasomes: unified signalling against diverse bacterial pathogens. Curr Opin Microbiol 2014; 23:32-41. [PMID: 25461570 DOI: 10.1016/j.mib.2014.10.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 10/14/2014] [Accepted: 10/24/2014] [Indexed: 01/17/2023]
Abstract
Inflammasomes - molecular platforms for caspase-1 activation - have emerged as common hubs for a number of pathways that detect and respond to bacterial pathogens. Caspase-1 activation results in the secretion of bioactive IL-1β and IL-18 and pyroptosis, and thus launches a systemic immune and inflammatory response. In this review we discuss signal transduction leading to 'canonical' and 'non-canonical' activation of caspase-1 through the involvement of upstream caspases. Recent studies have identified a growing number of regulatory networks involving guanylate binding proteins, protein kinases, ubiquitylation and necroptosis related pathways that modulate inflammasome responses and immunity to bacterial infection. By being able to respond to extracellular, vacuolar and cytosolic bacteria, their cytosolic toxins or ligands for cell surface receptors, inflammasomes have emerged as important sentinels of infection.
Collapse
|
323
|
Creagh EM. Caspase crosstalk: integration of apoptotic and innate immune signalling pathways. Trends Immunol 2014; 35:631-640. [PMID: 25457353 DOI: 10.1016/j.it.2014.10.004] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/14/2014] [Accepted: 10/15/2014] [Indexed: 01/30/2023]
Abstract
The caspase family of cysteine proteases has been functionally divided into two groups: those involved in apoptosis and those involved in innate immune signalling. Recent findings have identified 'apoptotic' caspases within inflammasome complexes and revealed that 'inflammatory' caspases are capable of inducing cell death, suggesting that the earlier view of caspase function may have been overly simplistic. Here, I review evidence attributing nonclassical functions to many caspases and propose that caspases serve as critical mediators in the integration of apoptotic and inflammatory pathways, thereby forming an integrated signalling system that regulates cell death and innate immune responses during development, infection, and homeostasis.
Collapse
Affiliation(s)
- Emma M Creagh
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland.
| |
Collapse
|
324
|
Ye Z, Gorman AA, Uittenbogaard AM, Myers-Morales T, Kaplan AM, Cohen DA, Straley SC. Caspase-3 mediates the pathogenic effect of Yersinia pestis YopM in liver of C57BL/6 mice and contributes to YopM's function in spleen. PLoS One 2014; 9:e110956. [PMID: 25372388 PMCID: PMC4220956 DOI: 10.1371/journal.pone.0110956] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 09/26/2014] [Indexed: 12/15/2022] Open
Abstract
The virulence protein YopM of the plague bacterium Yersinia pestis has different dominant effects in liver and spleen. Previous studies focused on spleen, where YopM inhibits accumulation of inflammatory dendritic cells. In the present study we focused on liver, where PMN function may be directly undermined by YopM without changes in inflammatory cell numbers in the initial days of infection, and foci of inflammation are easily identified. Mice were infected with parent and ΔyopM-1 Y. pestis KIM5, and effects of YopM were assessed by immunohistochemistry and determinations of bacterial viable numbers in organs. The bacteria were found associated with myeloid cells in foci of inflammation and in liver sinusoids. A new in-vivo phenotype of YopM was revealed: death of inflammatory cells, evidenced by TUNEL staining beginning at d 1 of infection. Based on distributions of Ly6G+, F4/80+, and iNOS+ cells within foci, the cells that were killed could have included both PMNs and macrophages. By 2 d post-infection, YopM had no effect on distribution of these cells, but by 3 d cellular decomposition had outstripped acute inflammation in foci due to parent Y. pestis, while foci due to the ΔyopM-1 strain still contained many inflammatory cells. The destruction depended on the presence of both PMNs in the mice and YopM in the bacteria. In mice that lacked the apoptosis mediator caspase-3 the infection dynamics were novel: the parent Y. pestis was limited in growth comparably to the ΔyopM-1 strain in liver, and in spleen a partial growth limitation for parent Y. pestis was seen. This result identified caspase-3 as a co-factor or effector in YopM's action and supports the hypothesis that in liver YopM's main pathogenic effect is mediated by caspase-3 to cause apoptosis of PMNs.
Collapse
Affiliation(s)
- Zhan Ye
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY, United States of America
| | - Amanda A. Gorman
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY, United States of America
| | - Annette M. Uittenbogaard
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY, United States of America
| | - Tanya Myers-Morales
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY, United States of America
| | - Alan M. Kaplan
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY, United States of America
| | - Donald A. Cohen
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY, United States of America
| | - Susan C. Straley
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY, United States of America
- * E-mail:
| |
Collapse
|
325
|
Gurung P, Kanneganti TD. Novel roles for caspase-8 in IL-1β and inflammasome regulation. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 185:17-25. [PMID: 25451151 DOI: 10.1016/j.ajpath.2014.08.025] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 08/20/2014] [Accepted: 08/25/2014] [Indexed: 01/14/2023]
Abstract
Caspase-8 is an initiator and apical activator caspase that plays a central role in apoptosis. Caspase-8-deficient mice are embryonic lethal, which makes study of caspase-8 in primary immune cells difficult. Recent advances have rescued caspase-8-deficient mice by crossing them to mice deficient in receptor-interacting serine-threonine kinase 3 (RIPK3). These genetic tools have made it possible to study the role of caspase-8 in vivo and in primary immune cells. Several recent studies have identified novel roles for caspase-8 in modulating IL-1β and inflammation, showing that caspase-8 directly regulates IL-1β independent of inflammasomes or indirectly through the regulation of inflammasomes, depending on the stimulus or stimuli that initiate the signaling cascade. Here, we address recent findings on caspase-8 and its role in modulating IL-1β and inflammation.
Collapse
Affiliation(s)
- Prajwal Gurung
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | | |
Collapse
|
326
|
Dhariwala MO, Anderson DM. Bacterial programming of host responses: coordination between type I interferon and cell death. Front Microbiol 2014; 5:545. [PMID: 25389418 PMCID: PMC4211556 DOI: 10.3389/fmicb.2014.00545] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 09/30/2014] [Indexed: 01/24/2023] Open
Abstract
During mammalian infection, bacteria induce cell death from an extracellular or intracellular niche that can protect or hurt the host. Data is accumulating that associate type I interferon (IFN) signaling activated by intracellular bacteria with programmed death of immune effector cells and enhanced virulence. Multiple pathways leading to IFN-dependent host cell death have been described, and in some cases it is becoming clear how these mechanisms contribute to virulence. Yet common mechanisms of IFN-enhanced bacterial pathogenesis are not obvious and no specific interferon stimulated genes have yet been identified that cause sensitivity to pathogen-induced cell death. In this review, we will summarize some bacterial infections caused by facultative intracellular pathogens and what is known about how type I IFN signaling may promote the replication of extracellular bacteria rather than stimulate protection. Each of these pathogens can survive phagocytosis but their intracellular life cycles are very different, they express distinct virulence factors and trigger different pathways of immune activation and crosstalk. These differences likely lead to widely varying amounts of type I IFN expression and a different inflammatory environment, but these may not be important to the pathologic effects on the host. Instead, each pathogen induces programmed cell death of key immune cells that have been sensitized by the activation of the type I IFN response. We will discuss how IFN-dependent host cell death may increase host susceptibility and try to understand common pathways of pathogenesis that lead to IFN-enhanced bacterial virulence.
Collapse
Affiliation(s)
- Miqdad O Dhariwala
- Department of Veterinary Pathobiology, University of Missouri Columbia, MO, USA
| | - Deborah M Anderson
- Department of Veterinary Pathobiology, University of Missouri Columbia, MO, USA
| |
Collapse
|
327
|
Wang X, Jiang W, Yan Y, Gong T, Han J, Tian Z, Zhou R. RNA viruses promote activation of the NLRP3 inflammasome through a RIP1-RIP3-DRP1 signaling pathway. Nat Immunol 2014; 15:1126-33. [DOI: 10.1038/ni.3015] [Citation(s) in RCA: 317] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 09/23/2014] [Indexed: 11/09/2022]
|
328
|
Zheng W, Xiao H, Liu H, Zhou Y. Expression of programmed death 1 is correlated with progression of osteosarcoma. APMIS 2014; 123:102-7. [PMID: 25257510 DOI: 10.1111/apm.12311] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 07/19/2014] [Indexed: 02/04/2023]
Abstract
Accumulating bodies of evidence indicate that immune dysregulation plays a key role in the development of osteosarcoma (OS). Programmed death 1 (PD-1) is a surface receptor expressed on activated and exhausted T cells, which mediate T-cell inhibition upon binding with its ligand. Researches on PD-1 and OS remain extremely limited. Here, we investigated whether PD-1 could be involved in the development of OS. Expression of PD-1 was measured by flow cytometry on peripheral CD4+ and CD8+ T cells from 56 OS cases and 42 healthy controls. Data revealed that percentages of PD-1 were significantly upregulated on both peripheral CD4+ and CD8+ T cells from OS patients (p < 0.001 and p < 0.001, respectively). Patients with different tumor locations did not present obvious variations in PD-1 level. However, patients with metastasis showed significantly higher level of PD-1 on CD4+ T cells than those without metastasis (p < 0.001). Furthermore, PD-1 expression on CD4+ T cells started to increase in stage III, whereas PD-1 expression on CD8+ T cells started to increase in stage II. In addition, patients with pathological fracture were observed to have elevated PD-1 on both CD4+ and CD8+ T cells. These data suggest that PD-1 is involved in the pathogenesis of OS, especially in the progression of disease.
Collapse
Affiliation(s)
- Wenjie Zheng
- Department of Orthopedics, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | | | | | | |
Collapse
|
329
|
RIP kinases: key decision makers in cell death and innate immunity. Cell Death Differ 2014; 22:225-36. [PMID: 25146926 DOI: 10.1038/cdd.2014.126] [Citation(s) in RCA: 198] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 07/17/2014] [Accepted: 07/21/2014] [Indexed: 01/05/2023] Open
Abstract
Innate immunity represents the first line of defence against invading pathogens. It consists of an initial inflammatory response that recruits white blood cells to the site of infection in an effort to destroy and eliminate the pathogen. Some pathogens replicate within host cells, and cell death by apoptosis is an important effector mechanism to remove the replication niche for such microbes. However, some microbes have evolved evasive strategies to block apoptosis, and in these cases host cells may employ further countermeasures, including an inflammatory form of cell death know as necroptosis. This review aims to highlight the importance of the RIP kinase family in controlling these various defence strategies. RIP1 is initially discussed as a key component of death receptor signalling and in the context of dictating whether a cell triggers a pathway of pro-inflammatory gene expression or cell death by apoptosis. The molecular and functional interplay of RIP1 and RIP3 is described, especially with respect to mediating necroptosis and as key mediators of inflammation. The function of RIP2, with particular emphasis on its role in NOD signalling, is also explored. Special attention is given to emphasizing the physiological and pathophysiological contexts for these various functions of RIP kinases.
Collapse
|
330
|
Shen Z, Fang L, Zhao L, Lei H. β-defensin 2 ameliorates lung injury caused by Pseudomonas infection and regulates proinflammatory and anti-inflammatory cytokines in rat. Int J Mol Sci 2014; 15:13372-87. [PMID: 25079443 PMCID: PMC4159799 DOI: 10.3390/ijms150813372] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 06/13/2014] [Accepted: 06/17/2014] [Indexed: 11/16/2022] Open
Abstract
An important member of the defensin family, β-defensin 2, is believed to play an important role in defense against foreign pathogens. In the present study, we constructed lentiviral vectors to express and knockdown β-defensin 2 in rat lungs. The results showed that the infection of β-defensin 2 overexpression lentivirus and β-defensin 2 shRNA effectively increased and suppressed the expression of β-defensin 2 in rat lung, respectively. The overexpression of β-defensin 2 mediated by the lentiviral vector protected lung from infection of Pseudomonas aeruginosa, but shRNA targeting β-defensin 2 aggregated the damage of lung. In addition, we also found that β-defensin 2 overexpression increased basal expression of anti-inflammatory cytokine such as IL-4, IL-10 and IL-13 and decreased levels of proinflammatory cytokines which include IL-1α, IL-1β, IL-5, IL-6, IL-8, IL-18, and TNF-α. Moreover, in the process of cytokine regulation, NF-κB pathway may be involved. Taken together, these data suggest that β-defensin 2 has protective effects against infection of Pseudomonas aeruginosa in rat and plays a role in inflammatory regulation by adjusting cytokine levels.
Collapse
Affiliation(s)
- Zhenwei Shen
- Department of Emergency Internal Medicine, Shanghai East Hospital, Shanghai 200120, China.
| | - Lu Fang
- Department of Nephrology, Shanghai East Hospital, Shanghai 200120, China.
| | - Liming Zhao
- Department of Respiratory Medicine, Shanghai Changzheng Hospital, Shanghai 200003, China.
| | - Han Lei
- Department of Respiratory Medicine, Shanghai East Hospital, Shanghai 200120, China.
| |
Collapse
|