301
|
Turunen R, Jartti T, Bochkov YA, Gern JE, Vuorinen T. Rhinovirus species and clinical characteristics in the first wheezing episode in children. J Med Virol 2016; 88:2059-2068. [PMID: 27232888 PMCID: PMC5140033 DOI: 10.1002/jmv.24587] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2016] [Indexed: 12/11/2022]
Abstract
The clinical data on the first wheezing episodes induced by different rhinovirus (RV) species are still limited. We aimed to investigate the prevalence of RV genotypes, sensitization status, and clinical characteristics of patients having a respiratory infection caused by either different RV species or other respiratory viruses. The study enrolled 111 patients (aged 3–23 months, 79% hospitalized, 76% with RV infection) with the first wheezing episode. RV‐specific sequences were identified by partial sequencing of VP4/VP2 and 5′ non‐coding regions with 80% success rate. The investigated clinical and laboratory variables included atopic characteristics and illness severity, parental atopic illnesses, and parental smoking. Of the study children, 56% percent had >1 atopic characteristic (atopy, eczema and/or blood eosinophil count >0.4 × 109/L) and 23% were sensitised to allergens. RV‐C was detected in 58% of RV positive samples, followed by RV‐A (20%) and RV‐B (1.2%). Children with RV‐A and RV‐C induced wheezing were older (P = 0.014) and had more atopic characteristics (P = 0.001) than those with non‐RV. RV‐A and RV‐C illnesses had shorter duration of preadmission symptoms and required more bronchodilator use at the ward than non‐RV illnesses (both P < 0.05, respectively). RV‐C is the most common cause of severe early wheezing. Atopic and illness severity features are associated with children having RV‐A or RV‐C induced first wheezing episode rather than with children having a non‐RV induced wheezing. J. Med. Virol. 88:2059–2068, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Riitta Turunen
- Department of Pediatrics, Turku University Hospital, Turku, Finland. .,Department of Virology, University of Turku, Finland.
| | - Tuomas Jartti
- Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Yury A Bochkov
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - James E Gern
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Tytti Vuorinen
- Department of Virology, University of Turku, Finland.,Division of Microbiology and Genetics, Department of Clinical Virology, Turku University Hospital, Turku, Finland
| |
Collapse
|
302
|
Balekian DS, Linnemann RW, Castro VM, Perlis R, Thadhani R, Camargo CA. Pre-birth cohort study of atopic dermatitis and severe bronchiolitis during infancy. Pediatr Allergy Immunol 2016; 27:413-8. [PMID: 26766307 PMCID: PMC10983116 DOI: 10.1111/pai.12532] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/09/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND Infants hospitalized for bronchiolitis (i.e. severe bronchiolitis) are at increased risk of childhood asthma. There are many known risk factors for severe bronchiolitis, including cardiac and pulmonary diseases. Less is known about the association between atopic diseases and risk of severe bronchiolitis. We sought to further examine risk factors for severe bronchiolitis, focusing on atopic dermatitis (AD). METHODS We conducted a nested cohort study within the Massachusetts General Hospital Obstetric Maternal Study (MOMS), a prospective cohort of pregnant women enrolled during 1998-2006. Children of mothers enrolled in MOMS were included in the analysis if they received care within our health system (n = 5407). Potential risk factors for bronchiolitis and hospitalization data were extracted from the children's electronic health records; we also examined pregnancy and perinatal risk factors collected from the underlying MOMS data. RESULTS During the first year of life, 125 infants (2.3%) had severe bronchiolitis. Eighteen of these patients had AD; 11 (61%) were diagnosed with AD prior to bronchiolitis hospitalization. In unadjusted analyses, AD was associated with severe bronchiolitis (χ(2) 14.6; p < 0.001). In multivariable analyses adjusting for nine known risk factors for severe bronchiolitis, including demographics, birth season, disposition at birth, cardiac disease, maternal parity, and delivery mode, AD was associated with increased odds of severe bronchiolitis (odds ratio 2.72, 95% confidence interval 1.60-4.63). CONCLUSIONS Atopic dermatitis is significantly associated with severe bronchiolitis in infancy. The mechanism of the AD-bronchiolitis association is unclear and merits further study; this research may shed light on the pathogenesis of asthma.
Collapse
Affiliation(s)
- Diana S. Balekian
- Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Rachel W. Linnemann
- Harvard Medical School, Boston, MA, USA
- Division of Pediatric Pulmonology, Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA
| | - Victor M. Castro
- Research Information Systems and Computing, Partners HealthCare System, Boston, MA, USA
- Department of Neurology, Laboratory of Computer Science, Massachusetts General Hospital, Boston, MA, USA
| | - Roy Perlis
- Center for Experimental Drugs and Diagnostics, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Ravi Thadhani
- Harvard Medical School, Boston, MA, USA
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Carlos A. Camargo
- Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
303
|
Blaas D, Fuchs R. Mechanism of human rhinovirus infections. Mol Cell Pediatr 2016; 3:21. [PMID: 27251607 PMCID: PMC4889530 DOI: 10.1186/s40348-016-0049-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/24/2016] [Indexed: 12/15/2022] Open
Abstract
About 150 human rhinovirus serotypes are responsible for more than 50 % of recurrent upper respiratory infections. Despite having similar 3D structures, some bind members of the low-density lipoprotein receptor family, some ICAM-1, and some use CDHR3 for host cell infection. This is also reflected in the pathways exploited for cellular entry. We found that even rhinovirus serotypes binding the same receptor can travel along different endocytic pathways and release their RNA genome into the cytosol at different locations. How this may account for distinct immune responses elicited by various rhinoviruses and the observed symptoms of the common cold is briefly discussed.
Collapse
Affiliation(s)
- Dieter Blaas
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Vienna Biocenter, Medical University of Vienna, Vienna, Austria
| | - Renate Fuchs
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
304
|
Blaas D. Viral entry pathways: the example of common cold viruses. Wien Med Wochenschr 2016; 166:211-26. [PMID: 27174165 PMCID: PMC4871925 DOI: 10.1007/s10354-016-0461-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 04/12/2016] [Indexed: 02/02/2023]
Abstract
For infection, viruses deliver their genomes into the host cell. These nucleic acids are usually tightly packed within the viral capsid, which, in turn, is often further enveloped within a lipid membrane. Both protect them against the hostile environment. Proteins and/or lipids on the viral particle promote attachment to the cell surface and internalization. They are likewise often involved in release of the genome inside the cell for its use as a blueprint for production of new viruses. In the following, I shall cursorily discuss the early more general steps of viral infection that include receptor recognition, uptake into the cell, and uncoating of the viral genome. The later sections will concentrate on human rhinoviruses, the main cause of the common cold, with respect to the above processes. Much of what is known on the underlying mechanisms has been worked out by Renate Fuchs at the Medical University of Vienna.
Collapse
Affiliation(s)
- Dieter Blaas
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Vienna Biocenter, Dr. Bohr Gasse 9/3, 1030, Vienna, Austria.
| |
Collapse
|
305
|
Khaw YS, Chan YF, Jafar FL, Othman N, Chee HY. Comparative Genetic Analyses of Human Rhinovirus C (HRV-C) Complete Genome from Malaysia. Front Microbiol 2016; 7:543. [PMID: 27199901 PMCID: PMC4851184 DOI: 10.3389/fmicb.2016.00543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/04/2016] [Indexed: 11/17/2022] Open
Abstract
Human rhinovirus-C (HRV-C) has been implicated in more severe illnesses than HRV-A and HRV-B, however, the limited number of HRV-C complete genomes (complete 5′ and 3′ non-coding region and open reading frame sequences) has hindered the in-depth genetic study of this virus. This study aimed to sequence seven complete HRV-C genomes from Malaysia and compare their genetic characteristics with the 18 published HRV-Cs. Seven Malaysian HRV-C complete genomes were obtained with newly redesigned primers. The seven genomes were classified as HRV-C6, C12, C22, C23, C26, C42, and pat16 based on the VP4/VP2 and VP1 pairwise distance threshold classification. Five of the seven Malaysian isolates, namely, 3430-MY-10/C22, 8713-MY-10/C23, 8097-MY-11/C26, 1570-MY-10/C42, and 7383-MY-10/pat16 are the first newly sequenced complete HRV-C genomes. All seven Malaysian isolates genomes displayed nucleotide similarity of 63–81% among themselves and 63–96% with other HRV-Cs. Malaysian HRV-Cs had similar putative immunogenic sites, putative receptor utilization and potential antiviral sites as other HRV-Cs. The genomic features of Malaysian isolates were similar to those of other HRV-Cs. Negative selections were frequently detected in HRV-Cs complete coding sequences indicating that these sequences were under functional constraint. The present study showed that HRV-Cs from Malaysia have diverse genetic sequences but share conserved genomic features with other HRV-Cs. This genetic information could provide further aid in the understanding of HRV-C infection.
Collapse
Affiliation(s)
- Yam Sim Khaw
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia Serdang, Malaysia
| | - Yoke Fun Chan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya Kuala Lumpur, Malaysia
| | - Faizatul Lela Jafar
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya Kuala Lumpur, Malaysia
| | - Norlijah Othman
- Department of Paediatrics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia Serdang, Malaysia
| | - Hui Yee Chee
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia Serdang, Malaysia
| |
Collapse
|
306
|
Jamieson KC, Warner SM, Leigh R, Proud D. Rhinovirus in the Pathogenesis and Clinical Course of Asthma. Chest 2016; 148:1508-1516. [PMID: 26270739 DOI: 10.1378/chest.15-1335] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
In healthy individuals, human rhinovirus (HRV) infections are the major cause of the common cold. These are generally uncomplicated infections except for occasional cases of otitis media or sinusitis. In individuals with asthma, however, HRV infections can have a major impact on disease development and progression. HRV-induced wheezing illnesses in early life are a significant risk factor for subsequent development of asthma, and growing evidence supports a role of recurrent HRV infections in the development and progression of several aspects of airway remodeling in asthma. In addition, HRV infections are one of the most common triggers for acute exacerbations of asthma, which represent a major burden to health-care systems around the world. None of the currently prescribed medications for asthma are effective in preventing or reversing asthma development and airway remodeling or are ideal for treating HRV-induced exacerbations of asthma. Thus, a better understanding of the role of HRV in asthma is important if we are to develop more effective therapies. In the past decade, we have gained new insights into the role of HRV infections in the development and progression of airway remodeling as well as a new appreciation for the proinflammatory and host defense responses to HRV infections that may help to regulate susceptibility to asthma exacerbations. This article reviews the current understanding of the role HRV infections play in the pathogenesis of asthma and identifies possible avenues to new therapeutic strategies for limiting the effects of HRV infections in asthma.
Collapse
Affiliation(s)
- Kyla C Jamieson
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Stephanie M Warner
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Richard Leigh
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - David Proud
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
307
|
Genetic polymorphisms of cell adhesion molecules in Behcet's disease in a Chinese Han population. Sci Rep 2016; 6:24974. [PMID: 27108704 PMCID: PMC4842956 DOI: 10.1038/srep24974] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 04/08/2016] [Indexed: 12/20/2022] Open
Abstract
Cell adhesion molecules (CAMs) are involved in various immune-mediated diseases. This study was conducted to investigate the association of single nucleotide polymorphisms (SNPs) of CAMs with Behçet’s disease (BD) in a Chinese Han population. A two-stage association study was carried out in 1149 BD patients and 2107 normal controls. Genotyping of 43 SNPs was performed using MassARRAY System (Sequenom), polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and TaqMan SNP assays. The expression of CD6 and CD11c was examined by real-time PCR and cytokine production was measured by ELISA. A significantly higher frequency of the CT genotype, and a lower frequency of the CC genotype and C allele of CD6 rs11230563 were observed in BD as compared with controls. Analysis of CD11c rs2929 showed that patients with BD had a significantly higher frequency of the GG genotype and G allele, and a lower frequency of the AG genotype as compared with controls. Functional experiments showed an increased CD11c expression and increased production of TNF-α and IL-1beta by LPS stimulated PBMCs in GG carriers of CD11c rs2929 compared to AA/AG carriers. Our study provides evidence that CD6 and CD11c are involved in the susceptibility to BD in a Chinese Han population.
Collapse
|
308
|
Bønnelykke K, Vissing NH, Sevelsted A, Johnston SL, Bisgaard H. Reply. J Allergy Clin Immunol 2016; 138:313-314. [PMID: 27084400 DOI: 10.1016/j.jaci.2016.01.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 01/05/2016] [Indexed: 10/21/2022]
Affiliation(s)
- Klaus Bønnelykke
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Nadja Hawwa Vissing
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Astrid Sevelsted
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Sebastian L Johnston
- Airway Disease Infection Section, MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, National Heart & Lung Institute, Imperial College London, London, United Kingdom; Centre for Respiratory Infection, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Hans Bisgaard
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
309
|
Bosco A, Wiehler S, Proud D. Interferon regulatory factor 7 regulates airway epithelial cell responses to human rhinovirus infection. BMC Genomics 2016; 17:76. [PMID: 26810609 PMCID: PMC4727386 DOI: 10.1186/s12864-016-2405-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/18/2016] [Indexed: 12/11/2022] Open
Abstract
Background Human rhinoviruses (HRV) cause the majority of colds and trigger exacerbations of chronic lower airway diseases. Airway epithelial cells are the primary site for HRV infection and replication, and the initiation of host inflammatory responses. At present, the molecular mechanisms that underpin HRV responses in airway epithelial cells are incompletely understood. The aim of this study was to employ microarray profiling, upstream regulator analysis, and siRNA mediated gene silencing to further our understanding of the role of interferon regulatory factor 7 (IRF7) in this response. Methods Primary human bronchial epithelial cells (HBE) where transfected with siRNA that targets IRF7 or a non-silencing control (all-star control) using Lipofectamine. The cells were allowed to recover, and then cultured in the presence or absence of HRV-16 for 24 h. Global patterns of gene expression were profiled on microarrays. A subset of genes identified in the microarray study were validated at the mRNA and/or protein level using real time RT-qPCR, ELISA, and western blots. Results Hundreds of genes were upregulated in HBE during HRV infection. Pathways analysis demonstrated that these genes were mainly involved in type I and II interferon signaling, RIG-I/MDA5 signaling, antigen processing and presentation, and apoptosis. Upstream regulator analysis of these data suggested that IRF7 was a major molecular driver of this response. Knockdown of IRF7 reduced the HRV-driven upregulation of genes involved in antiviral responses (interferon signaling, Toll-like receptor signaling, NOD-like receptor signaling, RIG-I/MDA5 signaling), and increased the expression of genes that promote inflammation (e.g. CXCL5, IL-33, IL1RL1) and the response to oxidative stress. However, the majority of genes that were perturbed by HRV in HBE cells including those that are known to be regulated by IRF7 were insensitive to IRF7 knockdown. Upstream regulator analysis of the part of the response that was insensitive to IRF7 knockdown suggested it was driven by NF-κB, STAT1, STAT3, and IRF1. Conclusions Our findings demonstrate that IRF7 regulates the expression of genes involved in antiviral immunity, inflammation, and the response to oxidative stress during HRV infections in HBE cells, and also suggests that other transcription factors play a major role in this response. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2405-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anthony Bosco
- Telethon Kids Institute, University of Western Australia, PO Box 855, West Perth, WA, 6872, Australia.
| | - Shahina Wiehler
- Airway Inflammation Research Group, Snyder Institute for Chronic Diseases, and the Department of Physiology & Pharmacology, University of Calgary Faculty of Medicine, Calgary, AB, Canada.
| | - David Proud
- Airway Inflammation Research Group, Snyder Institute for Chronic Diseases, and the Department of Physiology & Pharmacology, University of Calgary Faculty of Medicine, Calgary, AB, Canada.
| |
Collapse
|
310
|
Royston L, Tapparel C. Rhinoviruses and Respiratory Enteroviruses: Not as Simple as ABC. Viruses 2016; 8:E16. [PMID: 26761027 PMCID: PMC4728576 DOI: 10.3390/v8010016] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/09/2015] [Accepted: 12/28/2015] [Indexed: 12/21/2022] Open
Abstract
Rhinoviruses (RVs) and respiratory enteroviruses (EVs) are leading causes of upper respiratory tract infections and among the most frequent infectious agents in humans worldwide. Both are classified in the Enterovirus genus within the Picornaviridae family and they have been assigned to seven distinct species, RV-A, B, C and EV-A, B, C, D. As viral infections of public health significance, they represent an important financial burden on health systems worldwide. However, the lack of efficient antiviral treatment or vaccines against these highly prevalent pathogens prevents an effective management of RV-related diseases. Current advances in molecular diagnostic techniques have revealed the presence of RV in the lower respiratory tract and its role in lower airway diseases is increasingly reported. In addition to an established etiological role in the common cold, these viruses demonstrate an unexpected capacity to spread to other body sites under certain conditions. Some of these viruses have received particular attention recently, such as EV-D68 that caused a large outbreak of respiratory illness in 2014, respiratory EVs from species C, or viruses within the newly-discovered RV-C species. This review provides an update of the latest findings on clinical and fundamental aspects of RV and respiratory EV, including a summary of basic knowledge of their biology.
Collapse
Affiliation(s)
- Léna Royston
- University of Geneva Faculty of Medicine, 1 Rue Michel-Servet, 1205 Geneva, Switzerland.
- Laboratory of Virology, Division of Infectious Diseases, University of Geneva Hospitals, 4 Rue Gabrielle Perret-Gentil, 1211 Geneva 14, Switzerland.
| | - Caroline Tapparel
- University of Geneva Faculty of Medicine, 1 Rue Michel-Servet, 1205 Geneva, Switzerland.
- Laboratory of Virology, Division of Infectious Diseases, University of Geneva Hospitals, 4 Rue Gabrielle Perret-Gentil, 1211 Geneva 14, Switzerland.
| |
Collapse
|
311
|
Ljungman P, Snydman D, Boeckh M. Rhinovirus, Coronavirus, Enterovirus, and Bocavirus After Hematopoietic Cell Transplantation or Solid Organ Transplantation. TRANSPLANT INFECTIONS 2016. [PMCID: PMC7123292 DOI: 10.1007/978-3-319-28797-3_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Respiratory viral infections represent a significant cause of morbidity and mortality in immunocompromised hosts. Newer molecular detection assays have allowed for the characterization of several respiratory viruses not previously recognized as having significant clinical impact in the immunocompromised population. Human rhinoviruses are the most common respiratory viruses detected in the upper respiratory tract of hematopoietic cell transplant and lung transplant recipients, and evidence on the impact on clinical outcomes is mounting. Other respiratory viruses including enteroviruses (EVs), coronaviruses (CoVs), and bocavirus may also contribute to pulmonary disease; however, data is limited in the immunocompromised population. Further studies are needed to define the epidemiology, risk factors, and clinical outcomes of these infections; this data will help inform decisions regarding development of antiviral therapy and infection prevention strategies.
Collapse
Affiliation(s)
- Per Ljungman
- Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - David Snydman
- Tufts University School of Medicine Tufts Medical Center, Boston, Massachusetts USA
| | - Michael Boeckh
- University of Washington Fred Hutchinson Cancer Research Center, Seattle, Washington USA
| |
Collapse
|
312
|
Bruning AHL, Thomas XV, van der Linden L, Wildenbeest JG, Minnaar RP, Jansen RR, de Jong MD, Sterk PJ, van der Schee MP, Wolthers KC, Pajkrt D. Clinical, virological and epidemiological characteristics of rhinovirus infections in early childhood: A comparison between non-hospitalised and hospitalised children. J Clin Virol 2015; 73:120-126. [PMID: 26599608 PMCID: PMC7185867 DOI: 10.1016/j.jcv.2015.10.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 10/21/2015] [Accepted: 10/30/2015] [Indexed: 11/28/2022]
Abstract
Rhinoviruses (RV) frequently cause respiratory tract infections in young children. We evaluated characteristics of RV infections in relation to clinical outcome. In young children clinical outcome was not related to RV species or types. Outcome of RV disease is more likely influenced by multiple (host-specific) factors.
Background Several studies have been published regarding the epidemiology and clinical significance of the different rhinovirus (RV) species (-A, -B and -C). However, data on RV types and the associations with clinical outcome in young children are limited. Here, we investigated the clinical, virological and epidemiological characteristics of RV infections in young children with mild or asymptomatic infection (non-hospitalised children) and in symptomatic young children admitted to the hospital. Objectives The aim of this study was to evaluate associations between different characteristics of RV infections and clinical outcome in young children. Study design RV-infected children were retrospectively selected from a Dutch birth cohort (EUROPA-study) and from hospitalised children admitted to the hospital because of respiratory symptoms. In total 120 RV-typed samples could be selected from 65 non-hospitalised and 49 hospitalised children between November 2009 and December 2012. Results RV-A was the predominant species in both study populations, followed closely by RV-C. RV-B was observed only sporadically. The distribution of the RV species was comparable in non-hospitalised and hospitalised children. In children with respiratory distress who required ICU-admission the distribution of RV species did not differ significantly from the non-hospitalised children. No predominant RV type was present in non-hospitalised nor hospitalised children. However, hospitalised children were younger, had more often an underlying illness, a higher RV load and more frequently a bacterial co-infection. Conclusions Clinical outcome of RV infected young children was not related to RV species or types, but may more likely be influenced by multiple (host-specific) factors.
Collapse
Affiliation(s)
- Andrea H L Bruning
- Department of Pediatric Infectious Diseases, Emma Children's Hospital, Academic Medical Center, Amsterdam, The Netherlands.
| | - Xiomara V Thomas
- Department of Medical Microbiology, Laboratory of Clinical Virology, Academic Medical Center, Amsterdam, The Netherlands
| | - Lonneke van der Linden
- Department of Medical Microbiology, Laboratory of Clinical Virology, Academic Medical Center, Amsterdam, The Netherlands
| | - Joanne G Wildenbeest
- Department of Pediatric Infectious Diseases, Emma Children's Hospital, Academic Medical Center, Amsterdam, The Netherlands
| | - René P Minnaar
- Department of Medical Microbiology, Laboratory of Clinical Virology, Academic Medical Center, Amsterdam, The Netherlands
| | - Rogier R Jansen
- Department of Medical Microbiology, Laboratory of Clinical Virology, Academic Medical Center, Amsterdam, The Netherlands
| | - Menno D de Jong
- Department of Medical Microbiology, Laboratory of Clinical Virology, Academic Medical Center, Amsterdam, The Netherlands
| | - Peter J Sterk
- Department of Respiratory Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Marc P van der Schee
- Department of Respiratory Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Katja C Wolthers
- Department of Medical Microbiology, Laboratory of Clinical Virology, Academic Medical Center, Amsterdam, The Netherlands
| | - Dasja Pajkrt
- Department of Pediatric Infectious Diseases, Emma Children's Hospital, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
313
|
Genetics of allergy and allergic sensitization: common variants, rare mutations. Curr Opin Immunol 2015; 36:115-26. [PMID: 26386198 DOI: 10.1016/j.coi.2015.08.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/18/2015] [Accepted: 08/18/2015] [Indexed: 11/20/2022]
Abstract
Our understanding of the specific genetic lesions in allergy has improved in recent years due to identification of common risk variants from genome-wide association studies (GWAS) and studies of rare, monogenic diseases. Large-scale GWAS have identified novel susceptibility loci and provided information about shared genetics between allergy, related phenotypes and autoimmunity. Studies of monogenic diseases have elucidated critical cellular pathways and protein functions responsible for allergy. These complementary approaches imply genetic mechanisms involved in Th2 immunity, T-cell differentiation, TGFβ signaling, regulatory T-cell function and skin/mucosal function as well as yet unknown mechanisms associated with newly identified genes. Future studies, in combination with data on gene expression and epigenetics, are expected to increase our understanding of the pathogenesis of allergy.
Collapse
|
314
|
Understanding the Association of Human Rhinovirus with Asthma. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 23:6-10. [PMID: 26376925 DOI: 10.1128/cvi.00414-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Human rhinoviruses are ubiquitous seasonal pathogens. They have known associations with first onset of wheezing illnesses in children and with asthma exacerbations in patients of all ages. It is not yet certain whether human rhinoviruses play a direct role in the pathogenesis of asthma by activating deleterious inflammatory responses or if they only serve as a catalyst to accelerate the disease in genetically predisposed individuals. There have been previously demonstrated reductions in the development of the asthmatic phenotype with passive immunization against respiratory syncytial virus; however, in the case of rhinovirus, there are barriers to effective vaccine development, such as the lack of a common antigenic target due to alterations of surface markers among subtypes. It remains to be determined whether certain subtypes of human rhinovirus are more asthmagenic and therefore worthy of greater attention as vaccine candidates, but several studies have suggested that RV-C and certain RV-A strains may be more strongly linked with asthma.
Collapse
|
315
|
Caly L, Ghildyal R, Jans DA. Respiratory virus modulation of host nucleocytoplasmic transport; target for therapeutic intervention? Front Microbiol 2015; 6:848. [PMID: 26322040 PMCID: PMC4536372 DOI: 10.3389/fmicb.2015.00848] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/03/2015] [Indexed: 01/02/2023] Open
Abstract
The respiratory diseases caused by rhinovirus, respiratory syncytial virus, and influenza virus represent a large social and financial burden on healthcare worldwide. Although all three viruses have distinctly unique properties in terms of infection and replication, they share the ability to exploit/manipulate the host-cell nucleocytoplasmic transport system in order to replicate effectively and efficiently. This review outlines the various ways in which infection by these viruses impacts on the host nucleocytoplasmic transport system, and examples where inhibition thereof in turn decreases viral replication. The highly conserved nature of the nucleocytoplasmic transport system and the viral proteins that interact with it make this virus–host interface a prime candidate for the development of specific antiviral therapeutics in the future.
Collapse
Affiliation(s)
- Leon Caly
- Nuclear Signaling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC Australia
| | - Reena Ghildyal
- Faculty of ESTeM, University of Canberra, Bruce, ACT Australia
| | - David A Jans
- Nuclear Signaling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC Australia
| |
Collapse
|