301
|
Grey ST, Arvelo MB, Hasenkamp W, Bach FH, Ferran C. A20 inhibits cytokine-induced apoptosis and nuclear factor kappaB-dependent gene activation in islets. J Exp Med 1999; 190:1135-46. [PMID: 10523611 PMCID: PMC2195658 DOI: 10.1084/jem.190.8.1135] [Citation(s) in RCA: 170] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Insulin-dependent diabetes mellitus (IDDM) is an autoimmune disease resulting from apoptotic destruction of beta cells in the islets of Langerhans. Low expression of antioxidants and a predilection to produce nitric oxide (NO) have been shown to underscore beta cell apoptosis. With this perspective in mind, we questioned whether beta cells could mount an induced protective response to inflammation. Here we show that human and rat islets can be induced to rapidly express the antiapoptotic gene A20 after interleukin (IL)-1beta activation. Overexpression of A20 by means of adenovirus-mediated gene transfer protects islets from IL-1beta and interferon gamma-induced apoptosis. The cytoprotective effect of A20 against apoptosis correlates with and is dependent on the abrogation of cytokine-induced NO production. The inhibitory effect of A20 on cytokine-stimulated NO production is due to transcriptional blockade of inducible NO synthase (iNOS) induction; A20 inhibits the activation of the transcription factor nuclear factor kappaB at a level upstream of IkappaBalpha degradation. These data demonstrate a dual antiapoptotic and antiinflammatory function for A20 in beta cells. This qualifies A20 as part of the physiological cytoprotective response of islets. We propose that A20 may have therapeutic potential as a gene therapy candidate to achieve successful islet transplantation and the cure of IDDM.
Collapse
Affiliation(s)
- S T Grey
- Immunobiology Research Center, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA.
| | | | | | | | | |
Collapse
|
302
|
Chin AI, Shu J, Shan Shi C, Yao Z, Kehrl JH, Cheng G. TANK potentiates tumor necrosis factor receptor-associated factor-mediated c-Jun N-terminal kinase/stress-activated protein kinase activation through the germinal center kinase pathway. Mol Cell Biol 1999; 19:6665-72. [PMID: 10490605 PMCID: PMC84649 DOI: 10.1128/mcb.19.10.6665] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Tumor necrosis factor (TNF) receptor-associated factors (TRAFs) are mediators of many members of the TNF receptor superfamily and can activate both the nuclear factor kappaB (NF-kappaB) and stress-activated protein kinase (SAPK; also known as c-Jun N-terminal kinase) signal transduction pathways. We previously described the involvement of a TRAF-interacting molecule, TRAF-associated NF-kappaB activator (TANK), in TRAF2-mediated NF-kappaB activation. Here we show that TANK synergized with TRAF2, TRAF5, and TRAF6 but not with TRAF3 in SAPK activation. TRAF2 and TANK individually formed weak interactions with germinal center kinase (GCK)-related kinase (GCKR). However, when coexpressed, they formed a strong complex with GCKR, thereby providing a potential mechanism for TRAF and TANK synergy in GCKR-mediated SAPK activation, which is important in TNF family receptor signaling. Our results also suggest that TANK can form potential intermolecular as well as intramolecular interactions between its amino terminus and carboxyl terminus. This study suggests that TANK is a regulatory molecule controlling the threshold of NF-kappaB and SAPK activities in response to activation of TNF receptors. In addition, CD40 activated endogenous GCKR in primary B cells, implicating GCK family proteins in CD40-mediated B-cell functions.
Collapse
Affiliation(s)
- A I Chin
- Molecular Biology Institute, Jonsson Comprehensive Cancer Center, University of California Los Angeles, 90095, USA
| | | | | | | | | | | |
Collapse
|
303
|
Elewaut D, DiDonato JA, Mogg Kim J, Truong F, Eckmann L, Kagnoff MF. NF-κB Is a Central Regulator of the Intestinal Epithelial Cell Innate Immune Response Induced by Infection with Enteroinvasive Bacteria. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.3.1457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Human intestinal epithelial cells up-regulate the expression of an inflammatory gene program in response to infection with a spectrum of different strains of enteroinvasive bacteria. The conserved nature of this program suggested that diverse signals, which are activated by enteroinvasive bacteria, can be integrated into a common signaling pathway that activates a set of proinflammatory genes in infected host cells. Human intestinal epithelial cell lines, HT-29, Caco-2, and T84, were infected with invasive bacteria that use different strategies to induce their uptake and have different intracellular localizations (i.e., Salmonella dublin, enteroinvasive Escherichia coli, or Yersinia enterocolitica). Infection with each of these bacteria resulted in the activation of TNF receptor associated factors, two recently described serine kinases, IκB kinase (IKK) α and IKKβ, and increased NF-κB DNA binding activity. This was paralleled by partial degradation of IκBα and IκBε in bacteria-infected Caco-2 cells. Mutant proteins that act as superrepressors of IKKβ and IκBα inhibited the up-regulated transcription and expression of downstream targets genes of NF-κB that are key components of the epithelial inflammatory gene program (i.e., IL-8, growth-related oncogene-α, monocyte chemoattractant protein-1, TNF-α, cyclooxygenase-2, nitric oxide synthase-2, ICAM-1) activated by those enteroinvasive bacteria. These studies position NF-κB as a central regulator of the epithelial cell innate immune response to infection with enteroinvasive bacteria.
Collapse
Affiliation(s)
- Dirk Elewaut
- Laboratory of Mucosal Immunology, Department of Medicine, University of California at San Diego, La Jolla, CA 92093
| | - Joseph A. DiDonato
- Laboratory of Mucosal Immunology, Department of Medicine, University of California at San Diego, La Jolla, CA 92093
| | - Jung Mogg Kim
- Laboratory of Mucosal Immunology, Department of Medicine, University of California at San Diego, La Jolla, CA 92093
| | - Francis Truong
- Laboratory of Mucosal Immunology, Department of Medicine, University of California at San Diego, La Jolla, CA 92093
| | - Lars Eckmann
- Laboratory of Mucosal Immunology, Department of Medicine, University of California at San Diego, La Jolla, CA 92093
| | - Martin F. Kagnoff
- Laboratory of Mucosal Immunology, Department of Medicine, University of California at San Diego, La Jolla, CA 92093
| |
Collapse
|
304
|
De Valck D, Jin DY, Heyninck K, Van de Craen M, Contreras R, Fiers W, Jeang KT, Beyaert R. The zinc finger protein A20 interacts with a novel anti-apoptotic protein which is cleaved by specific caspases. Oncogene 1999; 18:4182-90. [PMID: 10435631 DOI: 10.1038/sj.onc.1202787] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A20 is a Cys2/Cys2 zinc finger protein which is induced by a variety of inflammatory stimuli and which has been characterized as an inhibitor of cell death by a yet unknown mechanism. In order to clarify its molecular mechanism of action, we used the yeast two-hybrid system to screen for proteins that interact with A20. A cDNA fragment was isolated which encoded a portion of a novel protein (TXBP151), which was recently found to be a human T-cell leukemia virus type-I (HTLV-I) Tax-binding protein. The full-length 2386 bp TXBP151 mRNA encodes a protein of 86 kDa. Like A20, overexpression of TXBP151 could inhibit apoptosis induced by tumour necrosis factor (TNF) in NIH3T3 cells. Moreover, transfection of antisense TXBP151 partially abolished the anti-apoptotic effect of A20. Furthermore, apoptosis induced by TNF or CD95 (Fas/APO-1) was associated with proteolysis of TXBP151. This degradation could be inhibited by the broad-spectrum caspase inhibitor zVAD-fmk or by expression of the cowpox virus-derived inhibitor CrmA, suggesting that TXBP151 is a novel substrate for caspase family members. TXBP151 was indeed found to be specifically cleaved in vitro by members of the caspase-3-like subfamily, viz. caspase-3, caspase-6 and caspase-7. Thus TXBP151 appears to be a novel A20-binding protein which might mediate the anti-apoptotic activity of A20, and which can be processed by specific caspases.
Collapse
Affiliation(s)
- D De Valck
- Department of Molecular Biology, Flanders Interuniversity Institute for Biotechnology and University of Gent, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
305
|
Schwenzer R, Siemienski K, Liptay S, Schubert G, Peters N, Scheurich P, Schmid RM, Wajant H. The human tumor necrosis factor (TNF) receptor-associated factor 1 gene (TRAF1) is up-regulated by cytokines of the TNF ligand family and modulates TNF-induced activation of NF-kappaB and c-Jun N-terminal kinase. J Biol Chem 1999; 274:19368-74. [PMID: 10383449 DOI: 10.1074/jbc.274.27.19368] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
To understand how the TNF receptor-associated factor 1 (TRAF1) is transcriptionally regulated, in vitro DNA binding assays, promoter-reporter gene assays, and RNase protection assays were performed with the human TRAF1 gene. Binding of NF-kappaB to three of five putative binding sites within the human TRAF1 promoter was found in electrophoretic mobility shift assay studies, and analysis of TRAF1 gene promoter luciferase constructs confirmed the functional importance of these elements. Moreover, triggering of TNF-R1, CD40, and the interleukin-1 receptor resulted in transcription of the TRAF1 gene, whereas receptors that are not activators or only poor activators of NF-kappaB in HeLa cells failed to show a significant TRAF1 induction. Because it has been shown that members of the TRAF family are involved in activation of NF-kappaB and the c-Jun N-terminal kinase (JNK) by the interleukin-1 receptor and members of the TNF receptor superfamily, a role of TRAF1 in receptor cross-talk and/or feedback regulation of activated receptor signaling complexes can be suggested. In fact, we found that TNF-induced activation of JNK is prolonged in transfectants overexpressing TRAF1, whereas overexpression of a deletion mutant of TRAF1 in which the N-terminal part had been replaced by the green fluorescent protein interfered with TNF-induced activation of NF-kappaB and JNK.
Collapse
Affiliation(s)
- R Schwenzer
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | | | | | | | | | | | | | | |
Collapse
|
306
|
Heyninck K, De Valck D, Vanden Berghe W, Van Criekinge W, Contreras R, Fiers W, Haegeman G, Beyaert R. The zinc finger protein A20 inhibits TNF-induced NF-kappaB-dependent gene expression by interfering with an RIP- or TRAF2-mediated transactivation signal and directly binds to a novel NF-kappaB-inhibiting protein ABIN. J Cell Biol 1999; 145:1471-82. [PMID: 10385526 PMCID: PMC2133159 DOI: 10.1083/jcb.145.7.1471] [Citation(s) in RCA: 259] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/1998] [Revised: 03/29/1999] [Indexed: 01/28/2023] Open
Abstract
The zinc finger protein A20 is a tumor necrosis factor (TNF)- and interleukin 1 (IL-1)-inducible protein that negatively regulates nuclear factor-kappa B (NF-kappaB)-dependent gene expression. However, the molecular mechanism by which A20 exerts this effect is still unclear. We show that A20 does not inhibit TNF- induced nuclear translocation and DNA binding of NF-kappaB, although it completely prevents the TNF- induced activation of an NF-kappaB-dependent reporter gene, as well as TNF-induced IL-6 and granulocyte macrophage-colony stimulating factor gene expression. Moreover, NF-kappaB activation induced by overexpression of the TNF receptor-associated proteins TNF receptor-associated death domain protein (TRADD), receptor interacting protein (RIP), and TNF recep- tor-associated factor 2 (TRAF2) was also inhibited by expression of A20, whereas NF-kappaB activation induced by overexpression of NF-kappaB-inducing kinase (NIK) or the human T cell leukemia virus type 1 (HTLV-1) Tax was unaffected. These results demonstrate that A20 inhibits NF-kappaB-dependent gene expression by interfering with a novel TNF-induced and RIP- or TRAF2-mediated pathway that is different from the NIK-IkappaB kinase pathway and that is specifically involved in the transactivation of NF-kappaB. Via yeast two-hybrid screening, we found that A20 binds to a novel protein, ABIN, which mimics the NF-kappaB inhibiting effects of A20 upon overexpression, suggesting that the effect of A20 is mediated by its interaction with this NF-kappaB inhibiting protein, ABIN.
Collapse
Affiliation(s)
- K Heyninck
- Department of Molecular Biology, Flanders Interuniversity Institute for Biotechnology, University of Ghent, B-9000 Ghent, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
307
|
Doi TS, Marino MW, Takahashi T, Yoshida T, Sakakura T, Old LJ, Obata Y. Absence of tumor necrosis factor rescues RelA-deficient mice from embryonic lethality. Proc Natl Acad Sci U S A 1999; 96:2994-9. [PMID: 10077625 PMCID: PMC15883 DOI: 10.1073/pnas.96.6.2994] [Citation(s) in RCA: 236] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mice lacking the RelA (p65) subunit of NF-kappaB die between days 14 and 15 of embryogenesis because of massive liver destruction. Fibroblasts and macrophages isolated from relA-/- embryos were found to be highly sensitive to tumor necrosis factor (TNF) cytotoxicity, raising the possibility that endogenous TNF is the cause of liver cell apoptosis. To test this idea, we generated mice lacking both TNF and RelA. Embryogenesis proceeds normally in such mice, and TNF/RelA double-deficient mice are viable and have normal livers. Thus, the RelA-mediated antiapoptotic signal that protects normal cells from TNF injury in vitro can be shown to be operative in vivo.
Collapse
Affiliation(s)
- T S Doi
- Laboratory of Immunology, Aichi Cancer Center Research Institute, Nagoya 464, Japan
| | | | | | | | | | | | | |
Collapse
|
308
|
Abstract
Just four years ago the first two members of a new family of molecules involved in signal transduction by members of the TNF receptor superfamily were described and designated TNF Receptor Associated Factors (TRAFs). In the meantime six human and murine TRAFs as well as a TRAF protein from C. elegans have been molecularly cloned. From our current point of view, TRAF proteins appear to represent multifunctional signal adaptors, tightly embedded in a network of signals culminating in the activation of kinase cascades that finally lead to the activation of c-Jun N-terminal kinase. p38 mitogen activated protein kinase, and the transcription factor NF-kappaB, thereby also affecting the balance between survival and cell death. Some of the activities of the individual TRAF family members may be redundant although transgenic knockout animal models have already shown that crucial signaling pathways for single TRAF molecules in vivo can be defined.
Collapse
Affiliation(s)
- H Wajant
- Institute of Cell Biology and Immunology, University of Stuttgart, Germany.
| | | | | |
Collapse
|
309
|
Affiliation(s)
- M E Peter
- Tumor Immunology Program, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
310
|
Eliopoulos AG, Blake SM, Floettmann JE, Rowe M, Young LS. Epstein-Barr virus-encoded latent membrane protein 1 activates the JNK pathway through its extreme C terminus via a mechanism involving TRADD and TRAF2. J Virol 1999; 73:1023-35. [PMID: 9882303 PMCID: PMC103922 DOI: 10.1128/jvi.73.2.1023-1035.1999] [Citation(s) in RCA: 167] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/1998] [Accepted: 10/22/1998] [Indexed: 12/17/2022] Open
Abstract
The transforming Epstein-Barr virus-encoded latent membrane protein 1 (LMP1) activates signalling on the NF-kappaB axis through two distinct domains in its cytoplasmic C terminus, namely, CTAR1 (amino acids [aa] 187 to 231) and CTAR2 (aa 351 to 386). The ability of CTAR1 to activate NF-kappaB appears to be attributable to the direct interaction of tumor necrosis factor (TNF) receptor-associated factor 2 (TRAF2), while recent work indicates that CTAR2-induced NF-kappaB is mediated through its association with TNF receptor-associated death domain (TRADD). LMP1 expression also results in activation of the c-Jun N-terminal kinase (JNK) (also known as stress-activated protein kinase) cascade, an effect which is mediated exclusively through CTAR2 and can be dissociated from NF-kappaB induction. The organization and signalling components involved in LMP1-induced JNK activation are not known. In this study we have dissected the extreme C terminus of LMP1 and have identified the last 8 aa of the protein (aa 378 to 386) as being important for JNK signalling. Using a series of fine mutants in which single amino acids between codons 379 and 386 were changed to glycine, we have found that mutations of Pro379, Glu381, Ser383, or Tyr384 diminish the ability of LMP1 CTAR2 to engage JNK signalling. Interestingly, this region was also found to be essential for CTAR2-mediated NF-kappaB induction and coincides with the LMP1 amino acid sequences shown to bind TRADD. Furthermore, we have found that LMP1-mediated JNK activation is synergistically augmented by low levels of TRADD expression, suggesting that this adapter protein is critical for LMP1 signalling. TRAF2 is known to associate with TRADD, and expression of a dominant-negative N-terminal deletion TRAF2 mutant was found to partially inhibit LMP1-induced JNK activation in 293 cells. In addition, the TRAF2-interacting protein A20 blocked both LMP1-induced JNK and NF-kappaB activation, further implicating TRAF2 in these phenomena. While expression of a kinase-inactive mutated NF-kappaB-inducing kinase (NIK), a mitogen-activated protein kinase kinase kinase which also associates with TRAF2, impaired LMP1 signalling on the NF-kappaB axis, it did not inhibit LMP1-induced JNK activation, suggesting that these two pathways may bifurcate at the level of TRAF2. These data further define a role for TRADD and TRAF2 in JNK activation and confirm that LMP1 utilizes signalling mechanisms used by the TNF receptor/CD40 family to elicit its pleiotropic activities.
Collapse
Affiliation(s)
- A G Eliopoulos
- CRC Institute for Cancer Studies, The University of Birmingham Medical School, Birmingham B15 2TA, England
| | | | | | | | | |
Collapse
|
311
|
Heyninck K, Beyaert R. The cytokine-inducible zinc finger protein A20 inhibits IL-1-induced NF-kappaB activation at the level of TRAF6. FEBS Lett 1999; 442:147-50. [PMID: 9928991 DOI: 10.1016/s0014-5793(98)01645-7] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The zinc finger protein A20 is encoded by an immediate early response gene whose expression is induced by different inflammatory stimuli, including interleukin-1 (IL-1). Gene induction by IL-1 is mediated by activation of the transcription factor NF-kappaB, and requires the signal adapter protein TRAF6. The latter interacts with the NF-kappaB-inducing kinase NIK, which is believed to be part of the IkappaB kinase complex. Expression of A20 potently inhibits IL-1-induced NF-kappaB activation by an unknown mechanism. Inhibition of IL-1-induced NF-kappaB activation was found to be mediated by the C-terminal zinc finger-containing domain of A20. More importantly, we present evidence that A20 interferes with IL-1-induced NF-kappaB activation at the level of TRAF6, upstream of NIK. Moreover, A20 was shown to directly interact with TRAF6.
Collapse
Affiliation(s)
- K Heyninck
- Department of Molecular Biology, Flanders Interuniversity Institute for Biotechnology and University of Ghent, Belgium
| | | |
Collapse
|
312
|
Kaltschmidt B, Sparna T, Kaltschmidt C. Activation of NF-kappa B by reactive oxygen intermediates in the nervous system. Antioxid Redox Signal 1999; 1:129-44. [PMID: 11228742 DOI: 10.1089/ars.1999.1.2-129] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nuclear factor kappa B (NF-kappa B) is a transcription factor crucially involved in glial and neuronal function. NF-kappa B is ubiquitously distributed within the nervous system, and its inducible activity can be discerned from constitutive activity. Prototypic inducible NF-kappa B in the nervous system is composed of the DNA-binding subunits p50 and p65 complexed with an inhibitory I kappa B-alpha molecule. A number of signals from the cell surface can lead to rapid activation of NK-kappa B, thus releasing the inhibition by I kappa B. This activates translocation of NF-kappa B to the nucleus, where it binds to kappa B motifs of target genes and activates transcription. Previous findings have identified reactive oxygen intermediates (ROI) as a common denominator of NF-kappa B activating signals. More specifically, hydrogen peroxide (H2O2) might be used as second messenger in the NF-kappa B system, despite its cytotoxicity. Analysis of pathways leading to NF-kappa B activation in the nervous system has identified a number of ROI-dependent pathways such as cytokine- and neurotrophin-mediated activation, glutamatergic signal transduction, and various diseases with crucial ROI involvement (e.g., Alzheimer's disease, Parkinson's disease, experimental autoimmune encephalomyelitis, multiple sclerosis, amyotrophic lateral sclerosis, and injury). A number of NF-kappa B-specific target genes contribute to the production of ROI or are involved in detoxification of ROIs. In this review, possible mechanisms and regulatory pathways of ROI-mediated NF-kappa B activation are discussed.
Collapse
Affiliation(s)
- B Kaltschmidt
- Molecular Neurobiology Laboratory, Albert-Ludwigs-University of Freiburg, D-79104 Freiburg, Germany.
| | | | | |
Collapse
|
313
|
|
314
|
Natoli G, Costanzo A, Guido F, Moretti F, Bernardo A, Burgio VL, Agresti C, Levrero M. Nuclear factor kB-independent cytoprotective pathways originating at tumor necrosis factor receptor-associated factor 2. J Biol Chem 1998; 273:31262-72. [PMID: 9813034 DOI: 10.1074/jbc.273.47.31262] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Most normal and neoplastic cell types are resistant to tumor necrosis factor (TNF) cytotoxicity unless cotreated with protein or RNA synthesis inhibitors, such as cycloheximide and actinomycin D. Cellular resistance to TNF requires TNF receptor-associated factor 2 (TRAF2), which has been hypothesized to act mainly by mediating activation of the transcription factors nuclear factor kB (NFkB) and activator protein 1 (AP1). NFkB was proposed to switch on transcription of yet unidentified anti-apoptotic genes. To test the possible existence of NFkB-independent cytoprotective pathways, we systematically compared selective trans-dominant inhibitors of the NFkB pathway with inhibitors of TRAF2 signaling for their effect on TNF cytotoxicity. Blockade of TRAF2 function(s) by signaling-deficient oligomerization partners or by molecules affecting TRAF2 recruitment to the TNF receptor 1 complex completely abrogated the cytoprotective response. Conversely, sensitization to TNF cytotoxicity induced by a selective NFkB blockade affected only a fraction of TNF-treated cells in an apparently stochastic manner. No cytoprotective role for c-Jun amino-terminal kinases/stress-activated protein kinases (JNKs/SAPKs), which are activated by TRAF2 and contribute to stimulation of activator protein 1 activity, could be demonstrated in the cellular systems tested. Although required for cytoprotection, TRAF2 is not sufficient to protect cells from TNF + cycloheximide cytotoxicity when overexpressed in transfected cells, thus indicating an essential role of additional TNF receptor 1 complex components in the cytoprotective response. Our results indicate that TNF-induced cytoprotection is a complex function requiring the integration of multiple signal transduction pathways.
Collapse
Affiliation(s)
- G Natoli
- Fondazione Andrea Cesalpino, Policlinico Umberto I, University of Rome La Sapienza, Viale del Policlinico 155, 00161 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
315
|
Cullinan EB, Kwee L, Nunes P, Shuster DJ, Ju G, McIntyre KW, Chizzonite RA, Labow MA. IL-1 Receptor Accessory Protein Is an Essential Component of the IL-1 Receptor. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.10.5614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
The recently described IL-1R accessory protein (IL-1R AcP) interacts with IL-1β and the IL-1 type-IR (IL-1RI), but an essential requirement for IL-1R AcP in IL-1 signaling in vitro has not been established and its role in vivo has not been examined. In this study, IL-1R AcP-deficient mice and fibroblasts were produced and characterized. All IL-1 agonists bound to IL-1R AcP-deficient cells through the type I IL-1R, but failed to activate gene expression through either the nuclear factor-κB or AP-1-dependent signaling pathways. Absence of IL-1R AcP differentially affected the affinity for IL-1 ligands. IL-1R AcP-deficient fibroblasts bound murine IL-1α and human IL-1R antagonist protein (IL-1Ra) with only moderately reduced affinity when compared with wild-type cells, whereas murine IL-1β affinity was reduced by 70-fold. IL-1 also failed to produce a biologic response in vivo in IL-1R AcP-deficient mice. These data demonstrate that a type I IL-1R/IL-1R AcP complex is required for signaling by all IL-1 agonists and for high affinity binding by IL-1β. Finally, IL-1R AcP is an essential signal transducing component of the functional IL-1R and should represent a novel target for blocking IL-1 function in human disease.
Collapse
Affiliation(s)
| | - Lia Kwee
- †Roche Research Center, Hoffmann-La Roche Inc., Nutley, NJ 07110
| | - Perla Nunes
- †Roche Research Center, Hoffmann-La Roche Inc., Nutley, NJ 07110
| | - David J. Shuster
- †Roche Research Center, Hoffmann-La Roche Inc., Nutley, NJ 07110
| | - Grace Ju
- †Roche Research Center, Hoffmann-La Roche Inc., Nutley, NJ 07110
| | | | | | - Mark A. Labow
- †Roche Research Center, Hoffmann-La Roche Inc., Nutley, NJ 07110
| |
Collapse
|
316
|
Hess S, Gottfried E, Smola H, Grunwald U, Schuchmann M, Engelmann H. CD40 induces resistance to TNF-mediated apoptosis in a fibroblast cell line. Eur J Immunol 1998; 28:3594-604. [PMID: 9842902 DOI: 10.1002/(sici)1521-4141(199811)28:11<3594::aid-immu3594>3.0.co;2-d] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
CD40, a member of the TNF receptor family, has been characterized as an important T-B cell interaction molecule. In B cells it co-stimulates isotype switching, proliferation, adhesion and is involved in cell death regulation. In addition to B cells, CD40 expression was found on transformed cells and carcinomas. However, little is known about its functions in these cell types. Recent studies show that CD40 mediates the production of pro-inflammatory cytokines in non-hematopoietic cells, inhibits proliferation or induces cell death. In some cell types the apoptotic program triggered by CD40 is only executed when protein synthesis is blocked, suggesting the existence of constitutively expressed resistance proteins. Here we demonstrate that CD40, similar to the 55-kDa TNF receptor (p55TNFR), has a dual role in the regulation of apoptosis in such cells. In the fibroblast cell line SV80 both CD40 and the p55TNFR trigger apoptosis when protein synthesis is blocked with cycloheximide (CHX). Simultaneous activation of both receptors results in markedly enhanced cell death. However, CD40 activation more than 4 h prior to a challenge with TNF/CHX paradoxically conferred resistance to TNF-induced cell death. Protection correlated with NF-kappaB induction and up-regulation of the anti-apoptotic zinc finger protein A20. Overexpression of A20 in turn rendered SV80 cells resistant to TNF cytotoxicity. In conclusion, our data provide evidence that CD40 may regulate cell death in non-hematopoietic cells in a dual fashion: the decision upon apoptosis or survival of a CD40-activated cell seems to depend on its ability to up-regulate resistance factors.
Collapse
Affiliation(s)
- S Hess
- Institute for Immunology, University of Munich, Germany
| | | | | | | | | | | |
Collapse
|
317
|
Natoli G, Costanzo A, Guido F, Moretti F, Levrero M. Apoptotic, non-apoptotic, and anti-apoptotic pathways of tumor necrosis factor signalling. Biochem Pharmacol 1998; 56:915-20. [PMID: 9776301 DOI: 10.1016/s0006-2952(98)00154-3] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Early events in the signalling of tumor necrosis factor-receptor 1 (TNF-R1), which is the main TNF receptor on most cell types, have been clarified recently. A multimolecular signal transducing complex from which several pathways originate rapidly forms upon TNF-induced aggregation of the receptor. Although fully capable of transducing apoptotic signals, which depend on the adapter Fas-associated death domain protein (FADD) and on the subsequent recruitment/activation of the apoptotic proteases, TNF-R1 usually does not kill cells; this is due to the induction of a complex cytoprotective response that requires TNF-receptor associated factor 2 (TRAF2), a signal transducer that couples TNF-R1 to both nuclear factor kappaB (NFkappaB)-dependent and NFkappaB-independent transcriptional events implicated in induction of genes protecting from TNF cytotoxicity. Although absolutely required for cytoprotection, TNF-receptor associated factor 2 is not sufficient to protect cells from TNF, thus suggesting that it may act in concert with additional TNF-R1 complex components. In this commentary, we will discuss some critical aspects of TNF-R1 signal transduction that are not fully understood: Why do cells not die before the protective protein synthesis has occurred? What are the mechanisms implicated in the termination of each TNF-R1-elicited response? Are there regulatory mechanisms capable of influencing the composition of the TNF-R1 complex and, consequently, the propagation of specific signals?
Collapse
Affiliation(s)
- G Natoli
- Fondazione Andrea Cesalpino and Istituto I Clinica Medica, Universita degli Studi di Roma La Sapienza, Rome, Italy.
| | | | | | | | | |
Collapse
|
318
|
Kulwichit W, Edwards RH, Davenport EM, Baskar JF, Godfrey V, Raab-Traub N. Expression of the Epstein-Barr virus latent membrane protein 1 induces B cell lymphoma in transgenic mice. Proc Natl Acad Sci U S A 1998; 95:11963-8. [PMID: 9751773 PMCID: PMC21748 DOI: 10.1073/pnas.95.20.11963] [Citation(s) in RCA: 289] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The latent membrane protein 1 (LMP1) of the Epstein-Barr virus has transforming properties in rodent fibroblasts and is expressed in most of the cancers associated with Epstein-Barr virus (EBV) infection including posttransplant lymphomas, Hodgkin's disease, nasopharyngeal carcinoma, and AIDS-related lymphomas. In this study, three lineages of LMP1 transgenic mice were established with LMP1 expressed under the control of the Ig heavy chain promoter and enhancer. Lymphoma developed in all three lineages, and the incidence of lymphoma increased significantly with age with lymphomas developing in 42% of transgenic mice over 18 months. The expression of LMP1 was detected at high levels in the lymphoma tissues but only at trace levels in normal lymphoid tissues. Gene rearrangement of the Ig heavy chain indicated monoclonality or oligoclonality in all lymphomas, some of the lymphoid hyperplastic spleens, and some histologically normal spleens. These data reveal that LMP1, without the expression of other EBV genes, is oncogenic in vivo and indicate that LMP1 is a major contributing factor to the development of EBV-associated lymphomas.
Collapse
MESH Headings
- Animals
- Enhancer Elements, Genetic
- Gene Expression
- Gene Rearrangement, B-Lymphocyte, Heavy Chain
- Genes, Immunoglobulin
- Genes, Viral
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/pathogenicity
- Humans
- Lymphoma, B-Cell/etiology
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/virology
- Mice
- Mice, Transgenic
- Oncogenes
- Promoter Regions, Genetic
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Viral Matrix Proteins/genetics
Collapse
Affiliation(s)
- W Kulwichit
- Lineberger Comprehensive Cancer Center, Microbiology and Immunology, and Pathology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | | | | | | | | | | |
Collapse
|
319
|
Dadgostar H, Cheng G. An intact zinc ring finger is required for tumor necrosis factor receptor-associated factor-mediated nuclear factor-kappaB activation but is dispensable for c-Jun N-terminal kinase signaling. J Biol Chem 1998; 273:24775-80. [PMID: 9733779 DOI: 10.1074/jbc.273.38.24775] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The diverse biological effects of the tumor necrosis factor (TNF) receptor superfamily are believed to be mediated in part through TNF receptor-associated factors (TRAFs), a family of cytoplasmic adaptor proteins which can activate intracellular signaling pathways, including the nuclear factor-kappaB (NF-kappaB) and c-Jun N-terminal kinase (JNK) pathways. TRAFs 2, 5, and 6 strongly activate both pathways when overexpressed; however, TRAF 3 (a close homologue of TRAF 5) does not significantly activate either pathway. The current study addresses the structural basis for this difference by substituting corresponding domains of TRAF 5 into TRAF 3 and testing activation of both pathways. A small region of TRAF 5 (the first zinc finger and 10 residues of the second zinc finger) is sufficient to convert TRAF 3 into an activator of both pathways. Also, an intact zinc ring finger is required for NF-kappaB activation but not JNK activation. In agreement with this finding, TRAF 2A, a TRAF 2 splice variant with an altered ring finger, is a specific activator of JNK. These findings suggest that different domains of TRAFs may be involved in NF-kappaB and JNK signaling. Also, alternative splicing of TRAFs may represent a novel mechanism whereby TNF family receptors can mediate distinct downstream effects in different tissues.
Collapse
Affiliation(s)
- H Dadgostar
- Molecular Biology Institute, University of California, Los Angeles, California 90095, USA
| | | |
Collapse
|
320
|
Zen K, Karsan A, Eunson T, Yee E, Harlan JM. Lipopolysaccharide-induced NF-kappaB activation in human endothelial cells involves degradation of IkappaBalpha but not IkappaBbeta. Exp Cell Res 1998; 243:425-33. [PMID: 9743602 DOI: 10.1006/excr.1998.4162] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We studied the signal transduction pathways involved in NF-kappaB activation and the induction of the cytoprotective A20 gene by lipopolysaccharide (LPS) in human umbilical vein endothelial cells (HUVEC). LPS induced human A20 mRNA expression with a maximum level 2 h after stimulation. The proteasome inhibitor N-acetyl-leucinyl-leucinyl-norleucinal-H (ALLN) and the tyrosine kinase inhibitor herbimycin A (HMA) blocked A20 mRNA expression and partially inhibited NF-kappaB DNA-binding activity induced by LPS treatment. LPS induced IkappaBalpha degradation at 30-60 min after treatment, but did not induce IkappaBbeta degradation up to 120 min. In contrast, TNF-alpha rapidly induced IkappaBalpha degradation within 5 min and IkappaBbeta degradation within 15 min. Cycloheximide did not prevent LPS-induced IkappaBalpha degradation, indicating that newly synthesized proteins induced by LPS were not involved in LPS-stimulated IkappaBalpha degradation. LPS-induced IkappaBalpha degradation was inhibited by ALLN, confirming that ALLN inhibits NF-kappaB activation by preventing IkappaBalpha degradation. Of note, HMA also inhibited LPS-induced IkappaBalpha degradation. However, tyrosine phosphorylation of IkappaBalpha itself was not elicited by LPS stimulation, suggesting that tyrosine phosphorylation of a protein(s) upstream of IkappaBalpha is required for subsequent degradation. We conclude that in HUVEC, LPS induces NF-kappaB-dependent genes through degradation of IkappaBalpha, not IkappaBbeta, and propose that this degradation is induced in part by HMA-sensitive kinase(s) upstream of IkappaBalpha.
Collapse
Affiliation(s)
- K Zen
- Division of Hematology, Department of Medicine, Seattle, Washington 98195, USA
| | | | | | | | | |
Collapse
|
321
|
Weiss T, Grell M, Siemienski K, Mühlenbeck F, Dürkop H, Pfizenmaier K, Scheurich P, Wajant H. TNFR80-Dependent Enhancement of TNFR60-Induced Cell Death Is Mediated by TNFR-Associated Factor 2 and Is Specific for TNFR60. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.6.3136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Costimulation of TNFR80 can strongly enhance TNFR60-induced cell death. In this study, we show that this enhancement is TNFR60 selective, as neither TNF-related apoptosis-inducing ligand/Apo2 ligand-, Apo1/Fas-, ceramide-, nor daunorubicin-mediated cell death was affected by costimulation of TNFR80. We further demonstrate that TNFR-associated factor 2 (TRAF2) is critically involved in both negative and positive regulation of TNF-induced cell death. Overexpression of TRAF2 and of a TRAF2 mutant, deficient in nuclear factor-κB activation, selectively desensitized and enhanced, respectively, TNFR60-induced cell death in HeLa cells. However, upon costimulation of TNFR80, which mediates activation of nuclear factor-κB and the c-Jun amino-terminal kinase via TRAF2, TNF-induced cell death is drastically enhanced in parental and TRAF2-transfected, but not in TRAF2 (87–501)-transfected cells. These data point to a critical role of TRAF2 in the apoptotic TNFR cross talk, whereby the TNFR80-dependent enhancement of TNFR60-induced cell death is due to TNFR80-mediated negative regulation of TRAF2 function(s). An interference with TRAF2 function was confirmed independently by analysis of c-Jun amino-terminal kinase activation via TNFR60 upon prestimulation of TNFR80. We propose that the apoptotic TNFR cross talk is based on TNFR80-mediated abrogation of antiapoptotic TRAF2-dependent signaling pathways initiated by TNFR60, but not Apo1/Fas or the apoptotic TNF-related apoptosis-inducing ligand receptors.
Collapse
Affiliation(s)
- Tilo Weiss
- *Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany; and
| | - Matthias Grell
- *Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany; and
| | - Katrin Siemienski
- *Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany; and
| | - Frank Mühlenbeck
- *Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany; and
| | - Horst Dürkop
- †Institute of Pathology, Universitätsklinikum Benjamin Franklin, Berlin, Germany
| | - Klaus Pfizenmaier
- *Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany; and
| | - Peter Scheurich
- *Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany; and
| | - Harald Wajant
- *Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany; and
| |
Collapse
|
322
|
Arch RH, Gedrich RW, Thompson CB. Tumor necrosis factor receptor-associated factors (TRAFs)--a family of adapter proteins that regulates life and death. Genes Dev 1998; 12:2821-30. [PMID: 9744859 DOI: 10.1101/gad.12.18.2821] [Citation(s) in RCA: 476] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- R H Arch
- Gwen Knapp Center for Lupus and Immunology Research, The University of Chicago, Chicago, Illinois 60637 USA
| | | | | |
Collapse
|
323
|
Cerutti A, Schaffer A, Shah S, Zan H, Liou HC, Goodwin RG, Casali P. CD30 is a CD40-inducible molecule that negatively regulates CD40-mediated immunoglobulin class switching in non-antigen-selected human B cells. Immunity 1998; 9:247-56. [PMID: 9729045 PMCID: PMC4621001 DOI: 10.1016/s1074-7613(00)80607-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We used our monoclonal model of germinal center maturation, CL-01 B cells, to investigate the role of CD30 in human B cell differentiation. CL-01 cells are IgM+ IgD+ CD30+ and switch to IgG, IgA, and IgE when exposed to CD40L and IL-4. Switching is hampered by CD30 coengagement, possibly through interference with the CD40-mediated NF-kappaB-dependent transcriptional activation of downstream C(H) genes. The physiological relevance of this phenomenon is emphasized by similar CD30-mediated effects in naive B cells. Expression of CD30 by these cells is induced by CD40L but is inhibited by B cell receptor coengagement and/or exposure to IL-6 and IL-12. Our data suggest that CD30 critically regulates the CD40-mediated differentiation of non-antigen-selected human B cells.
Collapse
Affiliation(s)
- Andrea Cerutti
- Division of Molecular Immunology, Department of Pathology, Cornell University Graduate School of Medical Sciences, New York, New York 10021
| | - András Schaffer
- Division of Molecular Immunology, Department of Pathology, Cornell University Graduate School of Medical Sciences, New York, New York 10021
- The Immunology Program, Cornell University Graduate School of Medical Sciences, New York, New York 10021
| | - Shefali Shah
- Division of Molecular Immunology, Department of Pathology, Cornell University Graduate School of Medical Sciences, New York, New York 10021
| | - Hong Zan
- Division of Molecular Immunology, Department of Pathology, Cornell University Graduate School of Medical Sciences, New York, New York 10021
| | - Hsiou-Chi Liou
- Division of Immunology, Department of Medicine, Cornell University Medical College, New York, New York 10021
| | | | - Paolo Casali
- Division of Molecular Immunology, Department of Pathology, Cornell University Graduate School of Medical Sciences, New York, New York 10021
- The Immunology Program, Cornell University Graduate School of Medical Sciences, New York, New York 10021
- To whom correspondence should be addressed ()
| |
Collapse
|
324
|
Wissing D, Mouritzen H, Jäättelä M. TNF-induced mitochondrial changes and activation of apoptotic proteases are inhibited by A20. Free Radic Biol Med 1998; 25:57-65. [PMID: 9655522 DOI: 10.1016/s0891-5849(98)00043-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A20 zinc finger protein is a product of a cytokine-induced primary response gene. It functions as a negative regulator of the tumor necrosis factor (TNF) inhibiting both TNF-mediated apoptosis and activation of transcription factors. We demonstrated that A20 overexpression blocks early TNF-induced signaling events including the generation of free radicals, the fall in mitochondrial transmembrane potential (delta psi(m)), and the activation of caspase-3-like apoptotic proteases. General inhibitor of caspases, cow pox virus-derived CrmA, also inhibited TNF-induced mitochondrial changes indicating that early caspase activation occurs upstream from mitochondrial changes. Interestingly, changes in mitochondrial function or induction of caspase-3-like activity induced by anti-Fas or doxorubicin were not inhibited by A20. The data show that A20 is a specific inhibitor of TNF signaling and acts upstream of INF-induced free radical formation, fall in mitochondrial transmembrane potential (delta psi(m)), and activation of caspase-3-like proteases.
Collapse
Affiliation(s)
- D Wissing
- Apoptosis Laboratory, Institute of Cancer Biology, Danish Cancer Society, Copenhagen
| | | | | |
Collapse
|
325
|
Gravestein LA, Amsen D, Boes M, Calvo CR, Kruisbeek AM, Borst J. The TNF receptor family member CD27 signals to Jun N-terminal kinase via Traf-2. Eur J Immunol 1998; 28:2208-16. [PMID: 9692890 DOI: 10.1002/(sici)1521-4141(199807)28:07<2208::aid-immu2208>3.0.co;2-l] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
CD27 is a lymphocyte-specific member of the TNF receptor (TNFR) family. It is a costimulatory molecule for peripheral T cells, as defined by its ability to enhance the TCR-induced proliferative response. We show here that CD27 augments TCR-induced Jun N-terminal kinase (JNK) activity in primary murine lymph node T cells. To investigate how CD27 couples to JNK, we performed a yeast two hybrid screen with the CD27 cytoplasmic tail. This revealed that CD27 directly associates with Traf-2. Transfection experiments using dominant negative Traf-2 indicated that CD27 communicates with JNK via Traf-2. These findings group CD27 together with other members of the TNFR family, TNFR-1, -2, CD30 and CD40, which have all been shown to couple to Traf proteins. Since Traf proteins have been reported to initiate an anti-apoptotic signaling pathway, our data suggest that CD27 not only regulates proliferation, but also survival of T lymphocytes.
Collapse
Affiliation(s)
- L A Gravestein
- Division of Cellular Biochemistry, The Netherlands Cancer Institute, Amsterdam
| | | | | | | | | | | |
Collapse
|
326
|
Wallach D, Kovalenko AV, Varfolomeev EE, Boldin MP. Death-inducing functions of ligands of the tumor necrosis factor family: a Sanhedrin verdict. Curr Opin Immunol 1998; 10:279-88. [PMID: 9638364 DOI: 10.1016/s0952-7915(98)80166-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Members of the tumor necrosis factor ligand family can kill cells in a rather straightforward manner. They induce their receptors to recruit and activate caspases, enzymes that are critically involved in the death process, and this activation is further amplified by intracellular mitochondria-associated mechanisms. The potentially hazardous expression of the ligands occurs widely in the body; it is antigen-restricted only in the lymphocytes. Yet, in addition to control modes affecting ligand expression, there are numerous inhibitory mechanisms that act within target cells, to make doubly sure of avoiding an undue 'death verdict', while allowing the cells to exhibit other, noncytocidal effects of the ligands.
Collapse
Affiliation(s)
- D Wallach
- Department of Biological Chemistry, Weizmann Institute, Rehovot, Israel
| | | | | | | |
Collapse
|
327
|
Abstract
A subset of cytokine mediators belonging to the tumor necrosis factor (TNF) family cause apoptosis, acting through receptors and signaling pathways that have recently come to light. Further, at least one autoimmune disease results from a defined defect of apoptosis (mutations of the Fas ligand or its receptor). It is offered that many, and perhaps most autoimmune diseases may result from primary defects of apoptosis. Such defects may cause reflexive overproduction of TNF and other pro-apoptotic cytokines. The collateral damage produced by these mediators may be of pathogenetic importance in complex autoimmune disorders such as rheumatoid arthritis and Crohn disease, wherein TNF blockade is known to have ameliorative effects.
Collapse
Affiliation(s)
- B Beutler
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas 75235-9050, USA.
| | | |
Collapse
|
328
|
A20 Inhibits NF-κB Activation in Endothelial Cells Without Sensitizing to Tumor Necrosis Factor–Mediated Apoptosis. Blood 1998. [DOI: 10.1182/blood.v91.7.2249] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractExpression of the NF-κB–dependent gene A20 in endothelial cells (EC) inhibits tumor necrosis factor (TNF)–mediated apoptosis in the presence of cycloheximide and acts upstream of IκBα degradation to block activation of NF-κB. Although inhibition of NF-κB by IκBα renders cells susceptible to TNF-induced apoptosis, we show that when A20 and IκBα are coexpressed, the effect of A20 predominates in that EC are rescued from TNF-mediated apoptosis. These findings place A20 in the category of “protective” genes that are induced in response to inflammatory stimuli to protect EC from unfettered activation and from undergoing apoptosis even when NF-κB is blocked. From a therapeutic perspective, genetic engineering of EC to express an NF-κB inhibitor such as A20 offers the mean of achieving an anti-inflammatory effect without sensitizing the cells to TNF-mediated apoptosis.
Collapse
|
329
|
Wallach D, Boldin MP, Kovalenko AV, Malinin NL, Mett IL, Camonis JH. The yeast two-hybrid screening technique and its use in the study of protein-protein interactions in apoptosis. Curr Opin Immunol 1998; 10:131-6. [PMID: 9602300 DOI: 10.1016/s0952-7915(98)80240-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The yeast two-hybrid technique provides a general approach for cloning cDNAs merely by exploiting the ability of their encoded proteins to bind to a protein of interest. The technique therefore offered a useful access to the analysis of the mechanisms of cell death at the initial stage of their study, when only a few of the proteins involved and very little about their mode of action were known. Conversely, the knowledge of cell death mechanisms gained by this technique provided a useful insight into both the potential and the limitations of this technique.
Collapse
Affiliation(s)
- D Wallach
- Department of Biological Chemistry, Weizmann Institute, Israel.
| | | | | | | | | | | |
Collapse
|
330
|
A20 Inhibits NF-κB Activation in Endothelial Cells Without Sensitizing to Tumor Necrosis Factor–Mediated Apoptosis. Blood 1998. [DOI: 10.1182/blood.v91.7.2249.2249_2249_2258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of the NF-κB–dependent gene A20 in endothelial cells (EC) inhibits tumor necrosis factor (TNF)–mediated apoptosis in the presence of cycloheximide and acts upstream of IκBα degradation to block activation of NF-κB. Although inhibition of NF-κB by IκBα renders cells susceptible to TNF-induced apoptosis, we show that when A20 and IκBα are coexpressed, the effect of A20 predominates in that EC are rescued from TNF-mediated apoptosis. These findings place A20 in the category of “protective” genes that are induced in response to inflammatory stimuli to protect EC from unfettered activation and from undergoing apoptosis even when NF-κB is blocked. From a therapeutic perspective, genetic engineering of EC to express an NF-κB inhibitor such as A20 offers the mean of achieving an anti-inflammatory effect without sensitizing the cells to TNF-mediated apoptosis.
Collapse
|
331
|
|
332
|
Brink R, Lodish HF. Tumor necrosis factor receptor (TNFR)-associated factor 2A (TRAF2A), a TRAF2 splice variant with an extended RING finger domain that inhibits TNFR2-mediated NF-kappaB activation. J Biol Chem 1998; 273:4129-34. [PMID: 9461607 DOI: 10.1074/jbc.273.7.4129] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We describe here the identification and characterization of tumor necrosis factor receptor (TNFR)-associated factor 2A (TRAF2A), a splice variant of the TRAF2 molecule utilized for signal transduction by members of the TNFR family. TRAF2A and TRAF2 cDNAs are identical in sequence with the exception of an extra 21 base pairs of sequence encoding a 7-amino acid insert within the TRAF2A RING finger domain. TRAF2A mRNA expression is regulated in a tissue-specific manner, with relative TRAF2A mRNA levels being highest in spleen and lowest in brain. TRAF2A protein is capable of binding to the cytoplasmic domain of TNFR2 (p75) and is detectable in T-lymphoma cells stably transfected with the TRAF2A cDNA. Unlike TRAF2, TRAF2A has a short half-life ( approximately 100 min) in these cells and is expressed at only low levels in transiently transfected COS-7 cells. However, TRAF2A levels in transiently transfected COS-7 cells approach those of TRAF2 upon coexpression with TRAF1 and/or TRAF2, indicating that TRAF2A stability is regulated by the binding of other TRAF family proteins. Also in contrast to TRAF2, TRAF2A is unable to stimulate NF-kappaB activity when overexpressed in 293 cells and acts as a dominant inhibitor of TNFR2-dependent NF-kappaB activation. TRAF2A thus represents a novel signal transduction protein, the expression of which can act to inhibit TRAF2-dependent NF-kappaB activation.
Collapse
Affiliation(s)
- R Brink
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA.
| | | |
Collapse
|
333
|
Tobin D, van Hogerlinden M, Toftgård R. UVB-induced association of tumor necrosis factor (TNF) receptor 1/TNF receptor-associated factor-2 mediates activation of Rel proteins. Proc Natl Acad Sci U S A 1998; 95:565-9. [PMID: 9435232 PMCID: PMC18460 DOI: 10.1073/pnas.95.2.565] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Exposure of mammalian skin to UV light results in induced gene transcription, playing a role in inflammation, immunosuppression, and tumor promotion. One important group of transcription factors induced by UV radiation is composed of members of the Rel/NF-kappa B family, which are known to play a major role in the transcriptional activation of many genes encoding inflammatory cytokines, adhesion molecules, and viral proteins. However, the upstream events in the transduction of the UVB signal to Rel protein activity are, as yet, unknown. Here, we provide biochemical evidence that exposure of keratinocytes to UVB causes rapid association of tumor necrosis factor (TNF) receptor 1 with its downstream partner TRAF-2. The functional relevance of this association is demonstrated by experiments showing that expression of a dominant negative TNF receptor 1 or TRAF-2 protein inhibits UVB-induced Rel-dependent transcription. Inclusion of a neutralizing antibody toward TNF alpha has no effect on UVB activation of a Rel-responsive reporter gene. Therefore, UVB-induced activation of Rel proteins via TNF receptor 1, independent of ligand activation, is a key component in the UV response in keratinocytes.
Collapse
Affiliation(s)
- D Tobin
- Department of Bioscience at Novum, Karolinska Institute, NOVUM, Huddinge, Sweden
| | | | | |
Collapse
|
334
|
Duckett CS, Thompson CB. CD30-dependent degradation of TRAF2: implications for negative regulation of TRAF signaling and the control of cell survival. Genes Dev 1997; 11:2810-21. [PMID: 9353251 PMCID: PMC316646 DOI: 10.1101/gad.11.21.2810] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/1997] [Accepted: 08/27/1997] [Indexed: 02/05/2023]
Abstract
CD30 is a cell-surface receptor that can augment lymphocyte activation and survival through its ability to induce the transcription factor NF-kappaB. CD30, however, has also been implicated in the induction of apoptotic cell death of lymphocytes. Here we show that one of the effects of CD30 signal transduction is to render cells sensitive to apoptosis induced by the type 1 tumor necrosis factor receptor (TNFR1). This sensitization is dependent on the TRAF-binding sites within the CD30 cytoplasmic domain. One of the proteins that binds to these sites is TRAF2, a signal transduction molecule that is also utilized by TNFR1 to mediate the activation of several downstream kinases and transcription factors. During CD30 signal transduction, we found that binding of TRAF2 to the cytoplasmic domain of CD30 results in the rapid depletion of TRAF2 and the associated protein TRAF1 by proteolysis. These data suggest a model in which CD30 limits its own ability to transduce cell survival signals through signal-coupled depletion of TRAF2. Depletion of intracellular TRAF2 and its coassociated proteins also increased the sensitivity of the cell to undergoing apoptosis during activation of death-inducing receptors such as TNFR1. Consistent with this hypothesis, expression of a dominant-negative form of TRAF2 was found to potentiate TNFR1-mediated death. These studies provide a potential mechanism through which CD30, as well as other TRAF-binding members of the TNFR superfamily, can negatively regulate cell survival.
Collapse
Affiliation(s)
- C S Duckett
- Howard Hughes Medical Institute, Gwen Knapp Center for Lupus and Immunology Research, and Department of Medicine, The University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
335
|
Griffin DE, Hardwick JM. Regulators of apoptosis on the road to persistent alphavirus infection. Annu Rev Microbiol 1997; 51:565-92. [PMID: 9343360 DOI: 10.1146/annurev.micro.51.1.565] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Alphavirus infection can trigger the host cell to activate its genetically programmed cell death pathway, leading to the morphological features of apoptosis. The ability to activate this death pathway is dependent on both viral and cellular determinants. The more virulent strains of alphavirus induce apoptosis with increased efficiency both in animal models and in some cultured cells. Although the immune system clearly plays a central role in clearing virus, the importance of other cellular factors in determining the outcome of virus infections are evident from the observation that mature neurons are better able to resist alphavirus-induced apoptosis than immature neurons are, both in culture and in mouse brains. These findings are consistent with the age-dependent susceptibility to disease seen in animals. Cellular genes that are known to regulate the cell death pathway can modulate the outcome of alphavirus infection in cultured cells and perhaps in animals. The cellular bax and bak genes, which are known to accelerate cell death, also accelerate virus-induced apoptosis. In contrast, inhibitors of apoptotic cell death such as bcl-2 suppress virus-induced apoptosis, which can facilitate a persistent virus infection. Thus, the balance of cellular factors that regulate cell death may be critical in virus infections. Additional viral factors also contribute to this balance. The more virulent strains of alphavirus have acquired the ability to induce apoptosis in mature neurons, while mature neurons are resistant to cell death upon infection with less virulent strains. Here we discuss a variety of cellular and viral factors that modulate the outcome of virus infection.
Collapse
Affiliation(s)
- D E Griffin
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, School of Hygiene and Public Health, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
336
|
De Valck D, Heyninck K, Van Criekinge W, Vandenabeele P, Fiers W, Beyaert R. A20 inhibits NF-kappaB activation independently of binding to 14-3-3 proteins. Biochem Biophys Res Commun 1997; 238:590-4. [PMID: 9299557 DOI: 10.1006/bbrc.1997.7343] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The A20 protein, which belongs to a class of Cys2/Cys2 zinc finger proteins, has been characterized as an inhibitor of NF-kappaB activation. In order to clarify its molecular mechanism of action, the yeast two-hybrid system was used to screen for interacting proteins. We report that different isoforms of 14-3-3 proteins, viz. eta and zeta, are able to bind A20, involving the 14-3-3-binding motif RSKSDP located between zinc fingers 3 and 4. However, A20 mutants that no longer associated with 14-3-3 proteins could still fully inhibit NF-kappaB activation induced by tumor necrosis factor, interleukin-1beta or phorbol 12-myristate 13-acetate, thus excluding a crucial role for 14-3-3 interaction in this A20 function.
Collapse
Affiliation(s)
- D De Valck
- Laboratory of Molecular Biology, Flanders Interuniversity Institute for Biotechnology, University of Ghent, K. L. Ledeganckstraat 35, Ghent, B-9000, Belgium
| | | | | | | | | | | |
Collapse
|
337
|
Chu ZL, McKinsey TA, Liu L, Gentry JJ, Malim MH, Ballard DW. Suppression of tumor necrosis factor-induced cell death by inhibitor of apoptosis c-IAP2 is under NF-kappaB control. Proc Natl Acad Sci U S A 1997; 94:10057-62. [PMID: 9294162 PMCID: PMC23303 DOI: 10.1073/pnas.94.19.10057] [Citation(s) in RCA: 726] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Members of the NF-kappaB/Rel and inhibitor of apoptosis (IAP) protein families have been implicated in signal transduction programs that prevent cell death elicited by the cytokine tumor necrosis factor alpha (TNF). Although NF-kappaB appears to stimulate the expression of specific protective genes, neither the identities of these genes nor the precise role of IAP proteins in this anti-apoptotic process are known. We demonstrate here that NF-kappaB is required for TNF-mediated induction of the gene encoding human c-IAP2. When overexpressed in mammalian cells, c-IAP2 activates NF-kappaB and suppresses TNF cytotoxicity. Both of these c-IAP2 activities are blocked in vivo by coexpressing a dominant form of IkappaB that is resistant to TNF-induced degradation. In contrast to wild-type c-IAP2, a mutant lacking the C-terminal RING domain inhibits NF-kappaB induction by TNF and enhances TNF killing. These findings suggest that c-IAP2 is critically involved in TNF signaling and exerts positive feedback control on NF-kappaB via an IkappaB targeting mechanism. Functional coupling of NF-kappaB and c-IAP2 during the TNF response may provide a signal amplification loop that promotes cell survival rather than death.
Collapse
Affiliation(s)
- Z L Chu
- Howard Hughes Medical Institute, Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232-0295, USA
| | | | | | | | | | | |
Collapse
|
338
|
Song HY, Régnier CH, Kirschning CJ, Goeddel DV, Rothe M. Tumor necrosis factor (TNF)-mediated kinase cascades: bifurcation of nuclear factor-kappaB and c-jun N-terminal kinase (JNK/SAPK) pathways at TNF receptor-associated factor 2. Proc Natl Acad Sci U S A 1997; 94:9792-6. [PMID: 9275204 PMCID: PMC23270 DOI: 10.1073/pnas.94.18.9792] [Citation(s) in RCA: 459] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
TNF-induced activation of the transcription factor NF-kappaB and the c-jun N-terminal kinase (JNK/SAPK) requires TNF receptor-associated factor 2 (TRAF2). The NF-kappaB-inducing kinase (NIK) associates with TRAF2 and mediates TNF activation of NF-kappaB. Herein we show that NIK interacts with additional members of the TRAF family and that this interaction requires the conserved "WKI" motif within the TRAF domain. We also investigated the role of NIK in JNK activation by TNF. Whereas overexpression of NIK potently induced NF-kappaB activation, it failed to stimulate JNK activation. A kinase-inactive mutant of NIK was a dominant negative inhibitor of NF-kappaB activation but did not suppress TNF- or TRAF2-induced JNK activation. Thus, TRAF2 is the bifurcation point of two kinase cascades leading to activation of NF-kappaB and JNK, respectively.
Collapse
Affiliation(s)
- H Y Song
- Tularik, Two Corporate Drive, South San Francisco, CA 94080, USA
| | | | | | | | | |
Collapse
|
339
|
Siemienski K, Peters N, Scheurich P, Wajant H. Organization of the human tumour necrosis factor receptor-associated factor 1 (TRAF1) gene and mapping to chromosome 9q33-34. Gene X 1997; 195:35-9. [PMID: 9300817 DOI: 10.1016/s0378-1119(97)00147-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A new family of signal transducing proteins, associated with members of the tumour necrosis factor receptor (TNFR) superfamily, has recently been identified. The structural hallmark of these molecules is a novel C-terminal homology region of 230 bp designated as TRAF (TNF receptor-associated factor) domain, which is involved in a variety of specific protein-protein interactions. To elucidate the human TRAF1 gene structure for identification of potential regulatory elements, a set of genomic polymerase chain reaction (PCR) fragments was generated, which comprised the whole coding region of TRAF1. These fragments were cloned and partially sequenced to map splicing sites. The human TRAF1 gene was found to have a total length of approx. 12 kb. It is split into six exons, four of which encode for parts of the TRAF domain. Analysis of the genomic structure of the TRAF domains of human TRAF2 and 3 suggests that these domains are also encoded by several exons. The putative promotor region of the TRAFI gene was isolated by use of a PCR-based genomic walking approach. Fluorescence in situ hybridization was used to map this gene to chromosome 9q33-34.
Collapse
Affiliation(s)
- K Siemienski
- Institute of Cell Biology and Immunology, Stuttgart, Germany
| | | | | | | |
Collapse
|
340
|
Abstract
A large amount of detailed information about the intracellular proteins regulating NF-kappa B activation and the cellular response to NF-kappa B activation has emerged recently. Several small molecules, an antisense oligonucleotide, and gene therapeutic agents that inhibit NF-kappa b activation have been described. Despite this, there are still significant gaps in our understanding of this process and its consequences. In contrast, the characterization of transcription factors selectively regulating cytokine production by CD4+ T cell subsets is at a very early stage. Three interacting proteins have recently been shown to contribute to subset-restricted expression of the IL-4 gene. There are other elements regulating IL-4 gene expression, however, and the relative importance of these recently identified proteins has yet to be determined.
Collapse
Affiliation(s)
- G Peltz
- Roche Bioscience S3-1, Palo Alto, CA 94303, USA.
| |
Collapse
|
341
|
Abstract
Caspases are cysteine proteases that play a central role in apoptosis. Caspase-8 may be the first enzyme of the proteolytic cascade activated by the Fas ligand and tumor necrosis factor (TNF). Caspase-8 is recruited to Fas and TNF receptor-1 (TNF-R1) through interaction of its prodomain with the death effector domain (DED) of the receptor-associating FADD. Here we describe a novel 55 kDa protein, Casper, that has sequence similarity to caspase-8 throughout its length. However, Casper is not a caspase since it lacks several conserved amino acids found in all caspases. Casper interacts with FADD, caspase-8, caspase-3, TRAF1, and TRAF2 through distinct domains. When overexpressed in mammalian cells, Casper potently induces apoptosis. A C-terminal deletion mutant of Casper inhibits TNF- and Fas-induced cell death, suggesting that Casper is involved in these apoptotic pathways.
Collapse
Affiliation(s)
- H B Shu
- Tularik, Incorporated, South San Francisco, California 94080, USA
| | | | | |
Collapse
|
342
|
Lee SY, Lee SY, Choi Y. TRAF-interacting protein (TRIP): a novel component of the tumor necrosis factor receptor (TNFR)- and CD30-TRAF signaling complexes that inhibits TRAF2-mediated NF-kappaB activation. J Exp Med 1997; 185:1275-85. [PMID: 9104814 PMCID: PMC2196258 DOI: 10.1084/jem.185.7.1275] [Citation(s) in RCA: 161] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Through their interaction with the TNF receptor-associated factor (TRAF) family, members of the tumor necrosis factor receptor (TNFR) superfamily elicit a wide range of biological effects including differentiation, proliferation, activation, or cell death. We have identified and characterized a novel component of the receptor-TRAF signaling complex, designated TRIP (TRAF-interacting protein), which contains a RING finger motif and an extended coiled-coil domain. TRIP associates with the TNFR2 or CD30 signaling complex through its interaction with TRAF proteins. When associated, TRIP inhibits the TRAF2-mediated NF-kappaB activation that is required for cell activation and also for protection against apoptosis. Thus, TRIP acts as a receptor-proximal regulator that may influence signals responsible for cell activation/proliferation and cell death induced by members of the TNFR superfamily.
Collapse
Affiliation(s)
- S Y Lee
- The Rockefeller University, New York 10021, USA
| | | | | |
Collapse
|
343
|
Dietrich RA, Richberg MH, Schmidt R, Dean C, Dangl JL. A novel zinc finger protein is encoded by the Arabidopsis LSD1 gene and functions as a negative regulator of plant cell death. Cell 1997; 88:685-94. [PMID: 9054508 DOI: 10.1016/s0092-8674(00)81911-x] [Citation(s) in RCA: 288] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Arabidopsis Isd1 mutants are hyperresponsive to cell death initiators and fail to limit the extent of cell death. Superoxide is a necessary and sufficient signal for cell death propagation. Thus, LSD1 monitors a superoxide-dependent signal and negatively regulates a plant cell death pathway. We isolated LSD1 via its map position. The predicted LSD1 protein contains three zinc finger domains, defined by CxxCxRxxLMYxxGASxVxCxxC. These domains are present in three additional Arabidopsis genes, suggesting that LSD1 defines a zinc finger protein subclass. LSD1 is constitutively expressed, consistent with the mutant phenotype. Alternate splicing gives rise to a low abundance mRNA encoding an extra five amino-terminal amino acids. We propose that LSD1 regulates transcription, via either repression of a prodeath pathway or activation of an antideath pathway, in response to signals emanating from cells undergoing pathogen-induced hypersensitive cell death.
Collapse
Affiliation(s)
- R A Dietrich
- Department of Biology, University of North Carolina, Chapel Hill 27599, USA
| | | | | | | | | |
Collapse
|
344
|
Bach FH, Ferran C, Hechenleitner P, Mark W, Koyamada N, Miyatake T, Winkler H, Badrichani A, Candinas D, Hancock WW. Accommodation of vascularized xenografts: expression of "protective genes" by donor endothelial cells in a host Th2 cytokine environment. Nat Med 1997; 3:196-204. [PMID: 9018239 DOI: 10.1038/nm0297-196] [Citation(s) in RCA: 338] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Organ xenografts under certain circumstances survive in the presence of anti-graft antibodies and complement, a situation referred to as "accommodation." We find that the endothelial cells (ECs) in hamster hearts that accommodate themselves in rats express genes, such as A20 and bcl-2, that in vitro protect ECs from apoptosis and prevent upregulation in those cells of proinflammatory genes such as cytokines, procoagulant and adhesion molecules. Hearts that are rejected do not express these genes. In addition, vessels of rejected hearts show florid transplant arteriosclerosis whereas those of accommodated hearts do not. Accommodated xenografts have an ongoing T helper cell type 2 (Th2) cytokine immune response, whereas the rejected grafts have a Th1 response. We propose a model for factors that contribute to the survival of xenografts and the avoidance of transplant arteriosclerosis.
Collapse
Affiliation(s)
- F H Bach
- Sandoz Center for Immunobiology, Department of Surgery, New England Deaconess Hospital, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
345
|
Vincenz C, Dixit VM. 14-3-3 proteins associate with A20 in an isoform-specific manner and function both as chaperone and adapter molecules. J Biol Chem 1996; 271:20029-34. [PMID: 8702721 DOI: 10.1074/jbc.271.33.20029] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A20, a novel zinc finger protein, is an inhibitor of tumor necrosis factor-induced apoptosis. The mechanism by which A20 exerts its protective effect is currently unknown. Several isoforms of the 14-3-3 proteins were found to interact with A20 in a yeast two-hybrid screen. A20 bound several 14-3-3 isoforms in vitro. Moreover, transfected A20 was found to preferentially bind the endogenous eta14-3-3 isoform, whereas the beta/zeta isoforms co-immunoprecipitated much less efficiently, and epsilon14-3-3 had an intermediate affinity. Importantly, c-Raf, a previously described 14-3-3-interacting protein, also preferentially bound the eta isoform. The cellular localization and subcellular fractionation of A20 was dramatically altered by co-transfected 14-3-3, providing the first experimental evidence for the notion that 14-3-3 can function as a chaperone. Furthermore, c-Raf and A20 co-immunoprecipitated in a 14-3-3-dependent manner, suggesting that 14-3-3 can function as a bridging or adapter molecule.
Collapse
Affiliation(s)
- C Vincenz
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
346
|
Karsan A, Harlan JM. Modulation of endothelial cell apoptosis: mechanisms and pathophysiological roles. J Atheroscler Thromb 1996; 3:75-80. [PMID: 9226458 DOI: 10.5551/jat1994.3.75] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Apoptosis is a mode of cell death in which intrinsic cellular mechanisms participate in the demise of the cell. The modulation of endothelial apoptosis may play a role in atherosclerosis, angiogenesis, vascular remodeling and other pathophysiological states. Control of cell death is mediated by the state of activation of a death pathway as well as by the levels of anti apoptotic proteins. The final common pathway of many, if not all, triggers of apoptosis involves activation of cysteine proteases. The Bcl 2 family, in contrast, appears to play a major role in protection against apoptosis. The role of these mechanisms in modulating endothelial cell apoptosis under various conditions is discussed.
Collapse
Affiliation(s)
- A Karsan
- Division of Hematology, University of Washington Seattle, 98195-7710, USA
| | | |
Collapse
|