301
|
Piña-Oviedo S, Khalili K, Del Valle L. Hypoxia inducible factor-1 alpha activation of the JCV promoter: role in the pathogenesis of progressive multifocal leukoencephalopathy. Acta Neuropathol 2009; 118:235-47. [PMID: 19360424 DOI: 10.1007/s00401-009-0533-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 03/12/2009] [Accepted: 03/30/2009] [Indexed: 11/25/2022]
Abstract
Activation of viral promoter transcription is a crucial event in the life cycle of several viruses. Hypoxia inducible factor-1 alpha (HIF-1alpha) is an inducible transcription factor whose activity is dependent on environmental conditions, most notably oxygen levels and cellular stress. HIF-1alpha has been implicated in the pathogenesis of several viruses, including HIV-1, HHV-8 and RSV. Under hypoxic conditions or oxidative stress, HIF-1alpha becomes stable and translocates to the nucleus, where it modulates gene transcription. The objective of the present study was to investigate a possible role for HIF-1alpha in the activation of JCV. Glial cell cultures infected with JCV demonstrated a significant increase in the levels of HIF-1alpha, in where it is located to the nucleus. Immunohistochemical studies corroborated upregulation of HIF-1alpha in JCV infected oligodendrocytes and astrocytes in clinical samples of PML compared with normal glial cells from the same samples in which HIF-1alpha expression is weak. CAT assays performed in co-transfected glial cells demonstrated activation of the JCV early promoter in the presence of HIF-1alpha. This activation was potentiated in the presence of Smad3 and Smad4. Finally, chromatin immunoprecipitation assays demonstrated the binding of HIF-1alpha to the JCV control region. These results suggest a role for HIF-1alpha in the activation of JCV; understanding of this pathway may lead to the development of more effective therapies for PML, thus far an incurable disease.
Collapse
Affiliation(s)
- Sergio Piña-Oviedo
- Department of Neuroscience, Center for Neurovirology and Neuropathology Core, Temple University School of Medicine, 1900 N. 12th Street, Philadelphia, PA 19122, USA
| | | | | |
Collapse
|
302
|
Kazi AA, Molitoris KH, Koos RD. Estrogen rapidly activates the PI3K/AKT pathway and hypoxia-inducible factor 1 and induces vascular endothelial growth factor A expression in luminal epithelial cells of the rat uterus. Biol Reprod 2009; 81:378-87. [PMID: 19420388 PMCID: PMC2849827 DOI: 10.1095/biolreprod.109.076117] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 02/10/2009] [Accepted: 04/29/2009] [Indexed: 11/01/2022] Open
Abstract
We have previously shown that 17beta-estradiol (E(2)) increases vascular endothelial growth factor A (Vegfa) gene expression in the rat uterus, resulting in increased microvascular permeability, and that this involves the simultaneous recruitment of hypoxia-inducible factor 1 (HIF1) and estrogen receptor alpha (ESR1) to the Vegfa gene promoter. Both events require the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway. However, those studies were carried out using whole uterine tissue, and while most evidence indicates that the likely site of E(2)-induced Vegfa expression is luminal epithelial (LE) cells, other studies have identified stromal cells as the site of that expression. To address this question, the pathway regulating Vegfa expression was reexamined using LE cells rapidly isolated after E(2) treatment. In addition, we further characterized the nature of the receptor through which E(2) triggers the signaling events that lead to Vegfa expression using the specific ESR1 antagonist ICI 182,780. In agreement with previous results in the whole uterus, E(2) stimulated Vegfa mRNA expression in LE cells, peaking at 1 h (4- to 14-fold) and returning to basal levels by 4 h. Treatment with E(2) also increased phosphorylation of AKT in LE cells, as well as of the downstream mediators FRAP1 (mTOR), GSK3B, and MDM2. The alpha subunit of HIF1 (HIF1A) was present in LE cells before E(2) treatment, was unchanged 1 h after E(2), but was >2-fold higher by 4 h. Chromatin immunoprecipitation analysis showed that HIF1A was recruited to the Vegfa promoter by 1 h and was absent again by 4 h. The E(2) activation of the PI3K/AKT pathway, HIF1A recruitment to the Vegfa promoter, and Vegfa expression were all blocked by ICI 182,780. In summary, the rapid E(2)-induced signaling events that lead to the expression of Vegfa observed previously using the whole uterus occur in LE cells and appear to be initiated via a membrane form of ESR1.
Collapse
Affiliation(s)
- Armina A. Kazi
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Kristin Happ Molitoris
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Robert D. Koos
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
303
|
The molecular basis for impaired hypoxia-induced VEGF expression in diabetic tissues. Proc Natl Acad Sci U S A 2009; 106:13505-10. [PMID: 19666581 DOI: 10.1073/pnas.0906670106] [Citation(s) in RCA: 344] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Diabetes is associated with poor outcomes following acute vascular occlusive events. This results in part from a failure to form adequate compensatory microvasculature in response to ischemia. Since vascular endothelial growth factor (VEGF) is an essential mediator of neovascularization, we examined whether hypoxic up-regulation of VEGF was impaired in diabetes. Both fibroblasts isolated from type 2 diabetic patients, and normal fibroblasts exposed chronically to high glucose, were defective in their capacity to up-regulate VEGF in response to hypoxia. In vivo, diabetic animals demonstrated an impaired ability to increase VEGF production in response to soft tissue ischemia. This resulted from a high glucose-induced decrease in transactivation by the transcription factor hypoxia-inducible factor-1alpha (HIF-1alpha), which mediates hypoxia-stimulated VEGF expression. Decreased HIF-1alpha functional activity was specifically caused by impaired HIF-1alpha binding to the coactivator p300. We identify covalent modification of p300 by the dicarbonyl metabolite methylglyoxal as being responsible for this decreased association. Administration of deferoxamine abrogated methylglyoxal conjugation, normalizing both HIF-1alpha/p300 interaction and transactivation by HIF-1alpha. In diabetic mice, deferoxamine promoted neovascularization and enhanced wound healing. These findings define molecular defects that underlie impaired VEGF production in diabetic tissues and offer a promising direction for therapeutic intervention.
Collapse
|
304
|
Kizaka-Kondoh S, Tanaka S, Hiraoka M. Imaging and Targeting of the Hypoxia-inducible Factor 1-active Microenvironment. J Toxicol Pathol 2009; 22:93-100. [PMID: 22271982 PMCID: PMC3246054 DOI: 10.1293/tox.22.93] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Accepted: 11/28/2008] [Indexed: 12/04/2022] Open
Abstract
Human solid tumors contain hypoxic regions that have considerably lower oxygen tension than normal tissues. They are refractory to radiotherapy and anticancer chemotherapy. Although more than half a century has passed since it was suggested that tumour hypoxia correlates with poor treatment outcomes and contributes to recurrence of cancer, no fundamental solution to this problem has been found. Hypoxia-inducible factor-1(HIF-1) is the main transcription factor that regulates the cellular response to hypoxia. It induces various genes, whose function is strongly associated with malignant alteration of the entire tumour. The cellular changes induced by HIF-1 are extremely important therapeutic targets of cancer therapy, particularly in therapy against refractory cancers. Therefore, targeting strategies to overcome the HIF-1-active microenvironment are important for cancer therapy. To Target HIF-1-active/ hypoxic tumor cells, we developed a fusion protein drug, PTD-ODD-Procaspase-3 that selectively induces cell death in HIF-1-active/hypoxic cells. The drug consists of the following three functional domains: the protein transduction domain (PTD), which efficiently delivers the fusion protein to hypoxic tumor cells, the ODD domain, which has a VHL-mediated protein destruction motif of human HIF-1α protein and confers hypoxia-dependent stabilization to the fusion proteins, and the human procaspase-3 proenzyme responsible for the cytocidal activity of the protein drug. In vivo imaging systems capable of monitoring HIF-1 activity in transplanted human cancer cells in mice are useful in evaluating the efficiency of these drugs and in study of HIF-1-active tumor cells.
Collapse
Affiliation(s)
- Shinae Kizaka-Kondoh
- Innovative Techno-Hub for Integrated Medical Bio-imaging, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Shotaro Tanaka
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Masahiro Hiraoka
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
305
|
Kizaka-Kondoh S, Tanaka S, Harada H, Hiraoka M. The HIF-1-active microenvironment: an environmental target for cancer therapy. Adv Drug Deliv Rev 2009; 61:623-32. [PMID: 19409433 DOI: 10.1016/j.addr.2009.01.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Accepted: 01/28/2009] [Indexed: 12/20/2022]
Abstract
Solid tumors possess unique microenvironments that are exposed to chronic hypoxic conditions, so-called tumor hypoxia. Although more than half a century has passed since it was suggested that tumor hypoxia correlated with bad treatment outcomes and contributed to the recurrence of cancer, no fundamental solution to this problem has yet been found. Hypoxia-inducible factor HIF-1 is the main transcription factor that regulates the cellular response to hypoxia. It induces various genes, whose function is strongly associated with the malignant alteration of the entire tumor. The cellular changes induced by HIF-1 are extremely important therapeutic targets of cancer therapy, particularly in the therapy against refractory cancers. Therefore targeting strategies to overcome the HIF-1-active microenvironment are important for cancer therapy.
Collapse
Affiliation(s)
- Shinae Kizaka-Kondoh
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | |
Collapse
|
306
|
Simmons SO, Fan CY, Ramabhadran R. Cellular stress response pathway system as a sentinel ensemble in toxicological screening. Toxicol Sci 2009; 111:202-25. [PMID: 19567883 DOI: 10.1093/toxsci/kfp140] [Citation(s) in RCA: 202] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
High costs, long test times, and societal concerns related to animal use have required the development of in vitro assays for the rapid and cost-effective toxicological evaluation and characterization of compounds in both the pharmaceutical and environmental arenas. Although the pharmaceutical industry has developed very effective, high-throughput in vitro assays for determining the therapeutic potential of compounds, the application of this approach to toxicological screening has been limited. A primary reason for this is that while drug candidate screens are directed to a specific target/mechanism, xenobiotics can cause toxicity through any of a myriad of undefined interactions with cellular components and processes. Given that it is not practical to design assays that can interrogate each potential toxicological target, an integrative approach is required if there is to be a rapid and low-cost toxicological evaluation of chemicals. Cellular stress response pathways offer a viable solution to the creation of a set of integrative assays as there is a limited and hence manageable set (a small ensemble of 10 or less) of major cellular stress response pathways through which cells mount a homoeostatic response to toxicants and which also participate in cell fate/death decisions. Further, over the past decades, these pathways have been well characterized at a molecular level thereby enabling the development of high-throughput cell-based assays using the components of the pathways. Utilization of the set of cellular stress response pathway-based assays as indicators of toxic interactions of chemicals with basic cellular machinery will potentially permit the clustering of chemicals based on biological response profiles of common mode of action (MOA) and also the inference of the specific MOA of a toxicant. This article reviews the biochemical characteristics of the stress response pathways, their common architecture that enables rapid activation during stress, their participation in cell fate decisions, the essential nature of these pathways to the organism, and the biochemical basis of their cross-talk that permits an assay ensemble screening approach. Subsequent sections describe how the stress pathway ensemble assay approach could be applied to screening potentially toxic compounds and discuss how this approach may be used to derive toxicant MOA from the biological activity profiles that the ensemble strategy provides. The article concludes with a review of the application of the stress assay concept to noninvasive in vivo assessments of chemical toxicants.
Collapse
Affiliation(s)
- Steven O Simmons
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. EPA, Research Triangle Park, North Carolina 27711, USA
| | | | | |
Collapse
|
307
|
Moin SM, Chandra V, Arya R, Jameel S. The hepatitis E virus ORF3 protein stabilizes HIF-1alpha and enhances HIF-1-mediated transcriptional activity through p300/CBP. Cell Microbiol 2009; 11:1409-21. [PMID: 19489936 DOI: 10.1111/j.1462-5822.2009.01340.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The hepatitis E virus (HEV) causes hepatitis E and is an important human pathogen. We have previously shown that the HEV open reading frame 3 (ORF3) protein promotes survival of the host cell. Here we report finding increased expression of glycolytic pathway enzymes in ORF3-expressing cells. Promoter analysis of these genes revealed the ubiquitous presence of hypoxia inducible factor (HIF) responsive element (HRE). Dominant-negative and siRNA studies showed increased expression of glycolytic pathway genes by the ORF3 to be mediated by the HIF-1 transcription factor. Our results showed that HIF-1alpha, a highly unstable subunit of the HIF-1, was stabilized in ORF3-expressing cells. This was through phosphatidylinositol-3-kinase (PI3K) mediated activation of Akt/protein kinase B. Enhanced binding to the consensus HRE and increased transactivation activity of HIF-1 were also observed in ORF3-expressing cells. The HIF complex recruits the transcriptional adapter/histone acetyltransferase protein p300/CBP to target gene promoters and p300/CBP phosphorylation is required for this interaction. We show that ORF3-mediated extracellularly regulated kinase (Erk) activation was responsible for the observed increase in phosphorylation and transactivation activity of p300/CBP. Our results reveal a two-pronged strategy through which the ORF3 protein might modulate the energy homeostasis in HEV infected cells and thus contribute to pathogenesis.
Collapse
Affiliation(s)
- Syed M Moin
- Virology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | | | | | | |
Collapse
|
308
|
Shafee N, Kaluz S, Ru N, Stanbridge EJ. PI3K/Akt activity has variable cell-specific effects on expression of HIF target genes, CA9 and VEGF, in human cancer cell lines. Cancer Lett 2009; 282:109-15. [PMID: 19342157 DOI: 10.1016/j.canlet.2009.03.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Revised: 02/28/2009] [Accepted: 03/02/2009] [Indexed: 12/20/2022]
Abstract
The phosphatidylinositol 3-kinase/Akt (PI3K) pathway regulates hypoxia-inducible factor (HIF) activity. Higher expression of HIF-1alpha and carbonic anhydrase IX (CAIX), a hypoxia-inducible gene, in HT10806TG fibrosarcoma cells (mutant N-ras allele), compared to derivative MCH603 cells (deleted mutant N-ras allele), correlated with increased PI3K activity. Constitutive activation of the PI3K pathway in MCH603/PI3K(act) cells increased HIF-1alpha but, surprisingly, decreased CAIX levels. The cell-type specific inhibitory effect on CAIX was confirmed at the transcriptional level whereas epigenetic modifications of CA9 were ruled out. In summary, our data do not substantiate the generalization that PI3K upregulation leads to increased HIF activity.
Collapse
Affiliation(s)
- Norazizah Shafee
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | | | | | | |
Collapse
|
309
|
Abstract
The molecular mechanism of autocrine regulation of vascular endothelial growth factor (VEGF) in chronic lymphocytic leukemia (CLL) B cells is unknown. Here, we report that CLL B cells express constitutive levels of HIF-1alpha under normoxia. We have examined the status of the von Hippel-Lindau gene product (pVHL) that is responsible for HIF-1alpha degradation and found it to be at a notably low level in CLL B cells compared with normal B cells. We demonstrate that the microRNA, miR-92-1, overexpressed in CLL B cells, can target the VHL transcript to repress its expression. We found that the stabilized HIF-1alpha can form an active complex with the transcriptional coactivator p300 and phosphorylated-STAT3 at the VEGF promoter and recruit RNA polymerase II. This is initial evidence that pVHL, without any genetic alteration, can be regulated by microRNA and explains the aberrant autocrine VEGF secretion in CLL.
Collapse
|
310
|
Adams JM, Difazio LT, Rolandelli RH, Luján JJ, Haskó G, Csóka B, Selmeczy Z, Németh ZH. HIF-1: a key mediator in hypoxia. ACTA ACUST UNITED AC 2009; 96:19-28. [PMID: 19264039 DOI: 10.1556/aphysiol.96.2009.1.2] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The transcription factor HIF-1 is one of the principal mediators of homeostasis in human tissues exposed to hypoxia. It is implicated in virtually every process of rapid gene expression in response to low oxygen levels. The most common causes of tissue hypoxia are inflammation and/or insufficient circulation or a combination of both. Inflamed tissues and the areas surrounding malignant tumors are characterized by hypoxia and low concentrations of glucose. Serious and generalized inflammation can lead to sepsis and circulatory collapse resulting in acute or chronic tissue hypoxia in various vital organs which induces a rapid homeostatic process in all nucleated cells of affected organs in the human body. Under hypoxic conditions the alpha and beta subunits of HIF-1 make an active heterodimer and drive the transcription of over 60 genes important for cell survival, adaptation, anaerobic metabolism, immune reaction, cytokine production, vascularization and general tissue homeostasis. In addition, HIF-1 plays a key role in the development of physiological systems in fetal and postnatal life. It is also a critical mediator of cancer, lung and cardiovascular diseases. The better understanding of the functions of HIF-1 and the pharmacological modulation of its activity could mean a successful therapeutic approach to these diseases.
Collapse
Affiliation(s)
- J M Adams
- Department of Surgery, Morristown Memorial Hospital, Morristown, NJ 07960, USA
| | | | | | | | | | | | | | | |
Collapse
|
311
|
Lim W, Cho J, Kwon HY, Park Y, Rhyu MR, Lee Y. Hypoxia-inducible factor 1 alpha activates and is inhibited by unoccupied estrogen receptor beta. FEBS Lett 2009; 583:1314-8. [PMID: 19303878 DOI: 10.1016/j.febslet.2009.03.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 03/09/2009] [Accepted: 03/15/2009] [Indexed: 02/07/2023]
Abstract
Previously, we showed that hypoxia induces ligand-independent estrogen receptor (ER)alpha activation. In this study, we found that hypoxia activated the ER beta-mediated transcriptional response in HEK293 cells in the absence of estrogen. ER beta transactivation was induced by the expression of the hypoxia-inducible factor 1 alpha (HIF-1 alpha) under normoxia. ER beta interacted with HIF-1 alpha, and SRC1 and CBP potentiated the effect of HIF-1 alpha on ER beta-mediated transcription. We then examined the effect of ER beta on HIF1-alpha transactivation. Surprisingly, ER beta attenuated the transcriptional activity of HIF-1 alpha, as measured by HRE-driven reporter gene expression and hypoxic induction of VEGF mRNA in HEK293 cells. Taken together, these data show that HIF-1 alpha activates ER beta-mediated transcription in the absence of a ligand, and ER beta inhibits HIF-1 alpha-mediated transcription.
Collapse
Affiliation(s)
- Wonchung Lim
- College of Life Science, Institute of Biotechnology, Department of Bioscience and Biotechnology, Sejong University, Kwang-Jin-Gu, Seoul 143-747, Republic of Korea
| | | | | | | | | | | |
Collapse
|
312
|
Integrative analysis of HIF binding and transactivation reveals its role in maintaining histone methylation homeostasis. Proc Natl Acad Sci U S A 2009; 106:4260-5. [PMID: 19255431 DOI: 10.1073/pnas.0810067106] [Citation(s) in RCA: 317] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Adaptation to hypoxia is mediated through a coordinated transcriptional response driven largely by hypoxia-inducible factor 1 (HIF-1). We used ChIP-chip and gene expression profiling to identify direct targets of HIF-1 transactivation on a genome-wide scale. Several hundred direct HIF-1 targets were identified and, as expected, were highly enriched for proteins that facilitate metabolic adaptation to hypoxia. Surprisingly, there was also striking enrichment for the family of 2-oxoglutarate dioxygenases, including the jumonji-domain histone demethylases. We demonstrate that these histone demethylases are direct HIF targets, and their up-regulation helps maintain epigenetic homeostasis under hypoxic conditions. These results suggest that the coordinated increase in expression of several oxygen-dependent enzymes by HIF may help compensate for decreased levels of oxygen under conditions of cellular hypoxia.
Collapse
|
313
|
Abstract
Chronic intermittent or episodic hypoxia, as occurs during a number of disease states, can have devastating effects, and prolonged exposure to this hypoxia can result in cell injury or cell death. Indeed, intermittent hypoxia activates a number of signaling pathways that are involved in oxygen sensing, oxidative stress, metabolism, catecholamine biosynthesis, and immune responsiveness. The cumulative effect of these processes over time can undermine cell integrity and lead to a decline in function. Furthermore, the ability to respond adequately to various stressors is hampered, and this is traditionally defined as premature aging or senescence. This review highlights recent advances in our understanding of the cellular and molecular mechanisms that are involved in the response to intermittent hypoxia and the potential interplay among various pathways that may accelerate the aging process.
Collapse
Affiliation(s)
- Robert M Douglas
- Department of Pediatrics, University of California San Diego, and Rady Children's Hospital-San Diego, San Diego, La Jolla, CA, USA.
| | | |
Collapse
|
314
|
Maxwell PH, Pugh CW, Ratcliffe PJ. Expression of hypoxia-inducible factor (HIF)-1alpha and vascular endothelial growth factor (VEGF)-D as outcome predictors in resected esophageal squamous cell carcinoma. DISEASE MARKERS 2009; 11:293-9. [PMID: 11377966 DOI: 10.1016/s0959-437x(00)00193-3] [Citation(s) in RCA: 285] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hypoxia-inducible factor (HIF)-1alpha and vascular endothelial growth factor (VEGF) are important angiogenic factors in human cancers. Relative to VEGF-C, prognostic significance of VEGF-D expression and its association with HIF-1alpha expression remain elusive in esophageal squamous cell cancer (ESCC). We studied expression of HIF-1alpha and VEGF-D using immunohistochemistry in 85 resected ESCC specimens and correlated results with patients' clinicopathologic parameters and survival. Association between expression of HIF-1alpha and VEGF-D was investigated using a concordance analysis. High expression of HIF-1alpha and VEGF-D was observed in 52 (61.2%) and 56 (65.9%) patients, respectively. HIF-1alpha expression correlated well with tumor stage (P = 0.041), whereas VEGF-D expression correlated with tumor stage (P = 0.027) and N status (P = 0.019). Groups of high HIF-1alpha and VEGF-D showed worse survivals than those of low expression (P = 0.002 and 0.001, respectively). Multivariate analysis supported expression of HIF-1alpha and VEGF-D as significant survival predictors (P = 0.044 and 0.035, respectively). A concordance rate of 69.5% was observed between expression of HIF-1alpha and VEGF-D. In conclusion, protein expression of HIF-1alpha and VEGF-D are independent prognostic predictors. An association between expression of HIF-1alpha and VEGF-D suggests that these two angiogenic factors are essential in progression of ESCC.
Collapse
Affiliation(s)
- P H Maxwell
- The Henry Wellcome Building of Genomic Medicine, Roosevelt Drive, OX3 7BN, Oxford, UK
| | | | | |
Collapse
|
315
|
Huang WJ, Xia LM, Zhu F, Huang B, Zhou C, Zhu HF, Wang B, Chen B, Lei P, Shen GX. Transcriptional upregulation of HSP70-2 by HIF-1 in cancer cells in response to hypoxia. Int J Cancer 2009; 124:298-305. [PMID: 18844219 DOI: 10.1002/ijc.23906] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Heat shock protein 70-2 (HSP70-2) can be expressed by cancer cells and act as an important regulator of cancer cell growth and survival. Here, we show the molecular mechanisms by which hypoxia regulate HSP70-2 expression in cancer cells. When cells were subjected to hypoxia (1% O2), the expression of HSP70-2 had a significant increase in cancer cells. Such increase was due to the direct binding of hypoxia-inducible factor to hypoxia-responsive elements (HREs) in the HSP70-2 promoter. By luciferase assays, we demonstrated that the HRE1 at position -446 was essential for transcriptional activation of HSP70-2 promoter under hypoxic conditions. We also demonstrated that HIF-1alpha binds to the HSP70-2 promoter and the binding is specific, as revealed by HIF binding/competition and chromatin immunoprecipitation assays. Consequently, the upregulation of HSP70-2 enhanced the resistance of tumor cells to hypoxia-induced apoptosis. These findings provide a new insight into how tumor cells overcome hypoxic stress and survive, and also disclose a new regulatory mechanism of HSP70-2 expression in tumor cells.
Collapse
Affiliation(s)
- Wen-Jie Huang
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, and Division of Gastroenterology, Tongji Hospital, Wuhan, Hubei Province, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
316
|
|
317
|
Feng W, Ye F, Xue W, Zhou Z, Kang YJ. Copper regulation of hypoxia-inducible factor-1 activity. Mol Pharmacol 2009; 75:174-82. [PMID: 18842833 PMCID: PMC2685058 DOI: 10.1124/mol.108.051516] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Accepted: 10/08/2008] [Indexed: 01/28/2023] Open
Abstract
Previous studies have demonstrated that copper up-regulates hypoxia-inducible factor 1 (HIF-1). The present study was undertaken to test the hypothesis that copper is required for HIF-1 activation. Treatment of HepG2 cells with a copper chelator tetraethylenepentamine (TEPA) or short interfering RNA targeting copper chaperone for superoxide dismutase 1 (CCS) suppressed hypoxia-induced activation of HIF-1. Addition of excess copper relieved the suppression by TEPA, but not that by CCS gene silencing, indicating the requirement of copper for activation of HIF-1, which is CCS-dependent. Copper deprivation did not affect production or stability of HIF-1alpha but reduced HIF-1alpha binding to the hypoxia-responsive element (HRE) of target genes and to p300, a component of HIF-1 transcriptional complex. Copper probably inhibits the factor inhibiting HIF-1 to ensure the formation of HIF-1 transcriptional complex. This study thus defines that copper is required for HIF-1 activation through the regulation of HIF-1alpha binding to the HRE and the formation of the HIF-1 transcriptional complex.
Collapse
Affiliation(s)
- Wenke Feng
- Departments of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | | | | | | | | |
Collapse
|
318
|
Tan XL, Zhai Y, Gao WX, Fan YM, Liu FY, Huang QY, Gao YQ. p300 expression is induced by oxygen deficiency and protects neuron cells from damage. Brain Res 2008; 1254:1-9. [PMID: 19103185 DOI: 10.1016/j.brainres.2008.11.092] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Revised: 11/04/2008] [Accepted: 11/16/2008] [Indexed: 01/25/2023]
Abstract
Low oxygen level or oxygen deficiency (hypoxia) is a major factor causing neuronal damage in many diseases. Inducing cell adaptation to hypoxia is an effective method for neuroprotection that can be achieved by either inhibiting the death effectors or enhancing the survival factors. Transcription coactivator p300 is necessary for hypoxia-induced transcriptional activation and plays an important role in neuron survival. However, the alteration of p300 expression under hypoxia condition and its role in hypoxia-induced neuronal damage remain unclear. In this study, the distribution of p300 in rat brain and the alteration of its expression in rat hippocampus during hypobaric hypoxia exposure were detected. In addition, the role of p300 in neuronal-like PC12 cell damage induced by oxygen deficiency (3% oxygen) was evaluated. Our results showed that p300 protein was mainly expressed in the cells expressed beta-tubulin III in the cerebral cortex, hippocampus, cerebellum cortex, medulla oblongata and hypothalamus. Less or no positive signal of p300 expression was observed in beta-tubulin III negative cells. This indicated that p300 was predominantly expressed in neurons of rat brain. Furthermore, p300 expression was up-regulated in rat hippocampus during hypoxia exposure and in neuronal-like PC12 cells under 3% oxygen condition. Interestingly, neuronal-like PC12 cell damage induced by oxygen deficiency (3% oxygen) was increased by suppression of p300 expression with short hairpin RNA (shRNA). These data indicate that p300 is an important molecule for neuroprotection under hypoxia.
Collapse
Affiliation(s)
- Xiao Ling Tan
- Department of Pathophysiology and High Altitude Physiology, College of High Altitude Medicine, Third Military Medical University, Chongqing 400038, China
| | | | | | | | | | | | | |
Collapse
|
319
|
Ishimura R, Kawakami T, Ohsako S, Tohyama C. Dioxin-induced toxicity on vascular remodeling of the placenta. Biochem Pharmacol 2008; 77:660-9. [PMID: 19027717 DOI: 10.1016/j.bcp.2008.10.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 10/14/2008] [Accepted: 10/15/2008] [Indexed: 12/22/2022]
Abstract
Arylhydrocarbon receptor (AhR) activated by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) triggers its downstream signaling pathway to exert adverse effects on vasculature development, which can be initiated by vasculogenesis, followed by angiogenesis, or vascular remodeling, in a variety of animals including avians, piscines and mammals. The placenta, a mammalian organ rich in vasculature, consists of endothelial and trophoblast cells of fetal origin, which proliferate and differentiate under hypoxic condition in the uterine horn. Our studies demonstrated that vascular remodeling occurs prominently in the placenta of the control Holtzman rat strain during the late period of gestation, and induces changes in cell shape and elimination by apoptosis of trophoblasts. As a result, the net volumes of both maternal and fetal blood in the placenta increase to cope with the essential requirements of oxygen and nutrients in the late period of gestation. On the other hand, in utero exposure to TCDD markedly suppressed the development of sinusoids and trophoblast cells and the apoptosis of trophoblast cells with a concomitant increase in the incidence of fetal death under hypoxic condition. A crosstalk between the hypoxia-inducible factor (HIF)-mediated pathway and AhR-mediated pathway is considered to play an important role in this physiological process. No such changes were observed in the Sprague-Dawley rat strain that turned out to have an AhR conformation identical to that of the Holtzman rat strain. In this commentary, we will discuss a possible link of the TCDD toxicities with the AhR signaling pathway and gestation-related diseases.
Collapse
Affiliation(s)
- Ryuta Ishimura
- National Institute for Environmental Studies, Tsukuba, Japan
| | | | | | | |
Collapse
|
320
|
Filippi S, Latini P, Frontini M, Palitti F, Egly JM, Proietti-De-Santis L. CSB protein is (a direct target of HIF-1 and) a critical mediator of the hypoxic response. EMBO J 2008; 27:2545-56. [PMID: 18784753 DOI: 10.1038/emboj.2008.180] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Accepted: 08/14/2008] [Indexed: 01/05/2023] Open
Abstract
Cockayne syndrome (CS) is a rare genetic disease characterized by neurological problems, growth failure and premature ageing. Many of these features cannot simply be ascribed to the defect that CS cells display during transcription-coupled repair. Here, we show that CSB mutant cells are unable to react to hypoxic stimuli by properly activating the hypoxia-inducible factor-1 (HIF-1) pathway, a defect that is further enhanced in the event of a concomitant genotoxic stress. Furthermore, we show that CSB expression is under the control of HIF-1 and has a critical function during hypoxic response by redistributing p300 between HIF-1 and p53. Altogether, our data demonstrate that CSB is part of a feedback loop mechanism that modulates the biological functions of p53. The outcome of this study provides new insights into the understanding of the molecular basis of the CS phenotype and the involvement of the CSB protein in the hypoxic response pathway.
Collapse
Affiliation(s)
- Silvia Filippi
- Laboratory of Molecular Cytogenetics and Mutagenesis, Department ABAC, University of Tuscia, Viterbo, Italy
| | | | | | | | | | | |
Collapse
|
321
|
Boutros T, Chevet E, Metrakos P. Mitogen-activated protein (MAP) kinase/MAP kinase phosphatase regulation: roles in cell growth, death, and cancer. Pharmacol Rev 2008; 60:261-310. [PMID: 18922965 DOI: 10.1124/pr.107.00106] [Citation(s) in RCA: 438] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mitogen-activated protein kinase dual-specificity phosphatase-1 (also called MKP-1, DUSP1, ERP, CL100, HVH1, PTPN10, and 3CH134) is a member of the threonine-tyrosine dual-specificity phosphatases, one of more than 100 protein tyrosine phosphatases. It was first identified approximately 20 years ago, and since that time extensive investigations into both mkp-1 mRNA and protein regulation and function in different cells, tissues, and organs have been conducted. However, no general review on the topic of MKP-1 exists. As the subject matter pertaining to MKP-1 encompasses many branches of the biomedical field, we focus on the role of this protein in cancer development and progression, highlighting the potential role of the mitogen-activated protein kinase (MAPK) family. Section II of this article elucidates the MAPK family cross-talk. Section III reviews the structure of the mkp-1 encoding gene, and the known mechanisms regulating the expression and activity of the protein. Section IV is an overview of the MAPK-specific dual-specificity phosphatases and their role in cancer. In sections V and VI, mkp-1 mRNA and protein are examined in relation to cancer biology, therapeutics, and clinical studies, including a discussion of the potential role of the MAPK family. We conclude by proposing an integrated scheme for MKP-1 and MAPK in cancer.
Collapse
Affiliation(s)
- Tarek Boutros
- Department of Surgery, Royal Victoria Hospital, McGill University, 687 Pine Ave. W., Montreal, QC H3A1A1, Canada.
| | | | | |
Collapse
|
322
|
Li X, Lu Y, Liang K, Pan T, Mendelsohn J, Fan Z. Requirement of hypoxia-inducible factor-1alpha down-regulation in mediating the antitumor activity of the anti-epidermal growth factor receptor monoclonal antibody cetuximab. Mol Cancer Ther 2008; 7:1207-17. [PMID: 18483308 DOI: 10.1158/1535-7163.mct-07-2187] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We tested our novel hypothesis that down-regulation of hypoxia-inducible factor-1alpha (HIF-1alpha), the regulated subunit of HIF-1 transcription factor that controls gene expression involved in key functional properties of cancer cells (including metabolism, survival, proliferation, invasion, angiogenesis, and metastasis), contributes to a major antitumor mechanism of cetuximab, an approved therapeutic monoclonal antibody that blocks activation of the epidermal growth factor receptor. We showed that cetuximab treatment down-regulates HIF-1alpha levels by inhibiting synthesis of HIF-1alpha rather than by enhancing degradation of the protein. Inhibition of HIF-1alpha protein synthesis was dependent on effective inhibition of the phosphoinositide-3 kinase (PI3K)/Akt pathway by cetuximab, because the inhibition was prevented in cells transfected with a constitutively active PI3K or a constitutively active Akt but not in cells with a constitutively active MEK. Overexpression of HIF-1alpha conferred cellular resistance to cetuximab-induced apoptosis and inhibition of vascular endothelial growth factor production in sensitive cancer cell models, and expression knockdown of HIF-1alpha by RNA interference substantially restored cellular sensitivity to the cetuximab-mediated antitumor activities in experimental resistant cell models created by transfection of an oncogenic Ras gene (G12V) or by concurrent treatment of the cells with insulin-like growth factor-I. In summary, our data show that cetuximab decreases HIF-1alpha protein synthesis through inhibition of a PI3K-dependent pathway and that an effective down-regulation of HIF-1alpha is required for maximal therapeutic effects of cetuximab in cancer cells.
Collapse
Affiliation(s)
- Xinqun Li
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Unit 036, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
323
|
Abstract
Hypoxia induces profound changes in the cellular gene expression profile. The discovery of a major transcription factor family activated by hypoxia, HIF (hypoxia-inducible factor), and the factors that contribute to HIF regulation have greatly enhanced our knowledge of the molecular aspects of the hypoxic response. However, in addition to HIF, other transcription factors and cellular pathways are activated by exposure to reduced oxygen. In the present review, we summarize the current knowledge of how additional hypoxia-responsive transcription factors integrate with HIF and how other cellular pathways such as chromatin remodelling, translation regulation and microRNA induction, contribute to the co-ordinated cellular response observed following hypoxic stress.
Collapse
|
324
|
Rowe SP, Mapp AK. Assessing the permissiveness of transcriptional activator binding sites. Biopolymers 2008; 89:578-81. [PMID: 18253946 DOI: 10.1002/bip.20946] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Both genetic and biochemical data suggest that transcriptional activators with little sequence homology nevertheless function through interaction with a shared group of coactivators. Here we show that a series of peptidomimetic transcriptional activation domains interact under cell-fiee and cellular conditions with the metazoan coactivator CBP despite differences in the positioning and identity of the constituent functional groups. Taken together, these results suggest that a key activator binding site within CBP is permissive, accepting multiple arrangements of hydrophobic functional groups. Further, this permissiveness is also observed with a coactivator from S. cerevisiae. Thus, the design of small molecule mimics of transcriptional activation domains with broad function may be more straightforward than previously envisioned.
Collapse
Affiliation(s)
- Steven P Rowe
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
325
|
Tan XL, Huang XY, Gao WX, Zai Y, Huang QY, Luo YJ, Gao YQ. CoCl2-induced expression of p300 promotes neuronal-like PC12 cell damage. Neurosci Lett 2008; 441:272-6. [DOI: 10.1016/j.neulet.2008.06.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 05/29/2008] [Accepted: 06/19/2008] [Indexed: 01/24/2023]
|
326
|
Chen Y, Doughman YQ, Gu S, Jarrell A, Aota SI, Cvekl A, Watanabe M, Dunwoodie SL, Johnson RS, van Heyningen V, Kleinjan DA, Beebe DC, Yang YC. Cited2 is required for the proper formation of the hyaloid vasculature and for lens morphogenesis. Development 2008; 135:2939-48. [PMID: 18653562 DOI: 10.1242/dev.021097] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cited2 is a transcriptional modulator with pivotal roles in different biological processes. Cited2-deficient mouse embryos manifested two major defects in the developing eye. An abnormal corneal-lenticular stalk was characteristic of Cited2(-/-) developing eyes, a feature reminiscent of Peters' anomaly, which can be rescued by increased Pax6 gene dosage in Cited2(-/-) embryonic eyes. In addition, the hyaloid vascular system showed hyaloid hypercellularity consisting of aberrant vasculature, which might be correlated with increased VEGF expression in the lens. Deletion of Hif1a (which encodes HIF-1alpha) in Cited2(-/-) lens specifically eliminated the excessive accumulation of cellular mass and aberrant vasculature in the developing vitreous without affecting the corneal-lenticular stalk phenotype. These in vivo data demonstrate for the first time dual functions for Cited2: one upstream of, or together with, Pax6 in lens morphogenesis; and another in the normal formation of the hyaloid vasculature through its negative modulation of HIF-1 signaling. Taken together, our study provides novel mechanistic revelation for lens morphogenesis and hyaloid vasculature formation and hence might offer new insights into the etiology of Peters' anomaly and ocular hypervascularity.
Collapse
Affiliation(s)
- Yu Chen
- Department of Biochemistry and Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
327
|
Beischlag TV, Luis Morales J, Hollingshead BD, Perdew GH. The aryl hydrocarbon receptor complex and the control of gene expression. Crit Rev Eukaryot Gene Expr 2008; 18:207-50. [PMID: 18540824 DOI: 10.1615/critreveukargeneexpr.v18.i3.20] [Citation(s) in RCA: 561] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that controls the expression of a diverse set of genes. The toxicity of the potent AhR ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin is almost exclusively mediated through this receptor. However, the key alterations in gene expression that mediate toxicity are poorly understood. It has been established through characterization of AhR-null mice that the AhR has a required physiological function, yet how endogenous mediators regulate this orphan receptor remains to be established. A picture as to how the AhR/ARNT heterodimer actually mediates gene transcription is starting to emerge. The AhR/ARNT complex can alter transcription both by binding to its cognate response element and through tethering to other transcription factors. In addition, many of the coregulatory proteins necessary for AhR-mediated transcription have been identified. Cross talk between the estrogen receptor and the AhR at the promoter of target genes appears to be an important mode of regulation. Inflammatory signaling pathways and the AhR also appear to be another important site of cross talk at the level of transcription. A major focus of this review is to highlight experimental efforts to characterize nonclassical mechanisms of AhR-mediated modulation of gene transcription.
Collapse
Affiliation(s)
- Timothy V Beischlag
- Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | |
Collapse
|
328
|
Jin X, Jin HR, Lee D, Lee JH, Kim SK, Lee JJ. A quassinoid 6alpha-tigloyloxychaparrinone inhibits hypoxia-inducible factor-1 pathway by inhibition of eukaryotic translation initiation factor 4E phosphorylation. Eur J Pharmacol 2008; 592:41-7. [PMID: 18639543 DOI: 10.1016/j.ejphar.2008.06.104] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 06/22/2008] [Accepted: 06/27/2008] [Indexed: 12/28/2022]
Abstract
Hypoxia-inducible factor-1 (HIF-1) is the central mediator of cellular responses to low oxygen and vital to many aspects of cancer biology. In a search for HIF-1 inhibitors, we identified a quassinoid 6alpha-tigloyloxychaparrinone (TCN) as an inhibitor of HIF-1 activation from Ailantus altissima. We here demonstrated the effect of TCN on HIF-1 activation induced by hypoxia or CoCl2. TCN showed the potent inhibitory activity against HIF-1 activation induced by hypoxia in various human cancer cell lines. This compound markedly decreased the hypoxia-induced accumulation of HIF-1alpha protein dose-dependently, whereas it did not affect the expressions of HIF-1beta and topoisomerase-I. Furthermore, TCN prevented hypoxia-induced expression of HIF-1 target genes for vascular endothelial growth factor (VEGF) and erythropoietin. Further analysis revealed that TCN strongly inhibited HIF-1alpha protein synthesis, without affecting the expression level of HIF-1alpha mRNA or degradation of HIF-1alpha protein. Moreover, the levels of phosphorylation of extracellular signal-regulated kinase-1/2 (ERK1/2), mitogen-activated protein (MAP) kinase-interacting protein kinase-1 (MNK1) and eukaryotic initiation factor 4E (eIF4E) were significantly suppressed by the treatment of TCN, without changing the total levels of these proteins. Our data suggested that TCN may exhibit anticancer activity by inhibiting HIF-1alpha translation through the inhibition of eIF4E phosphorylation pathway and thus provide a novel mechanism for the anticancer activity of quassinoids. TCN could be a new HIF-1-targeted anticancer agent and be effective on mammalian target of rapamycin (mTOR)-targeted cancer therapy, in which mTOR inhibition increases eIF4E phosphorylation.
Collapse
Affiliation(s)
- Xuejun Jin
- Center for Molecular Cancer Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-333, Republic of Korea
| | | | | | | | | | | |
Collapse
|
329
|
PCAF is an HIF-1alpha cofactor that regulates p53 transcriptional activity in hypoxia. Oncogene 2008; 27:5785-96. [PMID: 18574470 DOI: 10.1038/onc.2008.192] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The p53 tumour suppressor is involved in several crucial cellular functions including cell-cycle arrest and apoptosis. p53 stabilization occurs under hypoxic and DNA damage conditions. However, only in the latter scenario is stabilized p53 capable of inducing the expression of its pro-apoptotic targets. Here we present evidence that under hypoxia-mimicking conditions p53 acetylation is reduced to a greater extent at K320 site targeted by P300/CBP-associated factor (PCAF) than at K382 site targeted by p300/CBP. The limited amounts of acetylated p53 at K320 are preferentially recruited to the promoter of the p21(WAF-1/CIP-1) gene, which appears to be unaffected by hypoxia, but are not recruited to the BID promoter and hence p53 is incapable of upregulating pro-apoptotic BID in hypoxic conditions. As the K320 p53 acetylation is the site predominantly affected in hypoxia, the PCAF histone acetyltransferase activity is the key regulator of the cellular fate modulated by p53 under these conditions. In addition, we provide evidence that PCAF acetylates hypoxia-inducible factor-1alpha (HIF-1alpha) in hypoxic conditions and that the acetylated HIF-1alpha is recruited to a particular subset of its targets. In conclusion, PCAF regulates the balance between cell-cycle arrest and apoptosis in hypoxia by modulating the activity and protein stability of both p53 and HIF-1alpha.
Collapse
|
330
|
Wagner AE, Huck G, Stiehl DP, Jelkmann W, Hellwig-Bürgel T. Dexamethasone impairs hypoxia-inducible factor-1 function. Biochem Biophys Res Commun 2008; 372:336-40. [PMID: 18501194 DOI: 10.1016/j.bbrc.2008.05.061] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Accepted: 05/09/2008] [Indexed: 01/22/2023]
Abstract
Hypoxia-inducible factor-1 (HIF-1) is a heterodimeric transcription-factor composed of alpha- and beta-subunits. HIF-1 is not only necessary for the cellular adaptation to hypoxia, but it is also involved in inflammatory processes and wound healing. Glucocorticoids (GC) are therapeutically used to suppress inflammatory responses. Herein, we investigated whether GC modulate HIF-1 function using GC receptor (GR) possessing (HepG2) and GR deficient (Hep3B) human hepatoma cell cultures as model systems. Dexamethasone (DEX) treatment increased HIF-1alpha levels in the cytosol of HepG2 cells, while nuclear HIF-1alpha levels and HIF-1 DNA-binding was reduced. In addition, DEX dose-dependently lowered the hypoxia-induced luciferase activity in a reporter gene system. DEX suppressed the hypoxic stimulation of the expression of the HIF-1 target gene VEGF (vascular endothelial growth factor) in HepG2 cultures. DEX did not reduce hypoxically induced luciferase activity in HRB5 cells, a Hep3B derivative lacking GR. Transient expression of the GR in HRB5 cells restored the susceptibility to DEX. Our study discloses the inhibitory action of GC on HIF-1 dependent gene expression, which may be important with respect to the impaired wound healing in DEX-treated patients.
Collapse
Affiliation(s)
- A E Wagner
- Institute of Physiology, University of Luebeck, Ratzeburger Allee 160, D-23538 Luebeck, Germany
| | | | | | | | | |
Collapse
|
331
|
Chabowska AM, Sulkowska M, Chabowski A, Wincewicz A, Koda M, Sulkowski S. Erythropoietin and erythropoietin receptor in colorectal cancer. Int J Surg Pathol 2008; 16:269-76. [PMID: 18487221 DOI: 10.1177/1066896908315796] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Erythropoietin via erythropoietin receptor effectively prevents anemia, giving reasons for a clinical use of erythropoietin in patients with colorectal cancers. However, erythropoietin seems to promote survival of the neoplastic cells in hypoxic environment. The aim of this study was to evaluate immunohistochemically the expression of erythropoietin and erythropoietin receptor in 136 primary colorectal cancers with a correlation to different anatomo-clinical features. Erythropoietin correlated with erythropoietin receptor in colorectal cancers (r = 0.547, P < .00001). Erythropoietin and erythropoietin receptor expressions were statistically higher in adenocarcinomas versus mucinous carcinomas (P = .05 and P = .03, respectively) and in moderately (G2) versus poorly differentiated (G3) tumors (P = .001 and P = .02, respectively). This in vivo study is the first study that provides evidences for the presence of erythropoietin and erythropoietin receptor in human colorectal cancer. The expressions of these proteins strictly depended on grading because the better histological differentiation probably comes from trophic influence of erythropoietin and erythropoietin receptor.
Collapse
Affiliation(s)
- Anna M Chabowska
- Department of Clinical and General Pathomorphology, Medical University of Bialystok, Bialystok, Poland
| | | | | | | | | | | |
Collapse
|
332
|
Kaluz S, Kaluzová M, Stanbridge EJ. Regulation of gene expression by hypoxia: integration of the HIF-transduced hypoxic signal at the hypoxia-responsive element. Clin Chim Acta 2008; 395:6-13. [PMID: 18505681 DOI: 10.1016/j.cca.2008.05.002] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 03/21/2008] [Accepted: 05/01/2008] [Indexed: 12/24/2022]
Abstract
Cells experiencing lowered O(2) levels (hypoxia) undergo a variety of biological responses in order to adapt to these unfavorable conditions. The master switch, orchestrating the cellular response to low O(2) levels, is the transcription factor, termed hypoxia-inducible factor (HIF). The alpha subunits of HIF are regulated by 2-oxoglutarate-dependent oxygenases that, in the presence of O(2), hydroxylate specific prolyl and asparaginyl residues of HIF-alpha, inducing its proteasome-dependent degradation and repression of transcriptional activity, respectively. Hypoxia inhibits oxygenases, stabilized HIF-alpha translocates to the nucleus, dimerizes with HIF-beta, recruits the coactivators p300/CBP, and induces expression of its transcriptional targets via binding to hypoxia-responsive elements (HREs). HREs are composite regulatory elements, comprising a conserved HIF-binding sequence and a highly variable flanking sequence that modulates the transcriptional response. In summary, the transcriptional response of a cell is the end product of two major functions. The first (trans-acting) is the level of activation of the HIF pathway that depends on regulation of stability and transcriptional activity of the HIF-alpha. The second (cis-acting) comprises the characteristics of endogenous HREs that are determined by the availability of transcription factors cooperating with HIF and/or individual HIF-alpha isoforms.
Collapse
Affiliation(s)
- Stefan Kaluz
- Department of Microbiology and Molecular Genetics, College of Medicine, University of California, Irvine, California 92697-4025, USA.
| | | | | |
Collapse
|
333
|
Yasuda H. Solid tumor physiology and hypoxia-induced chemo/radio-resistance: novel strategy for cancer therapy: nitric oxide donor as a therapeutic enhancer. Nitric Oxide 2008; 19:205-16. [PMID: 18503779 DOI: 10.1016/j.niox.2008.04.026] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2008] [Revised: 04/27/2008] [Accepted: 04/28/2008] [Indexed: 11/30/2022]
Abstract
Hypoxia exists in solid tumor tissues due to abnormal vasculature, vascular insufficiency, treatment or malignancy related anemia, and low intratumor blood flow. Hypoxic status in solid tumor promotes accumulation of hypoxia-inducible factor-1 alpha which is promptly degraded by proteasomal ubiquitination under normoxic conditions. However, under hypoxic conditions, the ubiquitination system for HIF-1 alpha is inhibited by inactivation of prolyl hydroxylase which is responsible for hydroxylation of proline in the oxygen-dependent degradation domain of HIF-1 alpha. HIF-1 alpha is an important transcriptional factor that codes for hundreds of genes involved in erythropoiesis, angiogenesis, induction of glycolytic enzymes in tumor tissues, modulation of cancer cell cycle, cancer proliferation, and cancer metastasis. Hypoxia and accumulation of HIF-1 alpha in solid tumor tissues have been reported to associate with resistance to chemotherapy, radiotherapy, and immunotherapy and poor prognosis. Production of vascular endothelial growth factor (VEGF) in cancer cells is regulated by the activated HIF-1 mediated system. An increase in VEGF levels subsequently induces HIF-1 alpha accumulation and promotes tumor metastasis by angiogenesis. Recently, angiogenesis targeting therapy using humanized VEGF antibody and VEGF receptor tyrosine kinase inhibitors have been used in solid cancer therapy. Nitric oxide (NO) is a unique chemical gaseous molecule that plays a role as a chemical messenger involved in vasodilator, neurotransmitter, and anti-platelet aggregation. In vivo, NO is produced and released from three different isoforms of NO synthase (NOS) and from exogenously administered NO donors. In cancer science, NO has been mainly discussed as an oncogenic molecule over the past decades. However, NO has recently been noted in cancer biology associated with cancer cell apoptosis, cancer cell cycle, cancer progression and metastasis, cancer angiogenesis, cancer chemoprevention, and modulator for chemo/radio/immuno-therapy. The presence and activities of all the three isoforms of NOS and were detected in cancer tissue components such as cancer cells, tumor-associated macrophages, and vascular endothelium. Overexpression of iNOS in cancer tissues has been reported to associate with poor prognosis in patients with cancers. On the other hand, NO donors such as nitroglycerin have been demonstrated to improve the effects of cancer therapy in solid cancers. Nitroglycerin has been used safely for a long time as a potent vasodilator for the treatment of ischemic heart diseases or heart failure. Therefore, we think highly of clinical use of nitroglycerin as a novel cancer therapy in combination with anticancer drugs for improvement of cancer therapeutic levels. In this review article, we demonstrate the unique physiological characteristics of malignant solid tumors, several factors in solid tumors resulting in resistance for cancer therapies, and the effects of NO from NOS or exogenous NO-donating drugs on malignant cells. Furthermore, we refer to promising therapeutic roles of NO and NO-donating drugs for novel treatments in solid tumors.
Collapse
Affiliation(s)
- Hiroyasu Yasuda
- Department of Translational Clinical Oncology, Kyoto University Graduate School of Medicine, Kyoto University Hospital, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
334
|
Cellular oxygen sensing in health and disease. Pediatr Nephrol 2008; 23:681-94. [PMID: 17955264 DOI: 10.1007/s00467-007-0632-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 06/26/2007] [Accepted: 08/10/2007] [Indexed: 02/02/2023]
Abstract
To avoid localised problems resulting from excess or inadequate oxygen, all cells and tissues have the ability to sense and respond to changes in oxygen levels. Despite their rich blood supply, the kidneys have unique properties with respect to oxygen that enable them to act as specialised organs, sensing oxygen delivery as well as rendering them prone to hypoxic injury. Essential to normal growth and development, as well as the control of energy metabolism, angiogenesis and erythropoiesis, cellular oxygen homoeostasis is central to the pathophysiology of anaemia, ischaemia, inflammation and cancer, both within the kidney and more generally. A major transcriptional pathway, predominantly regulated by hypoxia-inducible factor (HIF), controls many hundreds of genes, either directly or indirectly, that serve to modulate both the supply and consumption of oxygen. Recent advances have illuminated the mechanisms underlying the regulation of HIF by oxygen and have defined novel therapeutic targets. The challenge now is for us to understand the complexities generated by multiple isoforms of the various components of oxygen sensing, the identification of additional levels of control, and the tissue specific responses to activation of the HIF pathway.
Collapse
|
335
|
Filiano AJ, Bailey CDC, Tucholski J, Gundemir S, Johnson GVW. Transglutaminase 2 protects against ischemic insult, interacts with HIF1beta, and attenuates HIF1 signaling. FASEB J 2008; 22:2662-75. [PMID: 18375543 DOI: 10.1096/fj.07-097709] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transglutaminase 2 (TG2) is a multifunctional enzyme that has been implicated in the pathogenesis of neurodegenerative diseases, ischemia, and stroke. The mechanism by which TG2 modulates disease progression have not been elucidated. In this study we investigate the role of TG2 in the cellular response to ischemia and hypoxia. TG2 is up-regulated in neurons exposed to oxygen and glucose deprivation (OGD), and increased TG2 expression protects neurons against OGD-induced cell death independent of its transamidating activity. We identified hypoxia inducible factor 1beta (HIF1beta) as a TG2 binding partner. HIF1beta and HIF1alpha together form the heterodimeric transcription factor hypoxia inducible factor 1 (HIF1). TG2 and the transaminase-inactive mutant C277S-TG2 inhibited a HIF-dependent transcription reporter assay under hypoxic conditions without affecting nuclear protein levels for HIF1alpha or HIF1beta, their ability to form the HIF1 heterodimeric transcription factor, or HIF1 binding to its DNA response element. Interestingly, TG2 attenuates the up-regulation of the HIF-dependent proapoptotic gene Bnip3 in response to OGD but had no effect on the expression of VEGF, which has been linked to prosurvival processes. This study demonstrates for the first time that TG2 protects against OGD, interacts with HIF1beta, and attenuates the HIF1 hypoxic response pathway. These results indicate that TG2 may play an important role in protecting against the delayed neuronal cell death in ischemia and stroke.
Collapse
Affiliation(s)
- Anthony J Filiano
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | | | |
Collapse
|
336
|
de Frutos S, Duling L, Alò D, Berry T, Jackson-Weaver O, Walker M, Kanagy N, González Bosc L. NFATc3 is required for intermittent hypoxia-induced hypertension. Am J Physiol Heart Circ Physiol 2008; 294:H2382-90. [PMID: 18359899 DOI: 10.1152/ajpheart.00132.2008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sleep apnea, defined as intermittent respiratory arrest during sleep, is associated with increased incidence of hypertension and peripheral vascular disease. Exposure of rodents to brief periods of intermittent hypercarbia/hypoxia (H-IH) during sleep mimics the cyclical hypoxia-normoxia of sleep apnea. Endothelin-1, an upstream activator of nuclear factor of activated T cells (NFAT), is increased during H-IH. Therefore, we hypothesized that NFATc3 is activated by H-IH and is required for H-IH-induced hypertension. Consistent with this hypothesis, we found that H-IH (20 brief exposures per hour to 5% O(2)-5% CO(2) for 7 h/day) induces systemic hypertension in mice [mean arterial pressure (MAP) = 97 +/- 2 vs. 124 +/- 2 mmHg, P < 0.05, n = 5] and increases NFATc3 transcriptional activity in aorta and mesenteric arteries. Cyclosporin A, an NFAT inhibitor, and genetic ablation of NFATc3 [NFATc3 knockout (KO)] prevented NFAT activation. More importantly, H-IH-induced hypertension was attenuated in cyclosporin A-treated mice and prevented in NFATc3 KO mice. MAP was significantly elevated in wild-type mice (Delta = 23.5 +/- 6.1 mmHg), but not in KO mice (Delta = -3.9 +/- 5.7). These results indicate that H-IH-induced increases in MAP require NFATc3 and that NFATc3 may contribute to the vascular changes associated with H-IH-induced hypertension.
Collapse
Affiliation(s)
- Sergio de Frutos
- Department of Cell Biology and Physiology, School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA
| | | | | | | | | | | | | | | |
Collapse
|
337
|
Fong GH. Mechanisms of adaptive angiogenesis to tissue hypoxia. Angiogenesis 2008; 11:121-40. [PMID: 18327686 DOI: 10.1007/s10456-008-9107-3] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2007] [Accepted: 02/25/2008] [Indexed: 12/18/2022]
Abstract
Angiogenesis is mostly an adaptive response to tissue hypoxia, which occurs under a wide variety of situations ranging from embryonic development to tumor growth. In general, angiogenesis is dependent on the accumulation of hypoxia inducible factors (HIFs), which are heterodimeric transcription factors of alpha and beta subunits. Under normoxia, HIF heterodimers are not abundantly present due to oxygen dependent hydroxylation, polyubiquitination, and proteasomal degradation of alpha subunits. Under hypoxia, however, alpha subunits are stabilized and form heterodimers with HIF-1beta which is not subject to oxygen dependent regulation. The accumulation of HIFs under hypoxia allows them to activate the expression of many angiogenic genes and therefore initiates the angiogenic process. In recent years, however, it has become clear that various other mechanisms also participate in fine tuning angiogenesis. In this review, I discuss the relationship between hypoxia and angiogenesis under five topics: (1) regulation of HIF-alpha abundance and activity by oxygen tension and other conditions including oxygen independent mechanisms; (2) hypoxia-regulated expression of angiogenic molecules by HIFs and other transcription factors; (3) responses of vascular cells to hypoxia; (4) angiogenic phenotypes due to altered HIF signaling in mice; and (5) role of the HIF pathway in pathological angiogenesis. Studies discussed under these topics clearly indicate that while mechanisms of oxygen-regulated HIF-alpha stability provide exciting opportunities for the development of angiogenesis or anti-angiogenesis therapies, it is also highly important to consider various other mechanisms for the optimization of these procedures.
Collapse
Affiliation(s)
- Guo-Hua Fong
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3501, USA.
| |
Collapse
|
338
|
Ernesto Valdivia-Silva J, González-Altamirano J, López-Molina K, Lazo-Velásquez J, García-Zepeda E. Relación de la expresión del factor inducido por hipoxia-2α (HIF-2α) y sVEGF-R1/sFlt-1: implicación en la fisiopatología de preeclampsia. CLINICA E INVESTIGACION EN GINECOLOGIA Y OBSTETRICIA 2008. [DOI: 10.1016/s0210-573x(08)73033-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
339
|
Abstract
The hypoxia-inducible factors (HIFs) are critical for cellular adaptation to limiting oxygen and regulate a wide array of genes when cued by cellular oxygen-sensing mechanisms. HIF is able to direct transcription from either of two transactivation domains, each of which is regulated by distinct mechanisms. The oxygen-dependent asparaginyl hydroxylase factor-inhibiting HIF-1alpha (FIH-1) is a key regulator of the HIF C-terminal transactivation domain, and provides a direct link between oxygen sensation and HIF-mediated transcription. Additionally, there are phosphorylation and nitrosylation events reported to modulate HIF transcriptional activity, as well as numerous transcriptional coactivators and other interacting proteins that together provide cell and tissue specificity of HIF target gene regulation.
Collapse
Affiliation(s)
- K Lisy
- The School of Molecular and Biomedical Science, and the ARC Special research Centre for the Molecular Genetics of Development, University of Adelaide, Adelaide, SA 5005, Australia
| | | |
Collapse
|
340
|
Abstract
The past decade of research on hypoxic responses has provided a considerable understanding of how cells respond to hypoxic stress at the molecular level, thanks to the identification and molecular cloning of the hypoxia-inducible transcription factor, HIF-1alpha. Numerous target genes have since been identified to account for various aspects of the hypoxic response, including angiogenesis and glycolysis. Yet, fundamental questions remain regarding the mechanisms by which hypoxia controls cell proliferation, genetic instability, mitochondrial biogenesis, and oxidative respiration in cancer cells. Although the proto-oncoprotein c-Myc appears to be the diametrical opposite of HIF-1alpha in most of these processes, recent studies indicate that c-Myc is an integral part of the HIF-alpha-c-Myc molecular pathway in the hypoxic response. It has been shown that HIF-alpha engages with Myc by various mechanisms to achieve oxygen homeostasis for cell survival. This article focuses on the intricate roles of c-Myc in the hypoxic response, discusses various mechanisms controlling c-Myc activity by HIF-alpha for the regulation of hypoxia-responsive genes, and emphasizing the outcome of gene expression apparently dependent upon hypoxic conditions, cellular context, and gene promoter.
Collapse
|
341
|
Kaluz S, Kaluzová M, Stanbridge EJ. Does inhibition of degradation of hypoxia-inducible factor (HIF) α always lead to activation of HIF? lessons learnt from the effect of proteasomal inhibition on HIF activity. J Cell Biochem 2008; 104:536-44. [DOI: 10.1002/jcb.21644] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
342
|
Lester RD, Jo M, Montel V, Takimoto S, Gonias SL. uPAR induces epithelial-mesenchymal transition in hypoxic breast cancer cells. ACTA ACUST UNITED AC 2007; 178:425-36. [PMID: 17664334 PMCID: PMC2064849 DOI: 10.1083/jcb.200701092] [Citation(s) in RCA: 208] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hypoxia activates genetic programs that facilitate cell survival; however, in cancer, it may promote invasion and metastasis. In this study, we show that breast cancer cells cultured in 1.0% O(2) demonstrate changes consistent with epithelial-mesenchymal transition (EMT). Snail translocates to the nucleus, and E-cadherin is lost from plasma membranes. Vimentin expression, cell migration, Matrigel invasion, and collagen remodeling are increased. Hypoxia-induced EMT is accompanied by increased expression of the urokinase-type plasminogen activator receptor (uPAR) and activation of cell signaling factors downstream of uPAR, including Akt and Rac1. Glycogen synthase kinase-3beta is phosphorylated, and Snail expression is increased. Hypoxia-induced EMT is blocked by uPAR gene silencing and mimicked by uPAR overexpression in normoxia. Antagonizing Rac1 or phosphatidylinositol 3-kinase also inhibits development of cellular properties associated with EMT in hypoxia. Breast cancer cells implanted on chick chorioallantoic membranes and treated with CoCl(2), to model hypoxia, demonstrate increased dissemination. We conclude that in hypoxia, uPAR activates diverse cell signaling pathways that cooperatively induce EMT and may promote cancer metastasis.
Collapse
Affiliation(s)
- Robin D Lester
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | |
Collapse
|
343
|
Zhang SXL, Searcy TR, Wu Y, Gozal D, Wang Y. Alternative promoter usage and alternative splicing contribute to mRNA heterogeneity of mouse monocarboxylate transporter 2. Physiol Genomics 2007; 32:95-104. [PMID: 17911380 DOI: 10.1152/physiolgenomics.00192.2007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Expression patterns of monocarboxylate transporter 2 (MCT2) display mRNA diversity in a tissue-specific fashion. We cloned and characterized multiple mct2 5'-cDNA ends from the mouse and determined the structural organization of the mct2 gene. We found that transcription of this gene was initiated from five independent genomic regions that spanned >80 kb on chromosome 10, resulting in five unique exon 1 variants (exons 1a, 1b, 1c, 1d, and 1e) that were then spliced to the common exon 2. Alternative splicing of four internal exons (exons AS1, AS2, AS3, and exon 3) greatly increased the complexity of mRNA diversity. While exon 1c was relatively commonly used for transcription initiation in various tissues, other exon 1 variants were used in a tissue-specific fashion, especially exons 1b and 1d that were used exclusively for testis-specific expression. Sequence analysis of 5'-flanking regions upstream of exons 1a, 1b, and 1c revealed the presence of numerous potential binding sites for ubiquitous transcription factors in all three regions and for transcription factors implicated in testis-specific or hypoxia-induced gene expression in the 1b region. Transient transfection assays demonstrated that each of the three regions contained a functional promoter and that the in vitro, cell type-specific activities of these promoters were consistent with the tissue-specific expression pattern of the mct2 gene in vivo. These results indicate that tissue-specific expression of the mct2 gene is controlled by multiple alternative promoters and that both alternative promoter usage and alternative splicing contribute to the remarkable mRNA diversity of the gene.
Collapse
Affiliation(s)
- Shelley X L Zhang
- Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville, Kentucky 40202, USA
| | | | | | | | | |
Collapse
|
344
|
Shin DH, Li SH, Chun YS, Huang LE, Kim MS, Park JW. CITED2 mediates the paradoxical responses of HIF-1alpha to proteasome inhibition. Oncogene 2007; 27:1939-44. [PMID: 17906695 DOI: 10.1038/sj.onc.1210826] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hypoxia-inducible factor-1alpha (HIF-1alpha) is destabilized via the ubiquitin-proteasome system. Thus HIF-1alpha expression is robustly upregulated by proteasome inhibition, but paradoxically its activity is reduced. In the present study, we investigated the mechanism underlying the paradoxical response of HIF-1alpha to proteasome inhibition. In both Hep3B and HEK293 cells, a proteasome inhibitor MG132 noticeably attenuated hypoxic induction of erythropoietin and VEGF mRNAs. MG132 inactivated HIF-1alpha C-terminal transactivation domain (CAD), independently of factor inhibiting HIF-1 (FIH) and inhibited p300 recruitment by HIF-1alpha. We next tested the possibility that CITED2 is involved in the HIF-1 inactivation. CITED2 was found to be degraded via the ubiquitin-proteasome system and thus was stabilized by proteasome inhibition. Both the activity and the p300 binding of HIF-1alpha were inhibited by CITED2 expression and recovered by CITED2 siRNA in the presence of MG132. These results suggest that CITED2 is stabilized by proteasome inhibition and inactivates HIF-1 by interfering with the HIF-1alpha-p300 interaction. This may be an important mode-of-action for proteasome inhibition-based cancer therapy.
Collapse
Affiliation(s)
- D H Shin
- Department of Pharmacology, Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
345
|
Yucel MA, Kurnaz IA. An in silico model for HIF-alpha regulation and hypoxia response in tumor cells. Biotechnol Bioeng 2007; 97:588-600. [PMID: 17089387 DOI: 10.1002/bit.21247] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The dependency of the growth and metastasis of tumors on the new blood vessel formation, or angiogenesis, has opened up new potentials to tumor therapy, nevertheless understanding the molecular mechanisms involved in angiogenesis is crucial in the bioengineering of novel anti-angiogenic drugs. The key component in hypoxia sensing in tumor cells is the hypoxia-inducible factor, HIF-1alpha, which is inactivated through proteosome-mediated degradation under normoxic conditions. Two enzymes have been reported to hydroxylate HIF-1alpha, namely prolyl hydroxylase (PH), recruiting the proetasome complex and degrading cytoplasmic HIF-1alpha, and asparaginyl hydroxylase/factor inhibiting HIF-1alpha (FIH-1), downregulating the recruitment of p300 to the promoter, thereby reducing the transcriptional activity of HIF-1alpha. In this study, we have constructed an in silico model of a tumor cell using the GEPASI 3.30 biochemical simulation software (http://www.gepasi.org) and studied the performances of PH and FIH-1 on HIF-1alpha degradation and inactivation, respectively, as monitored by expression of the vascular endothelial growth factor, VEGF, during hypoxia. In our biochemical models, FIH-1 can successfully increase hypoxic transcription of VEGF, however FIH-1 on its own is not sufficient to inactivate HIF-1 completely, leading to background VEGF transcription under normoxic conditions. On the other hand, PH is necessary to increase the hypoxic transcriptional response, and can effectively shut off normoxic transcription. We therefore propose that regulating PH activity can be a primary target for anti-angiogenic bioengineering research.
Collapse
Affiliation(s)
- Meryem A Yucel
- Bogazici University, Institute of Biomedical Engineering, Bebek, Istanbul, Turkey
| | | |
Collapse
|
346
|
Abstract
Angiogenesis is an important mediator of tumor progression. As tumors expand, diffusion distances from the existing vascular supply increases resulting in hypoxia. Sustained expansion of a tumor mass requires new blood vessel formation to provide rapidly proliferating tumor cells with an adequate supply of oxygen and metabolites. The key regulator of hypoxia-induced angiogenesis is the transcription factor hypoxia inducible factor (HIF)-1. Multiple HIF-1 target genes have been shown to modulate angiogenesis by promoting the mitogenic and migratory activities of endothelial cells. Because of this, hypoxia-induced angiogenesis has become an attractive target for cancer therapy, however the mechanisms involved during this process and how best to target it for cancer therapy are still under investigation. This review will cover the current understanding of hypoxia-induced tumor angiogenesis and discuss the caveats of hypoxia-targeted antiangiogenic therapy for the treatment of cancer.
Collapse
Affiliation(s)
- Debbie Liao
- Department of Molecular Pathology, University of California San Diego, San Diego, CA, USA.
| | | |
Collapse
|
347
|
Li J, Wang E, Dutta S, Lau JS, Jiang SW, Datta K, Mukhopadhyay D. Protein kinase C-mediated modulation of FIH-1 expression by the homeodomain protein CDP/Cut/Cux. Mol Cell Biol 2007; 27:7345-53. [PMID: 17682059 PMCID: PMC2168911 DOI: 10.1128/mcb.02201-06] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Under normoxia, FIH-1 (factor inhibiting HIF-1) inhibits the transcriptional activity of hypoxia-inducible factor (HIF); however, under such conditions, we observed a significant level of HIF activity in renal cell carcinoma (RCC). This phenomenon could be attributed to a decrease in the level of functional FIH that has been identified in our previous work. Nonetheless, the molecular mechanism of FIH regulation in cancer, in particular RCC, was unclear until now. In this communication, we have demonstrated that in RCC, the Cut-like homeodomain protein (CDP/Cut) is involved in FIH transcriptional regulation and is controlled by a specific signaling event involving protein kinase C (PKC) zeta. Furthermore, we have defined a unique CDP/Cut binding site on the FIH promoter. With chromatin immunoprecipitation assays, we show that CDP binds to the FIH-1 promoter in vivo and that this binding is PKC zeta dependent. Moreover, we have also defined a potential phosphorylation site in CDP (serine 987) that modulates FIH expression. CDP/Cut is a transcriptional repressor that decreases FIH-1 expression and subsequently leads to a decrease in the repressor activity of FIH-1. Without this repression, HIF activity increases, allowing for the increased transcription of the genes it regulates, such as the vascular endothelial growth factor and GLUT-1 genes. Both CDP and HIF levels are increased in several cancers and are responsible for the metastatic progression of the tumors. Taken together, our results suggest for the first time a potential connection between CDP and FIH that could lead to the development of future therapeutic interventions.
Collapse
Affiliation(s)
- Jinping Li
- Department of Biochemistry and Molecular Biology, Gugg 1401A, Mayo Clinic College of Medicine, 200 First Street SW, Rochester MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
348
|
Wu D, Zhau HE, Huang WC, Iqbal S, Habib FK, Sartor O, Cvitanovic L, Marshall FF, Xu Z, Chung LWK. cAMP-responsive element-binding protein regulates vascular endothelial growth factor expression: implication in human prostate cancer bone metastasis. Oncogene 2007; 26:5070-7. [PMID: 17310988 DOI: 10.1038/sj.onc.1210316] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Aberrant expression of vascular endothelial growth factor (VEGF) is associated with human prostate cancer (PCa) metastasis and poor clinical outcome. We found that both phosphorylation of cyclic AMP-responsive element-binding protein (CREB) and VEGF levels were significantly elevated in patient bone metastatic PCa specimens. A PCa ARCaP progression model demonstrating epithelial-to-mesenchymal transition exhibited increased CREB phosphorylation and VEGF expression as ARCaP cells became progressively more mesenchymal and bone-metastatic. Activation of CREB induced, whereas inhibition of CREB blocked, VEGF expression in ARCaP cells. CREB may regulate VEGF transcription via a hypoxia-inducible factor-dependent mechanism in normoxic conditions. Activation of CREB signaling is involved in the coordinated regulation of VEGF and may pre-dispose to PCa bone metastasis.
Collapse
Affiliation(s)
- D Wu
- Molecular Urology and Therapeutics Program, Department of Urology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
349
|
Moon EJ, Brizel DM, Chi JTA, Dewhirst MW. The potential role of intrinsic hypoxia markers as prognostic variables in cancer. Antioxid Redox Signal 2007; 9:1237-94. [PMID: 17571959 DOI: 10.1089/ars.2007.1623] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tumor hypoxia is related to tumor progression and therapy resistance, which leads to poor patient outcome. It has been suggested that measuring the hypoxic status of a tumor helps to predict patient outcome and to select more targeted treatment. However, current methods using needle electrodes or exogenous markers have limitations due to their invasiveness or necessity for preinjection. Recent studies showed that hypoxia-regulated genes could be alternatively used as endogenous hypoxia markers. This is a review of 15 hypoxia-regulated genes, including hypoxia-inducible factor-1 and its targets, and their correlation with tumor hypoxia and patient outcome from 213 studies. Though most of the studies showed significance of these genes in predicting prognosis, there was no definitive prognostic and hypoxia marker. In conclusion, this review suggests the need for further studies with standardized methods to examine gene expression, as well as the use of multiple gene expressions.
Collapse
Affiliation(s)
- Eui Jung Moon
- Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
350
|
Duyndam MCA, van Berkel MPA, Dorsman JC, Rockx DAP, Pinedo HM, Boven E. Cisplatin and doxorubicin repress Vascular Endothelial Growth Factor expression and differentially down-regulate Hypoxia-inducible Factor I activity in human ovarian cancer cells. Biochem Pharmacol 2007; 74:191-201. [PMID: 17498666 DOI: 10.1016/j.bcp.2007.04.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Revised: 04/02/2007] [Accepted: 04/03/2007] [Indexed: 10/23/2022]
Abstract
Vascular Endothelial Growth Factor (VEGF) and its transcriptional regulator Hypoxia-inducible Factor 1 (HIF-1) play an important role in the process of angiogenesis in many types of cancer, including ovarian cancer. We have examined whether the DNA-damaging drugs cisplatin and doxorubicin and the microtubule inhibitors docetaxel and paclitaxel can affect VEGF expression and HIF-1 activity in three human ovarian cancer cell lines. We demonstrate that cisplatin and doxorubicin abolish hypoxia-induced VEGF mRNA expression in all cell lines, while basal VEGF mRNA expression was also downregulated. Transient transfection with a HIF-1-responsive luciferase construct indicated that cisplatin and doxorubicin inhibited hypoxic activation of HIF-1. Cisplatin repressed HIF-1alpha protein expression in all cell lines. Stimulation of HIF-1alpha protein degradation by cisplatin was observed in the only cell line expressing wild-type p53. Cisplatin also inhibited the synthesis of HIF-1alpha protein for which p53 was dispensable. Interestingly, cisplatin strongly reduced the protein levels of the HIF-1 coactivators p300 and CREB-binding protein (CBP) under hypoxia in all cell lines. Although doxorubicin inhibited hypoxic activation of HIF-1, this drug had no significant effect on the expression levels of HIF-1alpha and hypoxic expression of p300 and CBP was only weakly reduced. Docetaxel and paclitaxel did neither influence VEGF expression nor hypoxia-induced HIF-1 activity. In total, our findings indicate that cisplatin and doxorubicin can repress hypoxic induction of VEGF expression by inhibiting HIF-1 through different mechanisms. This knowledge may be useful for future treatment schedules including agents that target the HIF-1 signalling pathway.
Collapse
Affiliation(s)
- Monique C A Duyndam
- Department of Medical Oncology, VU University medical center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|