301
|
Rosenbloom DIS, Hill AL, Laskey SB, Siliciano RF. Re-evaluating evolution in the HIV reservoir. Nature 2017; 551:E6-E9. [PMID: 29168805 DOI: 10.1038/nature24634] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/23/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Daniel I S Rosenbloom
- Department of Biomedical Informatics, Columbia University Medical Center, New York, New York, USA
| | - Alison L Hill
- Program for Evolutionary Dynamics, Harvard University, Cambridge, Massachusetts, USA
| | - Sarah B Laskey
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Howard Hughes Medical Institute, Baltimore, Maryland, USA
| |
Collapse
|
302
|
Van Zyl GU, Katusiime MG, Wiegand A, McManus WR, Bale MJ, Halvas EK, Luke B, Boltz VF, Spindler J, Laughton B, Engelbrecht S, Coffin JM, Cotton MF, Shao W, Mellors JW, Kearney MF. No evidence of HIV replication in children on antiretroviral therapy. J Clin Invest 2017; 127:3827-3834. [PMID: 28891813 PMCID: PMC5617669 DOI: 10.1172/jci94582] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/26/2017] [Indexed: 12/21/2022] Open
Abstract
It remains controversial whether current antiretroviral therapy (ART) fully suppresses the cycles of HIV replication and viral evolution in vivo. If replication persists in sanctuary sites such as the lymph nodes, a high priority should be placed on improving ART regimes to target these sites. To investigate the question of ongoing viral replication on current ART regimens, we analyzed HIV populations in longitudinal samples from 10 HIV-1-infected children who initiated ART when viral diversity was low. Eight children started ART at less than ten months of age and showed suppression of plasma viremia for seven to nine years. Two children had uncontrolled viremia for fifteen and thirty months, respectively, before viremia suppression, and served as positive controls for HIV replication and evolution. These latter 2 children showed clear evidence of virus evolution, whereas multiple methods of analysis bore no evidence of virus evolution in any of the 8 children with viremia suppression on ART. Phylogenetic trees simulated with the recently reported evolutionary rate of HIV-1 on ART of 6 × 10-4 substitutions/site/month bore no resemblance to the observed data. Taken together, these data refute the concept that ongoing HIV replication is common with ART and is the major barrier to curing HIV-1 infection.
Collapse
Affiliation(s)
- Gert U. Van Zyl
- Division of Medical Virology, Stellenbosch University and National Health Laboratory Service (NHLS) Tygerberg, Cape Town, South Africa
| | - Mary Grace Katusiime
- Division of Medical Virology, Stellenbosch University and National Health Laboratory Service (NHLS) Tygerberg, Cape Town, South Africa
| | - Ann Wiegand
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), Frederick, Maryland, USA
| | - William R. McManus
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), Frederick, Maryland, USA
| | - Michael J. Bale
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), Frederick, Maryland, USA
| | - Elias K. Halvas
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Brian Luke
- Advanced Biomedical Computing Center, Leidos Biomedical Research Inc. and Frederick National Laboratories for Cancer Research, Frederick, Maryland, USA
| | - Valerie F. Boltz
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), Frederick, Maryland, USA
| | - Jonathan Spindler
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), Frederick, Maryland, USA
| | - Barbara Laughton
- Department Pediatrics and Child Health, Tygerberg Children’s Hospital and Family Clinical Research Unit, Stellenbosch University, Cape Town, South Africa
| | - Susan Engelbrecht
- Division of Medical Virology, Stellenbosch University and National Health Laboratory Service (NHLS) Tygerberg, Cape Town, South Africa
| | - John M. Coffin
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
| | - Mark F. Cotton
- Department Pediatrics and Child Health, Tygerberg Children’s Hospital and Family Clinical Research Unit, Stellenbosch University, Cape Town, South Africa
| | - Wei Shao
- Advanced Biomedical Computing Center, Leidos Biomedical Research Inc. and Frederick National Laboratories for Cancer Research, Frederick, Maryland, USA
| | - John W. Mellors
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mary F. Kearney
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), Frederick, Maryland, USA
| |
Collapse
|
303
|
Perreau M, Banga R, Pantaleo G. Targeted Immune Interventions for an HIV-1 Cure. Trends Mol Med 2017; 23:945-961. [DOI: 10.1016/j.molmed.2017.08.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/09/2017] [Accepted: 08/14/2017] [Indexed: 01/13/2023]
|
304
|
van Montfort T, Speijer D, Berkhout B. Dendritic cells as natural latency reversing agent: A wake-up call for HIV-1. Virulence 2017; 8:1494-1497. [PMID: 28895782 DOI: 10.1080/21505594.2017.1371898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- T van Montfort
- a Laboratory of Experimental Virology Department of Medical Microbiology , Academic Medical Centre, University of Amsterdam , Amsterdam , The Netherlands
| | - D Speijer
- b Department of Medical Biochemistry, Academic Medical Centre , University of Amsterdam , Amsterdam , The Netherlands
| | - B Berkhout
- a Laboratory of Experimental Virology Department of Medical Microbiology , Academic Medical Centre, University of Amsterdam , Amsterdam , The Netherlands
| |
Collapse
|
305
|
Thorlund K, Horwitz MS, Fife BT, Lester R, Cameron DW. Landscape review of current HIV 'kick and kill' cure research - some kicking, not enough killing. BMC Infect Dis 2017; 17:595. [PMID: 28851294 PMCID: PMC5576299 DOI: 10.1186/s12879-017-2683-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 08/15/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Current antiretroviral therapy (ART) used to treat human immunodeficiency virus (HIV) patients is life-long because it only suppresses de novo infections. Recent efforts to eliminate HIV have tested the ability of a number of agents to reactivate ('Kick') the well-known latent reservoir. This approach is rooted in the assumption that once these cells are reactivated the host's immune system itself will eliminate ('Kill') the virus. While many agents have been shown to reactivate large quantities of the latent reservoir, the impact on the size of the latent reservoir has been negligible. This suggests that the immune system is not sufficient to eliminate reactivated reservoirs. Thus, there is a need for more emphasis on 'kill' strategies in HIV cure research, and how these might work in combination with current or future kick strategies. METHODS We conducted a landscape review of HIV 'cure' clinical trials using 'kick and kill' approaches. We identified and reviewed current available clinical trial results in human participants as well as ongoing and planned clinical trials. We dichotomized trials by whether they did not include or include a 'kill' agent. We extracted potential reasons why the 'kill' is missing from current 'kick and kill' strategies. We subsequently summarized and reviewed current 'kill' strategies have entered the phase of clinical trial testing in human participants and highlighted those with the greatest promise. RESULTS The identified 'kick' trials only showed promise on surrogate measures activating latent T-cells, but did not show any positive effects on clinical 'cure' measures. Of the 'kill' agents currently being tested in clinical trials, early results have shown small but meaningful proportions of participants remaining off ART for several months with broadly neutralizing antibodies, as well as agents for regulating immune cell responses. A similar result was also recently observed in a trial combining a conventional 'kick' with a vaccine immune booster ('kill'). CONCLUSION While an understanding of the efficacy of each individual component is crucial, no single 'kick' or 'kill' agent is likely to be a fully effective cure. Rather, the solution is likely found in a combination of multiple 'kick and kill' interventions.
Collapse
Affiliation(s)
- Kristian Thorlund
- Department of Health Research Methods, Evidence and Impact, Faculty of Health Sciences, McMaster University, Ontario, Canada
| | - Marc S. Horwitz
- Faculty of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Brian T. Fife
- Department of Medicine, Center for Immunology, University of Minnesota, Minneapolis, Minnesota 55455 USA
| | - Richard Lester
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - D. William Cameron
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario Canada
- Division of Infectious Diseases, Department of Medicine, University of Ottawa at The Ottawa Hospital / Research Institute, 501 Smyth Road, Ottawa, K1H 6V2 Ontario Canada
| |
Collapse
|
306
|
Hernandez-Vargas EA. Modeling Kick-Kill Strategies toward HIV Cure. Front Immunol 2017; 8:995. [PMID: 28894444 PMCID: PMC5581319 DOI: 10.3389/fimmu.2017.00995] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/04/2017] [Indexed: 12/31/2022] Open
Abstract
Although combinatorial antiretroviral therapy (cART) potently suppresses the virus, a sterile or functional cure still remains one of the greatest therapeutic challenges worldwide. Reservoirs are infected cells that can maintain HIV persistence for several years in patients with optimal cART, which is a leading obstacle to eradicate the virus. Despite the significant progress that has been made in our understanding of the diversity of cells that promote HIV persistence, many aspects that are critical to the development of effective therapeutic approaches able to purge the latent CD4+ T cell reservoir are poorly understood. Simultaneous purging strategies known as “kick-kill” have been pointed out as promising therapeutic approaches to eliminate the viral reservoir. However, long-term outcomes of purging strategies as well as the effect on the HIV reservoir are still largely fragmented. In this context, mathematical modeling can provide a rationale not only to evaluate the impact on the HIV reservoir but also to facilitate the formulation of hypotheses about potential therapeutic strategies. This review aims to discuss briefly the most recent mathematical modeling contributions, harnessing our knowledge toward the uncharted territory of HIV eradication. In addition, problems associated with current models are discussed, in particular, mathematical models consider only T cell responses but HIV control may also depend on other cell responses as well as chemokines and cytokines dynamics.
Collapse
|
307
|
|
308
|
Beliakova-Bethell N, Hezareh M, Wong JK, Strain MC, Lewinski MK, Richman DD, Spina CA. Relative efficacy of T cell stimuli as inducers of productive HIV-1 replication in latently infected CD4 lymphocytes from patients on suppressive cART. Virology 2017; 508:127-133. [PMID: 28527342 DOI: 10.1016/j.virol.2017.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 10/19/2022]
Abstract
Quantification of cell-associated replication-competent HIV, in blood samples from patients with undetectable plasma viremia, requires specialized culture conditions that include exogenous pan T cell stimulation. Different research groups have used several stimuli for this purpose; however, the relative efficacies of these T cell stimuli to induce productive HIV replication from latently infected cells ex vivo have not been systematically evaluated. To this end, we compared four commonly used T cell stimuli: 1) irradiated allogeneic cells plus phytohaemagglutinin (PHA); 2) PHA alone; 3) phorbol myristate acetate plus Ionomycin; and 4) immobilized αCD3 plus αCD28 antibodies. End-point dilutions of patient CD4 T cells were performed, using virion RNA production to quantify HIV induction. Our results demonstrated that these activation approaches were not equivalent and that antibody cross-linking of CD3 and CD28 membrane receptors was the most effective means to activate HIV replication from a resting cell state, closely followed by stimulation with irradiated allogeneic cells plus PHA.
Collapse
Affiliation(s)
- Nadejda Beliakova-Bethell
- VA San Diego Healthcare System, 3350 La Jolla Village Dr., San Diego, CA 92161, USA; University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Marjan Hezareh
- University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Joseph K Wong
- VA San Diego Healthcare System, 3350 La Jolla Village Dr., San Diego, CA 92161, USA; University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Matthew C Strain
- University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Mary K Lewinski
- VA San Diego Healthcare System, 3350 La Jolla Village Dr., San Diego, CA 92161, USA; University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Douglas D Richman
- VA San Diego Healthcare System, 3350 La Jolla Village Dr., San Diego, CA 92161, USA; University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Celsa A Spina
- VA San Diego Healthcare System, 3350 La Jolla Village Dr., San Diego, CA 92161, USA; University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA.
| |
Collapse
|
309
|
Lee GQ, Orlova-Fink N, Einkauf K, Chowdhury FZ, Sun X, Harrington S, Kuo HH, Hua S, Chen HR, Ouyang Z, Reddy K, Dong K, Ndung'u T, Walker BD, Rosenberg ES, Yu XG, Lichterfeld M. Clonal expansion of genome-intact HIV-1 in functionally polarized Th1 CD4+ T cells. J Clin Invest 2017. [PMID: 28628034 DOI: 10.1172/jci93289] [Citation(s) in RCA: 235] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
HIV-1 causes a chronic, incurable disease due to its persistence in CD4+ T cells that contain replication-competent provirus, but exhibit little or no active viral gene expression and effectively resist combination antiretroviral therapy (cART). These latently infected T cells represent an extremely small proportion of all circulating CD4+ T cells but possess a remarkable long-term stability and typically persist throughout life, for reasons that are not fully understood. Here we performed massive single-genome, near-full-length next-generation sequencing of HIV-1 DNA derived from unfractionated peripheral blood mononuclear cells, ex vivo-isolated CD4+ T cells, and subsets of functionally polarized memory CD4+ T cells. This approach identified multiple sets of independent, near-full-length proviral sequences from cART-treated individuals that were completely identical, consistent with clonal expansion of CD4+ T cells harboring intact HIV-1. Intact, near-full-genome HIV-1 DNA sequences that were derived from such clonally expanded CD4+ T cells constituted 62% of all analyzed genome-intact sequences in memory CD4 T cells, were preferentially observed in Th1-polarized cells, were longitudinally detected over a duration of up to 5 years, and were fully replication- and infection-competent. Together, these data suggest that clonal proliferation of Th1-polarized CD4+ T cells encoding for intact HIV-1 represents a driving force for stabilizing the pool of latently infected CD4+ T cells.
Collapse
Affiliation(s)
- Guinevere Q Lee
- Infectious Disease Division, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Nina Orlova-Fink
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Kevin Einkauf
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | | | - Xiaoming Sun
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Sean Harrington
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Hsiao-Hsuan Kuo
- Infectious Disease Division, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Stephane Hua
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Hsiao-Rong Chen
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Zhengyu Ouyang
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Kavidha Reddy
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, and
| | - Krista Dong
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, and
| | - Thumbi Ndung'u
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA.,HIV Pathogenesis Programme, Doris Duke Medical Research Institute, and.,KwaZulu-Natal Research Institute for Tuberculosis and HIV (K-RITH), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.,Max Planck Institute for Infection Biology, Berlin, Germany
| | - Bruce D Walker
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Eric S Rosenberg
- Infectious Disease Division, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Xu G Yu
- Infectious Disease Division, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Mathias Lichterfeld
- Infectious Disease Division, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
310
|
Kwon KJ, Siliciano RF. HIV persistence: clonal expansion of cells in the latent reservoir. J Clin Invest 2017. [PMID: 28628041 DOI: 10.1172/jci95329] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
While antiretroviral therapy (ART) can reduce HIV-1 to undetectable levels, the virus generally reappears if treatment is stopped. Resurgence of the virus is due to the reactivation of T cells harboring latent integrated provirus, and recent studies indicate that proliferation of these latently infected cells helps maintain the HIV-1 reservoir. In this issue of the JCI, Lee et al. evaluated CD4+ T cell subsets to determine whether certain populations are more likely to harbor full-length, replication-competent provirus. The authors identified an enrichment of clonally expanded Th1 cells containing intact HIV-1 proviruses, suggesting that this polarized subset contributes to the persistence of the reservoir. Strategies to target these provirus-harboring cells need to be considered for future therapies aimed toward HIV-1 cure.
Collapse
Affiliation(s)
- Kyungyoon J Kwon
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Howard Hughes Medical Institute, Baltimore, Maryland, USA
| |
Collapse
|
311
|
Abstract
A long-lived latent reservoir for HIV-1 persists in CD4+ T cells despite antiretroviral therapy and is the major barrier to cure. In this issue of JEM, Hosmane et al. show that T cell proliferation could explain the long-term persistence of this reservoir.
Collapse
Affiliation(s)
- Lillian B Cohn
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065 and Howard Hughes Medical Institute, Chevy Chase, MD 20815
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065 and Howard Hughes Medical Institute, Chevy Chase, MD 20815
| |
Collapse
|
312
|
Abstract
Viral latency is a major barrier to curing HIV infection with antiretroviral therapy, and consequently, for eliminating the disease globally. The establishment, maintenance, and potential clearance of latent infection are complex dynamic processes and can be best understood and described with the help of mathematical models. Here we review the use of viral dynamics models for HIV, with a focus on applications to the latent reservoir. Such models have been used to explain the multiphasic decay of viral load during antiretroviral therapy, the early seeding of the latent reservoir during acute infection and the limited inflow during treatment, the dynamics of viral blips, and the phenomenon of posttreatment control. In addition, mathematical models have been used to predict the efficacy of potential HIV cure strategies, such as latency-reversing agents, early treatment initiation, or gene therapies, and to provide guidance for designing trials of these novel interventions.
Collapse
|
313
|
Siliciano JD, Siliciano RF. Assays to Measure Latency, Reservoirs, and Reactivation. Curr Top Microbiol Immunol 2017; 417:23-41. [PMID: 29071475 DOI: 10.1007/82_2017_75] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
HIV-1 persists even in patients who are successfully treated with combination antiretroviral therapy. The major barrier to cure is a small pool of latently infected resting CD4+ T cells carrying an integrated copy of the viral genome that is not expressed while the cells remain in a resting state. Targeting this latent reservoir is a major focus of HIV-1 cure research, and the development of a rapid and scalable assay for the reservoir is a rate-limiting step in the search for a cure. The most commonly used assays are standard PCR assays targeting conserved regions of the HIV-1 genome. However, because the vast majority of HIV-1 proviruses are defective, such assays may not accurately capture changes in the minor subset of proviruses that are replication-competent and that pose a barrier to cure. On the other hand, the viral outgrowth assay that was used to initially define the latent reservoir may underestimate reservoir size because not all replication-competent proviruses are induced by a single round of T cell activation in this assay. Therefore, this assay is best regarded as a definitive minimal estimate of reservoir size. The best approach may be to measure all of the proviruses with the potential to cause viral rebound. A variety of novel assays have recently been described. Ultimately, the assay that best predicts time to viral rebound will be the most useful to the cure effort.
Collapse
Affiliation(s)
- Janet D Siliciano
- Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Robert F Siliciano
- Johns Hopkins University School of Medicine, Howard Hughes Medical Institute, Baltimore, MD, 21205, USA.
| |
Collapse
|