301
|
Carbapenemase-Producing Enterobacteriaceae Recovered from the Environment of a Swine Farrow-to-Finish Operation in the United States. Antimicrob Agents Chemother 2017; 61:AAC.01298-16. [PMID: 27919894 DOI: 10.1128/aac.01298-16] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 10/31/2016] [Indexed: 11/20/2022] Open
Abstract
Carbapenem-resistant Enterobacteriaceae (CRE) present an urgent threat to public health. While use of carbapenem antimicrobials is restricted for food-producing animals, other β-lactams, such as ceftiofur, are used in livestock. This use may provide selection pressure favoring the amplification of carbapenem resistance, but this relationship has not been established. Previously unreported among U.S. livestock, plasmid-mediated CRE have been reported from livestock in Europe and Asia. In this study, environmental and fecal samples were collected from a 1,500-sow, U.S. farrow-to-finish operation during 4 visits over a 5-month period in 2015. Samples were screened using selective media for the presence of CRE, and the resulting carbapenemase-producing isolates were further characterized. Of 30 environmental samples collected from a nursery room on our initial visit, 2 (7%) samples yielded 3 isolates, 2 sequence type 218 (ST 218) Escherichia coli and 1 Proteus mirabilis, carrying the metallo-β-lactamase gene blaIMP-27 on IncQ1 plasmids. We recovered on our third visit 15 IMP-27-bearing isolates of multiple Enterobacteriaceae species from 11 of 24 (46%) environmental samples from 2 farrowing rooms. These isolates each also carried blaIMP-27 on IncQ1 plasmids. No CRE isolates were recovered from fecal swabs or samples in this study. As is common in U.S. swine production, piglets on this farm receive ceftiofur at birth, with males receiving a second dose at castration (≈day 6). This selection pressure may favor the dissemination of blaIMP-27-bearing Enterobacteriaceae in this farrowing barn. The absence of this selection pressure in the nursery and finisher barns likely resulted in the loss of the ecological niche needed for maintenance of this carbapenem resistance gene.
Collapse
|
302
|
Vollmers J, Wiegand S, Kaster AK. Comparing and Evaluating Metagenome Assembly Tools from a Microbiologist's Perspective - Not Only Size Matters! PLoS One 2017; 12:e0169662. [PMID: 28099457 PMCID: PMC5242441 DOI: 10.1371/journal.pone.0169662] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 12/20/2016] [Indexed: 12/20/2022] Open
Abstract
With the constant improvement in cost-efficiency and quality of Next Generation Sequencing technologies, shotgun-sequencing approaches -such as metagenomics- have nowadays become the methods of choice for studying and classifying microorganisms from various habitats. The production of data has dramatically increased over the past years and processing and analysis steps are becoming more and more of a bottleneck. Limiting factors are partly the availability of computational resources, but mainly the bioinformatics expertise in establishing and applying appropriate processing and analysis pipelines. Fortunately, a large diversity of specialized software tools is nowadays available. Nevertheless, choosing the most appropriate methods for answering specific biological questions can be rather challenging, especially for non-bioinformaticians. In order to provide a comprehensive overview and guide for the microbiological scientific community, we assessed the most common and freely available metagenome assembly tools with respect to their output statistics, their sensitivity for low abundant community members and variability in resulting community profiles as well as their ease-of-use. In contrast to the highly anticipated "Critical Assessment of Metagenomic Interpretation" (CAMI) challenge, which uses general mock community-based assembler comparison we here tested assemblers on real Illumina metagenome sequencing data from natural communities of varying complexity sampled from forest soil and algal biofilms. Our observations clearly demonstrate that different assembly tools can prove optimal, depending on the sample type, available computational resources and, most importantly, the specific research goal. In addition, we present detailed descriptions of the underlying principles and pitfalls of publically available assembly tools from a microbiologist's perspective, and provide guidance regarding the user-friendliness, sensitivity and reliability of the resulting phylogenetic profiles.
Collapse
Affiliation(s)
- John Vollmers
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Sandra Wiegand
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Anne-Kristin Kaster
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
303
|
Midha S, Bansal K, Kumar S, Girija AM, Mishra D, Brahma K, Laha GS, Sundaram RM, Sonti RV, Patil PB. Population genomic insights into variation and evolution of Xanthomonas oryzae pv. oryzae. Sci Rep 2017; 7:40694. [PMID: 28084432 PMCID: PMC5233998 DOI: 10.1038/srep40694] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 12/08/2016] [Indexed: 11/30/2022] Open
Abstract
Xanthomonas oryzae pv. oryzae ( Xoo) is a serious pathogen of rice causing bacterial leaf blight disease. Resistant varieties and breeding programs are being hampered by the emergence of highly virulent strains. Herein we report population based whole genome sequencing and analysis of 100 Xoo strains from India. Phylogenomic analysis revealed the clustering of Xoo strains from India along with other Asian strains, distinct from African and US Xo strains. The Indian Xoo population consists of a major clonal lineage and four minor but highly diverse lineages. Interestingly, the variant alleles, gene clusters and highly pathogenic strains are primarily restricted to minor lineages L-II to L-V and in particularly to lineage L-III. We could also find the association of an expanded CRISPR cassette and a highly variant LPS gene cluster with the dominant lineage. Molecular dating revealed that the major lineage, L-I is youngest and of recent origin compared to remaining minor lineages that seems to have originated much earlier in the past. Further, we were also able to identify core effector genes that may be helpful in efforts towards building durable resistance against this pathogen.
Collapse
Affiliation(s)
- Samriti Midha
- CSIR-Institute of Microbial Technology, Chandigarh, 160036, India
| | - Kanika Bansal
- CSIR-Institute of Microbial Technology, Chandigarh, 160036, India
| | - Sanjeet Kumar
- CSIR-Institute of Microbial Technology, Chandigarh, 160036, India
| | | | - Deo Mishra
- Bayer BioScience Pvt. Ltd., Hyderabad, 500081, India
| | - Kranthi Brahma
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, India
| | - Gouri Sankar Laha
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, 500030, India
| | | | - Ramesh V. Sonti
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, India
| | - Prabhu B. Patil
- CSIR-Institute of Microbial Technology, Chandigarh, 160036, India
| |
Collapse
|
304
|
McArthur AG, Tsang KK. Antimicrobial resistance surveillance in the genomic age. Ann N Y Acad Sci 2016; 1388:78-91. [PMID: 27875856 DOI: 10.1111/nyas.13289] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 09/30/2016] [Accepted: 10/05/2016] [Indexed: 12/31/2022]
Abstract
The loss of effective antimicrobials is reducing our ability to protect the global population from infectious disease. However, the field of antibiotic drug discovery and the public health monitoring of antimicrobial resistance (AMR) is beginning to exploit the power of genome and metagenome sequencing. The creation of novel AMR bioinformatics tools and databases and their continued development will advance our understanding of the molecular mechanisms and threat severity of antibiotic resistance, while simultaneously improving our ability to accurately predict and screen for antibiotic resistance genes within environmental, agricultural, and clinical settings. To do so, efforts must be focused toward exploiting the advancements of genome sequencing and information technology. Currently, AMR bioinformatics software and databases reflect different scopes and functions, each with its own strengths and weaknesses. A review of the available tools reveals common approaches and reference data but also reveals gaps in our curated data, models, algorithms, and data-sharing tools that must be addressed to conquer the limitations and areas of unmet need within the AMR research field before DNA sequencing can be fully exploited for AMR surveillance and improved clinical outcomes.
Collapse
Affiliation(s)
- Andrew G McArthur
- M. G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, Hamilton, Canada
| | - Kara K Tsang
- M. G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, Hamilton, Canada
| |
Collapse
|
305
|
Martínez JL, Coque TM, Lanza VF, de la Cruz F, Baquero F. Genomic and metagenomic technologies to explore the antibiotic resistance mobilome. Ann N Y Acad Sci 2016; 1388:26-41. [PMID: 27861983 DOI: 10.1111/nyas.13282] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/20/2016] [Accepted: 09/26/2016] [Indexed: 12/13/2022]
Abstract
Antibiotic resistance is a relevant problem for human health that requires global approaches to establish a deep understanding of the processes of acquisition, stabilization, and spread of resistance among human bacterial pathogens. Since natural (nonclinical) ecosystems are reservoirs of resistance genes, a health-integrated study of the epidemiology of antibiotic resistance requires the exploration of such ecosystems with the aim of determining the role they may play in the selection, evolution, and spread of antibiotic resistance genes, involving the so-called resistance mobilome. High-throughput sequencing techniques allow an unprecedented opportunity to describe the genetic composition of a given microbiome without the need to subculture the organisms present inside. However, bioinformatic methods for analyzing this bulk of data, mainly with respect to binning each resistance gene with the organism hosting it, are still in their infancy. Here, we discuss how current genomic methodologies can serve to analyze the resistance mobilome and its linkage with different bacterial genomes and metagenomes. In addition, we describe the drawbacks of current methodologies for analyzing the resistance mobilome, mainly in cases of complex microbiotas, and discuss the possibility of implementing novel tools to improve our current metagenomic toolbox.
Collapse
Affiliation(s)
- José L Martínez
- Centro Nacional de Biotecnología, CSIC, Darwin 3, Madrid, Spain
| | - Teresa M Coque
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal (IRYCIS), Madrid, Spain.,CIBER en Epidemiología y Salud Pública (CIBER-ESP), Madrid, Spain.,Unidad de Resistencia a Antibióticos y Virulencia Bacteriana (RYC-CSIC), Madrid, Spain
| | - Val F Lanza
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal (IRYCIS), Madrid, Spain.,CIBER en Epidemiología y Salud Pública (CIBER-ESP), Madrid, Spain.,Unidad de Resistencia a Antibióticos y Virulencia Bacteriana (RYC-CSIC), Madrid, Spain
| | - Fernando de la Cruz
- Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-Consejo Superior de Investigaciones Científicas, Santander, Cantabria, Spain
| | - Fernando Baquero
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal (IRYCIS), Madrid, Spain.,CIBER en Epidemiología y Salud Pública (CIBER-ESP), Madrid, Spain.,Unidad de Resistencia a Antibióticos y Virulencia Bacteriana (RYC-CSIC), Madrid, Spain
| |
Collapse
|
306
|
Genome Sequence of Listeria monocytogenes Plasmid pLM-C-273 Carrying Genes Related to Stress Resistance. GENOME ANNOUNCEMENTS 2016; 4:4/5/e01125-16. [PMID: 27738039 PMCID: PMC5064112 DOI: 10.1128/genomea.01125-16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mobile genetic elements in bacteria, such as plasmids, act as important vectors for the transfer of antibiotic resistance, virulence, and metal resistance genes. Here, we report the genome sequence of a new plasmid pLM-C-273, identified in a Listeria monocytogenes strain isolated from a clinical sample in Ontario, Canada.
Collapse
|
307
|
Whole-Genome Sequence of Mesorhizobium hungaricum sp. nov. Strain UASWS1009, a Potential Resource for Agricultural and Environmental Uses. GENOME ANNOUNCEMENTS 2016; 4:4/5/e01158-16. [PMID: 27738050 PMCID: PMC5064123 DOI: 10.1128/genomea.01158-16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report here the whole-genome shotgun sequences of the strain UASWS1009 of the species Mesorhizobium hungaricum sp. nov., which are different from any other known Mesorhizobium species. This is the first genome registered for this new species, which could be considered as a potential resource for agriculture and environmental uses.
Collapse
|
308
|
Whole-Genome Sequence of Pseudomonas xanthomarina Strain UASWS0955, a Potential Biological Agent for Agricultural and Environmental Uses. GENOME ANNOUNCEMENTS 2016; 4:4/5/e01136-16. [PMID: 27738044 PMCID: PMC5064117 DOI: 10.1128/genomea.01136-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report here the whole-genome shotgun sequence of the strain UASWS0955 of the species Pseudomonas xanthomarina, isolated from sewage sludge. This genome was obtained with an Illumina MiniSeq and is the second genome registered for this species, which is considered as a promising resource for agriculture and bioremediation of contaminated soils.
Collapse
|
309
|
Price TK, Mehrtash A, Kalesinskas L, Malki K, Hilt EE, Putonti C, Wolfe AJ. Genome sequences and annotation of two urinary isolates of E. coli. Stand Genomic Sci 2016; 11:79. [PMID: 27777649 PMCID: PMC5060011 DOI: 10.1186/s40793-016-0202-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 10/04/2016] [Indexed: 11/10/2022] Open
Abstract
The genus Escherichia includes pathogens and commensals. Bladder infections (cystitis) result most often from colonization of the bladder by uropathogenic E. coli strains. In contrast, a poorly defined condition called asymptomatic bacteriuria results from colonization of the bladder with E. coli strains without symptoms. As part of an on-going attempt to identify and characterize the newly discovered female urinary microbiota, we report the genome sequences and annotation of two urinary isolates of E. coli: one (E78) was isolated from a female patient who self-reported cystitis; the other (E75) was isolated from a female patient who reported that she did not have symptoms of cystitis. Whereas strain E75 is most closely related to an avian extraintestinal pathogen, strain E78 is a member of a clade that includes extraintestinal strains often found in the human bladder. Both genomes are uncommonly rich in prophages.
Collapse
Affiliation(s)
- Travis K Price
- Department of Microbiology and Immunology, Stritch School of Medicine, Health Sciences Division, Loyola University Chicago, 2160 South First Avenue, Maywood, IL 60153 USA
| | - Arya Mehrtash
- Bioinformatics Program, Loyola University Chicago, Chicago, IL USA
| | - Laurynas Kalesinskas
- Bioinformatics Program, Loyola University Chicago, Chicago, IL USA ; Department of Biology, Loyola University Chicago, Chicago, IL USA
| | - Kema Malki
- Department of Biology, Loyola University Chicago, Chicago, IL USA
| | - Evann E Hilt
- Department of Microbiology and Immunology, Stritch School of Medicine, Health Sciences Division, Loyola University Chicago, 2160 South First Avenue, Maywood, IL 60153 USA
| | - Catherine Putonti
- Bioinformatics Program, Loyola University Chicago, Chicago, IL USA ; Department of Biology, Loyola University Chicago, Chicago, IL USA ; Department of Computer Science, Loyola University Chicago, Chicago, IL USA
| | - Alan J Wolfe
- Department of Microbiology and Immunology, Stritch School of Medicine, Health Sciences Division, Loyola University Chicago, 2160 South First Avenue, Maywood, IL 60153 USA
| |
Collapse
|
310
|
Whole-Genome Sequence of Pseudomonas graminis Strain UASWS1507, a Potential Biological Control Agent and Biofertilizer Isolated in Switzerland. GENOME ANNOUNCEMENTS 2016; 4:4/5/e01096-16. [PMID: 27795260 PMCID: PMC5054330 DOI: 10.1128/genomea.01096-16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report here the whole-genome shotgun sequence of the strain UASWS1507 of the species Pseudomonas graminis, isolated in Switzerland from an apple tree. This is the first genome registered for this species, which is considered as a potential and valuable resource of biological control agents and biofertilizers for agriculture.
Collapse
|
311
|
Whole-Genome Sequence of Bradyrhizobium elkanii Strain UASWS1016, a Potential Symbiotic Biofertilizer for Agriculture. GENOME ANNOUNCEMENTS 2016; 4:4/5/e01095-16. [PMID: 27795259 PMCID: PMC5054329 DOI: 10.1128/genomea.01095-16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Bradyrhizobium elkanii UASWS1016 has been isolated from a wet oxidation sewage plant in Italy. Fully equipped for ammonia assimilation, heavy metal resistances, and aromatic compounds degradation, it carries a large type IV secretion system, specific of plant-associated microbes. Deprived of toxins, it could be considered for agricultural and environmental uses.
Collapse
|
312
|
Montaña S, Schramm STJ, Traglia GM, Chiem K, Parmeciano Di Noto G, Almuzara M, Barberis C, Vay C, Quiroga C, Tolmasky ME, Iriarte A, Ramírez MS. The Genetic Analysis of an Acinetobacter johnsonii Clinical Strain Evidenced the Presence of Horizontal Genetic Transfer. PLoS One 2016; 11:e0161528. [PMID: 27548264 PMCID: PMC4993456 DOI: 10.1371/journal.pone.0161528] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 08/08/2016] [Indexed: 02/08/2023] Open
Abstract
Acinetobacter johnsonii rarely causes human infections. While most A. johnsonii isolates are susceptible to virtually all antibiotics, strains harboring a variety of β-lactamases have recently been described. An A. johnsonii Aj2199 clinical strain recovered from a hospital in Buenos Aires produces PER-2 and OXA-58. We decided to delve into its genome by obtaining the whole genome sequence of the Aj2199 strain. Genome comparison studies on Aj2199 revealed 240 unique genes and a close relation to strain WJ10621, isolated from the urine of a patient in China. Genomic analysis showed evidence of horizontal genetic transfer (HGT) events. Forty-five insertion sequences and two intact prophages were found in addition to several resistance determinants such as blaPER-2, blaOXA-58, blaTEM-1, strA, strB, ereA, sul1, aacC2 and a new variant of blaOXA-211, called blaOXA-498. In particular, blaPER-2 and blaTEM-1 are present within the typical contexts previously described in the Enterobacteriaceae family. These results suggest that A. johnsonii actively acquires exogenous DNA from other bacterial species and concomitantly becomes a reservoir of resistance genes.
Collapse
Affiliation(s)
- Sabrina Montaña
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Buenos Aires, Argentina
| | - Sareda T. J. Schramm
- Department of Biological Science, California State University Fullerton, Fullerton, CA, United States of America
| | - German Matías Traglia
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Buenos Aires, Argentina
| | - Kevin Chiem
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Buenos Aires, Argentina
- Department of Biological Science, California State University Fullerton, Fullerton, CA, United States of America
| | - Gisela Parmeciano Di Noto
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Buenos Aires, Argentina
| | - Marisa Almuzara
- Laboratorio de Bacteriología Clínica, Departamento de Bioquímica Clínica, Hospital de Clínicas José de San Martín, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Claudia Barberis
- Laboratorio de Bacteriología Clínica, Departamento de Bioquímica Clínica, Hospital de Clínicas José de San Martín, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Carlos Vay
- Laboratorio de Bacteriología Clínica, Departamento de Bioquímica Clínica, Hospital de Clínicas José de San Martín, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Cecilia Quiroga
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Buenos Aires, Argentina
| | - Marcelo E. Tolmasky
- Department of Biological Science, California State University Fullerton, Fullerton, CA, United States of America
| | - Andrés Iriarte
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, UdelaR, Montevideo, Uruguay
| | - María Soledad Ramírez
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Buenos Aires, Argentina
- Department of Biological Science, California State University Fullerton, Fullerton, CA, United States of America
- * E-mail:
| |
Collapse
|