301
|
Gallagher IJ, Stephens NA, MacDonald AJ, Skipworth RJE, Husi H, Greig CA, Ross JA, Timmons JA, Fearon KCH. Suppression of skeletal muscle turnover in cancer cachexia: evidence from the transcriptome in sequential human muscle biopsies. Clin Cancer Res 2012; 18:2817-27. [PMID: 22452944 DOI: 10.1158/1078-0432.ccr-11-2133] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The mechanisms underlying muscle wasting in patients with cancer remain poorly understood, and consequently there remains an unmet clinical need for new biomarkers and treatment strategies. EXPERIMENTAL DESIGN Microarrays were used to examine the transcriptome in single biopsies from healthy controls (n = 6) and in paired biopsies [pre-resection baseline (weight-loss 7%) and 8 month post-resection follow-up (disease-free/weight-stable for previous 2 months)] from quadriceps muscle of patients with upper gastrointestinal cancer (UGIC; n = 12). RESULTS Before surgery, 1,868 genes were regulated compared with follow-up (false discovery rate, 6%). Ontology analysis showed that regulated genes belonged to both anabolic and catabolic biologic processes with overwhelming downregulation in baseline samples. No literature-derived genes from preclinical cancer cachexia models showed higher expression in baseline muscle. Comparison with healthy control muscle (n = 6) revealed that despite differences in the transcriptome at baseline (941 genes regulated), the muscle of patients at follow-up was similar to control muscle (2 genes regulated). Physical activity (step count per day) did not differ between the baseline and follow-up periods (P = 0.9), indicating that gene expression differences reflected the removal of the cancer rather than altered physical activity levels. Comparative gene expression analysis using exercise training signatures supported this interpretation. CONCLUSIONS Metabolic and protein turnover-related pathways are suppressed in weight-losing patients with UGIC whereas removal of the cancer appears to facilitate a return to a healthy state, independent of changes in the level of physical activity.
Collapse
Affiliation(s)
- Iain J Gallagher
- Department of Clinical and Surgical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
302
|
Targeting the myostatin signaling pathway to treat muscle wasting diseases. Curr Opin Support Palliat Care 2012; 5:334-41. [PMID: 22025090 DOI: 10.1097/spc.0b013e32834bddf9] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW To understand the mechanisms of muscle wasting and how inhibiting myostatin signaling affects them. RECENT FINDINGS Myostatin signaling is critical for the understanding of the pathogenesis of muscle wasting as blocking signaling mitigates muscle losses in rodent models of catabolic diseases including cancer, chronic kidney, or heart failure. SUMMARY Muscle wasting increases the risks of morbidity and mortality. But, the reliability of estimates of the degree of muscle wasting is controversial as are definitions of terms like cachexia. Much information has been learnt about the pathophysiology of muscle wasting, including the major role of the ubiquitin-proteasome system (UPS) which along with other proteases degrades protein and limits protein synthesis. In contrast, few successful strategies for reversing muscle loss have been tested. Several catabolic conditions are characterized by inflammation, increased glucocorticoid production, and impaired intracellular signaling in response to insulin and IGF-1. These characteristics lead to activation of the UPS and other proteases producing muscle wasting. Another potential initiator of muscle wasting is myostatin and its expression is increased in muscles of animal models and patients with certain catabolic conditions. Myostatin is a member of the TGF-β family; it suppresses muscle growth and its absence stimulates muscle growth substantially. Recently, pharmacologic suppression of myostatin was found to counteract inflammation, increased glucocorticoids and impaired insulin/IGF-1 signaling and most importantly, prevents muscle wasting in rodent models of cancer and kidney failure. Myostatin antagonism as a therapy for patients with muscle wasting should become a topic of clinical investigation.
Collapse
|
303
|
Files DC, D'Alessio FR, Johnston LF, Kesari P, Aggarwal NR, Garibaldi BT, Mock JR, Simmers JL, DeGorordo A, Murdoch J, Willis MS, Patterson C, Tankersley CG, Messi ML, Liu C, Delbono O, Furlow JD, Bodine SC, Cohn RD, King LS, Crow MT. A critical role for muscle ring finger-1 in acute lung injury-associated skeletal muscle wasting. Am J Respir Crit Care Med 2012; 185:825-34. [PMID: 22312013 DOI: 10.1164/rccm.201106-1150oc] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
RATIONALE Acute lung injury (ALI) is a debilitating condition associated with severe skeletal muscle weakness that persists in humans long after lung injury has resolved. The molecular mechanisms underlying this condition are unknown. OBJECTIVES To identify the muscle-specific molecular mechanisms responsible for muscle wasting in a mouse model of ALI. METHODS Changes in skeletal muscle weight, fiber size, in vivo contractile performance, and expression of mRNAs and proteins encoding muscle atrophy-associated genes for muscle ring finger-1 (MuRF1) and atrogin1 were measured. Genetic inactivation of MuRF1 or electroporation-mediated transduction of miRNA-based short hairpin RNAs targeting either MuRF1 or atrogin1 were used to identify their role in ALI-associated skeletal muscle wasting. MEASUREMENTS AND MAIN RESULTS Mice with ALI developed profound muscle atrophy and preferential loss of muscle contractile proteins associated with reduced muscle function in vivo. Although mRNA expression of the muscle-specific ubiquitin ligases, MuRF1 and atrogin1, was increased in ALI mice, only MuRF1 protein levels were up-regulated. Consistent with these changes, suppression of MuRF1 by genetic or biochemical approaches prevented muscle fiber atrophy, whereas suppression of atrogin1 expression was without effect. Despite resolution of lung injury and down-regulation of MuRF1 and atrogin1, force generation in ALI mice remained suppressed. CONCLUSIONS These data show that MuRF1 is responsible for mediating muscle atrophy that occurs during the period of active lung injury in ALI mice and that, as in humans, skeletal muscle dysfunction persists despite resolution of lung injury.
Collapse
Affiliation(s)
- D Clark Files
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins Asthma and Allergy Center, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
304
|
Tacchi L, Bickerdike R, Secombes CJ, Martin SAM. Muscle-specific RING finger (MuRF) cDNAs in Atlantic salmon (Salmo salar) and their role as regulators of muscle protein degradation. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2012; 14:35-45. [PMID: 21584661 DOI: 10.1007/s10126-011-9385-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 05/03/2011] [Indexed: 05/30/2023]
Abstract
The selection of proteins destined for degradation by the ubiquitin-proteasome pathway is coordinated by E3 ubiquitin ligases (E3Ub). One group of E3Ubs is described as muscle-specific RING finger (MuRF) molecules. In mammals, these proteins are believed to be central to targetting of muscle proteins for degradation during physiological perturbations such as starvation and inflammatory responses. In fish, the diversity of MuRF sequences is unexplored as is the expression of their mRNAs. In this study, three MuRF1 cDNAs, denoted as MuRF1a, MuRF1b, and MuRF1c, and a single MuRF2 were identified and characterized in Atlantic salmon. The MuRF1 sequences are highly conserved and encode predicted proteins of 349, 350, and 353 amino acids, whereas MuRF2 encodes a longer protein of 462 amino acids. The evolutionary relationship of these sequences with other fish and mammalian molecules shows that MuRF1a and 1b may have arisen from a recent salmonid duplication. The mRNA of MuRFs was expressed in multiple tissues, with highest abundance in white muscle tissue followed by the heart. The expression of MuRFs was modulated after both starvation and immune challenge. Starvation increased expression of all MuRF mRNAs in white muscle, with the greatest increase found in MuRF1a. A proinflammatory stimulation increased expression of MuRF mRNA in muscle and other tissues indicating a role of these proteins in protein degradation during inflammation.
Collapse
Affiliation(s)
- Luca Tacchi
- Institute of Biological and Environmental Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen, AB24 2TZ, UK
| | | | | | | |
Collapse
|
305
|
Bertaggia E, Coletto L, Sandri M. Posttranslational modifications control FoxO3 activity during denervation. Am J Physiol Cell Physiol 2012; 302:C587-96. [DOI: 10.1152/ajpcell.00142.2011] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Loss of muscle mass occurs in a variety of diseases including cancer, chronic heart failure, AIDS, diabetes, and renal failure, often aggravating pathological progression. The atrophy process is controlled by a transcriptional program that regulates the expression of a subset of genes named atrophy-related genes. The Forkhead Box O (FoxO) family of transcription factors plays a critical role in the atrophy program being sufficient and necessary for the expression of rate-limiting enzymes of ubiquitin-proteasome and autophagy-lysosome systems. Therefore, a fine regulation of FoxOs is critical to avoid excessive proteolysis and cachexia. FoxO activity can be modulated by different mechanisms including phosphorylation, acetylation, ubiquitination, and glycosylation. Here we show that FoxO3 is progressively acetylated during denervation and concomitantly atrogin-1, the bona fide FoxO3 target, is downregulated. FoxO3 interacts with the histone acetyl-transferase p300, and its acetylation causes cytosolic relocalization and degradation. Several lysine residues of FoxOs are known to be acetylated. To identify which lysines are critical for FoxO3 activity we have generated different FoxO3 mutants that either mimic or prevent lysine acetylation. We found that FoxO3 mutants that mimic acetylation show a decrease of transcriptional activity and cytosolic localization. Importantly, acetylation induces FoxO3 degradation via proteasome system. Between the different lysines, lysine 262 is critical for translocation of FoxO3. In conclusion, we provide evidence that FoxO3 activity is negatively modulated by acetylation and ubiquitination in a time-dependent and coordinated manner. This fine-tuning mechanism of FoxO3 regulation may be important to prevent excessive muscle loss and can be used as a therapeutic approach to counteract muscle wasting.
Collapse
Affiliation(s)
- Enrico Bertaggia
- Venetian Institute of Molecular Medicine
- Department of Biomedical Sciences, University of Padova; and
| | - Luisa Coletto
- Venetian Institute of Molecular Medicine
- Dulbecco Telethon Institute
| | - Marco Sandri
- Venetian Institute of Molecular Medicine
- Dulbecco Telethon Institute
- Department of Biomedical Sciences, University of Padova; and
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche, Padova, Italy
| |
Collapse
|
306
|
Dillon LM, Rebelo AP, Moraes CT. The role of PGC-1 coactivators in aging skeletal muscle and heart. IUBMB Life 2012; 64:231-41. [PMID: 22279035 DOI: 10.1002/iub.608] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 12/05/2011] [Indexed: 12/11/2022]
Abstract
Aging is the progressive decline in cellular, tissue, and organ function. This complex process often manifests as loss of muscular strength, cardiovascular function, and cognitive ability. Mitochondrial dysfunction and decreased mitochondrial biogenesis are believed to participate in metabolic abnormalities and loss of organ function, which will eventually contribute to aging and decreased lifespan. In this review, we discuss what is currently known about mitochondrial dysfunction in the aging skeletal muscle and heart. We focused our discussion on the role of PGC-1 coactivators in the regulation of mitochondrial biogenesis and function and possible therapeutic benefits of increased mitochondrial biogenesis in compensating for mitochondrial dysfunction and circumventing aging and aging-related diseases.
Collapse
Affiliation(s)
- Lloye M Dillon
- Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine, FL, USA
| | | | | |
Collapse
|
307
|
Mormeneo E, Jimenez-Mallebrera C, Palomer X, De Nigris V, Vázquez-Carrera M, Orozco A, Nascimento A, Colomer J, Lerín C, Gómez-Foix AM. PGC-1α induces mitochondrial and myokine transcriptional programs and lipid droplet and glycogen accumulation in cultured human skeletal muscle cells. PLoS One 2012; 7:e29985. [PMID: 22272266 PMCID: PMC3260188 DOI: 10.1371/journal.pone.0029985] [Citation(s) in RCA: 284] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 12/09/2011] [Indexed: 11/24/2022] Open
Abstract
The transcriptional coactivator peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) is a chief activator of mitochondrial and metabolic programs and protects against atrophy in skeletal muscle (skm). Here we tested whether PGC-1α overexpression could restructure the transcriptome and metabolism of primary cultured human skm cells, which display a phenotype that resembles the atrophic phenotype. An oligonucleotide microarray analysis was used to reveal the effects of PGC-1α on the whole transcriptome. Fifty-three different genes showed altered expression in response to PGC-1α: 42 upregulated and 11 downregulated. The main gene ontologies (GO) associated with the upregulated genes were mitochondrial components and processes and this was linked with an increase in COX activity, an indicator of mitochondrial content. Furthermore, PGC-1α enhanced mitochondrial oxidation of palmitate and lactate to CO2, but not glucose oxidation. The other most significantly associated GOs for the upregulated genes were chemotaxis and cytokine activity, and several cytokines, including IL-8/CXCL8, CXCL6, CCL5 and CCL8, were within the most highly induced genes. Indeed, PGC-1α highly increased IL-8 cell protein content. The most upregulated gene was PVALB, which is related to calcium signaling. Potential metabolic regulators of fatty acid and glucose storage were among mainly regulated genes. The mRNA and protein level of FITM1/FIT1, which enhances the formation of lipid droplets, was raised by PGC-1α, while in oleate-incubated cells PGC-1α increased the number of smaller lipid droplets and modestly triglyceride levels, compared to controls. CALM1, the calcium-modulated δ subunit of phosphorylase kinase, was downregulated by PGC-1α, while glycogen phosphorylase was inactivated and glycogen storage was increased by PGC-1α. In conclusion, of the metabolic transcriptome deficiencies of cultured skm cells, PGC-1α rescued the expression of genes encoding mitochondrial proteins and FITM1. Several myokine genes, including IL-8 and CCL5, which are known to be constitutively expressed in human skm cells, were induced by PGC-1α.
Collapse
Affiliation(s)
- Emma Mormeneo
- CIBER de Diabetes y Enfermedades Metabólicas, Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
308
|
Esteves AM, Squarcini CFR, Lancellotti CLP, Tufik S, de Mello MT. Characteristics of muscle fibers in rats with limb movements during sleep after spinal cord injury. Eur Neurol 2012; 67:107-15. [PMID: 22236775 DOI: 10.1159/000334102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 10/03/2011] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Previous studies have demonstrated that spinal cord injury (SCI) results in changes in sleep patterns through increased arousals and limb movements during sleep. Dramatic changes in muscle myosin heavy-chain isoforms have also been reported. The aim of this study was to investigate the characteristics of muscle fibers after SCI in rats with limb movements during sleep. METHODS Forty male Wistar rats were divided into four groups: SHAM, SCI 3, 7 and 15 days. Animals were subjected to electrode insertion surgery, 24-hour baseline sleep recording, SCI, and subsequent sleep recording for 3, 7, or 15 consecutive days. In addition, the gastrocnemius muscle and spinal cord were collected for histopathological/histochemical analyses. RESULTS Our results indicate a rapid and progressive decrease in the cross-sectional area of type I fibers in the gastrocnemius muscle (35.76-24.74 μm(2)) after SCI. Additionally, we found SCI-induced changes in sleep patterns. Following SCI, we also observed limb movements in sleeping rats, as well as significant negative moderate correlations between type I fibers and limb movement. CONCLUSION Our study strengthened the hypothesis by correlation between changes in types of muscle fiber (decline in type I fibers) and an increase in limb movements during sleep after SCI.
Collapse
Affiliation(s)
- Andrea M Esteves
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
309
|
Identification of essential sequences for cellular localization in the muscle-specific ubiquitin E3 ligase MAFbx/Atrogin 1. FEBS Lett 2012; 586:362-7. [PMID: 22249105 DOI: 10.1016/j.febslet.2011.12.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 12/14/2011] [Accepted: 12/23/2011] [Indexed: 11/22/2022]
Abstract
In skeletal muscle atrophy, upregulation and nuclear accumulation of the Ubiquitin E3 ligase MAFbx is essential for accelerated muscle protein loss, but the nuclear/cytoplasmic shuttling of MAFbx is undefined. Here we found that MAFbx contains two functional nuclear localization signals (NLS). Mutation or deletion of only one NLS induced cytoplasmic localization of MAFbx. We identified a non-classical NES located in the leucine charged domain (LCD) of MAFbx, which is leptomycin B insensitive. We demonstrated that mutation (L169Q) in LLXXL motif of LCD suppressed cytoplasmic retention of MAFbx. Nucleocytoplasmic shuttling of MAFbx represents a novel mechanism for targeting its substrates and its cytosolic partners in muscle atrophy.
Collapse
|
310
|
Gonçalves DAP, Silveira WA, Lira EC, Graça FA, Paula-Gomes S, Zanon NM, Kettelhut IC, Navegantes LCC. Clenbuterol suppresses proteasomal and lysosomal proteolysis and atrophy-related genes in denervated rat soleus muscles independently of Akt. Am J Physiol Endocrinol Metab 2012; 302:E123-33. [PMID: 21952035 DOI: 10.1152/ajpendo.00188.2011] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Although it is well known that administration of the selective β(2)-adrenergic agonist clenbuterol (CB) protects muscle following denervation (DEN), the underlying molecular mechanism remains unclear. We report that in vivo treatment with CB (3 mg/kg sc) for 3 days induces antiproteolytic effects in normal and denervated rat soleus muscle via distinct mechanisms. In normal soleus muscle, CB treatment stimulates protein synthesis, inhibits Ca(2+)-dependent proteolysis, and increases the levels of calpastatin protein. On the other hand, the administration of CB to DEN rats ameliorates the loss of muscle mass, enhances the rate of protein synthesis, attenuates hyperactivation of proteasomal and lysosomal proteolysis, and suppresses the transcription of the lysosomal protease cathepsin L and of atrogin-1/MAFbx and MuRF1, two ubiquitin (Ub) ligases involved in muscle atrophy. These effects were not associated with alterations in either IGF-I content or Akt phosphorylation levels. In isolated muscles, CB (10(-6) M) treatment significantly attenuated DEN-induced overall proteolysis and upregulation in the mRNA levels of the Ub ligases. Similar responses were observed in denervated muscles exposed to 6-BNZ-cAMP (500 μM), a PKA activator. The in vitro addition of triciribine (10 μM), a selective Akt inhibitor, did not block the inhibitory effects of CB on proteolysis and Ub ligase mRNA levels. These data indicate that short-term treatment with CB mitigates DEN-induced atrophy of the soleus muscle through the stimulation of protein synthesis, downregulation of cathepsin L and Ub ligases, and consequent inhibition of lysosomal and proteasomal activities and that these effects are independent of Akt and possibly mediated by the cAMP/PKA signaling pathway.
Collapse
Affiliation(s)
- Dawit A P Gonçalves
- Dept. of Physiology, School of Medicine, Ribeirão Preto University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
311
|
Llano-Diez M, Gustafson AM, Olsson C, Goransson H, Larsson L. Muscle wasting and the temporal gene expression pattern in a novel rat intensive care unit model. BMC Genomics 2011; 12:602. [PMID: 22165895 PMCID: PMC3266306 DOI: 10.1186/1471-2164-12-602] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 12/13/2011] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Acute quadriplegic myopathy (AQM) or critical illness myopathy (CIM) is frequently observed in intensive care unit (ICU) patients. To elucidate duration-dependent effects of the ICU intervention on molecular and functional networks that control the muscle wasting and weakness associated with AQM, a gene expression profile was analyzed at time points varying from 6 hours to 14 days in a unique experimental rat model mimicking ICU conditions, i.e., post-synaptically paralyzed, mechanically ventilated and extensively monitored animals. RESULTS During the observation period, 1583 genes were significantly up- or down-regulated by factors of two or greater. A significant temporal gene expression pattern was constructed at short (6 h-4 days), intermediate (5-8 days) and long (9-14 days) durations. A striking early and maintained up-regulation (6 h-14d) of muscle atrogenes (muscle ring-finger 1/tripartite motif-containing 63 and F-box protein 32/atrogin-1) was observed, followed by an up-regulation of the proteolytic systems at intermediate and long durations (5-14d). Oxidative stress response genes and genes that take part in amino acid catabolism, cell cycle arrest, apoptosis, muscle development, and protein synthesis together with myogenic factors were significantly up-regulated from 5 to 14 days. At 9-14 d, genes involved in immune response and the caspase cascade were up-regulated. At 5-14d, genes related to contractile (myosin heavy chain and myosin binding protein C), regulatory (troponin, tropomyosin), developmental, caveolin-3, extracellular matrix, glycolysis/gluconeogenesis, cytoskeleton/sarcomere regulation and mitochondrial proteins were down-regulated. An activation of genes related to muscle growth and new muscle fiber formation (increase of myogenic factors and JunB and down-regulation of myostatin) and up-regulation of genes that code protein synthesis and translation factors were found from 5 to 14 days. CONCLUSIONS Novel temporal patterns of gene expression have been uncovered, suggesting a unique, coordinated and highly complex mechanism underlying the muscle wasting associated with AQM in ICU patients and providing new target genes and avenues for intervention studies.
Collapse
Affiliation(s)
- Monica Llano-Diez
- Department of Clinical Neurophysiology, Uppsala University, Uppsala, Sweden
| | | | - Carl Olsson
- Department of Clinical Neurophysiology, Uppsala University, Uppsala, Sweden
| | - Hanna Goransson
- Department of Medical Sciences, Uppsala University Hospital, Uppsala, Sweden
| | - Lars Larsson
- Department of Clinical Neurophysiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
312
|
Liu Q, Xu WG, Luo Y, Han FF, Yao XH, Yang TY, Zhang Y, Pi WF, Guo XJ. Cigarette smoke-induced skeletal muscle atrophy is associated with up-regulation of USP-19 via p38 and ERK MAPKs. J Cell Biochem 2011; 112:2307-16. [PMID: 21503966 DOI: 10.1002/jcb.23151] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Ubiquitin-specific proteases (USPs) deubiquitinate ubiquitin-protein conjugates in the ubiquitin-proteasome system. Previous research shows that ubiquitin-specific protease-19 (USP-19) is up-regulated in mammalian skeletal muscle in some degradative conditions, such as including fasting, diabetes, dexamethasone treatment, and cancer, and its function is associated with muscle atrophy. However, it is still unclear whether USP-19 is involved in muscle atrophy induced by chronic obstructive pulmonary disease. Rats exposed to chronic cigarette smoke and L6 myotubes incubated with cigarette smoke extract (CSE) were studied here. Using western blot analysis and quantitative real-time polymerase chain reaction (qPCR), we observed over-expression of USP-19 and down-regulation of myosin heavy chain (MHC) in both models. Moreover, CSE exposure inhibited myogenic differentiation and myotube formation in L6 myotubes. To explore the mechanism underlying these effects, we investigated the levels of phosphorylated mitogen-activated protein kinases (MAPKs) and total MAPKs. Exposing myotubes to CSE resulted in the general activation of MAPKs such as p38, JNK, and ERK1/2. The ERK inhibitor PD98059 and the p38 inhibitor SB203580 significantly blocked the increase in USP-19 gene expression induced by CSE. Our findings suggest that USP-19 is associated with muscle atrophy in response to cigarette smoke and is a potential therapeutic target. CSE promotes myotube wasting in culture partly by inhibiting myogenic differentiation and acts via p38 and ERK MAPK to stimulate expression of USP-19 in vitro.
Collapse
Affiliation(s)
- Qian Liu
- Department of Respirology, College of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
313
|
Goodman CA, Mayhew DL, Hornberger TA. Recent progress toward understanding the molecular mechanisms that regulate skeletal muscle mass. Cell Signal 2011; 23:1896-906. [PMID: 21821120 PMCID: PMC3744211 DOI: 10.1016/j.cellsig.2011.07.013] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 07/15/2011] [Indexed: 01/30/2023]
Abstract
The maintenance of muscle mass is critical for health and issues associated with the quality of life. Over the last decade, extensive progress has been made with regard to our understanding of the molecules that regulate skeletal muscle mass. Not surprisingly, many of these molecules are intimately involved in the regulation of protein synthesis and protein degradation [e.g. the mammalian target of rapamycin (mTOR), eukaryotic initiation factor 2B (eIF2B), eukaryotic initiation factor 3f (eIF3f) and the forkhead box O (FoxO) transcription factors]. It is also becoming apparent that molecules which sense, or control, the energetic status of the cell play a key role in the regulation of muscle mass [e.g. AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor gamma coactivator-1 α (PGC1α)]. In this review we will attempt to summarize the current knowledge of how these molecules regulate skeletal muscle mass.
Collapse
Affiliation(s)
- Craig A Goodman
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin Madison, Madison, WI 53706, USA.
| | | | | |
Collapse
|
314
|
Braun TP, Zhu X, Szumowski M, Scott GD, Grossberg AJ, Levasseur PR, Graham K, Khan S, Damaraju S, Colmers WF, Baracos VE, Marks DL. Central nervous system inflammation induces muscle atrophy via activation of the hypothalamic-pituitary-adrenal axis. ACTA ACUST UNITED AC 2011; 208:2449-63. [PMID: 22084407 PMCID: PMC3256966 DOI: 10.1084/jem.20111020] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Systemic and CNS-delimited inflammation triggers skeletal muscle catabolism in a manner dependent on glucocorticoid signaling. Skeletal muscle catabolism is a co-morbidity of many chronic diseases and is the result of systemic inflammation. Although direct inflammatory cytokine action on muscle promotes atrophy, nonmuscle sites of action for inflammatory mediators are less well described. We demonstrate that central nervous system (CNS)–delimited interleukin 1β (IL-1β) signaling alone can evoke a catabolic program in muscle, rapidly inducing atrophy. This effect is dependent on hypothalamic–pituitary–adrenal (HPA) axis activation, as CNS IL-1β–induced atrophy is abrogated by adrenalectomy. Furthermore, we identified a glucocorticoid-responsive gene expression pattern conserved in models of acute and chronic inflammatory muscle atrophy. In contrast with studies suggesting that the direct action of inflammatory cytokines on muscle is sufficient to induce catabolism, adrenalectomy also blocks the atrophy program in response to systemic inflammation, demonstrating that glucocorticoids are requisite for this process. Additionally, circulating levels of glucocorticoids equivalent to those produced under inflammatory conditions are sufficient to cause profound muscle wasting. Together, these data suggest that a significant component of inflammation-induced muscle catabolism occurs indirectly via a relay in the CNS.
Collapse
Affiliation(s)
- Theodore P Braun
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
315
|
Baron D, Magot A, Ramstein G, Steenman M, Fayet G, Chevalier C, Jourdon P, Houlgatte R, Savagner F, Pereon Y. Immune response and mitochondrial metabolism are commonly deregulated in DMD and aging skeletal muscle. PLoS One 2011; 6:e26952. [PMID: 22096509 PMCID: PMC3212519 DOI: 10.1371/journal.pone.0026952] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 10/06/2011] [Indexed: 01/12/2023] Open
Abstract
Duchenne Muscular Dystrophy (DMD) is a complex process involving multiple pathways downstream of the primary genetic insult leading to fatal muscle degeneration. Aging muscle is a multifactorial neuromuscular process characterized by impaired muscle regeneration leading to progressive atrophy. We hypothesized that these chronic atrophying situations may share specific myogenic adaptative responses at transcriptional level according to tissue remodeling. Muscle biopsies from four young DMD and four AGED subjects were referred to a group of seven muscle biopsies from young subjects without any neuromuscular disorder and explored through a dedicated expression microarray. We identified 528 differentially expressed genes (out of 2,745 analyzed), of which 328 could be validated by an exhaustive meta-analysis of public microarray datasets referring to DMD and Aging in skeletal muscle. Among the 328 validated co-expressed genes, 50% had the same expression profile in both groups and corresponded to immune/fibrosis responses and mitochondrial metabolism. Generalizing these observed meta-signatures with large compendia of public datasets reinforced our results as they could be also identified in other pathological processes and in diverse physiological conditions. Focusing on the common gene signatures in these two atrophying conditions, we observed enrichment in motifs for candidate transcription factors that may coordinate either the immune/fibrosis responses (ETS1, IRF1, NF1) or the mitochondrial metabolism (ESRRA). Deregulation in their expression could be responsible, at least in part, for the same transcriptome changes initiating the chronic muscle atrophy. This study suggests that distinct pathophysiological processes may share common gene responses and pathways related to specific transcription factors.
Collapse
|
316
|
Macpherson PCD, Wang X, Goldman D. Myogenin regulates denervation-dependent muscle atrophy in mouse soleus muscle. J Cell Biochem 2011; 112:2149-59. [PMID: 21465538 DOI: 10.1002/jcb.23136] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Muscle inactivity due to injury or disease results in muscle atrophy. The molecular mechanisms contributing to muscle atrophy are poorly understood. However, it is clear that expression of atrophy-related genes, like Atrogin-1 and MuRF-1, are intimately tied to loss of muscle mass. When these atrophy-related genes are knocked out, inactive muscles retain mass. Muscle denervation stimulates muscle atrophy and Myogenin (Myog) is a muscle-specific transcription factor that is highly induced following muscle denervation. To investigate if Myog contributes to muscle atrophy, we have taken advantage of conditional Myog null mice. We show that in the denervated soleus muscle Myog expression contributes to reduced muscle force, mass, and cross-sectional area. We found that Myog mediates these effects, at least in part, by regulating expression of the Atrogin-1 and MuRF-1 genes. Indeed Myog over-expression in innervated muscle stimulates Atrogin-1 gene expression and Myog over-expression stimulates Atrogin-1 promoter activity. Thus, Myog and the signaling cascades regulating its induction following muscle denervation may represent novel targets for therapies aimed at reducing denervation-induced muscle atrophy.
Collapse
Affiliation(s)
- Peter C D Macpherson
- Molecular and Behavioral Neuroscience Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
317
|
Ramírez C, Russo TL, Sandoval MC, Dentillo AA, Couto MAS, Durigan JLQ, Salvini TF. Joint Inflammation Alters Gene and Protein Expression and Leads to Atrophy in the Tibialis Anterior Muscle in Rats. Am J Phys Med Rehabil 2011; 90:930-9. [DOI: 10.1097/phm.0b013e31822dea3c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
318
|
Okamoto T, Torii S, Machida S. Differential gene expression of muscle-specific ubiquitin ligase MAFbx/Atrogin-1 and MuRF1 in response to immobilization-induced atrophy of slow-twitch and fast-twitch muscles. J Physiol Sci 2011; 61:537-46. [PMID: 21901639 PMCID: PMC10717876 DOI: 10.1007/s12576-011-0175-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 08/18/2011] [Indexed: 12/11/2022]
Abstract
We examined muscle-specific ubiquitin ligases MAFbx/Atrogin-1 and MuRF1 gene expression resulting from immobilization-induced skeletal muscle atrophy of slow-twitch soleus and fast-twitch plantaris muscles. Male C57BL/6 mice were subjected to hindlimb immobilization, which induced similar percentage decreases in muscle mass in the soleus and plantaris muscles. Expression of MAFbx/Atrogin-1 and MuRF1 was significantly greater in the plantaris muscle than in the soleus muscle during the early stage of atrophy. After a 3-day period of atrophy, total FOXO3a protein level had increased in both muscles, while phosphorylated FOXO3a protein had decreased in the plantaris muscle, but not in the soleus muscle. PGC-1α protein expression did not change following immobilization in both muscles, but basal PGC-1α protein in the soleus was markedly higher than that in plantaris muscles. These data suggest that although soleus and plantaris muscles atrophied to a similar extent and that muscle-specific ubiquitin protein ligases (E3) may contribute more to the atrophy of fast-twitch muscle than to that of slow-twitch muscle during immobilization.
Collapse
Affiliation(s)
- Takeshi Okamoto
- School of Physical Education, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 Japan
| | - Suguru Torii
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama 359-1192 Japan
| | - Shuichi Machida
- School of Physical Education, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 Japan
| |
Collapse
|
319
|
Wada S, Kato Y, Okutsu M, Miyaki S, Suzuki K, Yan Z, Schiaffino S, Asahara H, Ushida T, Akimoto T. Translational suppression of atrophic regulators by microRNA-23a integrates resistance to skeletal muscle atrophy. J Biol Chem 2011; 286:38456-38465. [PMID: 21926429 DOI: 10.1074/jbc.m111.271270] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Muscle atrophy is caused by accelerated protein degradation and occurs in many pathological states. Two muscle-specific ubiquitin ligases, MAFbx/atrogin-1 and muscle RING-finger 1 (MuRF1), are prominently induced during muscle atrophy and mediate atrophy-associated protein degradation. Blocking the expression of these two ubiquitin ligases provides protection against muscle atrophy. Here we report that miR-23a suppresses the translation of both MAFbx/atrogin-1 and MuRF1 in a 3'-UTR-dependent manner. Ectopic expression of miR-23a is sufficient to protect muscles from atrophy in vitro and in vivo. Furthermore, miR-23a transgenic mice showed resistance against glucocorticoid-induced skeletal muscle atrophy. These data suggest that suppression of multiple regulators by a single miRNA can have significant consequences in adult tissues.
Collapse
Affiliation(s)
- Shogo Wada
- Division of Regenerative Medical Engineering, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Yoshio Kato
- Research Institute for Cell Engineering, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8562, Japan
| | - Mitsuharu Okutsu
- Institute for Biomedical Engineering Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, Shinjuku, Tokyo 162-0041, Japan; Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - Shigeru Miyaki
- Department of Regenerative Biology and Medicine, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan
| | - Katsuhiko Suzuki
- Institute for Biomedical Engineering Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, Shinjuku, Tokyo 162-0041, Japan; Faculty of Sport Sciences, Waseda University, Tokorozawa, Saitama 359-1192, Japan
| | - Zhen Yan
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | | | - Hiroshi Asahara
- Department of Regenerative Biology and Medicine, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan
| | - Takashi Ushida
- Division of Regenerative Medical Engineering, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Takayuki Akimoto
- Division of Regenerative Medical Engineering, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan; Institute for Biomedical Engineering Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, Shinjuku, Tokyo 162-0041, Japan; Venetian Institute of Molecular Medicine, 35129 Padova, Italy.
| |
Collapse
|
320
|
Dallmann R, Weyermann P, Anklin C, Boroff M, Bray-French K, Cardel B, Courdier-Fruh I, Deppe H, Dubach-Powell J, Erb M, Haefeli RH, Henneböhle M, Herzner H, Hufschmid M, Marks DL, Nordhoff S, Papp M, Rummey C, Santos G, Schärer F, Siendt H, Soeberdt M, Sumanovski LT, Terinek M, Mondadori C, Güven N, Feurer A. The orally active melanocortin-4 receptor antagonist BL-6020/979: a promising candidate for the treatment of cancer cachexia. J Cachexia Sarcopenia Muscle 2011; 2:163-174. [PMID: 21966642 PMCID: PMC3177041 DOI: 10.1007/s13539-011-0039-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 08/16/2011] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND: Under physiological conditions, the melanocortin system is a crucial part of the complex network regulating food intake and energy expenditure. In pathological states, like cachexia, these two parameters are deregulated, i.e., food intake is decreased and energy expenditure is increased-a vicious combination leading to catabolism. Agouti-related protein (AgRP), the endogenous antagonist at the melanocortin-4 receptor (MC-4R), was found to increase food intake and to reduce energy expenditure. This qualifies MC-4R blockade as an attractive mode of action for the treatment of cachexia. Based on this rationale, a novel series of small-molecule MC-4R antagonists was designed, from which the orally active compound BL-6020/979 (formerly known as SNT207979) emerged as the first promising development candidate showing encouraging pre-clinical efficacy and safety properties which are presented here. METHODS AND RESULTS: BL-6020/979 is an orally available, selective and potent MC-4R antagonist with a drug-like profile. It increased food intake and decreased energy expenditure in healthy wild-type but not in MC-4R deficient mice. More importantly, it ameliorated cachexia-like symptoms in the murine C26 adenocarcinoma model; with an effect on body mass and body composition and on the expression of catabolic genes. Moreover, BL-6020/979 showed antidepressant-like properties in the chronic mild stress model in rats and exhibits a favorable safety profile. CONCLUSION: The properties of BL-6020/979 demonstrated in animal models and presented here make it a promising candidate suitable for further development towards a first-in-class treatment option for cachexia that potentially opens up the opportunity to treat two hallmarks of the disease, i.e., decreased food intake and increased energy expenditure, with one drug.
Collapse
Affiliation(s)
- R. Dallmann
- Santhera Pharmaceuticals (Switzerland) Ltd.; Hammerstr. 49 4410 Liestal
- Institute of Pharmacology and Toxicology; University of Zurich; Winterthurerstr. 190 8057 Zurich
| | - P. Weyermann
- Santhera Pharmaceuticals (Switzerland) Ltd.; Hammerstr. 49 4410 Liestal
| | - C. Anklin
- Santhera Pharmaceuticals (Switzerland) Ltd.; Hammerstr. 49 4410 Liestal
| | - M. Boroff
- Santhera Pharmaceuticals (Switzerland) Ltd.; Hammerstr. 49 4410 Liestal
| | - K. Bray-French
- Santhera Pharmaceuticals (Switzerland) Ltd.; Hammerstr. 49 4410 Liestal
| | - B. Cardel
- Santhera Pharmaceuticals (Switzerland) Ltd.; Hammerstr. 49 4410 Liestal
| | - I. Courdier-Fruh
- Santhera Pharmaceuticals (Switzerland) Ltd.; Hammerstr. 49 4410 Liestal
| | - H. Deppe
- Santhera Pharmaceuticals (Switzerland) Ltd.; Hammerstr. 49 4410 Liestal
| | - J. Dubach-Powell
- Santhera Pharmaceuticals (Switzerland) Ltd.; Hammerstr. 49 4410 Liestal
| | - M. Erb
- Santhera Pharmaceuticals (Switzerland) Ltd.; Hammerstr. 49 4410 Liestal
| | - R. H. Haefeli
- Santhera Pharmaceuticals (Switzerland) Ltd.; Hammerstr. 49 4410 Liestal
| | - M. Henneböhle
- Santhera Pharmaceuticals (Switzerland) Ltd.; Hammerstr. 49 4410 Liestal
| | - H. Herzner
- Santhera Pharmaceuticals (Switzerland) Ltd.; Hammerstr. 49 4410 Liestal
| | - M. Hufschmid
- Santhera Pharmaceuticals (Switzerland) Ltd.; Hammerstr. 49 4410 Liestal
| | - D. L. Marks
- Department of Pediatric Endocrinology, Vollum Institute; Oregon Health Sciences University; Portland
| | - S. Nordhoff
- Santhera Pharmaceuticals (Switzerland) Ltd.; Hammerstr. 49 4410 Liestal
| | - M. Papp
- Institute of Pharmacology; Polish Academy of Sciences; Krakow
| | - C. Rummey
- Santhera Pharmaceuticals (Switzerland) Ltd.; Hammerstr. 49 4410 Liestal
| | - G. Santos
- Santhera Pharmaceuticals (Switzerland) Ltd.; Hammerstr. 49 4410 Liestal
| | - F. Schärer
- Santhera Pharmaceuticals (Switzerland) Ltd.; Hammerstr. 49 4410 Liestal
| | - H. Siendt
- Santhera Pharmaceuticals (Switzerland) Ltd.; Hammerstr. 49 4410 Liestal
| | - M. Soeberdt
- Santhera Pharmaceuticals (Switzerland) Ltd.; Hammerstr. 49 4410 Liestal
| | - L. T. Sumanovski
- Santhera Pharmaceuticals (Switzerland) Ltd.; Hammerstr. 49 4410 Liestal
| | - M. Terinek
- Santhera Pharmaceuticals (Switzerland) Ltd.; Hammerstr. 49 4410 Liestal
| | - C. Mondadori
- Santhera Pharmaceuticals (Switzerland) Ltd.; Hammerstr. 49 4410 Liestal
| | - N. Güven
- Santhera Pharmaceuticals (Switzerland) Ltd.; Hammerstr. 49 4410 Liestal
| | - A. Feurer
- Santhera Pharmaceuticals (Switzerland) Ltd.; Hammerstr. 49 4410 Liestal
| |
Collapse
|
321
|
Wagatsuma A, Kotake N, Mabuchi K, Yamada S. Expression of nuclear-encoded genes involved in mitochondrial biogenesis and dynamics in experimentally denervated muscle. J Physiol Biochem 2011; 67:359-70. [PMID: 21394548 DOI: 10.1007/s13105-011-0083-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 02/22/2011] [Indexed: 12/28/2022]
Abstract
The abundance, morphology, and functional properties of mitochondria become altered in response to denervation. To gain insight into the regulation of this process, mitochondrial enzyme activities and gene expression involved in mitochondrial biogenesis and dynamics in mouse gastrocnemius muscle was investigated. Sciatic nerve transactions were performed on mice, and then gastrocnemius muscles were isolated at days 5 and 30 after surgery. Muscle weight was decreased significantly by 15% and 62% at days 5 and 30 after surgery, respectively. The activity of citrate synthase, a marker of oxidative enzyme, was reduced significantly by 31% and 53% at days 5 and 30, respectively. Enzyme histochemical analysis revealed that subsarcolemmal mitochondria were largely lost than intermyofibrillar mitochondria at day 5, and this trend was further progressed at day 30 after surgery. Expression levels of peroxisome proliferator-activated receptor, γ coactivator 1 (PGC-1)α, estrogen-related receptor α (ERRα), and mitofusin 2 were down-regulated throughout the experimental period, whereas those of PGC-1β, PRC, nuclear respiratory factor (NRF)-1, NRF-2, TFAM, and Lon protease were down-regulated at day 30 after surgery. These results suggest that PGC-1α, ERRα, and mitofusin 2 may be important factors in the process of denervation-induced mitochondrial adaptation. In addition, other PGC-1 family of transcriptional coactivators and DNA binding transcription factors may also contribute to mitochondrial adaptation after early response to denervation.
Collapse
Affiliation(s)
- Akira Wagatsuma
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan.
| | | | | | | |
Collapse
|
322
|
Aversa Z, Alamdari N, Hasselgren PO. Molecules modulating gene transcription during muscle wasting in cancer, sepsis, and other critical illness. Crit Rev Clin Lab Sci 2011; 48:71-86. [DOI: 10.3109/10408363.2011.591365] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
323
|
Lira EC, Gonçalves DA, Parreiras-E-Silva LT, Zanon NM, Kettelhut IC, Navegantes LC. Phosphodiesterase-4 inhibition reduces proteolysis and atrogenes expression in rat skeletal muscles. Muscle Nerve 2011; 44:371-81. [DOI: 10.1002/mus.22066] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
324
|
C/EBPβ mediates tumour-induced ubiquitin ligase atrogin1/MAFbx upregulation and muscle wasting. EMBO J 2011; 30:4323-35. [PMID: 21847090 DOI: 10.1038/emboj.2011.292] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 07/22/2011] [Indexed: 11/09/2022] Open
Abstract
Upregulation of ubiquitin ligase atrogin1/MAFbx and muscle wasting are hallmarks of cancer cachexia; however, the underlying mechanism is undefined. Here, we describe a novel signalling pathway through which Lewis lung carcinoma (LLC) induces atrogin1/MAFbx upregulation and muscle wasting. C2C12 myotubes treated with LLC-conditioned medium (LCM) rapidly activates p38 MAPK and AKT while inactivating FoxO1/3, resulting in atrogin1/MAFbx upregulation, myosin heavy chain loss, and myotube atrophy. The p38α/β MAPK inhibitor SB202190 blocks the catabolic effects. Upon activation, p38 associates with C/EBPβ resulting in its phosphorylation and binding to a C/EBPβ-responsive cis-element in the atrogin1/MAFbx gene promoter. The promoter activity is stimulated by LCM via p38β-mediated activation of the C/EBPβ-responsive cis-element, independent of the adjacent FoxO1/3-responsive cis-elements in the promoter. In addition, p38 activation is observed in the muscle of LLC tumour-bearing mice, and SB202190 administration blocks atrogin1/MAFbx upregulation and muscle protein loss. Furthermore, C/EBPβ(-/-) mice are resistant to LLC tumour-induced atrogin1/MAFbx upregulation and muscle wasting. Therefore, activation of the p38β MAPK-C/EBPβ signalling pathway appears a key component of the pathogenesis of LLC tumour-induced cachexia.
Collapse
|
325
|
Baehr LM, Furlow JD, Bodine SC. Muscle sparing in muscle RING finger 1 null mice: response to synthetic glucocorticoids. J Physiol 2011; 589:4759-76. [PMID: 21807613 DOI: 10.1113/jphysiol.2011.212845] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Skeletal muscle atrophy occurs under a variety of conditions and can result from alterations in both protein synthesis and protein degradation. The muscle-specific E3 ubiquitin ligases, MuRF1 and MAFbx, are excellent markers of muscle atrophy and increase under divergent atrophy-inducing conditions such as denervation and glucocorticoid treatment. While deletion of MuRF1 or MAFbx has been reported to spare muscle mass following 14 days of denervation, their role in other atrophy-inducing conditions is unclear. The goal of this study was to determine whether deletion of MuRF1 or MAFbx attenuates muscle atrophy after 2 weeks of treatment with the synthetic glucocorticoid dexamethasone (DEX). The response of the triceps surae (TS) and tibialis anterior (TA) muscles to 14 days of DEX treatment (3 mg kg(-1) day(-1)) was examined in 4 month-old male and female wild type (WT) and MuRF1 or MAFbx knock out (KO) mice. Following 14 days of DEX treatment, muscle wet weight was significantly decreased in the TS and TA of WT mice. Comparison of WT and KO mice following DEX treatment revealed significant sparing of mass in both sexes of the MuRF1 KO mice, but no muscle sparing in MAFbx KO mice. Further analysis of the MuRF1 KO mice showed significant sparing of fibre cross-sectional area and tension output in the gastrocnemius (GA) after DEX treatment. Muscle sparing in the MuRF1 KO mice was related to maintenance of protein synthesis, with no observed increases in protein degradation in either WT or MuRF1 KO mice. These results demonstrate that MuRF1 and MAFbx do not function similarly under all atrophy models, and that the primary role of MuRF1 may extend beyond controlling protein degradation via the ubiquitin proteasome system.
Collapse
Affiliation(s)
- Leslie M Baehr
- Department of Neurobiology, Physiology, and Behavior, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | | | | |
Collapse
|
326
|
Bialek P, Morris C, Parkington J, St Andre M, Owens J, Yaworsky P, Seeherman H, Jelinsky SA. Distinct protein degradation profiles are induced by different disuse models of skeletal muscle atrophy. Physiol Genomics 2011; 43:1075-86. [PMID: 21791639 DOI: 10.1152/physiolgenomics.00247.2010] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Skeletal muscle atrophy can be a consequence of many diseases, environmental insults, inactivity, age, and injury. Atrophy is characterized by active degradation, removal of contractile proteins, and a reduction in muscle fiber size. Animal models have been extensively used to identify pathways that lead to atrophic conditions. We used genome-wide expression profiling analyses and quantitative PCR to identify the molecular changes that occur in two clinically relevant mouse models of muscle atrophy: hindlimb casting and Achilles tendon laceration (tenotomy). Gastrocnemius muscle samples were collected 2, 7, and 14 days after casting or injury. The total amount of muscle loss, as measured by wet weight and muscle fiber size, was equivalent between models on day 14, although tenotomy resulted in a more rapid induction of muscle atrophy. Furthermore, tenotomy resulted in the regulation of significantly more mRNA transcripts then did casting. Analysis of the regulated genes and pathways suggest that the mechanisms of atrophy are distinct between these models. The degradation following casting was ubiquitin-proteasome mediated, while degradation following tenotomy was lysosomal and matrix-metalloproteinase mediated, suggesting a possible role for autophagy. These data suggest that there are multiple mechanisms leading to muscle atrophy and that specific therapeutic agents may be necessary to combat atrophy resulting from different conditions.
Collapse
Affiliation(s)
- Peter Bialek
- Tissue Repair, Pfizer Research, Cambridge, Massachusetts 02140, USA
| | | | | | | | | | | | | | | |
Collapse
|
327
|
Affiliation(s)
- Donghoon Lee
- From the Department of Cell Biology, Harvard Medical School, Boston, MA
| | - Alfred Goldberg
- From the Department of Cell Biology, Harvard Medical School, Boston, MA
| |
Collapse
|
328
|
Wing SS, Lecker SH, Jagoe RT. Proteolysis in illness-associated skeletal muscle atrophy: from pathways to networks. Crit Rev Clin Lab Sci 2011; 48:49-70. [PMID: 21699435 DOI: 10.3109/10408363.2011.586171] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Improvements in health in the past decades have resulted in increased numbers of the elderly in both developed and developing regions of the world. Advances in therapy have also increased the prevalence of patients with chronic and degenerative diseases. Muscle wasting, a feature of most chronic diseases, is prominent in the elderly and contributes to both morbidity and mortality. A major research goal has been to identify the proteolytic system(s) that is responsible for the degradation of proteins that occurs in muscle atrophy. Findings over the past 20 years have clearly confirmed an important role of the ubiquitin proteasome system in mediating muscle proteolysis, particularly that of myofibrillar proteins. However, recent observations have provided evidence that autophagy, calpains and caspases also contribute to the turnover of muscle proteins in catabolic states, and furthermore, that these diverse proteolytic systems interact with each other at various levels. Importantly, a number of intracellular signaling pathways such as the IGF1/AKT, myostatin/Smad, PGC1, cytokine/NFκB, and AMPK pathways are now known to interact and can regulate some of these proteolytic systems in a coordinated manner. A number of loss of function studies have identified promising therapeutic approaches to the prevention and treatment of wasting. However, additional biomarkers and other approaches to improve early identification of patients who would benefit from such treatment need to be developed. The current data suggests a network of interacting proteolytic and signaling pathways in muscle. Future studies are needed to improve understanding of the nature and control of these interactions and how they work to preserve muscle function under various states of growth and atrophy.
Collapse
Affiliation(s)
- Simon S Wing
- Departments of Medicine, McGill University and McGill University Health Centre Research Institute, Montreal, Quebec, Canada.
| | | | | |
Collapse
|
329
|
Kunkel SD, Suneja M, Ebert SM, Bongers KS, Fox DK, Malmberg SE, Alipour F, Shields RK, Adams CM. mRNA expression signatures of human skeletal muscle atrophy identify a natural compound that increases muscle mass. Cell Metab 2011; 13:627-38. [PMID: 21641545 PMCID: PMC3120768 DOI: 10.1016/j.cmet.2011.03.020] [Citation(s) in RCA: 244] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 08/04/2010] [Accepted: 03/24/2011] [Indexed: 01/08/2023]
Abstract
Skeletal muscle atrophy is a common and debilitating condition that lacks a pharmacologic therapy. To develop a potential therapy, we identified 63 mRNAs that were regulated by fasting in both human and mouse muscle, and 29 mRNAs that were regulated by both fasting and spinal cord injury in human muscle. We used these two unbiased mRNA expression signatures of muscle atrophy to query the Connectivity Map, which singled out ursolic acid as a compound whose signature was opposite to those of atrophy-inducing stresses. A natural compound enriched in apples, ursolic acid reduced muscle atrophy and stimulated muscle hypertrophy in mice. It did so by enhancing skeletal muscle insulin/IGF-I signaling and inhibiting atrophy-associated skeletal muscle mRNA expression. Importantly, ursolic acid's effects on muscle were accompanied by reductions in adiposity, fasting blood glucose, and plasma cholesterol and triglycerides. These findings identify a potential therapy for muscle atrophy and perhaps other metabolic diseases.
Collapse
Affiliation(s)
- Steven D. Kunkel
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA 52242
- Department of Veterans Affairs Medical Center, Iowa City, IA 52246
| | - Manish Suneja
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA 52242
| | - Scott M. Ebert
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA 52242
| | - Kale S. Bongers
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA 52242
| | - Daniel K. Fox
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA 52242
| | - Sharon E. Malmberg
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA 52242
| | - Fariborz Alipour
- Department of Speech Pathology and Audiology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA 52242
| | - Richard K. Shields
- Graduate Program in Physical Therapy and Rehabilitation Science, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA 52242
| | - Christopher M. Adams
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA 52242
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA 52242
- Department of Veterans Affairs Medical Center, Iowa City, IA 52246
| |
Collapse
|
330
|
Wu Y, Hou J, Collier L, Pan J, Hou L, Qin W, Bauman WA, Cardozo CP. The administration of high-dose methylprednisolone for 24 h reduced muscle size and increased atrophy-related gene expression in spinal cord-injured rats. Spinal Cord 2011; 49:867-73. [DOI: 10.1038/sc.2011.28] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
331
|
Long YC, Kostovski E, Boon H, Hjeltnes N, Krook A, Widegren U. Differential expression of metabolic genes essential for glucose and lipid metabolism in skeletal muscle from spinal cord injured subjects. J Appl Physiol (1985) 2011; 110:1204-10. [PMID: 21393466 DOI: 10.1152/japplphysiol.00686.2010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Skeletal muscle plays an important role in the regulation of energy homeostasis; therefore, the ability of skeletal muscle to adapt and alter metabolic gene expression in response to changes in physiological demands is critical for energy balance. Individuals with cervical spinal cord lesions are characterized by tetraplegia, impaired thermoregulation, and altered skeletal muscle morphology. We characterized skeletal muscle metabolic gene expression patterns, as well as protein content, in these individuals to assess the impact of spinal cord injury on critical determinants of skeletal muscle metabolism. Our results demonstrate that mRNA levels and protein expression of skeletal muscle genes essential for glucose storage are reduced, whereas expression of glycolytic genes is reciprocally increased in individuals with spinal cord injury. Furthermore, expression of genes essential for lipid oxidation is coordinately reduced in spinal cord injured subjects, consistent with a marked reduction of mitochondrial proteins. Thus spinal cord injury resulted in a profound and tightly coordinated change in skeletal muscle metabolic gene expression program that is associated with the aberrant metabolic features of the tissue.
Collapse
Affiliation(s)
- Yun Chau Long
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
332
|
Senf SM, Sandesara PB, Reed SA, Judge AR. p300 Acetyltransferase activity differentially regulates the localization and activity of the FOXO homologues in skeletal muscle. Am J Physiol Cell Physiol 2011; 300:C1490-501. [PMID: 21389279 DOI: 10.1152/ajpcell.00255.2010] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Forkhead Box O (FOXO) transcription factors regulate diverse cellular processes, and in skeletal muscle are both necessary and sufficient for muscle atrophy. Although the regulation of FOXO by Akt is well evidenced in skeletal muscle, the current study demonstrates that FOXO is also regulated in muscle via the histone acetyltransferase (HAT) activities of p300/CREB-binding protein (CBP). Transfection of rat soleus muscle with a dominant-negative p300, which lacks HAT activity and inhibits endogenous p300 HAT activity, increased FOXO reporter activity and induced transcription from the promoter of a bona fide FOXO target gene, atrogin-1. Conversely, increased HAT activity via transfection of either wild-type (WT) p300 or WT CBP repressed FOXO activation in vivo in response to muscle disuse, and in C2C12 cells in response to dexamethasone and acute starvation. Importantly, manipulation of HAT activity differentially regulated the expression of various FOXO target genes. Cotransfection of FOXO1, FOXO3a, or FOXO4 with the p300 constructs further identified p300 HAT activity to also differentially regulate the activity of the FOXO homologues. Markedly, decreased HAT activity strongly increased FOXO3a transcriptional activity, while increased HAT activity repressed FOXO3a activity and prevented its nuclear localization in response to nutrient deprivation. In contrast, p300 increased FOXO1 nuclear localization. In summary, this study provides the first evidence to support the acetyltransferase activities of p300/CBP in regulating FOXO signaling in skeletal muscle and suggests that acetylation may be an important mechanism to differentially regulate the FOXO homologues and dictate which FOXO target genes are activated in response to varying atrophic stimuli.
Collapse
Affiliation(s)
- Sarah M Senf
- Dept. of Physical Therapy, University of Florida, 1275 Center Drive, Gainesville, FL 32610, USA
| | | | | | | |
Collapse
|
333
|
van der Meer SF, Jaspers RT, Jones DA, Degens H. Time-course of changes in the myonuclear domain during denervation in young-adult and old rat gastrocnemius muscle. Muscle Nerve 2011; 43:212-22. [DOI: 10.1002/mus.21822] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
334
|
Wu CL, Kandarian SC, Jackman RW. Identification of genes that elicit disuse muscle atrophy via the transcription factors p50 and Bcl-3. PLoS One 2011; 6:e16171. [PMID: 21249144 PMCID: PMC3020958 DOI: 10.1371/journal.pone.0016171] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 12/09/2010] [Indexed: 12/20/2022] Open
Abstract
Skeletal muscle atrophy is a debilitating condition associated with weakness, fatigue, and reduced functional capacity. Nuclear factor-kappaB (NF-κB) transcription factors play a critical role in atrophy. Knockout of genes encoding p50 or the NF-κB co-transactivator, Bcl-3, abolish disuse atrophy and thus they are NF-κB factors required for disuse atrophy. We do not know however, the genes targeted by NF-κB that produce the atrophied phenotype. Here we identify the genes required to produce disuse atrophy using gene expression profiling in wild type compared to Nfkb1 (gene encodes p50) and Bcl-3 deficient mice. There were 185 and 240 genes upregulated in wild type mice due to unloading, that were not upregulated in Nfkb1−/− and Bcl-3−/− mice, respectively, and so these genes were considered direct or indirect targets of p50 and Bcl-3. All of the p50 gene targets were contained in the Bcl-3 gene target list. Most genes were involved with protein degradation, signaling, translation, transcription, and transport. To identify direct targets of p50 and Bcl-3 we performed chromatin immunoprecipitation of selected genes previously shown to have roles in atrophy. Trim63 (MuRF1), Fbxo32 (MAFbx), Ubc, Ctsl, Runx1, Tnfrsf12a (Tweak receptor), and Cxcl10 (IP-10) showed increased Bcl-3 binding to κB sites in unloaded muscle and thus were direct targets of Bcl-3. p50 binding to the same sites on these genes either did not change or increased, supporting the idea of p50:Bcl-3 binding complexes. p65 binding to κB sites showed decreased or no binding to these genes with unloading. Fbxo9, Psma6, Psmc4, Psmg4, Foxo3, Ankrd1 (CARP), and Eif4ebp1 did not show changes in p65, p50, or Bcl-3 binding to κB sites, and so were considered indirect targets of p50 and Bcl-3. This work represents the first study to use a global approach to identify genes required to produce the atrophied phenotype with disuse.
Collapse
Affiliation(s)
- Chia-Ling Wu
- Department of Health Sciences, Boston University, Boston, Massachusetts, United States of America
| | - Susan C. Kandarian
- Department of Health Sciences, Boston University, Boston, Massachusetts, United States of America
| | - Robert W. Jackman
- Department of Health Sciences, Boston University, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
335
|
Hain BA, Dodd SL, Judge AR. IκBα degradation is necessary for skeletal muscle atrophy associated with contractile claudication. Am J Physiol Regul Integr Comp Physiol 2011; 300:R595-604. [PMID: 21209383 DOI: 10.1152/ajpregu.00728.2010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The arterial blockage in patients with peripheral arterial disease (PAD) restricts oxygen delivery to skeletal muscles distal to the blockage. In advanced-stage PAD patients, this creates a chronic ischemic condition in the affected muscles. However, in the majority of PAD patients, the muscles distal to the blockage only become ischemic during physical activity when the oxygen demands of these muscles are increased. Therefore, the skeletal muscle of most PAD patients undergoes repeated cycles of low-grade ischemia-reperfusion each time the patient is active and then rests. This has been speculated to contribute to the biochemical and morphological myopathies observed in PAD patients. The current study aimed to determine, using a rodent model, whether repeated hind limb muscle contractions during blood flow restriction to the hind limb muscles increases NF-κB activity. We, subsequently, determined whether an increase in NF-κB activity during this condition is required for the increased transcription of specific atrophy-related genes and muscle fiber atrophy. We found that hind limb muscle contractions during blood flow restriction to the limb increased NF-κB activity, the transcription of specific atrophy-related genes, and caused a 35% decrease in muscle fiber cross-sectional area. We further found that inhibition of NF-κB activity, via gene transfer of a dominant-negative inhibitor of κBα (d.n. IκBα), prevented the increase in atrophy gene expression and muscle fiber atrophy. These findings demonstrate that when blood flow to skeletal muscle is restricted, repeated cycles of muscle contraction can cause muscle fiber atrophy that requires NF-κB-IκBα signaling.
Collapse
Affiliation(s)
- Brian A Hain
- Department of Applied Physiology, Univ. of Florida, Gainesville, 32611, USA
| | | | | |
Collapse
|
336
|
LeBrasseur NK, Walsh K, Arany Z. Metabolic benefits of resistance training and fast glycolytic skeletal muscle. Am J Physiol Endocrinol Metab 2011; 300:E3-10. [PMID: 21045171 PMCID: PMC3023213 DOI: 10.1152/ajpendo.00512.2010] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 10/30/2010] [Indexed: 12/18/2022]
Abstract
Skeletal muscle exhibits remarkable plasticity with respect to its metabolic properties. Recent work has shown that interventions such as resistance training, genetic alterations and pharmacological strategies that increase muscle mass and glycolytic capacity, and not necessarily oxidative competence, can improve body composition and systemic metabolism. We review here recent advances in our understanding of the signaling and transcriptional regulatory pathways of this strategy and review new evidence obtained from mice and humans that supports the notion that increasing muscle mass and glycolytic capacity may effectively counter insulin resistance and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Nathan K LeBrasseur
- Robert and Arlene Kogod Center on Aging, Department of Physical Medicine and Rehabilitation, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA.
| | | | | |
Collapse
|
337
|
Gene Expression of Muscle-Specific Ubiquitin Ligase, Atrogin-1/MAFbx, Positively Correlates with Skeletal Muscle Proteolysis in Food-Deprived Broiler Chickens. J Poult Sci 2011. [DOI: 10.2141/jpsa.010093] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
338
|
Qin W, Bauman WA, Cardozo C. Bone and muscle loss after spinal cord injury: organ interactions. Ann N Y Acad Sci 2010; 1211:66-84. [PMID: 21062296 DOI: 10.1111/j.1749-6632.2010.05806.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Spinal cord injury (SCI) results in paralysis and marked loss of skeletal muscle and bone below the level of injury. Modest muscle activity prevents atrophy, whereas much larger--and as yet poorly defined--bone loading seems necessary to prevent bone loss. Once established, bone loss may be irreversible. SCI is associated with reductions in growth hormone, IGF-1, and testosterone, deficiencies likely to exacerbate further loss of muscle and bone. Reduced muscle mass and inactivity are assumed to be contributors to the high prevalence of insulin resistance and diabetes in this population. Alterations in muscle gene expression after SCI share common features with other muscle loss states, but even so, show distinct profiles, possibly reflecting influences of neuromuscular activity due to spasticity. Changes in bone cells and markers after SCI have similarities with other conditions of unloading, although after SCI these changes are much more dramatic, perhaps reflecting the much greater magnitude of unloading. Adiposity and marrow fat are increased after SCI with intriguing, though poorly understood, implications for the function of skeletal muscle and bone cells.
Collapse
Affiliation(s)
- Weiping Qin
- Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, New York, USA.
| | | | | |
Collapse
|
339
|
Protection against dexamethasone-induced muscle atrophy is related to modulation by testosterone of FOXO1 and PGC-1α. Biochem Biophys Res Commun 2010; 403:473-8. [DOI: 10.1016/j.bbrc.2010.11.061] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 11/15/2010] [Indexed: 12/11/2022]
|
340
|
Iida RH, Kanko S, Suga T, Morito M, Yamane A. Autophagic-lysosomal pathway functions in the masseter and tongue muscles in the klotho mouse, a mouse model for aging. Mol Cell Biochem 2010; 348:89-98. [DOI: 10.1007/s11010-010-0642-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 10/28/2010] [Indexed: 12/19/2022]
|
341
|
Fanzani A, Zanola A, Rovetta F, Rossi S, Aleo MF. Cisplatin triggers atrophy of skeletal C2C12 myotubes via impairment of Akt signalling pathway and subsequent increment activity of proteasome and autophagy systems. Toxicol Appl Pharmacol 2010; 250:312-21. [PMID: 21074548 DOI: 10.1016/j.taap.2010.11.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 10/29/2010] [Accepted: 11/04/2010] [Indexed: 01/05/2023]
Abstract
Cisplatin (cisPt) is an antineoplastic drug which causes an array of adverse effects on different organs and tissues, including skeletal muscle. In this work we show that cisPt behaves as a potent trigger to activate protein hypercatabolism in skeletal C2C12 myotubes. Within 24h of 50 μM cisPt administration, C2C12 myotubes displayed unchanged cell viability but showed a subset of hallmark signs typically recognized during atrophy, including severe reduction in body size, repression of Akt phosphorylation, transcriptional up-regulation of atrophy-related genes, such as atrogin-1, gabarap, beclin-1 and bnip-3, and loss of myogenic markers. As a consequence, proteasomal activity and formation of autophagosomes were remarkably increased in cisPt-treated myotubes, but forced stimulation of Akt pathway, as obtained through insulin administration or delivery of a constitutively activated Akt form, was sufficient to counter the cisPt-induced protein breakdown, leading to rescue of atrophic size. Overall, these results indicate that cisPt induces atrophy of C2C12 myotubes via activation of proteasome and autophagy systems, suggesting that the Akt pathway represents one sensitive target of cisPt molecular action in skeletal muscle.
Collapse
Affiliation(s)
- Alessandro Fanzani
- Department of Biomedical Sciences and Biotechnologies, Unit of Biochemistry, Faculty of Medicine, University of Brescia, viale Europa 11, 25123 Brescia, Italy.
| | | | | | | | | |
Collapse
|
342
|
Raffaello A, Milan G, Masiero E, Carnio S, Lee D, Lanfranchi G, Goldberg AL, Sandri M. JunB transcription factor maintains skeletal muscle mass and promotes hypertrophy. ACTA ACUST UNITED AC 2010; 191:101-13. [PMID: 20921137 PMCID: PMC2953439 DOI: 10.1083/jcb.201001136] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Decreasing JunB expression causes muscle atrophy, whereas overexpression induces hypertrophy and blocks atrophy via myostatin inhibition and regulation of atrogin-1 and MuRF expression via FoxO3. The size of skeletal muscle cells is precisely regulated by intracellular signaling networks that determine the balance between overall rates of protein synthesis and degradation. Myofiber growth and protein synthesis are stimulated by the IGF-1/Akt/mammalian target of rapamycin (mTOR) pathway. In this study, we show that the transcription factor JunB is also a major determinant of whether adult muscles grow or atrophy. We found that in atrophying myotubes, JunB is excluded from the nucleus and that decreasing JunB expression by RNA interference in adult muscles causes atrophy. Furthermore, JunB overexpression induces hypertrophy without affecting satellite cell proliferation and stimulated protein synthesis independently of the Akt/mTOR pathway. When JunB is transfected into denervated muscles, fiber atrophy is prevented. JunB blocks FoxO3 binding to atrogin-1 and MuRF-1 promoters and thus reduces protein breakdown. Therefore, JunB is important not only in dividing populations but also in adult muscle, where it is required for the maintenance of muscle size and can induce rapid hypertrophy and block atrophy.
Collapse
Affiliation(s)
- Anna Raffaello
- Department of Biology, Innovative Biotechnologies Interdepartmental Research Center, University of Padova, 35122 Padova, Italy
| | | | | | | | | | | | | | | |
Collapse
|
343
|
An in vivo and in vitro assessment of autophagy-related gene expression in muscle of rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol B Biochem Mol Biol 2010; 157:258-66. [DOI: 10.1016/j.cbpb.2010.06.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 06/24/2010] [Accepted: 06/25/2010] [Indexed: 11/18/2022]
|
344
|
Puthucheary Z, Montgomery H, Moxham J, Harridge S, Hart N. Structure to function: muscle failure in critically ill patients. J Physiol 2010; 588:4641-8. [PMID: 20961998 DOI: 10.1113/jphysiol.2010.197632] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Impaired physical function and reduced physical activity are common findings in intensive care unit (ICU) survivors. More importantly, reduced muscle strength during critical illness is an independent predictor of survival. Skeletal muscle wasting as a direct consequence of critical illness has been suggested as the cause. However, data on the physiological processes regulating muscle mass, and function, in these critically ill patients are limited as this is not only a technically challenging research area, but also the heterogeneity of the patient group adds complexity to the interpretation of results. Despite this, clinical and research interest in this area is growing. This article highlights the issues involved in measurement of muscle function and mass in critically ill patients and the physiological complexities involved in studying these patients. Although the data are limited, this article reviews the animal and healthy human data providing a rational approach to the potential pathophysiological mechanisms involved in muscle mass regulation in critically ill patients, including the established muscle wasting 'risk factors' such as ageing, immobility and systemic inflammation, all of which are common findings in the general critical care population.
Collapse
Affiliation(s)
- Zudin Puthucheary
- Institute for Human Health and Performance, University College London and Division of Asthma Allergy and Lung Biology, Kings College London, London, UK.
| | | | | | | | | |
Collapse
|
345
|
Myogenin and class II HDACs control neurogenic muscle atrophy by inducing E3 ubiquitin ligases. Cell 2010; 143:35-45. [PMID: 20887891 DOI: 10.1016/j.cell.2010.09.004] [Citation(s) in RCA: 369] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 06/01/2010] [Accepted: 08/20/2010] [Indexed: 11/22/2022]
Abstract
Maintenance of skeletal muscle structure and function requires innervation by motor neurons, such that denervation causes muscle atrophy. We show that myogenin, an essential regulator of muscle development, controls neurogenic atrophy. Myogenin is upregulated in skeletal muscle following denervation and regulates expression of the E3 ubiquitin ligases MuRF1 and atrogin-1, which promote muscle proteolysis and atrophy. Deletion of myogenin from adult mice diminishes expression of MuRF1 and atrogin-1 in denervated muscle and confers resistance to atrophy. Mice lacking histone deacetylases (HDACs) 4 and 5 in skeletal muscle fail to upregulate myogenin and also preserve muscle mass following denervation. Conversely, forced expression of myogenin in skeletal muscle of HDAC mutant mice restores muscle atrophy following denervation. Thus, myogenin plays a dual role as both a regulator of muscle development and an inducer of neurogenic atrophy. These findings reveal a specific pathway for muscle wasting and potential therapeutic targets for this disorder.
Collapse
|
346
|
Altun M, Besche HC, Overkleeft HS, Piccirillo R, Edelmann MJ, Kessler BM, Goldberg AL, Ulfhake B. Muscle wasting in aged, sarcopenic rats is associated with enhanced activity of the ubiquitin proteasome pathway. J Biol Chem 2010; 285:39597-608. [PMID: 20940294 DOI: 10.1074/jbc.m110.129718] [Citation(s) in RCA: 173] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Among the hallmarks of aged organisms are an accumulation of misfolded proteins and a reduction in skeletal muscle mass ("sarcopenia"). We have examined the effects of aging and dietary restriction (which retards many age-related changes) on components of the ubiquitin proteasome system (UPS) in muscle. The hindlimb muscles of aged (30 months old) rats showed a marked loss of muscle mass and contained 2-3-fold higher levels of 26S proteasomes than those of adult (4 months old) controls. 26S proteasomes purified from muscles of aged and adult rats showed a similar capacity to degrade peptides, proteins, and an ubiquitylated substrate, but differed in levels of proteasome-associated proteins (e.g. the ubiquitin ligase E6AP and deubiquitylating enzyme USP14). Also, the activities of many other deubiquitylating enzymes were greatly enhanced in the aged muscles. Nevertheless, their content of polyubiquitylated proteins was higher than in adult animals. The aged muscles contained higher levels of the ubiquitin ligase CHIP, involved in eliminating misfolded proteins, and MuRF1, which ubiquitylates myofibrillar proteins. These muscles differed from ones rapidly atrophying due to disease, fasting, or disuse in that Atrogin-1/MAFbx expression was low and not inducible by glucocorticoids. Thus, the muscles of aged rats showed many adaptations indicating enhanced proteolysis by the UPS, which may enhance their capacity to eliminate misfolded proteins and seems to contribute to the sarcopenia. Accordingly, dietary restriction decreased or prevented the aging-associated increases in proteasomes and other UPS components and reduced muscle wasting.
Collapse
Affiliation(s)
- Mikael Altun
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
347
|
Menconi MJ, Arany ZP, Alamdari N, Aversa Z, Gonnella P, O'Neal P, Smith IJ, Tizio S, Hasselgren PO. Sepsis and glucocorticoids downregulate the expression of the nuclear cofactor PGC-1beta in skeletal muscle. Am J Physiol Endocrinol Metab 2010; 299:E533-43. [PMID: 20647557 PMCID: PMC2957862 DOI: 10.1152/ajpendo.00596.2009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Muscle wasting during sepsis is at least in part regulated by glucocorticoids and is associated with increased transcription of genes encoding the ubiquitin ligases atrogin-1 and muscle-specific RING-finger protein-1 (MuRF1). Recent studies suggest that muscle atrophy caused by denervation is associated with reduced expression of the nuclear cofactor peroxisome proliferator-activated receptor-γ coactivator (PGC)-1β and that PGC-1β may be a repressor of the atrogin-1 and MuRF1 genes. The influence of other muscle-wasting conditions on the expression of PGC-1β is not known. We tested the influence of sepsis and glucocorticoids on PGC-1β and examined the potential link between downregulated PGC-1β expression and upregulated atrogin-1 and MuRF1 expression in skeletal muscle. Sepsis in rats and mice and treatment with dexamethasone resulted in downregulated expression of PGC-1β and increased expression of atrogin-1 and MuRF1 in the fast-twitch extensor digitorum longus muscle, with less pronounced changes in the slow-twitch soleus muscle. In additional experiments, adenoviral gene transfer of PGC-1β into cultured C2C12 myotubes resulted in a dose-dependent decrease in atrogin-1 and MuRF1 mRNA levels. Treatment of cultured C2C12 myotubes with dexamethasone or PGC-1β small interfering RNA (siRNA) resulted in downregulated PGC-1β expression and increased protein degradation. Taken together, our results suggest that sepsis- and glucocorticoid-induced muscle wasting may, at least in part, be regulated by decreased expression of the nuclear cofactor PGC-1β.
Collapse
Affiliation(s)
- Michael J Menconi
- Departmentof Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 2215, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
348
|
Skeletal muscle dysfunction in critical care: Wasting, weakness, and rehabilitation strategies. Crit Care Med 2010; 38:S676-82. [DOI: 10.1097/ccm.0b013e3181f2458d] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
349
|
Buford TW, Anton SD, Judge AR, Marzetti E, Wohlgemuth SE, Carter CS, Leeuwenburgh C, Pahor M, Manini TM. Models of accelerated sarcopenia: critical pieces for solving the puzzle of age-related muscle atrophy. Ageing Res Rev 2010; 9:369-83. [PMID: 20438881 PMCID: PMC3788572 DOI: 10.1016/j.arr.2010.04.004] [Citation(s) in RCA: 203] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 04/14/2010] [Accepted: 04/15/2010] [Indexed: 12/25/2022]
Abstract
Sarcopenia, the age-related loss of skeletal muscle mass, is a significant public health concern that continues to grow in relevance as the population ages. Certain conditions have the strong potential to coincide with sarcopenia to accelerate the progression of muscle atrophy in older adults. Among these conditions are co-morbid diseases common to older individuals such as cancer, kidney disease, diabetes, and peripheral artery disease. Furthermore, behaviors such as poor nutrition and physical inactivity are well-known to contribute to sarcopenia development. However, we argue that these behaviors are not inherent to the development of sarcopenia but rather accelerate its progression. In the present review, we discuss how these factors affect systemic and cellular mechanisms that contribute to skeletal muscle atrophy. In addition, we describe gaps in the literature concerning the role of these factors in accelerating sarcopenia progression. Elucidating biochemical pathways related to accelerated muscle atrophy may allow for improved discovery of therapeutic treatments related to sarcopenia.
Collapse
Affiliation(s)
- Thomas W. Buford
- Institute on Aging, University of Florida, Gainesville, FL 32611
| | - Stephen D. Anton
- Institute on Aging, University of Florida, Gainesville, FL 32611
| | - Andrew R. Judge
- Institute on Aging, University of Florida, Gainesville, FL 32611
| | | | | | | | | | - Marco Pahor
- Institute on Aging, University of Florida, Gainesville, FL 32611
| | - Todd M. Manini
- Institute on Aging, University of Florida, Gainesville, FL 32611
| |
Collapse
|
350
|
Microarray analysis of gene expression by skeletal muscle of three mouse models of Kennedy disease/spinal bulbar muscular atrophy. PLoS One 2010; 5:e12922. [PMID: 20886071 PMCID: PMC2944863 DOI: 10.1371/journal.pone.0012922] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2010] [Accepted: 09/01/2010] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Emerging evidence implicates altered gene expression within skeletal muscle in the pathogenesis of Kennedy disease/spinal bulbar muscular atrophy (KD/SBMA). We therefore broadly characterized gene expression in skeletal muscle of three independently generated mouse models of this disease. The mouse models included a polyglutamine expanded (polyQ) AR knock-in model (AR113Q), a polyQ AR transgenic model (AR97Q), and a transgenic mouse that overexpresses wild type AR solely in skeletal muscle (HSA-AR). HSA-AR mice were included because they substantially reproduce the KD/SBMA phenotype despite the absence of polyQ AR. METHODOLOGY/PRINCIPAL FINDINGS We performed microarray analysis of lower hindlimb muscles taken from these three models relative to wild type controls using high density oligonucleotide arrays. All microarray comparisons were made with at least 3 animals in each condition, and only those genes having at least 2-fold difference and whose coefficient of variance was less than 100% were considered to be differentially expressed. When considered globally, there was a similar overlap in gene changes between the 3 models: 19% between HSA-AR and AR97Q, 21% between AR97Q and AR113Q, and 17% between HSA-AR and AR113Q, with 8% shared by all models. Several patterns of gene expression relevant to the disease process were observed. Notably, patterns of gene expression typical of loss of AR function were observed in all three models, as were alterations in genes involved in cell adhesion, energy balance, muscle atrophy and myogenesis. We additionally measured changes similar to those observed in skeletal muscle of a mouse model of Huntington's Disease, and to those common to muscle atrophy from diverse causes. CONCLUSIONS/SIGNIFICANCE By comparing patterns of gene expression in three independent models of KD/SBMA, we have been able to identify candidate genes that might mediate the core myogenic features of KD/SBMA.
Collapse
|