301
|
Carpousis AJ, Khemici V, Aït-Bara S, Poljak L. Co-immunopurification of multiprotein complexes containing RNA-degrading enzymes. Methods Enzymol 2009; 447:65-82. [PMID: 19161838 DOI: 10.1016/s0076-6879(08)02204-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Co-immunopurification is a classical technique in which antiserum raised against a specific protein is used to purify a multiprotein complex. We describe work from our laboratory in which co-immunopurification was used to characterize the RNA degradosome of Escherichia coli, a multiprotein complex involved in RNA processing and mRNA degradation. Polyclonal rabbit antibodies raised against either RNase E or PNPase, two RNA degrading enzymes in the RNA degradosome, were used in co-immunopurification experiments aimed at studying the assembly of the RNA degradosome and mapping protein-protein interactions within the complex. In E. coli, this method has been largely supplanted by approaches in which proteins are engineered to contain tags that interact with commercially available antibodies. Nevertheless, we believe that the method described here is valid for the study of bacteria in which the genetic engineering needed to introduce tagged proteins is difficult or nonexistent. As an example, we briefly discuss ongoing work in our laboratory on the characterization of RNase E in the psychrotolerant bacterium Pseudoalteromonas haloplanktis.
Collapse
Affiliation(s)
- Agamemnon J Carpousis
- Laboratoire de Microbiologie et Génétique Moléculaire, Centre National de la Recherche Scientifique and Université Paul Sabatier, Toulouse, France
| | | | | | | |
Collapse
|
302
|
Abstract
Noncoding RNA regulators have been implicated in almost all imaginable cellular processes. Here we review how regulatory small RNAs such as Spot42, SgrS, GlmY, and GlmZ and a cis-encoded ribozyme in glmS mRNA control sugar metabolism. Besides discussing the physiological implications, we show how the study of these molecules contributed to our understanding of the mechanisms and of general principles of RNA-based regulation. These include the post-transcriptional repression or activation of gene expression within polycistronic mRNAs; novel ribonucleoprotein complexes composed of small RNA, Hfq, and/or RNase E; and the hierarchical action of regulatory RNAs.
Collapse
Affiliation(s)
- Boris Görke
- Department of General Microbiology, Georg August University Göttingen, Göttingen, Germany
| | | |
Collapse
|
303
|
Abstract
Regulatory ncRNAs (non-coding RNAs) adjust bacterial physiology in response to environmental cues. ncRNAs can base-pair to mRNAs and change their translation efficiency and/or their stability, or they can bind to proteins and modulate their activity. ncRNAs have been discovered in several species throughout the bacterial kingdom. This review illustrates the diversity of physiological processes and molecular mechanisms where ncRNAs are key regulators.
Collapse
|
304
|
Régnier P, Hajnsdorf E. Poly(A)-assisted RNA decay and modulators of RNA stability. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 85:137-85. [PMID: 19215772 DOI: 10.1016/s0079-6603(08)00804-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In Escherichia coli, RNA degradation is orchestrated by the degradosome with the assistance of complementary pathways and regulatory cofactors described in this chapter. They control the stability of each transcript and regulate the expression of many genes involved in environmental adaptation. The poly(A)-dependent degradation machinery has diverse functions such as the degradation of decay intermediates generated by endoribonucleases, the control of the stability of regulatory non coding RNAs (ncRNAs) and the quality control of stable RNA. The metabolism of poly(A) and mechanism of poly(A)-assisted degradation are beginning to be understood. Regulatory factors, exemplified by RraA and RraB, control the decay rates of subsets of transcripts by binding to RNase E, in contrast to regulatory ncRNAs which, assisted by Hfq, target RNase E to specific transcripts. Destabilization is often consecutive to the translational inactivation of mRNA. However, there are examples where RNA degradation is the primary regulatory step.
Collapse
Affiliation(s)
- Philippe Régnier
- CNRS UPR9073, Institut de Biologie Physico-Chimique, Paris, France
| | | |
Collapse
|
305
|
Carpousis AJ, Luisi BF, McDowall KJ. Endonucleolytic initiation of mRNA decay in Escherichia coli. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 85:91-135. [PMID: 19215771 DOI: 10.1016/s0079-6603(08)00803-9] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Instability is a fundamental property of mRNA that is necessary for the regulation of gene expression. In E. coli, the turnover of mRNA involves multiple, redundant pathways involving 3'-exoribonucleases, endoribonucleases, and a variety of other enzymes that modify RNA covalently or affect its conformation. Endoribonucleases are thought to initiate or accelerate the process of mRNA degradation. A major endoribonuclease in this process is RNase E, which is a key component of the degradative machinery amongst the Proteobacteria. RNase E is the central element in a multienzyme complex known as the RNA degradosome. Structural and functional data are converging on models for the mechanism of activation and regulation of RNase E and its paralog, RNase G. Here, we discuss current models for mRNA degradation in E. coli and we present current thinking on the structure and function of RNase E based on recent crystal structures of its catalytic core.
Collapse
Affiliation(s)
- Agamemnon J Carpousis
- Laboratoire de Microbiologie et Génétique Moléculaires, CNRS et Université Paul Sabatier, 31062 Toulouse, France
| | | | | |
Collapse
|
306
|
Evguenieva‐Hackenberg E, Klug G. Chapter 7 RNA Degradation in Archaea and Gram‐Negative Bacteria Different from Escherichia coli. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 85:275-317. [DOI: 10.1016/s0079-6603(08)00807-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
307
|
Dreyfus M. Killer and protective ribosomes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 85:423-66. [PMID: 19215779 DOI: 10.1016/s0079-6603(08)00811-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In prokaryotes, translation influences mRNA decay. The breakdown of most Escherichia coli mRNAs is initiated by RNase E, a 5'-dependent endonuclease. Some mRNAs are protected by ribosomes even if these are located far upstream of cleavage sites ("protection at a distance"), whereas others require direct shielding of these sites. I argue that these situations reflect different modes of interaction of RNase E with mRNAs. Protection at a distance is most impressive in Bacilli, where ribosomes can protect kilobases of unstable downstream sequences. I propose that this protection reflects the role in mRNA decay of RNase J1, a 5'-->3' exonuclease with no E. coli equivalent. Finally, recent years have shown that besides their protective role, ribosomes can also cleave their mRNA under circumstances that cause ribosome stalling. The endonuclease associated with this "killing" activity, which has a eukaryotic counterpart ("no-go decay"), is not characterized; it may be borne by the distressed ribosome itself.
Collapse
|
308
|
Schuster G, Stern D. RNA polyadenylation and decay in mitochondria and chloroplasts. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 85:393-422. [PMID: 19215778 DOI: 10.1016/s0079-6603(08)00810-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mitochondria and chloroplasts were originally acquired by eukaryotic cells through endosymbiotic events and retain their own gene expression machinery. One hallmark of gene regulation in these two organelles is the predominance of posttranscriptional control, which is exerted both at the gene-specific and global levels. This review focuses on their mechanisms of RNA degradation, and therefore mainly on the polyadenylation-stimulated degradation pathway. Overall, mitochondria and chloroplasts have retained the prokaryotic RNA decay system, despite evolution in the number and character of the enzymes involved. However, several significant differences exist, of which the presence of stable poly(A) tails, and the location of PNPase in the intermembrane space in animal mitochondria, are perhaps the most remarkable. The known and predicted proteins taking part in polyadenylation-stimulated degradation pathways are described, both in chloroplasts and four mitochondrial types: plant, yeast, trypanosome, and animal.
Collapse
Affiliation(s)
- Gadi Schuster
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | |
Collapse
|
309
|
Valverde C, Haas D. Small RNAs Controlled by Two-Component Systems. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 631:54-79. [DOI: 10.1007/978-0-387-78885-2_5] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
310
|
Coros CJ, Piazza CL, Chalamcharla VR, Belfort M. A mutant screen reveals RNase E as a silencer of group II intron retromobility in Escherichia coli. RNA (NEW YORK, N.Y.) 2008; 14:2634-2644. [PMID: 18945808 PMCID: PMC2590951 DOI: 10.1261/rna.1247608] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Accepted: 09/02/2008] [Indexed: 05/27/2023]
Abstract
Group II introns are mobile retroelements that invade their hosts. The Lactococcus lactis group II intron recruits cellular polymerases, nucleases, and DNA ligase to complete the retromobility process in Escherichia coli. Here we describe a genetic screen with a Tn5 transposon library to identify other E. coli functions involved in retromobility of the L. lactis LtrB intron. Thirteen disruptions that reproducibly resulted in increased or decreased retrohoming levels into the E. coli chromosome were isolated. These functions were classified as factors involved in RNA processing, DNA replication, energy metabolism, and global regulation. Here we characterize a novel mutant in the rne promoter region, which regulates RNase E expression. Retrohoming and retrotransposition levels are elevated in the rneTn5 mutant. The stimulatory effect of the mutation on retromobility results from intron RNA accumulation in the RNase E mutant. These results suggest that RNase E, which is the central component of the RNA degradosome, could regulate retrohoming levels in response to cellular physiology.
Collapse
Affiliation(s)
- Colin J Coros
- Center for Medical Sciences, Wadsworth Center, New York State Department of Health, Albany, New York 12208, USA
| | | | | | | |
Collapse
|
311
|
Dienst D, Dühring U, Mollenkopf HJ, Vogel J, Golecki J, Hess WR, Wilde A. The cyanobacterial homologue of the RNA chaperone Hfq is essential for motility of Synechocystis sp. PCC 6803. MICROBIOLOGY-SGM 2008; 154:3134-3143. [PMID: 18832319 DOI: 10.1099/mic.0.2008/020222-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The ssr3341 locus was previously suggested to encode an orthologue of the RNA chaperone Hfq in the cyanobacterium Synechocystis sp. strain PCC 6803. Insertional inactivation of this gene resulted in a mutant that was not naturally transformable and exhibited a non-phototactic phenotype compared with the wild-type. The loss of motility was complemented by reintroduction of the wild-type gene, correlated with the re-establishment of type IV pili on the cell surface. Microarray analyses revealed a small set of genes with drastically reduced transcript levels in the knockout mutant compared with the wild-type cells. Among the most strongly affected genes, slr1667, slr1668, slr2015, slr2016 and slr2018 stood out, as they belong to two operons that had previously been shown to be involved in motility, controlled by the cAMP receptor protein SYCRP1. This suggests a link between cAMP signalling, motility and possibly the involvement of RNA-based regulation. This is believed to be the first report demonstrating a functional role of an Hfq orthologue in cyanobacteria, establishing a new factor in the control of motility.
Collapse
Affiliation(s)
- Dennis Dienst
- Humboldt-University Berlin, Institute of Biology, Chausseestr. 117, 10115 Berlin, Germany
| | - Ulf Dühring
- Humboldt-University Berlin, Institute of Biology, Chausseestr. 117, 10115 Berlin, Germany
| | | | - Jörg Vogel
- Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - Jochen Golecki
- University of Freiburg, Faculty of Biology, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Wolfgang R Hess
- University of Freiburg, Faculty of Biology, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Annegret Wilde
- Justus-Liebig University Giessen, Institute of Microbiology and Molecular Biology, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.,Humboldt-University Berlin, Institute of Biology, Chausseestr. 117, 10115 Berlin, Germany
| |
Collapse
|
312
|
Lodato PB, Kaper JB. Post-transcriptional processing of the LEE4 operon in enterohaemorrhagic Escherichia coli. Mol Microbiol 2008; 71:273-90. [PMID: 19019141 DOI: 10.1111/j.1365-2958.2008.06530.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Enterohaemorrhagic Escherichia coli (EHEC) employs a type III secretion system (T3SS) to export translocator and effector proteins required for mucosal colonization. The T3SS is encoded in a pathogenicity island called the locus of enterocyte effacement (LEE) that is organized in five major operons, LEE1 to LEE5. LEE4 encodes a regulator of secretion (SepL), translocators (EspA, D and B), two chaperones (CesD2 and L0017), a T3SS component (EscF) and an effector protein (EspF). It was originally proposed that the esp transcript is transcribed from a promoter located at the end of sepL but other authors suggested that this transcript is the result of a post-transcriptional processing event. In this study, we established that the espADB mRNA is generated by post-transcriptional processing at the end of the sepL coding sequence. RNase E is the endonuclease involved in the cleavage, but the interaction of this enzyme with other proteins through its C-terminal half is dispensable. A putative transcription termination event in the cesD2 coding region would generate the 3' end of the transcript. Similar to what has been described for other processed transcripts, the cleavage of LEE4 seems a mechanism to differentially regulate SepL and Esp protein production.
Collapse
Affiliation(s)
- Patricia B Lodato
- Center for Vaccine Development and Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore St, Baltimore, MD 21201, USA
| | | |
Collapse
|
313
|
Guillier M, Gottesman S. The 5' end of two redundant sRNAs is involved in the regulation of multiple targets, including their own regulator. Nucleic Acids Res 2008; 36:6781-94. [PMID: 18953042 PMCID: PMC2588501 DOI: 10.1093/nar/gkn742] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Small RNAs are widespread regulators of gene expression in numerous organisms. This study describes the mode of action of two redundant Escherichia coli sRNAs, OmrA and OmrB, that downregulate the expression of multiple targets, most of which encode outer membrane proteins. Our results show that both sRNAs directly interact with at least two of these target mRNAs, ompT and cirA, in the vicinity of the translation initiation region, consistent with control of these targets being dependent on both Hfq and RNase E. Interestingly, these interactions depend on short stretches of complementarity and involve the conserved 5' end of OmrA/B. A mutation in this region abolishes control of all OmrA/B targets tested thus far, thereby highlighting the crucial role of the OmrA/B 5' end. This allowed us, by looking for mRNA sequences complementary to the OmrA/B 5' end, to identify ompR as an additional direct target of these two sRNAs. Since the OmpR transcriptional regulator activates expression of both omrA and omrB genes, this newly identified control should result in an autoregulatory loop limiting the amount of OmrA/B sRNAs.
Collapse
Affiliation(s)
- Maude Guillier
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
314
|
Khemici V, Poljak L, Luisi BF, Carpousis AJ. The RNase E of Escherichia coli is a membrane-binding protein. Mol Microbiol 2008; 70:799-813. [PMID: 18976283 DOI: 10.1111/j.1365-2958.2008.06454.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
RNase E is an essential endoribonuclease involved in RNA processing and mRNA degradation. The N-terminal half of the protein encompasses the catalytic domain; the C-terminal half is the scaffold for the assembly of the multienzyme RNA degradosome. Here we identify and characterize 'segment-A', an element in the beginning of the non-catalytic region of RNase E that is required for membrane binding. We demonstrate in vitro that an oligopeptide corresponding to segment-A has the propensity to form an amphipathic alpha-helix and that it avidly binds to protein-free phospholipid vesicles. We demonstrate in vitro and in vivo that disruption of segment-A in full-length RNase E abolishes membrane binding. Taken together, our results show that segment-A is necessary and sufficient for RNase E binding to membranes. Strains in which segment-A has been disrupted grow slowly. Since in vitro experiments show that phospholipid binding does not affect the ribonuclease activity of RNase E, the slow-growth phenotype might arise from a defect involving processes such as accessibility to substrates or interactions with other membrane-bound machinery. This is the first report demonstrating that RNase E is a membrane-binding protein and that its localization to the inner cytoplasmic membrane is important for normal cell growth.
Collapse
Affiliation(s)
- Vanessa Khemici
- Laboratoire de Microbiologie et Génétique Moléculaire, UMR 5100, Centre National de la Recherche Scientifique, Université Paul Sabatier, 31062 Toulouse, France
| | | | | | | |
Collapse
|
315
|
Tramonti A, De Canio M, De Biase D. GadX/GadW-dependent regulation of the Escherichia coli acid fitness island: transcriptional control at the gadY-gadW divergent promoters and identification of four novel 42 bp GadX/GadW-specific binding sites. Mol Microbiol 2008; 70:965-82. [PMID: 18808381 DOI: 10.1111/j.1365-2958.2008.06458.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Escherichia coli has the remarkable ability to resist severe acid stress for several hours. With the notable exception of the gadBC operon, the most important genes involved in acid resistance are present within the acid fitness island (AFI), a 15 kb H-NS-repressed and RpoS-controlled genome region. The AraC/XylS-like transcriptional regulators GadX and GadW are also encoded within this region. In this article, we show that gadW transcription occurs from two native promoters, which are affected by the transcription of the divergently transcribed and GadX-dependent gadY small RNA, and from the gadX promoter. The gadXW dicistronic transcript is subjected to post-transcriptional processing in which GadY is involved. In contrast, gadW transcription negatively affects gadY transcription. By aligning the GadX/GadW binding site on the gadY promoter with the GadX/GadW binding sites previously identified in the gadA and gadBC 5' regulatory regions, we generated a 42 bp GadX/GadW consensus sequence. DNase I footprinting analyses confirmed that a 42 bp GadX/GadW binding site, which matched the consensus sequence 5'-WANDNCTDWTWKTRAYATWAWMATG KCTGATNTTTWYNTYAK-3', is also present in the regulatory region of the slp-yhiF, hdeAB and gadE-mtdEF operons, all of which belong to the AFI. The presence of five GadX/GadW-specific binding sites in the AFI suggests that GadX and GadW may act as H-NS counter-silencers.
Collapse
Affiliation(s)
- Angela Tramonti
- Istituto di Biologia e Patologia Molecolari, CNR, Sapienza Università di Roma, Roma, Italy
| | | | | |
Collapse
|
316
|
The Bacillus subtilis iron-sparing response is mediated by a Fur-regulated small RNA and three small, basic proteins. Proc Natl Acad Sci U S A 2008; 105:11927-32. [PMID: 18697947 DOI: 10.1073/pnas.0711752105] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Regulation of bacterial iron homeostasis is often controlled by the iron-sensing ferric uptake repressor (Fur). The Bacillus subtilis Fur protein acts as an iron-dependent repressor for siderophore biosynthesis and iron transport proteins. Here, we demonstrate that Fur also coordinates an iron-sparing response that acts to repress the expression of iron-rich proteins when iron is limiting. When Fur is inactive, numerous iron-containing proteins are down-regulated, including succinate dehydrogenase, aconitase, cytochromes, and biosynthetic enzymes for heme, cysteine, and branched chain amino acids. As a result, a fur mutant grows slowly in a variety of nutrient conditions. Depending on the growth medium, rapid growth can be restored by mutations in one or more of the molecular effectors of the iron-sparing response. These effectors include the products of three Fur-regulated operons that encode a small RNA (FsrA) and three small, basic proteins (FbpA, FbpB, and FbpC). Extensive complementarity between FsrA and the leader region of the succinate dehydrogenase operon is consistent with an RNA-mediated translational repression mechanism for this target. Thus, iron deprivation in B. subtilis activates pathways to remodel the proteome to preserve iron for the most critical cellular functions.
Collapse
|
317
|
Identification of amino acid residues in the catalytic domain of RNase E essential for survival of Escherichia coli: functional analysis of DNase I subdomain. Genetics 2008; 179:1871-9. [PMID: 18660536 DOI: 10.1534/genetics.108.088492] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RNase E is an essential Escherichia coli endoribonuclease that plays a major role in the decay and processing of a large fraction of RNAs in the cell. To better understand the molecular mechanisms of RNase E action, we performed a genetic screen for amino acid substitutions in the catalytic domain of the protein (N-Rne) that knock down the ability of RNase E to support survival of E. coli. Comparative phylogenetic analysis of RNase E homologs shows that wild-type residues at these mutated positions are nearly invariably conserved. Cells conditionally expressing these N-Rne mutants in the absence of wild-type RNase E show a decrease in copy number of plasmids regulated by the RNase E substrate RNA I, and accumulation of 5S ribosomal RNA, M1 RNA, and tRNA(Asn) precursors, as has been found in Rne-depleted cells, suggesting that the inability of these mutants to support cellular growth results from loss of ribonucleolytic activity. Purified mutant proteins containing an amino acid substitution in the DNase I subdomain, which is spatially distant from the catalytic site posited from crystallographic studies, showed defective binding to an RNase E substrate, p23 RNA, but still retained RNA cleavage activity-implicating a previously unidentified structural motif in the DNase I subdomain in the binding of RNase E to targeted RNA molecules, demonstrating the role of the DNase I domain in RNase E activity.
Collapse
|
318
|
Worrall JAR, Górna M, Crump NT, Phillips LG, Tuck AC, Price AJ, Bavro VN, Luisi BF. Reconstitution and analysis of the multienzyme Escherichia coli RNA degradosome. J Mol Biol 2008; 382:870-83. [PMID: 18691600 DOI: 10.1016/j.jmb.2008.07.059] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 07/18/2008] [Accepted: 07/23/2008] [Indexed: 10/21/2022]
Abstract
The Escherichia coli RNA degradosome is a multienzyme assembly that functions in transcript turnover and maturation of structured RNA precursors. We have developed a procedure to reconstitute the RNA degradosome from recombinant components using modular coexpression vectors. The reconstituted assembly can be purified on a scale that has enabled biochemical and biophysical analyses, and we compare the properties of recombinant and cell-extracted RNA degradosomes. We present evidence that auxiliary protein components can be recruited to the 'superprotomer' core of the assembly through a dynamic equilibrium involving RNA intermediaries. We discuss the implications for the regulation of RNA degradosome function in vivo.
Collapse
Affiliation(s)
- Jonathan A R Worrall
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | | | | | | | | | | | | | | |
Collapse
|
319
|
RNA, but not protein partners, is directly responsible for translational silencing by a bacterial Hfq-binding small RNA. Proc Natl Acad Sci U S A 2008; 105:10332-7. [PMID: 18650387 DOI: 10.1073/pnas.0803106105] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SgrS is an Hfq-binding small RNA that is induced under glucose phosphate stress in Escherichia coli. It forms a specific ribo nucleo protein complex with Hfq and RNase E resulting in translational repression and rapid degradation of ptsG mRNA, encoding the glucose transporter. Here, we report translational silencing of ptsG mRNA in a defined in vitro system. We demonstrate that SgrS and Hfq are the minimum components for translational silencing to faithfully reproduce the reaction in cells. We show that ptsG-SgrS base pairing is sufficient to cause translational repression when the ptsG mRNA is forced to base pair with SgrS without the help of Hfq. The extent of translational repression correlates with the extent of duplex formation. We conclude that base pairing itself but not Hfq is directly responsible for translational silencing and the major role of Hfq in gene silencing is to stimulate the base pairing between SgrS and ptsG mRNA. This simple mechanism is in striking contrast to miRNA action in eukaryote in which the RNA is believed to act only as a guide of protein partners.
Collapse
|
320
|
Schein A, Sheffy-Levin S, Glaser F, Schuster G. The RNase E/G-type endoribonuclease of higher plants is located in the chloroplast and cleaves RNA similarly to the E. coli enzyme. RNA (NEW YORK, N.Y.) 2008; 14:1057-68. [PMID: 18441049 PMCID: PMC2390796 DOI: 10.1261/rna.907608] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
RNase E is an endoribonuclease that has been studied primarily in Escherichia coli, where it is prominently involved in the processing and degradation of RNA. Homologs of bacterial RNase E are encoded in the nuclear genome of higher plants. RNA degradation in the chloroplast, an organelle that originated from a prokaryote similar to cyanobacteria, occurs via the polyadenylation-assisted degradation pathway. In E. coli, this process is probably initiated with the removal of 5'-end phosphates followed by endonucleolytic cleavage by RNase E. The plant homolog has been proposed to function in a similar way in the chloroplast. Here we show that RNase E of Arabidopsis is located in the soluble fraction of the chloroplast as a high molecular weight complex. In order to characterize its endonucleolytic activity, Arabidopsis RNase E was expressed in bacteria and analyzed. Similar to its E. coli counterpart, the endonucleolytic activity of the Arabidopsis enzyme depends on the number of phosphates at the 5' end, is inhibited by structured RNA, and preferentially cleaves A/U-rich sequences. The enzyme forms an oligomeric complex of approximately 680 kDa. The chloroplast localization and the similarity in the two enzymes' characteristics suggest that plant RNase E participates in the initial endonucleolytic cleavage of the polyadenylation-stimulated RNA degradation process in the chloroplast, perhaps in collaboration with the two other chloroplast endonucleases, RNase J and CSP41.
Collapse
Affiliation(s)
- Aleks Schein
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | | | | | |
Collapse
|
321
|
Abstract
AbstractA large variety of RNA-based mechanisms have been uncovered in all living organisms to regulate gene expression in response to internal and external changes, and to rapidly adapt cell growth in response to these signals. In bacteria, structural elements in the 5′ leader regions of mRNAs have direct effects on translation initiation of the downstream coding sequences. The docking and unfolding of these mRNAs on the 30S subunit are critical steps in the initiation process directly modulating and timing translation. Structural elements can also undergo conformational changes in response to environmental cues (i.e., temperature sensors) or upon binding of a variety oftrans-acting factors, such as metabolites, non-coding RNAs or regulatory proteins. These RNA switches can temporally regulate translation, leading either to repression or to activation of protein synthesis.
Collapse
|
322
|
Taghbalout A, Rothfield L. RNaseE and RNA helicase B play central roles in the cytoskeletal organization of the RNA degradosome. J Biol Chem 2008; 283:13850-5. [PMID: 18337249 DOI: 10.1074/jbc.m709118200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The RNA degradosome of Escherichia coli is a multiprotein complex that plays an essential role in normal RNA processing and decay. It was recently shown that the major degradosome constituents are organized in a coiled cytoskeletal-like structure that extends along the length of the cell. Here we show that the endoribonuclease E (RNaseE) and RNA helicase B (RhlB) components of the degradosome can each independently form coiled structures in the absence of the other degradosome proteins. In contrast, the cytoskeletal organization of the other degradosome proteins required the presence of the RNaseE or RhlB coiled elements. Although the RNaseE and RhlB structures were equally competent to support the helical organization of polynucleotide phosphorylase, the cytoskeletal-like organization of enolase occurred only in the presence of the RNaseE coiled structure. The results indicate that the RNA degradosome proteins are components of the bacterial cytoskeleton rather than existing as randomly distributed multiprotein complexes within the cell and suggest a model for the cellular organization of the components within the helical degradosomal structure.
Collapse
Affiliation(s)
- Aziz Taghbalout
- Department of Molecular, Microbial, and Structural Biology, University of Connecticut Health Center, Farmington, Connecticut 06032, USA.
| | | |
Collapse
|
323
|
Richards J, Sundermeier T, Svetlanov A, Karzai AW. Quality control of bacterial mRNA decoding and decay. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2008; 1779:574-82. [PMID: 18342642 DOI: 10.1016/j.bbagrm.2008.02.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Accepted: 02/05/2008] [Indexed: 11/19/2022]
Abstract
Studies in eukaryotes and prokaryotes have revealed that gene expression is not only controlled through altering the rate of transcription but also through varying rates of translation and mRNA decay. Indeed, the expression level of a protein is strongly affected by the steady state level of its mRNA. RNA decay can, along with transcription, play an important role in regulating gene expression by fine-tuning the steady state level of a given transcript and affecting its subsequent decoding during translation. Alterations in mRNA stability can in turn have dramatic effects on cell physiology and as a consequence the fitness and survival of the organism. Recent evidence suggests that mRNA decay can be regulated in response to environmental cues in order to enable the organism to adapt to its changing surroundings. Bacteria have evolved unique post transcriptional control mechanisms to enact such adaptive responses through: 1) general mRNA decay, 2) differential mRNA degradation using small non-coding RNAs (sRNAs), and 3) selective mRNA degradation using the tmRNA quality control system. Here, we review our current understanding of these molecular mechanisms, gleaned primarily from studies of the model gram negative organism Escherichia coli, that regulate the stability and degradation of normal and defective transcripts.
Collapse
Affiliation(s)
- Jamie Richards
- Department of Biochemistry and Cell Biology, Center for Infectious Diseases of Stony Brook University, Stony Brook, NY 11794, USA
| | | | | | | |
Collapse
|
324
|
Andrade JM, Arraiano CM. PNPase is a key player in the regulation of small RNAs that control the expression of outer membrane proteins. RNA (NEW YORK, N.Y.) 2008; 14:543-51. [PMID: 18203924 PMCID: PMC2248267 DOI: 10.1261/rna.683308] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Accepted: 10/24/2007] [Indexed: 05/22/2023]
Abstract
In this report, we demonstrate that exonucleolytic turnover is much more important in the regulation of sRNA levels than was previously recognized. For the first time, PNPase is introduced as a major regulatory feature controlling the levels of the small noncoding RNAs MicA and RybB, which are required for the accurate expression of outer membrane proteins (OMPs). In the absence of PNPase, the pattern of OMPs is changed. In stationary phase, MicA RNA levels are increased in the PNPase mutant, leading to a decrease in the levels of its target ompA mRNA and the respective protein. This growth phase regulation represents a novel pathway of control. We have evaluated other ribonucleases in the control of MicA RNA, and we showed that degradation by PNPase surpasses the effect of endonucleolytic cleavages by RNase E. RybB was also destabilized by PNPase. This work highlights a new role for PNPase in the degradation of small noncoding RNAs and opens the way to evaluate striking similarities between bacteria and eukaryotes.
Collapse
Affiliation(s)
- José M Andrade
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2781-901 Oeiras, Portugal
| | | |
Collapse
|
325
|
Resch A, Afonyushkin T, Lombo TB, McDowall KJ, Bläsi U, Kaberdin VR. Translational activation by the noncoding RNA DsrA involves alternative RNase III processing in the rpoS 5'-leader. RNA (NEW YORK, N.Y.) 2008; 14:454-459. [PMID: 18192613 PMCID: PMC2248258 DOI: 10.1261/rna.603108] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Accepted: 11/09/2007] [Indexed: 05/25/2023]
Abstract
The intricate regulation of the Escherichia coli rpoS gene, which encodes the stationary phase sigma-factor sigmaS, includes translational activation by the noncoding RNA DsrA. We observed that the stability of rpoS mRNA, and concomitantly the concentration of sigmaS, were significantly higher in an RNase III-deficient mutant. As no decay intermediates corresponding to the in vitro mapped RNase III cleavage site in the rpoS leader could be detected in vivo, the initial RNase III cleavage appears to be decisive for the observed rapid inactivation of rpoS mRNA. In contrast, we show that base-pairing of DsrA with the rpoS leader creates an alternative RNase III cleavage site within the rpoS/DsrA duplex. This study provides new insights into regulation by small regulatory RNAs in that the molecular function of DsrA not only facilitates ribosome loading on rpoS mRNA, but additionally involves an alternative processing of the target.
Collapse
Affiliation(s)
- Armin Resch
- Max F. Perutz Laboratories, Department of Microbiology and Immunobiology, University Departments at the Vienna Biocenter, A-1030 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
326
|
Lee T, Feig AL. The RNA binding protein Hfq interacts specifically with tRNAs. RNA (NEW YORK, N.Y.) 2008; 14:514-23. [PMID: 18230766 PMCID: PMC2248270 DOI: 10.1261/rna.531408] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Accepted: 11/28/2007] [Indexed: 05/24/2023]
Abstract
Hfq is an RNA binding protein that has been studied extensively for its role in the biology of small noncoding RNAs (ncRNAs) in bacteria, where it facilitates post-transcriptional gene regulation during stress responses. We show that Hfq also binds with high specificity and nanomolar affinity to tRNAs despite their lack of a canonical A/U rich single-stranded sequence. This affinity is comparable to that of Hfq for its validated ncRNA targets. Two sites on tRNAs are protected by Hfq binding, one on the D-stem and the other on the T-stem. Mutational analysis and competitive binding experiments indicate that Hfq uses its proximal surface (also called the L4 face) to bind tRNAs, the same surface that interacts with ncRNAs but a site distinct from where poly(A) oligonucleotides bind. hfq knockout strains are known to have broad pleiotropic phenotypes, but none of them are easily explained by or imply a role for tRNA binding. We show that hfq deletion strains have a previously unrecognized phenotype associated with mistranslation and significantly reduced translational fidelity. We infer that tRNA binding and reduced fidelity are linked by a role for Hfq in tRNA modification.
Collapse
MESH Headings
- Base Sequence
- Binding Sites/genetics
- Escherichia coli K12/genetics
- Escherichia coli K12/metabolism
- Escherichia coli Proteins/chemistry
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/metabolism
- Genes, Bacterial
- Host Factor 1 Protein/chemistry
- Host Factor 1 Protein/genetics
- Host Factor 1 Protein/metabolism
- Kinetics
- Models, Molecular
- Molecular Sequence Data
- Mutation
- Nucleic Acid Conformation
- Protein Binding
- Protein Structure, Quaternary
- RNA Processing, Post-Transcriptional
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
Collapse
Affiliation(s)
- Taewoo Lee
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| | | |
Collapse
|
327
|
Sharma CM, Darfeuille F, Plantinga TH, Vogel J. A small RNA regulates multiple ABC transporter mRNAs by targeting C/A-rich elements inside and upstream of ribosome-binding sites. Genes Dev 2008; 21:2804-17. [PMID: 17974919 DOI: 10.1101/gad.447207] [Citation(s) in RCA: 280] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The interactions of numerous regulatory small RNAs (sRNAs) with target mRNAs have been characterized, but how sRNAs can regulate multiple, structurally unrelated mRNAs is less understood. Here we show that Salmonella GcvB sRNA directly acts on seven target mRNAs that commonly encode periplasmic substrate-binding proteins of ABC uptake systems for amino acids and peptides. Alignment of GcvB homologs of distantly related bacteria revealed a conserved G/U-rich element that is strictly required for GcvB target recognition. Analysis of target gene fusion regulation in vivo, and in vitro structure probing and translation assays showed that GcvB represses its target mRNAs by binding to extended C/A-rich regions, which may also serve as translational enhancer elements. In some cases (oppA, dppA), GcvB repression can be explained by masking the ribosome-binding site (RBS) to prevent 30S subunit binding. However, GcvB can also effectively repress translation by binding to target mRNAs at upstream sites, outside the RBS. Specifically, GcvB represses gltI mRNA translation at the C/A-rich target site located at positions -57 to -45 relative to the start codon. Taken together, our study suggests highly conserved regions in sRNAs and mRNA regions distant from Shine-Dalgarno sequences as important elements for the identification of sRNA targets.
Collapse
Affiliation(s)
- Cynthia M Sharma
- RNA Biology Group, Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | | | | | | |
Collapse
|
328
|
Lucchetti-Miganeh C, Burrowes E, Baysse C, Ermel G. The post-transcriptional regulator CsrA plays a central role in the adaptation of bacterial pathogens to different stages of infection in animal hosts. Microbiology (Reading) 2008; 154:16-29. [DOI: 10.1099/mic.0.2007/012286-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
| | - Elizabeth Burrowes
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Lazare Research Building, 364 Plantation St, Worcester, MA 01605-4321, USA
| | - Christine Baysse
- UMR CNRS 6026, Université Rennes 1, Campus de Beaulieu, 35042 Rennes, France
| | - Gwennola Ermel
- UMR CNRS 6026, Université Rennes 1, Campus de Beaulieu, 35042 Rennes, France
| |
Collapse
|
329
|
|
330
|
Morita T, Maki K, Yagi M, Aiba H. Analyses of mRNA destabilization and translational inhibition mediated by Hfq-binding small RNAs. Methods Enzymol 2008; 447:359-78. [PMID: 19161852 DOI: 10.1016/s0076-6879(08)02218-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A major class of bacterial small RNAs binds to an RNA chaperone Hfq and acts via imperfect base pairing to regulate the translation and stability of target mRNAs under specific physiological conditions. SgrS, an example for this class of small RNAs, is induced in response to the accumulation of glucose phosphates and downregulates the ptsG mRNA, which encodes the glucose transporter IICB(Glc) in Escherichia coli. SgrS forms a specific ribonucleoprotein complex with RNase E through Hfq. The regulatory outcomes of SgrS are the inhibition of translation and RNase E-dependent degradation of ptsG mRNA. Translational inhibition is the primary event for gene silencing. The crucial base pairs for the action of SgrS are confined to the 6-nt region overlapping the Shine-Dalgarno sequence of the target mRNA. Hfq accelerates the rate of duplex formation between SgrS and the target mRNA. Membrane localization of the target mRNA contributes to efficient SgrS action by competing with ribosome loading. Here, we describe major experimental methods and results used to study functions of Hfq-binding small RNAs in our laboratory. These are illustrated using the regulation of ptsG mRNA by SgrS is used as an example.
Collapse
Affiliation(s)
- Teppei Morita
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, Japan
| | | | | | | |
Collapse
|
331
|
Levine E, Zhang Z, Kuhlman T, Hwa T. Quantitative characteristics of gene regulation by small RNA. PLoS Biol 2007; 5:e229. [PMID: 17713988 PMCID: PMC1994261 DOI: 10.1371/journal.pbio.0050229] [Citation(s) in RCA: 283] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Accepted: 06/26/2007] [Indexed: 11/18/2022] Open
Abstract
An increasing number of small RNAs (sRNAs) have been shown to regulate critical pathways in prokaryotes and eukaryotes. In bacteria, regulation by trans-encoded sRNAs is predominantly found in the coordination of intricate stress responses. The mechanisms by which sRNAs modulate expression of its targets are diverse. In common to most is the possibility that interference with the translation of mRNA targets may also alter the abundance of functional sRNAs. Aiming to understand the unique role played by sRNAs in gene regulation, we studied examples from two distinct classes of bacterial sRNAs in Escherichia coli using a quantitative approach combining experiment and theory. Our results demonstrate that sRNA provides a novel mode of gene regulation, with characteristics distinct from those of protein-mediated gene regulation. These include a threshold-linear response with a tunable threshold, a robust noise resistance characteristic, and a built-in capability for hierarchical cross-talk. Knowledge of these special features of sRNA-mediated regulation may be crucial toward understanding the subtle functions that sRNAs can play in coordinating various stress-relief pathways. Our results may also help guide the design of synthetic genetic circuits that have properties difficult to attain with protein regulators alone. The activation of stress response programs, while crucial for the survival of a bacterial cell under stressful conditions, is costly in terms of energy and substrates and risky to the normal functions of the cell. Stress response is therefore tightly regulated. A recently discovered layer of regulation involves small RNA molecules, which bind the mRNA transcripts of their targets, inhibit their translation, and promote their cleavage. To understand the role that small RNA plays in regulation, we have studied the quantitative aspects of small RNA regulation by integrating mathematical modeling and quantitative experiments in Escherichia coli. We have demonstrated that small RNAs can tightly repress their target genes when their synthesis rate is smaller than some threshold, but have little or no effect when the synthesis rate is much larger than that threshold. Importantly, the threshold level is set by the synthesis rate of the small RNA itself and can be dynamically tuned. The effect of biochemical properties—such as the binding affinity of the two RNA molecules, which can only be altered on evolutionary time scales—is limited to setting a hierarchical order among different targets of a small RNA, facilitating in principle a global coordination of stress response. In bacteria, small RNAs can regulate the expression of genes at the translational level. The many advantages of this type of control include a tuneable threshold response and resistance to biochemical noise.
Collapse
Affiliation(s)
- Erel Levine
- Center for Theoretical Biological Physics, University of California San Diego, La Jolla, California, United States of America
| | - Zhongge Zhang
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Thomas Kuhlman
- Center for Theoretical Biological Physics, University of California San Diego, La Jolla, California, United States of America
| | - Terence Hwa
- Center for Theoretical Biological Physics, University of California San Diego, La Jolla, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
332
|
Affiliation(s)
- Teppei Morita
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Hiroji Aiba
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| |
Collapse
|
333
|
Abstract
The RNA degradosome of Escherichia coli is a multiprotein complex involved in the degradation of mRNA. The principal components are RNase E, PNPase, RhlB, and enolase. RNase E is a large multidomain protein with an N-terminal catalytic region and a C-terminal noncatalytic region that is mostly natively unstructured protein. The noncatalytic region contains sites for binding RNA and for protein-protein interactions with other components of the RNA degradosome. Several recent studies suggest that there are alternative forms of the RNA degradosome depending on growth conditions or other factors. These alternative forms appear to modulate RNase E activity in the degradation of mRNA. RNA degradosome-like complexes appear to be conserved throughout the Proteobacteria, but there is a surprising variability in composition that might contribute to the adaptation of these bacteria to the enormously wide variety of niches in which they live.
Collapse
Affiliation(s)
- Agamemnon J Carpousis
- Laboratoire de Microbiologie et Génétique Moléculaires, Unité Mixte de Recherche 5100, Centre National de la Recherche Scientifique et Université Paul Sabatier, 31062 Toulouse, France.
| |
Collapse
|
334
|
Nielsen JS, Bøggild A, Andersen CBF, Nielsen G, Boysen A, Brodersen DE, Valentin-Hansen P. An Hfq-like protein in archaea: crystal structure and functional characterization of the Sm protein from Methanococcus jannaschii. RNA (NEW YORK, N.Y.) 2007; 13:2213-2223. [PMID: 17959927 PMCID: PMC2080587 DOI: 10.1261/rna.689007] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Accepted: 09/11/2007] [Indexed: 05/25/2023]
Abstract
The Sm and Sm-like proteins are conserved in all three domains of life and have emerged as important players in many different RNA-processing reactions. Their proposed role is to mediate RNA-RNA and/or RNA-protein interactions. In marked contrast to eukaryotes, bacteria appear to contain only one distinct Sm-like protein belonging to the Hfq family of proteins. Similarly, there are generally only one or two subtypes of Sm-related proteins in archaea, but at least one archaeon, Methanococcus jannaschii, encodes a protein that is related to Hfq. This archaeon does not contain any gene encoding a conventional archaeal Sm-type protein, suggesting that Hfq proteins and archaeal Sm-homologs can complement each other functionally. Here, we report the functional characterization of M. jannaschii Hfq and its crystal structure at 2.5 A resolution. The protein forms a hexameric ring. The monomer fold, as well as the overall structure of the complex is similar to that found for the bacterial Hfq proteins. However, clear differences are seen in the charge distribution on the distal face of the ring, which is unusually negative in M. jannaschii Hfq. Moreover, owing to a very short N-terminal alpha-helix, the overall diameter of the archaeal Hfq hexamer is significantly smaller than its bacterial counterparts. Functional analysis reveals that Escherichia coli and M. jannaschii Hfqs display very similar biochemical and biological properties. It thus appears that the archaeal and bacterial Hfq proteins are largely functionally interchangeable.
Collapse
Affiliation(s)
- Jesper S Nielsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | | | | | | | | | | | | |
Collapse
|
335
|
Vecerek B, Rajkowitsch L, Sonnleitner E, Schroeder R, Bläsi U. The C-terminal domain of Escherichia coli Hfq is required for regulation. Nucleic Acids Res 2007; 36:133-43. [PMID: 18000007 PMCID: PMC2248732 DOI: 10.1093/nar/gkm985] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The Escherichia coli RNA chaperone Hfq is involved in riboregulation of target mRNAs by small trans-encoded non-coding (ncRNAs). Previous structural and genetic studies revealed a RNA-binding surface on either site of the Hfq-hexamer, which suggested that one hexamer can bring together two RNAs in a pairwise fashion. The Hfq proteins of different bacteria consist of an evolutionarily conserved core, whereas there is considerable variation at the C-terminus, with the γ- and β-proteobacteria possessing the longest C-terminal extension. Using different model systems, we show that a C-terminally truncated variant of Hfq (Hfq65), comprising the conserved hexameric core of Hfq, is defective in auto- and riboregulation. Although Hfq65 retained the capacity to bind ncRNAs, and, as evidenced by fluorescence resonance energy transfer assays, to induce structural changes in the ncRNA DsrA, the truncated variant was unable to accommodate two non-complementary RNA oligonucleotides, and was defective in mRNA binding. These studies indicate that the C-terminal extension of E. coli Hfq constitutes a hitherto unrecognized RNA interaction surface with specificity for mRNAs.
Collapse
Affiliation(s)
- Branislav Vecerek
- Max F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9, 1030 Vienna, Austria
| | | | | | | | | |
Collapse
|
336
|
Nakamura T, Naito K, Yokota N, Sugita C, Sugita M. A cyanobacterial non-coding RNA, Yfr1, is required for growth under multiple stress conditions. PLANT & CELL PHYSIOLOGY 2007; 48:1309-18. [PMID: 17664182 DOI: 10.1093/pcp/pcm098] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Small, regulatory, non-coding RNA (ncRNA) is involved in various cell functions in both prokaryotes and eukaryotes. However, information on ncRNA in cyanobacteria is still scarce. We studied ncRNA genes by computational screening to compare the intergenic regions of the Synechococcus elongatus PCC 6301 genome with the genomes of three freshwater cyanobacteria. We identified an ncRNA gene in S. elongatus, which has been previously described as yfr1 in marine cyanobacteria. The S. elongatus yfr1 gene is 65 nucleotides long and is positioned between guaB and trxA. We found a high conservation of the yfr1 gene in most cyanobacterial lineages. A yfr1-deficient mutant showed reduced growth under various stress conditions, e.g. oxidative stress and high salt stress conditions, and showed unusual accumulation of sbtA mRNA. A gel shift assay demonstrated interaction of the Yfr1 RNA with sbtA mRNA in vitro. This suggests that the sbtA transcript is a target RNA for the Yfr1 RNA.
Collapse
|
337
|
Abstract
Only few small, regulatory RNAs encoded opposite another gene have been identified in bacteria. Here, we report the characterization of a locus where a small RNA (SymR) is encoded in cis to an SOS-induced gene whose product shows homology to the antitoxin MazE (SymE). Synthesis of the SymE protein is tightly repressed at multiple levels by the LexA repressor, the SymR RNA and the Lon protease. SymE co-purifies with ribosomes and overproduction of the protein leads to cell growth inhibition, decreased protein synthesis and increased RNA degradation. These properties are shared with several RNA endonuclease toxins of the toxin-antitoxin modules, and we show that the SymE protein represents evolution of a toxin from the AbrB fold, whose representatives are typically antitoxins. We suggest that SymE promotion of RNA cleavage may be important for the recycling of RNAs damaged under SOS-inducing conditions.
Collapse
MESH Headings
- Amino Acid Sequence
- Antitoxins/chemistry
- Antitoxins/genetics
- Antitoxins/metabolism
- Bacterial Toxins/genetics
- Bacterial Toxins/metabolism
- Base Sequence
- Blotting, Northern
- Electrophoresis, Polyacrylamide Gel
- Evolution, Molecular
- Immunoblotting
- Models, Molecular
- Molecular Sequence Data
- Mutation
- Plasmids/genetics
- Promoter Regions, Genetic/genetics
- Protease La/metabolism
- Protein Biosynthesis/genetics
- Protein Conformation
- Protein Folding
- RNA, Antisense/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Ribosomal Proteins/metabolism
- SOS Response, Genetics/genetics
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- Mitsuoki Kawano
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of HealthBethesda, MD 20892, USA.
| | - L Aravind
- National Center for Biotechnology Information, National Institutes of HealthBethesda, MD 20892, USA.
| | - Gisela Storz
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of HealthBethesda, MD 20892, USA.
- * For correspondence. E-mail ; Tel. (+1) 301 402 0968; Fax (+1) 301 402 0078
| |
Collapse
|
338
|
Papenfort K, Pfeiffer V, Mika F, Lucchini S, Hinton JCD, Vogel J. SigmaE-dependent small RNAs of Salmonella respond to membrane stress by accelerating global omp mRNA decay. Mol Microbiol 2007; 62:1674-88. [PMID: 17427289 PMCID: PMC1804206 DOI: 10.1111/j.1365-2958.2006.05524.x] [Citation(s) in RCA: 286] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The bacterial envelope stress response (ESR) is triggered by the accumulation of misfolded outer membrane proteins (OMPs) upon envelope damage or excessive OMP synthesis, and is mediated by the alternative sigma factor, sigmaE. Activation of the GE pathway causes a rapid downregulation of major omp mRNAs, which prevents further build-up of unassembled OMPs and liberates the translocation and folding apparatus under conditions that require envelope remodelling. The factors that facilitate the rapid removal of the unusually stable omp mRNAs in the ESR were previously unknown. We report that in Salmonella the ESR relies upon two highly conserved, sigmaE-controlled small non-coding RNAs, RybB and MicA. By using a transcriptomic approach and kinetic analyses of target mRNA decay in vivo, RybB was identified as the factor that selectively accelerates the decay of multiple major omp mRNAs upon induction of the ESR, while MicA is proposed to facilitate rapid decay of the single ompA mRNA. In unstressed bacterial cells, the two oE-dependent small RNAs function within a surveillance loop to maintain envelope homeostasis and to achieve autoregulation of oE.
Collapse
Affiliation(s)
- Kai Papenfort
- Max Planck Institute for Infection BiologyCharitéplatz 1, 10117 Berlin, Germany
| | - Verena Pfeiffer
- Max Planck Institute for Infection BiologyCharitéplatz 1, 10117 Berlin, Germany
| | - Franziska Mika
- Max Planck Institute for Infection BiologyCharitéplatz 1, 10117 Berlin, Germany
| | - Sacha Lucchini
- Institute of Food Research, Norwich Research ParkNorwich, NR4 7UA, UK
| | - Jay C D Hinton
- Institute of Food Research, Norwich Research ParkNorwich, NR4 7UA, UK
- *For correspondence. E-mail ; Tel. (+49) 30 28460 265; Fax (+49) 30 28460 244; E-mail ; Tel. (+44) 1603 255352; Fax (+44) 1603 255288
| | - Jörg Vogel
- Max Planck Institute for Infection BiologyCharitéplatz 1, 10117 Berlin, Germany
- *For correspondence. E-mail ; Tel. (+49) 30 28460 265; Fax (+49) 30 28460 244; E-mail ; Tel. (+44) 1603 255352; Fax (+44) 1603 255288
| |
Collapse
|
339
|
Horie Y, Ito Y, Ono M, Moriwaki N, Kato H, Hamakubo Y, Amano T, Wachi M, Shirai M, Asayama M. Dark-induced mRNA instability involves RNase E/G-type endoribonuclease cleavage at the AU-box and SD sequences in cyanobacteria. Mol Genet Genomics 2007; 278:331-46. [PMID: 17661085 DOI: 10.1007/s00438-007-0254-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Accepted: 05/21/2007] [Indexed: 11/29/2022]
Abstract
Light-responsive gene expression is crucial to photosynthesizing organisms. Here, we studied functions of cis-elements (AU-box and SD sequences) and a trans-acting factor (ribonuclease, RNase) in light-responsive expression in cyanobacteria. The results indicated that AU-rich nucleotides with an AU-box, UAAAUAAA, just upstream from an SD confer instability on the mRNA under darkness. An RNase E/G homologue, Slr1129, of the cyanobacterium Synechocystis sp. strain PCC 6803 was purified and confirmed capable of endoribonucleolytic cleavage at the AU- (or AG)-rich sequences in vitro. The cleavage depends on the primary target sequence and secondary structure of the mRNA. Complementation tests using Escherichia coli rne/rng mutants showed that Slr1129 fulfilled the functions of both the RNase E and RNase G. An analysis of systematic mutations in the AU-box and SD sequences showed that the cis-elements also affect significantly mRNA stability in light-responsive genes. These results strongly suggested that dark-induced mRNA instability involves RNase E/G-type cleavage at the AU-box and SD sequences in cyanobacteria. The mechanical impact and a possible common mechanism with RNases for light-responsive gene expression are discussed.
Collapse
Affiliation(s)
- Yoshinao Horie
- Laboratory of Molecular Genetics, School of Agriculture, Ibaraki University, Ami, Inashiki, Ibaraki 300-0393, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
340
|
Abstract
Small regulatory RNAs have been identified in a wide range of organisms, where they modify mRNA stability, translation or protein function. Small RNA regulators (sRNAs) either pair with mRNA targets or modify protein activities. Here we discuss current knowledge of the various proteins that interact with RNA regulators and review the physiologic implications of sRNA-protein complexes in DNA, RNA and protein metabolism, as well as in RNA and protein quality control in prokaryotes. Proteins that interact with the sRNAs can possess catalytic activity, induce conformational changes of the sRNA, or be sequestered by the sRNA to prevent the action of the protein.
Collapse
Affiliation(s)
- Christophe Pichon
- INSERM U835, Upres JE2311, Biochimie Pharmaceutique, Université de Rennes 1, Rennes, France
| | | |
Collapse
|
341
|
Boisset S, Geissmann T, Huntzinger E, Fechter P, Bendridi N, Possedko M, Chevalier C, Helfer AC, Benito Y, Jacquier A, Gaspin C, Vandenesch F, Romby P. Staphylococcus aureus RNAIII coordinately represses the synthesis of virulence factors and the transcription regulator Rot by an antisense mechanism. Genes Dev 2007; 21:1353-66. [PMID: 17545468 PMCID: PMC1877748 DOI: 10.1101/gad.423507] [Citation(s) in RCA: 359] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
RNAIII is the intracellular effector of the quorum-sensing system in Staphylococcus aureus. It is one of the largest regulatory RNAs (514 nucleotides long) that are known to control the expression of a large number of virulence genes. Here, we show that the 3' domain of RNAIII coordinately represses at the post-transcriptional level, the expression of mRNAs that encode a class of virulence factors that act early in the infection process. We demonstrate that the 3' domain acts primarily as an antisense RNA and rapidly anneals to these mRNAs, forming long RNA duplexes. The interaction between RNAIII and the mRNAs results in repression of translation initiation and triggers endoribonuclease III hydrolysis. These processes are followed by rapid depletion of the mRNA pool. In addition, we show that RNAIII and its 3' domain mediate translational repression of rot mRNA through a limited number of base pairings involving two loop-loop interactions. Since Rot is a transcriptional regulatory protein, we proposed that RNAIII indirectly acts on many downstream genes, resulting in the activation of the synthesis of several exoproteins. These data emphasize the multitude of regulatory steps affected by RNAIII and its 3' domain in establishing a network of S. aureus virulence factors.
Collapse
MESH Headings
- 3' Untranslated Regions/genetics
- 3' Untranslated Regions/metabolism
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Base Sequence
- Gene Expression Regulation, Bacterial
- Hydrolysis
- Molecular Sequence Data
- Nucleic Acid Conformation
- Quorum Sensing
- RNA, Antisense/chemistry
- RNA, Antisense/genetics
- RNA, Antisense/metabolism
- RNA, Antisense/pharmacology
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Homology, Nucleic Acid
- Staphylococcus aureus/enzymology
- Staphylococcus aureus/genetics
- Transcription, Genetic
- Virulence Factors/genetics
- Virulence Factors/metabolism
Collapse
Affiliation(s)
- Sandrine Boisset
- Institut National pour la Recherche Médicale (INSERM) E0230, Université Lyon 1, Centre National de Référence des Staphylocoques, Faculté Laennec, Lyon, F-69008, France
| | - Thomas Geissmann
- Architecture et Réactivité de l’ARN, Université Louis Pasteur, Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Moléculaire et Cellulaire (IBMC), F-67084 Strasbourg, France
| | - Eric Huntzinger
- Architecture et Réactivité de l’ARN, Université Louis Pasteur, Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Moléculaire et Cellulaire (IBMC), F-67084 Strasbourg, France
| | - Pierre Fechter
- Architecture et Réactivité de l’ARN, Université Louis Pasteur, Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Moléculaire et Cellulaire (IBMC), F-67084 Strasbourg, France
| | - Nadia Bendridi
- Institut National pour la Recherche Médicale (INSERM) E0230, Université Lyon 1, Centre National de Référence des Staphylocoques, Faculté Laennec, Lyon, F-69008, France
| | - Maria Possedko
- Architecture et Réactivité de l’ARN, Université Louis Pasteur, Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Moléculaire et Cellulaire (IBMC), F-67084 Strasbourg, France
| | - Clément Chevalier
- Architecture et Réactivité de l’ARN, Université Louis Pasteur, Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Moléculaire et Cellulaire (IBMC), F-67084 Strasbourg, France
| | - Anne Catherine Helfer
- Architecture et Réactivité de l’ARN, Université Louis Pasteur, Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Moléculaire et Cellulaire (IBMC), F-67084 Strasbourg, France
| | - Yvonne Benito
- Institut National pour la Recherche Médicale (INSERM) E0230, Université Lyon 1, Centre National de Référence des Staphylocoques, Faculté Laennec, Lyon, F-69008, France
| | - Alain Jacquier
- Unité de Génétique des Interactions Macromoléculaires, URA 2171-Centre National de la Recherche Scientifique, Institut Pasteur, F-75724 Paris, France
| | - Christine Gaspin
- Unité de Biométrie et Intelligence Artificielle, Institut de National de la Recherche Agronomique (INRA)-UR875 Chemin de Borde-Rouge, F-31326 Castanet-Tolosan, France
| | - François Vandenesch
- Institut National pour la Recherche Médicale (INSERM) E0230, Université Lyon 1, Centre National de Référence des Staphylocoques, Faculté Laennec, Lyon, F-69008, France
| | - Pascale Romby
- Architecture et Réactivité de l’ARN, Université Louis Pasteur, Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Moléculaire et Cellulaire (IBMC), F-67084 Strasbourg, France
- Corresponding author.E-MAIL . FAX: 33-388602218
| |
Collapse
|
342
|
Abstract
In Escherichia coli and Salmonella enterica, activation of sigma(E)-dependent envelope stress response leads to the abrupt decline in the synthesis of all major outer membrane proteins (OMPs). Recent studies found that two sigma(E)-controlled small RNAs (sRNAs), MicA and RybB, downregulate a number of OMPs. While RybB targets several different mRNAs, including ompC and ompD, MicA was up to date thought to act solely on ompA. Here we present evidence showing that MicA downregulates a second Salmonella OMP: LamB maltoporine. In strains overexpressing sigma(E), MicA accumulation leads to a significant decrease in LamB protein and mRNA levels, as well as a reduction in beta-galactosidase activity in a strain carrying a lamB-lacZ translational fusion. The latter findings provided the basis for a genetic screen that allowed isolating point mutations in the micA gene and in its sigma(E) promoter. All alleles obtained displayed their altered regulatory phenotype from their natural chromosomal location. LamB downregulation by MicA requires a functional Hfq protein. Besides this role, confined to sigma(E)-activated conditions, we show that loss of Hfq results in the accumulation of a lamB-malM dimeric precursor and of malM mRNA during unchallenged growth. This suggests that Hfq normally intervenes in a mechanism that uncouples expression of the malK-lamB-malM operon, causing the distal portion of the transcript to be clipped off and degraded.
Collapse
Affiliation(s)
- Lionello Bossi
- Centre de Génétique Moléculaire, CNRS, 91198, Gif-sur-Yvette, France.
| | | |
Collapse
|
343
|
Gao M, Chen H, Eberhard A, Gronquist MR, Robinson JB, Connolly M, Teplitski M, Rolfe BG, Bauer WD. Effects of AiiA-mediated quorum quenching in Sinorhizobium meliloti on quorum-sensing signals, proteome patterns, and symbiotic interactions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:843-56. [PMID: 17601171 DOI: 10.1094/mpmi-20-7-0843] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Many behaviors in bacteria, including behaviors important to pathogenic and symbiotic interactions with eukaryotic hosts, are regulated by a mechanism called quorum sensing (QS). A "quorum-quenching" approach was used here to identify QS-regulated behaviors in the N-fixing bacterial symbiont Sinorhizobium meliloti. The AiiA lactonase from Bacillus produced in S. meliloti was shown to enzymatically inactivate S. meliloti's N-acyl homoserine lactone (AHL) QS signals, thereby disrupting normal QS regulation. Sixty proteins were differentially accumulated in the AiiA-producing strain versus the control in early log or early stationary phase cultures. Fifty-two of these QS-regulated proteins, with putative functions that include cell division, protein processing and translation, metabolite transport, oxidative stress, and amino acid metabolism, were identified by peptide mass fingerprinting. Transcription of representative genes was reduced significantly in the AiiA-producing strain, although the effects of AiiA on protein accumulation did not always correspond to effects on transcription. The QS signal-deficient strain was reduced significantly in nodule initiation during the first 12 h after inoculation onto Medicago truncatula host plants. The AiiA lactonase also was found to substantially inactivate two of the AHL mimic compounds secreted by M. truncatula. This suggests some structural similarity between bacterial AHLs and these mimic compounds. It also indicates that quorum quenching could be useful in identifying Sinorhizobium genes that are affected by such host QS mimics in planta.
Collapse
Affiliation(s)
- Mengsheng Gao
- Department of Soil and Water Sciences, 2159 McCarty Hall A, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Gainesville 32611-0290, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
344
|
Arraiano CM, Bamford J, Brüssow H, Carpousis AJ, Pelicic V, Pflüger K, Polard P, Vogel J. Recent advances in the expression, evolution, and dynamics of prokaryotic genomes. J Bacteriol 2007; 189:6093-100. [PMID: 17601780 PMCID: PMC1951890 DOI: 10.1128/jb.00612-07] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Cecilia M Arraiano
- ITQB-Instituto de Tecnologia Química e Biológical/Universidade Nova de Lisboa, Oeiras, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
345
|
Gottesman S, McCullen C, Guillier M, Vanderpool C, Majdalani N, Benhammou J, Thompson K, FitzGerald P, Sowa N, FitzGerald D. Small RNA regulators and the bacterial response to stress. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2007; 71:1-11. [PMID: 17381274 PMCID: PMC3592358 DOI: 10.1101/sqb.2006.71.016] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Recent studies have uncovered dozens of regulatory small RNAs in bacteria. A large number of these small RNAs act by pairing to their target mRNAs. The outcome of pairing can be either stimulation or inhibition of translation. Pairing in vivo frequently depends on the RNA-binding protein Hfq. Synthesis of these small RNAs is tightly regulated at the level of transcription; many of the well-studied stress response regulons have now been found to include a regulatory RNA. Expression of the small RNA can help the cell cope with environmental stress by redirecting cellular metabolism, exemplified by RyhB, a small RNA expressed upon iron starvation. Although small RNAs found in Escherichia coli can usually be identified by sequence comparison to closely related enterobacteria, other approaches are necessary to find the equivalent RNAs in other bacterial species. Nonetheless, it is becoming increasingly clear that many if not all bacteria encode significant numbers of these important regulators. Tracing their evolution through bacterial genomes remains a challenge.
Collapse
Affiliation(s)
- Susan Gottesman
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD. 20892
- Corresponding author: Bldg. 37, Rm. 5132, National Cancer Institute, Bethesda, MD. 20892; phone: 301-496-3524; fax: 301-496-3875;
| | - Colleen McCullen
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD. 20892
| | - Maude Guillier
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD. 20892
| | - Carin Vanderpool
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD. 20892
| | - Nadim Majdalani
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD. 20892
| | - Jihane Benhammou
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD. 20892
| | - Karl Thompson
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD. 20892
| | - Peter FitzGerald
- Genome Analysis Unit, Center for Cancer Research, National Cancer Institute, Bethesda, MD. 20892
| | - Nathaniel Sowa
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD. 20892
| | - David FitzGerald
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD. 20892
| |
Collapse
|
346
|
Vogel J, Wagner EGH. Target identification of small noncoding RNAs in bacteria. Curr Opin Microbiol 2007; 10:262-70. [PMID: 17574901 DOI: 10.1016/j.mib.2007.06.001] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Accepted: 06/01/2007] [Indexed: 01/08/2023]
Abstract
Small noncoding RNAs have been discovered at a staggering rate in Escherichia coli and many other bacteria. Most of the sRNAs of known function regulate gene expression by binding to specific mRNAs or proteins. Given the scores of sRNAs of unknown function, the identification of their cellular targets has become urgent. Here, we review the diverse strategies that have been used to identify and validate bacterial sRNA targets. These include the pulse-expression of sRNAs followed by global transcriptome analysis (microarrays), new biocomputational prediction algorithms, and novel gfp reporter gene fusions to validate candidate target gene regulation.
Collapse
MESH Headings
- Base Sequence
- Computational Biology/methods
- Models, Genetic
- Oligonucleotide Array Sequence Analysis
- RNA, Bacterial/analysis
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Untranslated/analysis
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
Collapse
Affiliation(s)
- Jörg Vogel
- Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany.
| | | |
Collapse
|
347
|
Condon C. Maturation and degradation of RNA in bacteria. Curr Opin Microbiol 2007; 10:271-8. [PMID: 17560162 DOI: 10.1016/j.mib.2007.05.008] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Accepted: 05/21/2007] [Indexed: 11/20/2022]
Abstract
RNA decay plays an important role, not only in recycling nucleotides but also in determining the rapidity with which cells can react to changing growth conditions. The degradation process can be regulated, thus providing an often-underestimated means of controlling gene expression. Recent developments in the field of RNA maturation and decay in two key model organisms, Escherichia coli and Bacillus subtilis, include the resolution of the structures of many of the participants in these processes in E. coli and the identification of an enzyme in B. subtilis that appears to fit the bill as a major player in RNA decay in this organism.
Collapse
Affiliation(s)
- Ciarán Condon
- CNRS UPR 9073 (affiliated with Université de Paris 7 - Denis Diderot), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France.
| |
Collapse
|
348
|
Abstract
This chapter discusses several topics relating to the mechanisms of mRNA decay. These topics include the following: important physical properties of mRNA molecules that can alter their stability; methods for determining mRNA half-lives; the genetics and biochemistry of proteins and enzymes involved in mRNA decay; posttranscriptional modification of mRNAs; the cellular location of the mRNA decay apparatus; regulation of mRNA decay; the relationships among mRNA decay, tRNA maturation, and ribosomal RNA processing; and biochemical models for mRNA decay. Escherichia coli has multiple pathways for ensuring the effective decay of mRNAs and mRNA decay is closely linked to the cell's overall RNA metabolism. Finally, the chapter highlights important unanswered questions regarding both the mechanism and importance of mRNA decay.
Collapse
|
349
|
Brennan RG, Link TM. Hfq structure, function and ligand binding. Curr Opin Microbiol 2007; 10:125-33. [PMID: 17395525 DOI: 10.1016/j.mib.2007.03.015] [Citation(s) in RCA: 307] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Accepted: 03/15/2007] [Indexed: 11/28/2022]
Abstract
Recent studies on Hfq have provided a deeper understanding of the multiple functions of this pleiotropic post-transcriptional regulator. Insights into the mechanism of Hfq action have come from a variety of approaches. A key finding was the characterization of two RNA binding sites: the Proximal Site, which binds sRNA and mRNA; and the Distal Site, which binds poly(A) tails. Hfq was shown to interact with PAP I, PNP and RNase E, proteins that are involved in mRNA decay and in vitro, was shown to form fibres, the physiological significance of which is unknown. Fluorescence resonance energy transfer (FRET) studies directly demonstrated the role of Hfq as a chaperone that facilitates the interaction between sRNAs and target mRNAs. There are still, however, some unresolved questions.
Collapse
Affiliation(s)
- Richard G Brennan
- Department of Biochemistry and Molecular Biology, Unit 1000 University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard Houston, TX 77030-4009, USA.
| | | |
Collapse
|
350
|
Aiba H. Mechanism of RNA silencing by Hfq-binding small RNAs. Curr Opin Microbiol 2007; 10:134-9. [PMID: 17383928 DOI: 10.1016/j.mib.2007.03.010] [Citation(s) in RCA: 297] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Accepted: 03/14/2007] [Indexed: 01/29/2023]
Abstract
The stress-induced small RNAs SgrS and RyhB in Escherichia coli form a specific ribonucleoprotein complex with RNAse E and Hfq resulting in translation inhibition, RNAse E-dependent degradation of target mRNAs. Translation inhibition is the primary event for gene silencing and degradation of these small RNAs is coupled with the degradation of target mRNAs. The crucial base-pairs for action of SgrS are confined to the 6 nt region overlapping the Shine-Dalgarno sequence of the target mRNA. Hfq accelerates the rate of duplex formation between SgrS and the target mRNA. Membrane localization of target mRNA contributes to efficient SgrS action by competing with ribosome loading.
Collapse
Affiliation(s)
- Hiroji Aiba
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan.
| |
Collapse
|