301
|
Takano J, Miwa K, Yuan L, von Wirén N, Fujiwara T. Endocytosis and degradation of BOR1, a boron transporter of Arabidopsis thaliana, regulated by boron availability. Proc Natl Acad Sci U S A 2005; 102:12276-81. [PMID: 16103374 PMCID: PMC1189310 DOI: 10.1073/pnas.0502060102] [Citation(s) in RCA: 273] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2005] [Indexed: 01/20/2023] Open
Abstract
Boron (B) is essential for plants but toxic when present in excess. Arabidopsis thaliana BOR1 is a B exporter for xylem loading and is essential for efficient B translocation from roots to shoots under B limitation. B translocation to shoots was enhanced under B limitation in WT but not in bor1-1 mutant plants. The enhanced translocation was suppressed upon resupply of high levels of B within several hours. Unlike a number of transporters for essential mineral nutrients, BOR1 mRNA accumulation was not strongly affected by B conditions. However, accumulation of a constitutively expressed BOR1-GFP fusion protein was elevated under conditions of limited B supply. Upon resupply of high levels of B, BOR1-GFP was degraded within several hours. These findings demonstrate that posttranscriptional mechanisms play a major role in regulation of BOR1 accumulation. Confocal laser scanning microscopy of root tip cells showed that BOR1-GFP is localized to the plasma membrane under B limitation. Shortly after B application, the protein was observed in dot-like structures in the cytoplasm before degradation. Colocalization studies of the fusion protein with an endocytic tracer FM4-64 and an endosomal Rab-GTPase Ara7 fused to monomeric red fluorescent protein suggested that BOR1 is transferred from the plasma membrane via the endosomes to the vacuole for degradation. These results establish that endocytosis and degradation of BOR1 are regulated by B availability, to avoid accumulation of toxic levels of B in shoots under high-B supply, while protecting the shoot from B deficiency under B limitation.
Collapse
Affiliation(s)
- Junpei Takano
- Biotechnology Research Center, University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | |
Collapse
|
302
|
Samaj J, Read ND, Volkmann D, Menzel D, Baluska F. The endocytic network in plants. Trends Cell Biol 2005; 15:425-33. [PMID: 16006126 DOI: 10.1016/j.tcb.2005.06.006] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Revised: 05/26/2005] [Accepted: 06/27/2005] [Indexed: 12/28/2022]
Abstract
Endocytosis and vesicle recycling via secretory endosomes are essential for many processes in multicellular organisms. Recently, higher plants have provided useful experimental model systems to study these processes. Endocytosis and secretory endosomes in plants play crucial roles in polar tip growth, a process in which secretory and endocytic pathways are integrated closely. Plant endocytosis and endosomes are important for auxin-mediated cell-cell communication, gravitropic responses, stomatal movements, cytokinesis and cell wall morphogenesis. There is also evidence that F-actin is essential for endocytosis and that plant-specific myosin VIII is an endocytic motor in plants. Last, recent results indicate that the trans Golgi network in plants should be considered an integral part of the endocytic network.
Collapse
Affiliation(s)
- Jozef Samaj
- Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany
| | | | | | | | | |
Collapse
|
303
|
Abstract
The vacuole of plant cells is no longer considered to be a single compartment with multifunctional properties. A lot of evidence now points to the presence of multiple functionally distinct vacuolar compartments, some existing side by side in the same cell. As a consequence, the plant Golgi apparatus is faced with the problem of recognizing proteins destined for lytic and storage vacuoles and segregating them individually from the flow of secretory proteins to the cell surface. In contrast to acid hydrolases, which are sorted by BP-80-like receptors at the trans-Golgi of plant cells, the identification of receptors for storage proteins has in many ways resembled 'the search for the Holy Grail'. There are several candidates for storage protein receptors, but in no single case is the evidence entirely convincing. Much of the problem lies in the lack of consensus, sorting sequences in the proteins investigated. Other difficulties stem from 'out-of-context' heterologous expression studies. Evidence is now accumulating for the participation of hydrophobic sequences in inducing the formation of protein aggregates in the early Golgi apparatus, for which classical sorting receptors do not appear to be necessary. This review critically examines the current situation and contrasts the differences between data obtained in situ and data obtained transgenically. It highlights the so-called 'dense-vesicle' pathway and culminates with a discussion on the hitherto neglected problem of the intracellular transport of storage protein processing enzymes.
Collapse
Affiliation(s)
- David G Robinson
- Heidelberg Institute for Plant Sciences, Cell Biology, University of Heidelberg, Im Neuenheimer Feld 230, D-69120 Heidelberg, Germany
| | | | | |
Collapse
|
304
|
Vitale A, Hinz G. Sorting of proteins to storage vacuoles: how many mechanisms? TRENDS IN PLANT SCIENCE 2005; 10:316-23. [PMID: 15950520 DOI: 10.1016/j.tplants.2005.05.001] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2005] [Revised: 03/24/2005] [Accepted: 05/24/2005] [Indexed: 05/02/2023]
Abstract
Vacuoles receive their proteins through the secretory pathway, this requires protein sorting signals and molecular machineries that, until recently, have been believed to be markedly distinct for lytic and storage vacuoles. However, new biochemical, morphological and genetic data indicate that the only known class of vacuolar sorting receptors, believed to be specific for lytic vacuoles, might also be involved in the sorting of certain storage proteins. Furthermore, storage vacuoles can have a complex multimembrane structure that is difficult to explain based on a single trafficking mechanism. A new array of possible molecular interactions is thus emerging that no longer supports a clear-cut distinction between the two types of vacuoles based on sorting signals and putative receptors.
Collapse
Affiliation(s)
- Alessandro Vitale
- Istituto di Biologia e Biotecnologia Agraria, CNR, 20133 Milano, Italy.
| | | |
Collapse
|
305
|
Zheng H, Camacho L, Wee E, Batoko H, Legen J, Leaver CJ, Malhó R, Hussey PJ, Moore I. A Rab-E GTPase mutant acts downstream of the Rab-D subclass in biosynthetic membrane traffic to the plasma membrane in tobacco leaf epidermis. THE PLANT CELL 2005; 17:2020-36. [PMID: 15972698 PMCID: PMC1167549 DOI: 10.1105/tpc.105.031112] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Revised: 04/17/2005] [Accepted: 05/09/2005] [Indexed: 05/03/2023]
Abstract
The function of the Rab-E subclass of plant Rab GTPases in membrane traffic was investigated using a dominant-inhibitory mutant (RAB-E1(d)[NI]) of Arabidopsis thaliana RAB-E1(d) and in vivo imaging approaches that have been used to characterize similar mutants in the plant Rab-D2 and Rab-F2 subclasses. RAB-E1(d)[NI] inhibited the transport of a secreted green fluorescent protein marker, secGFP, but in contrast with dominant-inhibitory RAB-D2 or RAB-F2 mutants, it did not affect the transport of Golgi or vacuolar markers. Quantitative imaging revealed that RAB-E1(d)[NI] caused less intracellular secGFP accumulation than RAB-D2(a)[NI], a dominant-inhibitory mutant of a member of the Arabidopsis Rab-D2 subclass. Furthermore, whereas RAB-D2(a)[NI] caused secGFP to accumulate exclusively in the endoplasmic reticulum, RAB-E1(d)[NI] caused secGFP to accumulate additionally in the Golgi apparatus and a prevacuolar compartment that could be labeled by FM4-64 and yellow fluorescent protein (YFP)-tagged Arabidopsis RAB-F2(b). Using the vacuolar protease inhibitor E64-d, it was shown that some secGFP was transported to the vacuole in control cells and in the presence of RAB-E1(d)[NI]. Consistent with the hypothesis that secGFP carries a weak vacuolar-sorting determinant, it was shown that a secreted form of DsRed reaches the apoplast without appearing in the prevacuolar compartment. When fused to RAB-E1(d), YFP was targeted specifically to the Golgi via a saturable nucleotide- and prenylation-dependent mechanism but was never observed on the prevacuolar compartment. We propose that RAB-E1(d)[NI] inhibits the secretory pathway at or after the Golgi, causing an accumulation of secGFP in the upstream compartments and an increase in the quantity of secGFP that enters the vacuolar pathway.
Collapse
Affiliation(s)
- Huanquan Zheng
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
306
|
Castelli S, Vitale A. The phaseolin vacuolar sorting signal promotes transient, strong membrane association and aggregation of the bean storage protein in transgenic tobacco. JOURNAL OF EXPERIMENTAL BOTANY 2005; 56:1379-87. [PMID: 15809284 DOI: 10.1093/jxb/eri139] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Vacuolar storage proteins of the 7S class are co-translationally introduced into the endoplasmic reticulum and reach storage vacuoles via the Golgi complex and dense vesicles. The signal for vacuolar sorting of one of these proteins, phaseolin of Phaseolus vulgaris, consists of a four-amino acid hydrophobic propeptide at the C-terminus. When this sequence is deleted, phaseolin is secreted instead of being sorted to vacuoles. It is shown here that in transgenic tobacco plants newly-synthesized phaseolin has unusual affinity to membranes and forms SDS-resistant aggregates, but mutated phaseolin polypeptides that are either secreted or defective in assembly do not have these characteristics. Association to membranes and aggregation are transient events: phaseolin accumulated in vacuoles is soluble in the absence of detergents and is not aggregated. Association to membranes starts before the phaseolin glycan acquires a complex structure and therefore before the protein reaches the medial or trans-cisternae of the Golgi complex. These results support the hypothesis of a relationship between aggregation and vacuolar sorting of phaseolin and indicate that sorting may start in early compartments of the secretory pathway.
Collapse
Affiliation(s)
- Silvana Castelli
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, I-20133 Milano, Italy
| | | |
Collapse
|
307
|
Hawes C, Satiat-Jeunemaitre B. The plant Golgi apparatus--going with the flow. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1744:93-107. [PMID: 15922463 DOI: 10.1016/j.bbamcr.2005.03.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2005] [Revised: 03/17/2005] [Accepted: 03/22/2005] [Indexed: 01/17/2023]
Abstract
The plant Golgi apparatus is composed of many separate stacks of cisternae which are often associated with the endoplasmic reticulum and which in many cell types are motile. In this review, we discuss the latest data on the molecular regulation of Golgi function. The concept of the Golgi as a distinct organelle is challenged and the possibility of a continuum between the endoplasmic reticulum and Golgi is proposed.
Collapse
Affiliation(s)
- Chris Hawes
- Research School of Biological and Molecular Sciences, Oxford Brookes University, UK.
| | | |
Collapse
|
308
|
Yamada K, Fuji K, Shimada T, Nishimura M, Hara-Nishimura I. Endosomal proteases facilitate the fusion of endosomes with vacuoles at the final step of the endocytotic pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 41:888-98. [PMID: 15743452 DOI: 10.1111/j.1365-313x.2005.02349.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The mechanism by which plasma membrane proteins are transported to vacuoles for degradation has not been well characterized in plants. To clarify how plasma membrane proteins are degraded, we monitored the endocytotic pathway in tobacco suspension-cultured BY-2 cells with a fluorescent endocytosis marker, FM4-64. Because of the efficient and rapid delivery of endosomes to the vacuoles, endosomes were scarcely detectable. Interestingly, we found that E-64d, an inhibitor of papain family proteases, caused the accumulation of a large number of endosomes in the cells under the sucrose-starved condition. This result indicates that E-64d attenuates the fusion of endosomes with vacuoles. We identified two papain homologues, which are localized in the endosomes, with a biotinylated inhibitor. We designated them as endosome-localized papains (ENPs). Immunofluorescent analysis revealed that vacuolar sorting receptor, a marker of prevacuolar compartment (PVC), was localized in the endosomes. This result and their acidic nature show that the endosomes correspond to PVC. These results suggest that ENPs facilitate the final step in the vacuolar trafficking pathway under the sucrose-starved condition. We further examined the effects of E-64d on two transgenic Arabidopsis plants that constitutively express a fusion protein composed of green fluorescent protein (GFP) and a plasma membrane protein (GFP-PIP2a or GFP-LTI6b). GFP fluorescence was observed on the plasma membrane of root cells in these transgenic plants. Treatment with E-64d induced the accumulation of GFP-fluorescent endosomes and inhibited the degradation of these fusion proteins. No GFP fluorescence was observed in vacuoles in E-64d-treated transgenic plants. Taken together, these results suggest that endosomal proteases are required for the fusion of endosomes with vacuoles at the final step in the endocytotic pathway for degradation of plasma membrane proteins in plants.
Collapse
Affiliation(s)
- Kenji Yamada
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| | | | | | | | | |
Collapse
|
309
|
Abstract
The higher plant Golgi apparatus, comprising many individual stacks of membrane bounded cisternae, is one of the most enigmatic of the cytoplasmic organelles. Not only can the stacks receive material from the endoplasmic reticulum, process it and target it to the correct cellular destination, but they can also synthesise and export complex carbohydrates and lipids and most likely act as one end point of the endocytic pathway. In many cells such processing and sorting can take place while the stacks are moving within the cytoplasm and, remarkably, the organelle manages to retain its structural integrity. This review considers some of the latest data and views on transport both to and from the Golgi and the mechanisms by which such activity is regulated.
Collapse
Affiliation(s)
- Chris Hawes
- Research School of Biological & Molecular Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK.
| |
Collapse
|
310
|
Yuasa K, Toyooka K, Fukuda H, Matsuoka K. Membrane-anchored prolyl hydroxylase with an export signal from the endoplasmic reticulum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 41:81-94. [PMID: 15610351 DOI: 10.1111/j.1365-313x.2004.02279.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We cloned a novel prolyl 4-hydroxylase (PH; EC 1.14.11.2) homolog cDNA from tobacco (Nicotiana tabacum) BY-2 cells based on expression sequence tag information. Like other PHs, this tobacco PH polypeptide has two conserved histidine residues, and it comprises 286 amino acids with a calculated molecular mass of 32 kDa. Interestingly, this protein and homologs in Arabidopsis and rice have predicted transmembrane sequences in their N-terminal regions. This PH homolog was expressed in BY-2 cells as a His-tagged protein, and the expressed protein showed PH activity. Incubation of membranes with high salt, urea, and protease with or without detergents indicated that this protein is an integral membrane protein with a type II configuration. Its membrane-anchored nature is specific for plants because no integral membrane PH has been found in animals. A membrane fractionation study and immunocytochemical studies indicate that this protein localizes in both the endoplasmic reticulum (ER) and Golgi apparatus. Analysis of this protein fused to green fluorescent protein indicated that basic amino acids in the cytoplasmic, N-terminal region of the PH play a role in its export from the ER.
Collapse
Affiliation(s)
- Koji Yuasa
- Plant Science Center, RIKEN (The Institute of Physical and Chemical Research), Yokohama 230-0045, Japan
| | | | | | | |
Collapse
|
311
|
daSilva LLP, Taylor JP, Hadlington JL, Hanton SL, Snowden CJ, Fox SJ, Foresti O, Brandizzi F, Denecke J. Receptor salvage from the prevacuolar compartment is essential for efficient vacuolar protein targeting. THE PLANT CELL 2005; 17:132-48. [PMID: 15632053 PMCID: PMC544495 DOI: 10.1105/tpc.104.026351] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Accepted: 10/08/2004] [Indexed: 05/17/2023]
Abstract
We have characterized the requirements to inhibit the function of the plant vacuolar sorting receptor BP80 in vivo and gained insight into the crucial role of receptor recycling between the prevacuolar compartment and the Golgi apparatus. The drug wortmannin interferes with the BP80-mediated route to the vacuole and induces hypersecretion of a soluble BP80-ligand. Wortmannin does not prevent receptor-ligand binding itself but causes BP80 levels to be limiting. Consequently, overexpression of BP80 partially restores vacuolar cargo transport. To simulate receptor traffic, we tested a truncated BP80 derivative in which the entire lumenal domain of BP80 has been replaced by the green fluorescent protein (GFP). The resulting chimeric protein (GFP-BP80) accumulates in the prevacuolar compartment as expected, but a soluble GFP fragment can also be detected in purified vacuoles. Interestingly, GFP-BP80 coexpression interferes with the correct sorting of a BP80-ligand and causes hypersecretion that is reversible by expressing a 10-fold excess of full-length BP80. This suggests that GFP-BP80 competes with endogenous BP80 mainly at the retrograde transport route that rescues receptors from the prevacuolar compartment. Treatment with wortmannin causes further leakage of GFP-BP80 from the prevacuolar compartment to the vacuoles, whereas BP80-ligands are secreted. We propose that recycling of the vacuolar sorting receptor from the prevacuolar compartment to the Golgi apparatus is an essential process that is saturable and wortmannin sensitive.
Collapse
Affiliation(s)
- Luis L P daSilva
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
312
|
Murphy AS, Bandyopadhyay A, Holstein SE, Peer WA. Endocytotic cycling of PM proteins. ANNUAL REVIEW OF PLANT BIOLOGY 2005; 56:221-51. [PMID: 15862095 DOI: 10.1146/annurev.arplant.56.032604.144150] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Plasma membrane protein internalization and recycling mechanisms in plants share many features with other eukaryotic organisms. However, functional and structural differences at the cellular and organismal level mandate specialized mechanisms for uptake, sorting, trafficking, and recycling in plants. Recent evidence of plasma membrane cycling of members of the PIN auxin efflux facilitator family and the KAT1 inwardly rectifying potassium channel demonstrates that endocytotic cycling of some form occurs in plants. However, the mechanisms underlying protein internalization and the signals that stimulate endocytosis of proteins from the cell-environment interface are poorly understood. Here we summarize what is known of endocytotic cycling in animals and compare those mechanisms with what is known in plants. We discuss plant orthologs of mammalian-trafficking proteins involved in endocytotic cycling. The use of the styryl dye FM4-64 to define the course of endocytotic uptake and the fungal toxin brefeldin A to dissect the internalization pathways are particularly emphasized. Additionally, we discuss progress in identifying distinct endosomal populations marked by the small GTPases Ara6 and Ara7 as well as recently described examples of apparent cycling of plasma membrane proteins.
Collapse
Affiliation(s)
- Angus S Murphy
- Department of Horticulture, Purdue University, West Lafayette, Indiana 47907, USA.
| | | | | | | |
Collapse
|
313
|
Kotzer AM, Brandizzi F, Neumann U, Paris N, Moore I, Hawes C. AtRabF2b (Ara7) acts on the vacuolar trafficking pathway in tobacco leaf epidermal cells. J Cell Sci 2004; 117:6377-89. [PMID: 15561767 DOI: 10.1242/jcs.01564] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Rab GTPases are universal key regulators of intracellular secretory trafficking events. In particular, Rab 5 homologues have been implicated in endocytic events and in the vacuolar pathway. In this study, we investigate the location and function of a member of this family, AtRabF2b (Ara7) in tobacco (Nicotiana tabacum) leaf epidermal cells using a live cell imaging approach. Fluorescent-tagged AtRabF2b[wt] localized to the prevacuolar compartment and Golgi apparatus, as determined by coexpression studies with fluorescent markers for these compartments. Mutations that impair AtRabF2b function also alter the subcellular location of the GTPase. In addition, coexpression studies of the protein with the vacuole-targeted aleurain-green fluorescent protein (GFP) and rescue experiments with wild-type AtRabF2b indicate that the dominant-negative mutant of AtRabF2b causes the vacuolar marker to be secreted to the apoplast. Our results indicate a clear role of AtRabF2b in the vacuolar trafficking pathway.
Collapse
Affiliation(s)
- Amanda M Kotzer
- Research School of Biological and Molecular Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | | | | | | | | | | |
Collapse
|
314
|
Ueda T, Uemura T, Sato MH, Nakano A. Functional differentiation of endosomes in Arabidopsis cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 40:783-9. [PMID: 15546360 DOI: 10.1111/j.1365-313x.2004.02249.x] [Citation(s) in RCA: 204] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Endocytosis plays an important role in plant physiology, but how endocytic organelles are organized remains unknown. We present the evidence that endosomes are functionally differentiated in Arabidopsis cells. Two types of Rab5-related GTPases are localized on distinct population of endosomes in a partially overlapping manner. Ara7 and Rha1 are on an early type of endosomes with AtVamp727, where recycling of plasma membrane proteins occurs. In contrast, the plant-unique Rab5, Ara6, resides on distinct endosomes with the prevacuolar SNAREs. Partially overlapping localization of Ara6 and Ara7/Rha1 with reciprocal gradients suggests maturation of endosomes from one to the other.
Collapse
Affiliation(s)
- Takashi Ueda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | | | | | |
Collapse
|
315
|
Abstract
Plant membrane trafficking shares many features with other eukaryotic organisms, including the machinery for vesicle formation and fusion. However, the plant endomembrane system lacks an ER-Golgi intermediate compartment, has numerous Golgi stacks and several types of vacuoles, and forms a transient compartment during cell division. ER-Golgi trafficking involves bulk flow and efficient recycling of H/KDEL-bearing proteins. Sorting in the Golgi stacks separates bulk flow to the plasma membrane from receptor-mediated trafficking to the lytic vacuole. Cargo for the protein storage vacuole is delivered from the endoplasmic reticulum (ER), cis-Golgi, and trans-Golgi. Endocytosis includes recycling of plasma membrane proteins from early endosomes. Late endosomes appear identical with the multivesiculate prevacuolar compartment that lies on the Golgi-vacuole trafficking pathway. In dividing cells, homotypic fusion of Golgi-derived vesicles forms the cell plate, which expands laterally by targeted vesicle fusion at its margin, eventually fusing with the plasma membrane.
Collapse
Affiliation(s)
- Gerd Jurgens
- ZMBP, Entwicklungsgenetik, Universitat Tubingen, 72076 Tubingen, Germany.
| |
Collapse
|
316
|
Mori T, Maruyama N, Nishizawa K, Higasa T, Yagasaki K, Ishimoto M, Utsumi S. The composition of newly synthesized proteins in the endoplasmic reticulum determines the transport pathways of soybean seed storage proteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 40:238-49. [PMID: 15447650 DOI: 10.1111/j.1365-313x.2004.02204.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Glycinin (11S) and beta-conglycinin (7S) are major storage proteins in soybean (Glycine max L.) seeds and accumulate in the protein storage vacuole (PSV). These proteins are synthesized in the endoplasmic reticulum (ER) and transported to the PSV by vesicles. Electron microscopic analysis of developing soybean cotyledons of the wild type and mutants with storage protein composition different from that of the wild type showed that there are two transport pathways: one is via the Golgi and the other bypasses it. Golgi-derived vesicles were observed in all lines used in this study and formed smooth dense bodies with a diameter of 0.5 to several micrometers. ER-derived protein bodies (PBs) with a diameter of 0.3-0.5 microm were observed at high frequency in the mutants containing higher amount of 11S group I subunit than the wild type, whereas they were hardly observed in the mutants lacking 11S group I subunit. These indicate that pro11S group I may affect the formation of PBs. Thus, the composition of newly synthesized proteins in the ER is important in the selection of the transport pathways.
Collapse
Affiliation(s)
- Takashi Mori
- Laboratory of Food Quality Design and Development, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | | | | | |
Collapse
|
317
|
Matsuoka K, Demura T, Galis I, Horiguchi T, Sasaki M, Tashiro G, Fukuda H. A comprehensive gene expression analysis toward the understanding of growth and differentiation of tobacco BY-2 cells. PLANT & CELL PHYSIOLOGY 2004; 45:1280-9. [PMID: 15509851 DOI: 10.1093/pcp/pch155] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
To understand how plant cell changes gene expression during cell division and after termination of cell division, we analyzed the change of gene expression during the growth of tobacco BY-2 cell lines using a cDNA microarray, which contained about 9,200 expression sequence tag fragments and corresponded to about 7,000 genes. We found that log phase cells predominantly expressed DNA/chromosome duplication gene homologs. In addition, many genes for basic transcription and translation machineries, as well as proteasomal genes, were up-regulated at the log phase. About half of the kinesin homolog genes, but not myosin homolog genes, were predominantly expressed at the dividing phase as well. In contrast, stationary phase cells expressed genes for many receptor kinases, signal transduction machineries and transcription factors. Several hundreds of genes showed differential expression after incubation of stationary phase cells with medium containing either salicylic acid or abscisic acid. These findings suggested that BY-2 cells at the stationary phase express genes for perceiving extracellular signals.
Collapse
Affiliation(s)
- Ken Matsuoka
- Plant Science Center, RIKEN (Institute of Physical and Chemical Research), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045 Japan.
| | | | | | | | | | | | | |
Collapse
|
318
|
Lee GJ, Sohn EJ, Lee MH, Hwang I. The Arabidopsis rab5 homologs rha1 and ara7 localize to the prevacuolar compartment. PLANT & CELL PHYSIOLOGY 2004; 45:1211-20. [PMID: 15509844 DOI: 10.1093/pcp/pch142] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Rha1, an Arabidopsis Rab5 homolog, plays a critical role in vacuolar trafficking in plant cells. In this study, we investigated the localization of Rha1 and Ara7, two Arabidopsis proteins that have highly similar amino acid sequence homology to Rab5 in animal cells. Both Ara7 and Rha1 gave a punctate staining pattern and colocalized when transiently expressed as GFP- (green fluorescent protein) or small epitope-tagged forms in Arabidopsis protoplasts. In protoplasts, transiently expressed Rha1 and Ara7 colocalized with AtPEP12p and VSR(At-1), two proteins that are known to be present at the prevacuolar compartment (PVC). Furthermore, endogenous Rha1 also gave a punctate staining pattern and colocalized with AtPEP12p to the PVC. Mutations in the first and second GTP-binding motifs alter the localizations of GFP: Rha1[S24N] in the cytosol and Rha1[Q69L] in the tonoplast of the central vacuole. Also, mutations in the effector domain and the prenylation site inhibit membrane association of Rha1. Based on these results, we propose that Rha1 and Ara7 localize to the PVC and that GTP-binding motifs as well as the effector domain are important for localization of Rha1 to the PVC.
Collapse
Affiliation(s)
- Gil-Je Lee
- Center for Plant Intracellular Trafficking and Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, 790-784 Korea
| | | | | | | |
Collapse
|
319
|
Geldner N. The plant endosomal system--its structure and role in signal transduction and plant development. PLANTA 2004; 219:547-560. [PMID: 15221385 DOI: 10.1007/s00425-004-1302-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Accepted: 04/29/2004] [Indexed: 05/24/2023]
Abstract
Endosomes are highly dynamic membrane systems that receive endocytosed plasma membrane proteins and sort them for either degradation or recycling back to the cell surface. In addition, they receive newly synthesised proteins destined for vacuolar/lysosomal compartments. Sorting in the endosomes is necessary for the establishment and maintenance of cell polarity and it is needed to control levels and function of receptors and transporters at the cellular surface. Both processes are crucial for correct cell behaviour during tissue and organ development and for intercellular communication in general. It has therefore become an imperative to investigate structure and function of the endosomal system if we want to obtain a deeper mechanistic understanding of signal transduction and development. This review will compare our current understanding of endosomal trafficking in animals and yeast with what is known in plants, and will highlight some important breakthroughs in our understanding of the role of endosomes in signal transduction and multicellular development in Drosophila, as well as in Arabidopsis.
Collapse
Affiliation(s)
- Niko Geldner
- ZMBP, Entwicklungsgenetik, Universität Tübingen, Auf der Morgenstelle 3, 72076, Germany.
| |
Collapse
|
320
|
Samaj J, Baluska F, Voigt B, Schlicht M, Volkmann D, Menzel D. Endocytosis, actin cytoskeleton, and signaling. PLANT PHYSIOLOGY 2004; 135:1150-61. [PMID: 15266049 PMCID: PMC519036 DOI: 10.1104/pp.104.040683] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Revised: 04/21/2004] [Accepted: 04/21/2004] [Indexed: 05/17/2023]
Affiliation(s)
- Jozef Samaj
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany.
| | | | | | | | | | | |
Collapse
|
321
|
Uemura T, Ueda T, Ohniwa RL, Nakano A, Takeyasu K, Sato MH. Systematic Analysis of SNARE Molecules in Arabidopsis: Dissection of the post-Golgi Network in Plant Cells. Cell Struct Funct 2004; 29:49-65. [PMID: 15342965 DOI: 10.1247/csf.29.49] [Citation(s) in RCA: 407] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In all eucaryotic cells, specific vesicle fusion during vesicular transport is mediated by membrane-associated proteins called SNAREs (soluble N-ethyl-maleimide sensitive factor attachment protein receptors). Sequence analysis identified a total of 54 SNARE genes (18 Qa-SNAREs/Syntaxins, 11 Qb-SNAREs, 8 Qc-SNAREs, 14 R-SNAREs/VAMPs and 3 SNAP-25) in the Arabidopsis genome. Almost all of them were ubiquitously expressed through out all tissues examined. A series of transient expression assays using green fluorescent protein (GFP) fused proteins revealed that most of the SNARE proteins were located on specific intracellular compartments: 6 in the endoplasmic reticulum, 9 in the Golgi apparatus, 4 in the trans-Golgi network (TGN), 2 in endosomes, 17 on the plasma membrane, 7 in both the prevacuolar compartment (PVC) and vacuoles, 2 in TGN/PVC/vacuoles, and 1 in TGN/PVC/plasma membrane. Some SNARE proteins showed multiple localization patterns in two or more different organelles, suggesting that these SNAREs shuttle between the organelles. Furthermore, the SYP41/SYP61-residing compartment, which was defined as the TGN, was not always located along with the Golgi apparatus, suggesting that this compartment is an independent organelle distinct from the Golgi apparatus. We propose possible combinations of SNARE proteins on all subcellular compartments, and suggest the complexity of the post-Golgi membrane traffic in higher plant cells.
Collapse
Affiliation(s)
- Tomohiro Uemura
- Graduate School of Biostudies, Kyoto University, Yoshida-nihonmatsu, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | |
Collapse
|