Oida T, Weiner HL. TGF-β induces surface LAP expression on murine CD4 T cells independent of Foxp3 induction.
PLoS One 2010;
5:e15523. [PMID:
21124798 PMCID:
PMC2991360 DOI:
10.1371/journal.pone.0015523]
[Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2010] [Accepted: 10/06/2010] [Indexed: 11/24/2022] Open
Abstract
Background
It has been reported that human FOXP3+ CD4 Tregs express GARP-anchored surface latency-associated peptide (LAP) after activation, based on the use of an anti-human LAP mAb. Murine CD4 Foxp3+ Tregs have also been reported to express surface LAP, but these studies have been hampered by the lack of suitable anti-mouse LAP mAbs.
Methodology/Principal Findings
We generated anti-mouse LAP mAbs by immunizing TGF-β−/− animals with a mouse Tgfb1-transduced P3U1 cell line. Using these antibodies, we demonstrated that murine Foxp3+ CD4 Tregs express LAP on their surface. In addition, retroviral transduction of Foxp3 into mouse CD4+CD25− T cells induced surface LAP expression. We then examined surface LAP expression after treating CD4+CD25− T cells with TGF-β and found that TGF-β induced surface LAP not only on T cells that became Foxp3+ but also on T cells that remained Foxp3− after TGF-β treatment. GARP expression correlated with the surface LAP expression, suggesting that surface LAP is GARP-anchored also in murine T cells.
Conclusions/Significance
Unlike human CD4 T cells, surface LAP expression on mouse CD4 T cells is controlled by Foxp3 and TGF-β. Our newly described anti-mouse LAP mAbs will provide a useful tool for the investigation and functional analysis of T cells that express LAP on their surface.
Collapse