301
|
Kroes MC, Fernández G. Dynamic neural systems enable adaptive, flexible memories. Neurosci Biobehav Rev 2012; 36:1646-66. [DOI: 10.1016/j.neubiorev.2012.02.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Revised: 02/07/2012] [Accepted: 02/20/2012] [Indexed: 10/28/2022]
|
302
|
Feldmeyer D. Excitatory neuronal connectivity in the barrel cortex. Front Neuroanat 2012; 6:24. [PMID: 22798946 PMCID: PMC3394394 DOI: 10.3389/fnana.2012.00024] [Citation(s) in RCA: 199] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 06/15/2012] [Indexed: 01/18/2023] Open
Abstract
Neocortical areas are believed to be organized into vertical modules, the cortical columns, and the horizontal layers 1–6. In the somatosensory barrel cortex these columns are defined by the readily discernible barrel structure in layer 4. Information processing in the neocortex occurs along vertical and horizontal axes, thereby linking individual barrel-related columns via axons running through the different cortical layers of the barrel cortex. Long-range signaling occurs within the neocortical layers but also through axons projecting through the white matter to other neocortical areas and subcortical brain regions. Because of the ease of identification of barrel-related columns, the rodent barrel cortex has become a prototypical system to study the interactions between different neuronal connections within a sensory cortical area and between this area and other cortical as well subcortical regions. Such interactions will be discussed specifically for the feed-forward and feedback loops between the somatosensory and the somatomotor cortices as well as the different thalamic nuclei. In addition, recent advances concerning the morphological characteristics of excitatory neurons and their impact on the synaptic connectivity patterns and signaling properties of neuronal microcircuits in the whisker-related somatosensory cortex will be reviewed. In this context, their relationship between the structural properties of barrel-related columns and their function as a module in vertical synaptic signaling in the whisker-related cortical areas will be discussed.
Collapse
Affiliation(s)
- Dirk Feldmeyer
- Institute of Neuroscience and Medicine, INM-2, Research Centre Jülich Jülich, Germany
| |
Collapse
|
303
|
Chen WX, Buonomano DV. Developmental shift of short-term synaptic plasticity in cortical organotypic slices. Neuroscience 2012; 213:38-46. [PMID: 22521823 PMCID: PMC3367122 DOI: 10.1016/j.neuroscience.2012.04.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 04/07/2012] [Accepted: 04/11/2012] [Indexed: 11/28/2022]
Abstract
Although short-term synaptic plasticity (STP) is ubiquitous in neocortical synapses its functional role in neural computations is not well understood. Critical to elucidating the function of STP will be to understand how STP itself changes with development and experience. Previous studies have reported developmental changes in STP using acute slices. It is not clear, however, to what extent the changes in STP are a function of local ontogenetic programs or the result of the many different sensory and experience-dependent changes that accompany development in vivo. To address this question we examined the in vitro development of STP in organotypic slices cultured for up to 4 weeks. Paired recordings were performed in L5 pyramidal neurons at different stages of in vitro development. We observed a shift in STP in the form of a decrease in the paired-pulse ratio (PPR) (less depression) from the second to fourth week in vitro. This shift in STP was not accompanied by a change in initial excitatory postsynaptic potential (EPSP) amplitude. Fitting STP to a quantitative model indicated that the developmental shift is consistent with presynaptic changes. Importantly, despite the change in the PPR we did not observe changes in the time constant governing STP. Since these experiments were conducted in vitro our results indicate that the shift in STP does not depend on in vivo sensory experience. Although sensory experience may shape STP, we suggest that developmental shifts in STP are at least in part ontogenetically determined.
Collapse
Affiliation(s)
- W X Chen
- Department of Neurobiology, Integrative Center for Learning and Memory, and Brain Research Institute, University of California, Los Angeles, CA 90095, USA
| | | |
Collapse
|
304
|
DiNuzzo M, Giove F. Activity-dependent energy budget for neocortical signaling: effect of short-term synaptic plasticity on the energy expended by spiking and synaptic activity. J Neurosci Res 2012; 90:2094-102. [PMID: 22740502 DOI: 10.1002/jnr.23098] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 05/03/2012] [Accepted: 05/12/2012] [Indexed: 01/11/2023]
Abstract
The available estimate of the energy expended for signaling in rat neocortex is refined to examine the separate contribution of spiking and synaptic activity as a function of average neuronal firing rate. By taking into account a phenomenological model of short-term synaptic plasticity, we show that the transition from low to high cortical activity is accompanied by a substantial increase in relative energy consumed by action potentials vs. synaptic potentials. This consideration might be important for a deeper understanding of how information is represented in the cortex and which metabolic pathways are upregulated to sustain cortical activity.
Collapse
Affiliation(s)
- Mauro DiNuzzo
- MARBILab, Museo storico della fisica e Centro di studi e ricerche "Enrico Fermi," Rome, Italy.
| | | |
Collapse
|
305
|
Columnar interactions determine horizontal propagation of recurrent network activity in neocortex. J Neurosci 2012; 32:5454-71. [PMID: 22514308 DOI: 10.1523/jneurosci.5006-11.2012] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The cortex is organized in vertical and horizontal circuits that determine the spatiotemporal properties of distributed cortical activity. Despite detailed knowledge of synaptic interactions among individual cells in the neocortex, little is known about the rules governing interactions among local populations. Here, we used self-sustained recurrent activity generated in cortex, also known as up-states, in rat thalamocortical slices in vitro to understand interactions among laminar and horizontal circuits. By means of intracellular recordings and fast optical imaging with voltage-sensitive dyes, we show that single thalamic inputs activate the cortical column in a preferential layer 4 (L4) → layer 2/3 (L2/3) → layer 5 (L5) sequence, followed by horizontal propagation with a leading front in supragranular and infragranular layers. To understand the laminar and columnar interactions, we used focal injections of TTX to block activity in small local populations, while preserving functional connectivity in the rest of the network. We show that L2/3 alone, without underlying L5, does not generate self-sustained activity and is inefficient propagating activity horizontally. In contrast, L5 sustains activity in the absence of L2/3 and is necessary and sufficient to propagate activity horizontally. However, loss of L2/3 delays horizontal propagation via L5. Finally, L5 amplifies activity in L2/3. Our results show for the first time that columnar interactions between supragranular and infragranular layers are required for the normal propagation of activity in the neocortex. Our data suggest that supragranular and infragranular circuits, with their specific and complex set of inputs and outputs, work in tandem to determine the patterns of cortical activation observed in vivo.
Collapse
|
306
|
Spatial profile of excitatory and inhibitory synaptic connectivity in mouse primary auditory cortex. J Neurosci 2012; 32:5609-19. [PMID: 22514322 DOI: 10.1523/jneurosci.5158-11.2012] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The role of local cortical activity in shaping neuronal responses is controversial. Among other questions, it is unknown how the diverse response patterns reported in vivo-lateral inhibition in some cases, approximately balanced excitation and inhibition (co-tuning) in others-compare to the local spread of synaptic connectivity. Excitatory and inhibitory activity might cancel each other out, or, whether one outweighs the other, receptive field properties might be substantially affected. As a step toward addressing this question, we used multiple intracellular recording in mouse primary auditory cortical slices to map synaptic connectivity among excitatory pyramidal cells and the two broad classes of inhibitory cells, fast-spiking (FS) and non-FS cells in the principal input layer. Connection probability was distance-dependent; the spread of connectivity, parameterized by Gaussian fits to the data, was comparable for all cell types, ranging from 85 to 114 μm. With brief stimulus trains, unitary synapses formed by FS interneurons were stronger than other classes of synapses; synapse strength did not correlate with distance between cells. The physiological data were qualitatively consistent with predictions derived from anatomical reconstruction. We also analyzed the truncation of neuronal processes due to slicing; overall connectivity was reduced but the spatial pattern was unaffected. The comparable spatial patterns of connectivity and relatively strong excitatory-inhibitory interconnectivity are consistent with a theoretical model where either lateral inhibition or co-tuning can predominate, depending on the structure of the input.
Collapse
|
307
|
State and location dependence of action potential metabolic cost in cortical pyramidal neurons. Nat Neurosci 2012; 15:1007-14. [DOI: 10.1038/nn.3132] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 05/10/2012] [Indexed: 11/08/2022]
|
308
|
Predictive features of persistent activity emergence in regular spiking and intrinsic bursting model neurons. PLoS Comput Biol 2012; 8:e1002489. [PMID: 22570601 PMCID: PMC3343116 DOI: 10.1371/journal.pcbi.1002489] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 03/08/2012] [Indexed: 11/19/2022] Open
Abstract
Proper functioning of working memory involves the expression of stimulus-selective persistent activity in pyramidal neurons of the prefrontal cortex (PFC), which refers to neural activity that persists for seconds beyond the end of the stimulus. The mechanisms which PFC pyramidal neurons use to discriminate between preferred vs. neutral inputs at the cellular level are largely unknown. Moreover, the presence of pyramidal cell subtypes with different firing patterns, such as regular spiking and intrinsic bursting, raises the question as to what their distinct role might be in persistent firing in the PFC. Here, we use a compartmental modeling approach to search for discriminatory features in the properties of incoming stimuli to a PFC pyramidal neuron and/or its response that signal which of these stimuli will result in persistent activity emergence. Furthermore, we use our modeling approach to study cell-type specific differences in persistent activity properties, via implementing a regular spiking (RS) and an intrinsic bursting (IB) model neuron. We identify synaptic location within the basal dendrites as a feature of stimulus selectivity. Specifically, persistent activity-inducing stimuli consist of activated synapses that are located more distally from the soma compared to non-inducing stimuli, in both model cells. In addition, the action potential (AP) latency and the first few inter-spike-intervals of the neuronal response can be used to reliably detect inducing vs. non-inducing inputs, suggesting a potential mechanism by which downstream neurons can rapidly decode the upcoming emergence of persistent activity. While the two model neurons did not differ in the coding features of persistent activity emergence, the properties of persistent activity, such as the firing pattern and the duration of temporally-restricted persistent activity were distinct. Collectively, our results pinpoint to specific features of the neuronal response to a given stimulus that code for its ability to induce persistent activity and predict differential roles of RS and IB neurons in persistent activity expression. Memory, referred to as the ability to retain, store and recall information, represents one of the most fundamental cognitive functions in daily life. A significant feature of memory processes is selectivity to particular events or items that are important to our survival and relevant to specific situations. For long-term memory, the selectivity to a specific stimulus is seen both at the behavioral as well as the cellular level. For working memory, a type of short-term memory involved in decision making and attention processes, stimulus selectivity has been observed in vivo using spatial working memory tasks. In addition, persistent activity, which is the cellular correlate of working memory, is also selective to specific stimuli for each neuron, suggesting that each neuron has a ‘memory field’. Our study proposes that both the location of incoming inputs onto the neuronal dendritic tree and specific temporal features of the neuronal response can be used to predict the emergence of persistent activity in two neuron models with different firing patterns, revealing possible mechanisms for generating and propagating stimulus-selectivity in working memory processes. The study also reveals that neurons with different firing patterns may have different roles in persistent activity expression.
Collapse
|
309
|
Abstract
The mossy fiber (MF)-granule cell (GC) pathway conveys multiple modalities of information to the cerebellar cortex, converging on Purkinje cells (PC), the sole output of the cerebellar cortex. Recent in vivo experiments have shown that activity in GCs varies from tonic firing at a few hertz to phasic bursts >500 Hz. However, the responses of parallel fiber (PF)-PC synapses to this wide range of input frequencies are unknown, and there is controversy regarding several frequency-related parameters of transmission at this synapse. We performed recordings of unitary synapses and combined variance-mean analysis with a carefully adapted extracellular stimulation method in young and adult rats. We show that, although the probability of release at individual sites is low at physiological calcium concentration, PF-PC synapses release one or more vesicles with a probability of 0.44 at 1.5 mm [Ca(2+)](e). Paired-pulse facilitation was observed over a wide range of frequencies; it renders burst inputs particularly effective and reproducible. These properties are primarily independent of synaptic weight and age. Furthermore, we show that the PF-PC synapse is able to sustain transmission at very high frequencies for tens of stimuli, as a result of accelerated vesicle replenishment and an apparent recruitment of release site vesicles, which appears to be a central mechanism of paired-pulse facilitation at this synapse. These properties ensure that PF-PC synapses possess a dynamic range enabling the temporal code of MF inputs to be transmitted reliably to the PC.
Collapse
|
310
|
Khazen G, Hill SL, Schürmann F, Markram H. Combinatorial expression rules of ion channel genes in juvenile rat (Rattus norvegicus) neocortical neurons. PLoS One 2012; 7:e34786. [PMID: 22509357 PMCID: PMC3324541 DOI: 10.1371/journal.pone.0034786] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 03/09/2012] [Indexed: 11/19/2022] Open
Abstract
The electrical diversity of neurons arises from the expression of different combinations of ion channels. The gene expression rules governing these combinations are not known. We examined the expression of twenty-six ion channel genes in a broad range of single neocortical neuron cell types. Using expression data from a subset of twenty-six ion channel genes in ten different neocortical neuronal types, classified according to their electrophysiological properties, morphologies and anatomical positions, we first developed an incremental Support Vector Machine (iSVM) model that prioritizes the predictive value of single and combinations of genes for the rest of the expression pattern. With this approach we could predict the expression patterns for the ten neuronal types with an average 10-fold cross validation accuracy of 87% and for a further fourteen neuronal types not used in building the model, with an average accuracy of 75%. The expression of the genes for HCN4, Kv2.2, Kv3.2 and Caβ3 were found to be particularly strong predictors of ion channel gene combinations, while expression of the Kv1.4 and Kv3.3 genes has no predictive value. Using a logic gate analysis, we then extracted a spectrum of observed combinatorial gene expression rules of twenty ion channels in different neocortical neurons. We also show that when applied to a completely random and independent data, the model could not extract any rules and that it is only possible to extract them if the data has consistent expression patterns. This novel strategy can be used for predictive reverse engineering combinatorial expression rules from single-cell data and could help identify candidate transcription regulatory processes.
Collapse
Affiliation(s)
- Georges Khazen
- Blue Brain Project, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sean L. Hill
- Blue Brain Project, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Felix Schürmann
- Blue Brain Project, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Henry Markram
- Blue Brain Project, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
311
|
Scott P, Cowan AI, Stricker C. Quantifying impacts of short-term plasticity on neuronal information transfer. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:041921. [PMID: 22680512 DOI: 10.1103/physreve.85.041921] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 02/09/2012] [Indexed: 06/01/2023]
Abstract
Short-term changes in efficacy have been postulated to enhance the ability of synapses to transmit information between neurons, and within neuronal networks. Even at the level of connections between single neurons, direct confirmation of this simple conjecture has proven elusive. By combining paired-cell recordings, realistic synaptic modeling, and information theory, we provide evidence that short-term plasticity can not only improve, but also reduce information transfer between neurons. We focus on a concrete example in rat neocortex, but our results may generalize to other systems. When information is contained in the timings of individual spikes, we find that facilitation, depression, and recovery affect information transmission in proportion to their impacts upon the probability of neurotransmitter release. When information is instead conveyed by mean spike rate only, the influences of short-term plasticity critically depend on the range of spike frequencies that the target network can distinguish (its effective dynamic range). Our results suggest that to efficiently transmit information, the brain must match synaptic type, coding strategy, and network connectivity during development and behavior.
Collapse
Affiliation(s)
- Pat Scott
- Department of Physics, McGill University, 3600 rue University, Montréal, Canada, QC H3A 2T8.
| | | | | |
Collapse
|
312
|
Oviedo HV, Reyes AD. Integration of subthreshold and suprathreshold excitatory barrages along the somatodendritic axis of pyramidal neurons. PLoS One 2012; 7:e33831. [PMID: 22457793 PMCID: PMC3311551 DOI: 10.1371/journal.pone.0033831] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 02/20/2012] [Indexed: 01/23/2023] Open
Abstract
Neurons integrate inputs arriving in different cellular compartments to produce action potentials that are transmitted to other neurons. Because of the voltage- and time-dependent conductances in the dendrites and soma, summation of synaptic inputs is complex. To examine summation of membrane potentials and firing rates, we performed whole-cell recordings from layer 5 cortical pyramidal neurons in acute slices of the rat's somatosensory cortex. We delivered subthreshold and suprathreshold stimuli at the soma and several sites on the apical dendrite, and injected inputs that mimic synaptic barrages at individual or distributed sites. We found that summation of subthreshold potentials differed from that of firing rates. Subthreshold summation was linear when barrages were small but became supralinear as barrages increased. When neurons were discharging repetitively the rules were more diverse. At the soma and proximal apical dendrite summation of the evoked firing rates was predominantly sublinear whereas in the distal dendrite summation ranged from supralinear to sublinear. In addition, the integration of inputs delivered at a single location differed from that of distributed inputs only for suprathreshold responses. These results indicate that convergent inputs onto the apical dendrite and soma do not simply summate linearly, as suggested previously, and that distinct presynaptic afferents that target specific sites on the dendritic tree may perform unique sets of computations.
Collapse
Affiliation(s)
- Hysell V Oviedo
- Cold Spring Harbor Lab, Cold Spring Harbor, New York, United States of America.
| | | |
Collapse
|
313
|
Avermann M, Tomm C, Mateo C, Gerstner W, Petersen CCH. Microcircuits of excitatory and inhibitory neurons in layer 2/3 of mouse barrel cortex. J Neurophysiol 2012; 107:3116-34. [PMID: 22402650 DOI: 10.1152/jn.00917.2011] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Synaptic interactions between nearby excitatory and inhibitory neurons in the neocortex are thought to play fundamental roles in sensory processing. Here, we have combined optogenetic stimulation, whole cell recordings, and computational modeling to define key functional microcircuits within layer 2/3 of mouse primary somatosensory barrel cortex. In vitro optogenetic stimulation of excitatory layer 2/3 neurons expressing channelrhodopsin-2 evoked a rapid sequence of excitation followed by inhibition. Fast-spiking (FS) GABAergic neurons received large-amplitude, fast-rising depolarizing postsynaptic potentials, often driving action potentials. In contrast, the same optogenetic stimulus evoked small-amplitude, subthreshold postsynaptic potentials in excitatory and non-fast-spiking (NFS) GABAergic neurons. To understand the synaptic mechanisms underlying this network activity, we investigated unitary synaptic connectivity through multiple simultaneous whole cell recordings. FS GABAergic neurons received unitary excitatory postsynaptic potentials with higher probability, larger amplitudes, and faster kinetics compared with NFS GABAergic neurons and other excitatory neurons. Both FS and NFS GABAergic neurons evoked robust inhibition on postsynaptic layer 2/3 neurons. A simple computational model based on the experimentally determined electrophysiological properties of the different classes of layer 2/3 neurons and their unitary synaptic connectivity accounted for key aspects of the network activity evoked by optogenetic stimulation, including the strong recruitment of FS GABAergic neurons acting to suppress firing of excitatory neurons. We conclude that FS GABAergic neurons play an important role in neocortical microcircuit function through their strong local synaptic connectivity, which might contribute to driving sparse coding in excitatory layer 2/3 neurons of mouse barrel cortex in vivo.
Collapse
Affiliation(s)
- Michael Avermann
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
314
|
Local connections of excitatory neurons to corticothalamic neurons in the rat barrel cortex. J Neurosci 2012; 31:18223-36. [PMID: 22171028 DOI: 10.1523/jneurosci.3139-11.2011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Corticothalamic projection neurons in the cerebral cortex constitute an important component of the thalamocortical reciprocal circuit, an essential input/output organization for cortical information processing. However, the spatial organization of local excitatory connections to corticothalamic neurons is only partially understood. In the present study, we first developed an adenovirus vector expressing somatodendritic membrane-targeted green fluorescent protein. After injection of the adenovirus vector into the ventrobasal thalamic complex, a band of layer (L) 6 corticothalamic neurons in the rat barrel cortex were retrogradely labeled. In addition to their cell bodies, fine dendritic spines of corticothalamic neurons were well visualized without the labeling of their axon collaterals or thalamocortical axons. In cortical slices containing retrogradely labeled L6 corticothalamic neurons, we intracellularly stained single pyramidal/spiny neurons of L2-6. We examined the spatial distribution of contact sites between the local axon collaterals of each pyramidal neuron and the dendrites of corticothalamic neurons. We found that corticothalamic neurons received strong and focused connections from L4 neurons just above them, and that the most numerous nearby and distant sources of local excitatory connections to corticothalamic neurons were corticothalamic neurons themselves and L6 putative corticocortical neurons, respectively. These results suggest that L4 neurons may serve as an important source of local excitatory inputs in shaping the cortical modulation of thalamic activity.
Collapse
|
315
|
|
316
|
Riebe I, Hanse E. Development of synaptic connectivity onto interneurons in stratum radiatum in the CA1 region of the rat hippocampus. BMC Neurosci 2012; 13:14. [PMID: 22276909 PMCID: PMC3398264 DOI: 10.1186/1471-2202-13-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 01/25/2012] [Indexed: 11/10/2022] Open
Abstract
Background The impact of a given presynaptic neuron on the firing probability of the postsynaptic neuron critically depends on the number of functional release sites that connect the two neurons. One way of determining the average functional synaptic connectivity onto a postsynaptic neuron is to compare the amplitudes of action potential dependent spontaneous synaptic currents with the amplitude of the synaptic currents that are independent of action potentials ("minis"). With this method it has been found that average synaptic connectivity between glutamatergic CA3 and CA1 pyramidal cells increases from single connections in the neonatal rat, to multiple connections in the young adult rat. On the other hand, γ-aminobutyric acid (GABA)ergic interneurons form multiple connections onto CA1 pyramidal cells already in the neonatal rat, and the degree of multiple GABAergic connectivity is preserved into adulthood. In the present study, we have examined the development of glutamate and GABA connectivity onto GABAergic CA1 stratum radiatum interneurons in the hippocampal slice, and compared this to the connectivity onto CA1 pyramidal neurons. Results In GABAergic interneurons in the CA1 stratum radiatum, irrespective of developmental stage, we found that the average amplitude of action potential dependent spontaneous AMPA receptor-mediated synaptic currents were of the same magnitude as the mini AMPA receptor mediated synaptic currents. This finding indicates that these GABAergic interneurons, in contrast to the CA1 pyramidal neurons, preserve single glutamate connectivity throughout development. For GABA connectivity, on the other hand, we found multiple functional synaptic connections onto the interneurons, as onto the pyramidal cells. Conclusions The results presented here confirm that glutamate and GABA synaptic connectivity develop very differently in the hippocampal CA1 region. Thus, whereas average GABA connectivity is multiple throughout the development, glutamate connectivity is unitary early in development. Our results further suggest that the development of glutamate synaptic connectivity differs markedly between pyramidal cells and GABAergic interneurons in stratum radiatum, such that a given presynaptic glutamatergic cell appears not allowed to increase its connectivity onto the postsynaptic stratum radiatum interneuron, as it may do onto the postsynaptic CA1 pyramidal cell.
Collapse
Affiliation(s)
- Ilse Riebe
- Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden.
| | | |
Collapse
|
317
|
Richardson MJE, Swarbrick R. Exact firing-rate response of the integrate-and-fire neuron receiving finite amplitude excitatory and inhibitory post-synaptic potentials. BMC Neurosci 2011. [PMCID: PMC3240178 DOI: 10.1186/1471-2202-12-s1-o18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
318
|
Aparin V. Simple modification of Oja rule limits L1-norm of weight vector and leads to sparse connectivity. Neural Comput 2011; 24:724-43. [PMID: 22091668 DOI: 10.1162/neco_a_00240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
This letter describes a simple modification of the Oja learning rule, which asymptotically constrains the L1-norm of an input weight vector instead of the L2-norm as in the original rule. This constraining is local as opposed to commonly used instant normalizations, which require the knowledge of all input weights of a neuron to update each one of them individually. The proposed rule converges to a weight vector that is sparser (has more zero weights) than the vector learned by the original Oja rule with or without the zero bound, which could explain the developmental synaptic pruning.
Collapse
|
319
|
Ramaswamy S, Hill SL, King JG, Schürmann F, Wang Y, Markram H. Intrinsic morphological diversity of thick-tufted layer 5 pyramidal neurons ensures robust and invariant properties of in silico synaptic connections. J Physiol 2011; 590:737-52. [PMID: 22083599 DOI: 10.1113/jphysiol.2011.219576] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The morphology of neocortical pyramidal neurons is not only highly characteristic but also displays an intrinsic diversity that renders each neuron morphologically unique. We investigated the significance of this intrinsic morphological diversity in in silico networks composed of thick-tufted layer 5 (TTL5) pyramidal neurons, by comparing the in silico and in vitro properties of TTL5 synaptic connections. The synaptic locations of in silico connections were determined by placing 3D reconstructed TTL5 neurons randomly in a volume equivalent to that of layer 5 in the juvenile rat somatosensory cortex and using a 'collision-detection' algorithm to identify the incidental loci of axo-dendritic overlap. The activation time of the modelled synapses and their biophysical properties were characterized based on experimental measurements. We found that the anatomical loci of synapses and the physiological properties of the somatically recorded EPSPs closely matched those recorded experimentally without the need for any fine-tuning. Furthermore, perturbations to both the physiological or anatomical parameters of the model did not alter the average physiological properties of the population of modelled synaptic connections. This microcircuit-level robust behaviour was due to the intrinsic diversity of the morphology of pyramidal neurons in the microcircuit. We conclude that synaptic transmission in a network of TTL5 neurons is highly invariant across microcircuits suggesting that intrinsic diversity is a mechanism to ensure the same average synaptic properties in different animals of the same species. Finally, we show that the average physiological properties of the TTL5 microcircuit are surprisingly robust to anatomical and physiological perturbations also partly due to the intrinsic diversity of pyramidal neuron morphology.
Collapse
Affiliation(s)
- Srikanth Ramaswamy
- Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
320
|
Mitra P, Brownstone RM. An in vitro spinal cord slice preparation for recording from lumbar motoneurons of the adult mouse. J Neurophysiol 2011; 107:728-41. [PMID: 22031766 DOI: 10.1152/jn.00558.2011] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The development of central nervous system slice preparations for electrophysiological studies has led to an explosion of knowledge of neuronal properties in health and disease. Studies of spinal motoneurons in these preparations, however, have been largely limited to the early postnatal period, as adult motoneurons are vulnerable to the insults sustained by the preparation. We therefore sought to develop an adult spinal cord slice preparation that permits recording from lumbar motoneurons. To accomplish this, we empirically optimized the composition of solutions used during preparation in order to limit energy failure, reduce harmful ionic fluxes, mitigate oxidative stress, and prevent excitotoxic cell death. In addition to other additives, this involved the use of ethyl pyruvate, which serves as an effective nutrient and antioxidant. We also optimized and incorporated a host of previously published modifications used for other in vitro preparations, such as the use of polyethylene glycol. We provide an in-depth description of the preparation protocol and discuss the rationale underlying each modification. By using this protocol, we obtained stable whole cell patch-clamp recordings from identified fluorescent protein-labeled motoneurons in adult slices; here, we describe the firing properties of these adult motoneurons. We propose that this preparation will allow further studies of how motoneurons integrate activity to produce adult motor behaviors and how pathological processes such as amyotrophic lateral sclerosis affect these neurons.
Collapse
Affiliation(s)
- Pratip Mitra
- Department of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
321
|
Zaitsev AV, Anwyl R. Inhibition of the slow afterhyperpolarization restores the classical spike timing-dependent plasticity rule obeyed in layer 2/3 pyramidal cells of the prefrontal cortex. J Neurophysiol 2011; 107:205-15. [PMID: 21975445 DOI: 10.1152/jn.00452.2011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The induction of long-term potentiation (LTP) and long-term depression (LTD) of excitatory postsynaptic currents was investigated in proximal synapses of layer 2/3 pyramidal cells of the rat medial prefrontal cortex. The spike timing-dependent plasticity (STDP) induction protocol of negative timing, with postsynaptic leading presynaptic stimulation of action potentials (APs), induced LTD as expected from the classical STDP rule. However, the positive STDP protocol of presynaptic leading postsynaptic stimulation of APs predominantly induced a presynaptically expressed LTD rather than the expected postsynaptically expressed LTP. Thus the induction of plasticity in layer 2/3 pyramidal cells does not obey the classical STDP rule for positive timing. This unusual STDP switched to a classical timing rule if the slow Ca(2+)-dependent, K(+)-mediated afterhyperpolarization (sAHP) was inhibited by the selective blocker N-trityl-3-pyridinemethanamine (UCL2077), by the β-adrenergic receptor agonist isoproterenol, or by the cholinergic agonist carbachol. Thus we demonstrate that neuromodulators can affect synaptic plasticity by inhibition of the sAHP. These findings shed light on a fundamental question in the field of memory research regarding how environmental and behavioral stimuli influence LTP, thereby contributing to the modulation of memory.
Collapse
Affiliation(s)
- Aleksey V Zaitsev
- Dept. of Physiology, Trinity College Dublin, College Green, Dublin 2, Ireland
| | | |
Collapse
|
322
|
Multiplicative dynamics underlie the emergence of the log-normal distribution of spine sizes in the neocortex in vivo. J Neurosci 2011; 31:9481-8. [PMID: 21715613 DOI: 10.1523/jneurosci.6130-10.2011] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
What fundamental properties of synaptic connectivity in the neocortex stem from the ongoing dynamics of synaptic changes? In this study, we seek to find the rules shaping the stationary distribution of synaptic efficacies in the cortex. To address this question, we combined chronic imaging of hundreds of spines in the auditory cortex of mice in vivo over weeks with modeling techniques to quantitatively study the dynamics of spines, the morphological correlates of excitatory synapses in the neocortex. We found that the stationary distribution of spine sizes of individual neurons can be exceptionally well described by a log-normal function. We furthermore show that spines exhibit substantial volatility in their sizes at timescales that range from days to months. Interestingly, the magnitude of changes in spine sizes is proportional to the size of the spine. Such multiplicative dynamics are in contrast with conventional models of synaptic plasticity, learning, and memory, which typically assume additive dynamics. Moreover, we show that the ongoing dynamics of spine sizes can be captured by a simple phenomenological model that operates at two timescales of days and months. This model converges to a log-normal distribution, bridging the gap between synaptic dynamics and the stationary distribution of synaptic efficacies.
Collapse
|
323
|
Postnatal development of intrinsic and synaptic properties transforms signaling in the layer 5 excitatory neural network of the visual cortex. J Neurosci 2011; 31:9526-37. [PMID: 21715617 DOI: 10.1523/jneurosci.0458-11.2011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Information flow in neocortical circuits is regulated by two key parameters: intrinsic neuronal properties and the short-term activity-dependent plasticity of synaptic transmission. Using multineuronal whole-cell voltage recordings, we characterized the postnatal maturation of the electrophysiological properties and short-term plasticity of excitatory synaptic transmission between pairs of layer 5 (L5) pyramidal neurons (n = 158) in acute slices of rat visual cortex over the first postnatal month. We found that the intrinsic and synaptic properties of L5 pyramidal neurons develop in parallel. Before postnatal day 15 (P15), intrinsic electrophysiological properties were tuned to low-frequency operation, characterized by high apparent input resistance, a long membrane time constant, and prolonged somatic action potentials. Unitary excitatory synaptic potentials were of large amplitude (P11-P15; median, 514 μV), but showed pronounced use-dependent depression during prolonged regular and physiologically relevant presynaptic action potential firing patterns. In contrast, in mature animals we observed a developmental decline of the peak amplitude of unitary EPSPs (P25-P29; median, 175 μV) paralleled by a decrease in apparent input resistance, membrane time constant, and somatic action potential duration. Notably, synaptic signaling of complex action potential firing patterns was also transformed, with P25-P29 connections faithfully signaling action potential trains at frequencies up to 40 Hz (1st to 50th action potential ratio, 0.91 ± 0.12). Postnatal refinement of intrinsic properties and short-term plasticity therefore transforms the capacity of the L5 excitatory neural network of the visual cortex to generate and process patterns of action potential firing and contribute to network activity.
Collapse
|
324
|
Abstract
Pyramidal cells in the neocortex are differentiated into several subgroups based on their extracortical projection targets. However, little is known regarding the relative intracortical connectivity of pyramidal neurons specialized for these specific output channels. We used paired recordings and quantitative morphological analysis to reveal distinct synaptic transmission properties, connection patterns, and morphological differentiation correlated with heterogeneous thalamic input to two different groups of pyramidal cells residing in layer 5 (L5) of rat frontal cortex. Retrograde tracers were used to label two projection subtypes in L5: crossed-corticostriatal (CCS) cells projecting to both sides of the striatum, and corticopontine (CPn) cells projecting to the ipsilateral pons. Although CPn/CPn and CCS/CCS pairs had similar connection probabilities, CPn/CPn pairs exhibited greater reciprocal connectivity, stronger unitary synaptic transmission, and more facilitation of paired-pulse responses. These synaptic characteristics were strongly correlated to the projection subtype of the presynaptic neuron. CPn and CCS cells were further differentiated according to their somatic position (L5a and L5b, the latter denser thalamic afferent fibers) and their dendritic/axonal arborizations. Together, our data demonstrate that the pyramidal projection system is segregated into different output channels according to subcortical target and thalamic input, and that information flow within and between these channels is selectively organized.
Collapse
|
325
|
Cortical dynamics during naturalistic sensory stimulations: experiments and models. ACTA ACUST UNITED AC 2011; 105:2-15. [PMID: 21907800 DOI: 10.1016/j.jphysparis.2011.07.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 06/08/2011] [Accepted: 07/13/2011] [Indexed: 01/08/2023]
Abstract
We report the results of our experimental and theoretical investigations of the neural response dynamics in primary visual cortex (V1) during naturalistic visual stimulation. We recorded Local Field Potentials (LFPs) and spiking activity from V1 of anaesthetized macaques during binocular presentation of Hollywood color movies. We analyzed these recordings with information theoretic methods, and found that visual information was encoded mainly by two bands of LFP responses: the network fluctuations measured by the phase and power of low-frequency (less than 12 Hz) LFPs; and fast gamma-range (50-100 Hz) oscillations. Both the power and phase of low frequency LFPs carried information largely complementary to that carried by spikes, whereas gamma range oscillations carried information largely redundant to that of spikes. To interpret these results within a quantitative theoretical framework, we then simulated a sparsely connected recurrent network of excitatory and inhibitory neurons receiving slowly varying naturalistic inputs, and we determined how the LFPs generated by the network encoded information about the inputs. We found that this simulated recurrent network reproduced well the experimentally observed dependency of LFP information upon frequency. This network encoded the overall strength of the input into the power of gamma-range oscillations generated by inhibitory-excitatory neural interactions, and encoded slow variations in the input by entraining the network LFP at the corresponding frequency. This dynamical behavior accounted quantitatively for the independent information carried by high and low frequency LFPs, and for the experimentally observed cross-frequency coupling between phase of slow LFPs and the power of gamma LFPs. We also present new results showing that the model's dynamics also accounted for the extra visual information that the low-frequency LFP phase of spike firing carries beyond that carried by spike rates. Overall, our results suggest biological mechanisms by which cortex can multiplex information about naturalistic sensory environments.
Collapse
|
326
|
Markram H, Gerstner W, Sjöström PJ. A history of spike-timing-dependent plasticity. Front Synaptic Neurosci 2011; 3:4. [PMID: 22007168 PMCID: PMC3187646 DOI: 10.3389/fnsyn.2011.00004] [Citation(s) in RCA: 214] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Accepted: 07/25/2011] [Indexed: 01/21/2023] Open
Abstract
How learning and memory is achieved in the brain is a central question in neuroscience. Key to today's research into information storage in the brain is the concept of synaptic plasticity, a notion that has been heavily influenced by Hebb's (1949) postulate. Hebb conjectured that repeatedly and persistently co-active cells should increase connective strength among populations of interconnected neurons as a means of storing a memory trace, also known as an engram. Hebb certainly was not the first to make such a conjecture, as we show in this history. Nevertheless, literally thousands of studies into the classical frequency-dependent paradigm of cellular learning rules were directly inspired by the Hebbian postulate. But in more recent years, a novel concept in cellular learning has emerged, where temporal order instead of frequency is emphasized. This new learning paradigm - known as spike-timing-dependent plasticity (STDP) - has rapidly gained tremendous interest, perhaps because of its combination of elegant simplicity, biological plausibility, and computational power. But what are the roots of today's STDP concept? Here, we discuss several centuries of diverse thinking, beginning with philosophers such as Aristotle, Locke, and Ribot, traversing, e.g., Lugaro's plasticità and Rosenblatt's perceptron, and culminating with the discovery of STDP. We highlight interactions between theoretical and experimental fields, showing how discoveries sometimes occurred in parallel, seemingly without much knowledge of the other field, and sometimes via concrete back-and-forth communication. We point out where the future directions may lie, which includes interneuron STDP, the functional impact of STDP, its mechanisms and its neuromodulatory regulation, and the linking of STDP to the developmental formation and continuous plasticity of neuronal networks.
Collapse
Affiliation(s)
- Henry Markram
- Brain Mind Institute, Ecole Polytechnique Fédérale de LausanneLausanne, Switzerland
| | - Wulfram Gerstner
- Brain Mind Institute, Ecole Polytechnique Fédérale de LausanneLausanne, Switzerland
| | - Per Jesper Sjöström
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondon, UK
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, The Research Institute of the McGill University Health Centre, Montreal General HospitalMontreal, QC, Canada
| |
Collapse
|
327
|
Specificity and randomness: structure-function relationships in neural circuits. Curr Opin Neurobiol 2011; 21:801-7. [PMID: 21855320 DOI: 10.1016/j.conb.2011.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 07/21/2011] [Accepted: 07/21/2011] [Indexed: 11/22/2022]
Abstract
A fundamental but unsolved problem in neuroscience is how connections between neurons might underlie information processing in central circuits. Building wiring diagrams of neural networks may accelerate our understanding of how they compute. But even if we had wiring diagrams, it is critical to know what neurons in a circuit are doing: their physiology. In both the retina and cerebral cortex, a great deal is known about topographic specificity, such as lamination and cell-type specificity of connections. Little, however, is known about connections as they relate to function. Here, we review how advances in functional imaging and electron microscopy have recently allowed the examination of relationships between sensory physiology and synaptic connections in cortical and retinal circuits.
Collapse
|
328
|
Hay E, Hill S, Schürmann F, Markram H, Segev I. Models of neocortical layer 5b pyramidal cells capturing a wide range of dendritic and perisomatic active properties. PLoS Comput Biol 2011; 7:e1002107. [PMID: 21829333 PMCID: PMC3145650 DOI: 10.1371/journal.pcbi.1002107] [Citation(s) in RCA: 193] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 05/13/2011] [Indexed: 11/19/2022] Open
Abstract
The thick-tufted layer 5b pyramidal cell extends its dendritic tree to all six layers of the mammalian neocortex and serves as a major building block for the cortical column. L5b pyramidal cells have been the subject of extensive experimental and modeling studies, yet conductance-based models of these cells that faithfully reproduce both their perisomatic Na(+)-spiking behavior as well as key dendritic active properties, including Ca(2+) spikes and back-propagating action potentials, are still lacking. Based on a large body of experimental recordings from both the soma and dendrites of L5b pyramidal cells in adult rats, we characterized key features of the somatic and dendritic firing and quantified their statistics. We used these features to constrain the density of a set of ion channels over the soma and dendritic surface via multi-objective optimization with an evolutionary algorithm, thus generating a set of detailed conductance-based models that faithfully replicate the back-propagating action potential activated Ca(2+) spike firing and the perisomatic firing response to current steps, as well as the experimental variability of the properties. Furthermore, we show a useful way to analyze model parameters with our sets of models, which enabled us to identify some of the mechanisms responsible for the dynamic properties of L5b pyramidal cells as well as mechanisms that are sensitive to morphological changes. This automated framework can be used to develop a database of faithful models for other neuron types. The models we present provide several experimentally-testable predictions and can serve as a powerful tool for theoretical investigations of the contribution of single-cell dynamics to network activity and its computational capabilities.
Collapse
Affiliation(s)
- Etay Hay
- Interdisciplinary Center for Neural Computation and Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel.
| | | | | | | | | |
Collapse
|
329
|
Cellular correlate of assembly formation in oscillating hippocampal networks in vitro. Proc Natl Acad Sci U S A 2011; 108:E607-16. [PMID: 21768381 DOI: 10.1073/pnas.1103546108] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neurons form transiently stable assemblies that may underlie cognitive functions, including memory formation. In most brain regions, coherent activity is organized by network oscillations that involve sparse firing within a well-defined minority of cells. Despite extensive work on the underlying cellular mechanisms, a fundamental question remains unsolved: how are participating neurons distinguished from the majority of nonparticipators? We used physiological and modeling techniques to analyze neuronal activity in mouse hippocampal slices during spontaneously occurring high-frequency network oscillations. Network-entrained action potentials were exclusively observed in a defined subset of pyramidal cells, yielding a strict distinction between participating and nonparticipating neurons. These spikes had unique properties, because they were generated in the axon without prior depolarization of the soma. GABA(A) receptors had a dual role in pyramidal cell recruitment. First, the sparse occurrence of entrained spikes was accomplished by intense perisomatic inhibition. Second, antidromic spike generation was facilitated by tonic effects of GABA in remote axonal compartments. Ectopic spike generation together with strong somatodendritic inhibition may provide a cellular mechanism for the definition of oscillating assemblies.
Collapse
|
330
|
Ashby MC, Isaac JTR. Maturation of a recurrent excitatory neocortical circuit by experience-dependent unsilencing of newly formed dendritic spines. Neuron 2011; 70:510-21. [PMID: 21555076 DOI: 10.1016/j.neuron.2011.02.057] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2011] [Indexed: 11/19/2022]
Abstract
Local recurrent excitatory circuits are ubiquitous in neocortex, yet little is known about their development or architecture. Here we introduce a quantitative technique for efficient single-cell resolution circuit mapping using 2-photon (2P) glutamate uncaging and analyze experience-dependent neonatal development of the layer 4 barrel cortex local excitatory circuit. We show that sensory experience specifically drives a 3-fold increase in connectivity at postnatal day (P) 9, producing a highly recurrent network. A profound dendritic spinogenesis occurs concurrent with the connectivity increase, but this is not experience dependent. However, in experience-deprived cortex, a much greater proportion of spines lack postsynaptic AMPA receptors (AMPARs) and synaptic connectivity via NMDA receptors (NMDARs) is the same as in normally developing cortex. Thus we describe a approach for quantitative circuit mapping and show that sensory experience sculpts an intrinsically developing template network, which is based on NMDAR-only synapses, by driving AMPARs into newly formed silent spines.
Collapse
Affiliation(s)
- Michael C Ashby
- Developmental Synaptic Plasticity Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
331
|
Abstract
The connectivity diagram of neocortical circuits is still unknown, and there are conflicting data as to whether cortical neurons are wired specifically or not. To investigate the basic structure of cortical microcircuits, we use a two-photon photostimulation technique that enables the systematic mapping of synaptic connections with single-cell resolution. We map the inhibitory connectivity between upper layers somatostatin-positive GABAergic interneurons and pyramidal cells in mouse frontal cortex. Most, and sometimes all, inhibitory neurons are locally connected to every sampled pyramidal cell. This dense inhibitory connectivity is found at both young and mature developmental ages. Inhibitory innervation of neighboring pyramidal cells is similar, regardless of whether they are connected among themselves or not. We conclude that local inhibitory connectivity is promiscuous, does not form subnetworks, and can approach the theoretical limit of a completely connected synaptic matrix.
Collapse
Affiliation(s)
- Elodie Fino
- Howard Hughes Medical Institute, Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | |
Collapse
|
332
|
Pidoux M, Mahon S, Deniau JM, Charpier S. Integration and propagation of somatosensory responses in the corticostriatal pathway: an intracellular study in vivo. J Physiol 2011; 589:263-81. [PMID: 21059765 DOI: 10.1113/jphysiol.2010.199646] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The dorsolateral striatum is critically involved in the execution and learning of sensorimotor tasks. It is proposed that this striatal function is achieved by the integration of convergent somatosensory and motor corticostriatal (CS) inputs in striatal medium-spiny neurons (MSNs). However, the cellular mechanisms of integration and propagation of somatosensory information in the CS pathway remain unknown. Here, by means of in vivo intracellular recordings in the rat, we analysed how sensory events generated by multi-whisker deflection, which provide essential somaesthetic information in rodents, are processed in contralateral barrel cortex layer 5 neurons and in the related somatosensory striatal MSNs. Pyramidal layer 5 barrel cortex neurons, including neurons antidromically identified as CS, responded to whisker deflection by depolarizing post-synaptic potentials that could reliably generate action potential discharge. In contrast, only half of recorded somatosensory striatal MSNs displayed whisker-evoked synaptic depolarizations that were effective in eliciting action potentials in one-third of responding neurons. The remaining population of MSNs did not exhibit any detectable electrical events in response to whisker stimulation. The relative inconstancy of sensory-evoked responses in MSNs was due, at least in part, to a Cl(-)-dependent membrane conductance concomitant with the cortical inputs,which was probably caused by whisker-induced activation of striatal GABAergic interneurons. Our results suggest that the propagation of whisker-mediated sensory flow through the CS pathway results in a refinement of sensory information in the striatum, which might allow the selection of specific sets of MSNs that are functionally significant during a given somaesthetic-guided behaviour.
Collapse
Affiliation(s)
- Morgane Pidoux
- Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière, UPMC/INSERM UMR-S 975, CNRS UMR 7225, Hôpital Pitié-Salpêtrière, Paris, France
| | | | | | | |
Collapse
|
333
|
Abstract
Cortical pyramidal neurons receive thousands of synaptic inputs arriving at different dendritic locations with varying degrees of temporal synchrony. It is not known if different locations along single cortical dendrites integrate excitatory inputs in different ways. Here we have used two-photon glutamate uncaging and compartmental modeling to reveal a gradient of nonlinear synaptic integration in basal and apical oblique dendrites of cortical pyramidal neurons. Excitatory inputs to the proximal dendrite sum linearly and require precise temporal coincidence for effective summation, whereas distal inputs are amplified with high gain and integrated over broader time windows. This allows distal inputs to overcome their electrotonic disadvantage, and become surprisingly more effective than proximal inputs at influencing action potential output. Thus, single dendritic branches can already exhibit nonuniform synaptic integration, with the computational strategy shifting from temporal coding to rate coding along the dendrite.
Collapse
|
334
|
De Zeeuw CI, Hoebeek FE, Bosman LWJ, Schonewille M, Witter L, Koekkoek SK. Spatiotemporal firing patterns in the cerebellum. Nat Rev Neurosci 2011; 12:327-44. [PMID: 21544091 DOI: 10.1038/nrn3011] [Citation(s) in RCA: 287] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neurons are generally considered to communicate information by increasing or decreasing their firing rate. However, in principle, they could in addition convey messages by using specific spatiotemporal patterns of spiking activities and silent intervals. Here, we review expanding lines of evidence that such spatiotemporal coding occurs in the cerebellum, and that the olivocerebellar system is optimally designed to generate and employ precise patterns of complex spikes and simple spikes during the acquisition and consolidation of motor skills. These spatiotemporal patterns may complement rate coding, thus enabling precise control of motor and cognitive processing at a high spatiotemporal resolution by fine-tuning sensorimotor integration and coordination.
Collapse
Affiliation(s)
- Chris I De Zeeuw
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
335
|
Boucsein C, Nawrot MP, Schnepel P, Aertsen A. Beyond the cortical column: abundance and physiology of horizontal connections imply a strong role for inputs from the surround. Front Neurosci 2011; 5:32. [PMID: 21503145 PMCID: PMC3072165 DOI: 10.3389/fnins.2011.00032] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 02/28/2011] [Indexed: 11/13/2022] Open
Abstract
Current concepts of cortical information processing and most cortical network models largely rest on the assumption that well-studied properties of local synaptic connectivity are sufficient to understand the generic properties of cortical networks. This view seems to be justified by the observation that the vertical connectivity within local volumes is strong, whereas horizontally, the connection probability between pairs of neurons drops sharply with distance. Recent neuroanatomical studies, however, have emphasized that a substantial fraction of synapses onto neocortical pyramidal neurons stems from cells outside the local volume. Here, we discuss recent findings on the signal integration from horizontal inputs, showing that they could serve as a substrate for reliable and temporally precise signal propagation. Quantification of connection probabilities and parameters of synaptic physiology as a function of lateral distance indicates that horizontal projections constitute a considerable fraction, if not the majority, of inputs from within the cortical network. Taking these non-local horizontal inputs into account may dramatically change our current view on cortical information processing.
Collapse
Affiliation(s)
- Clemens Boucsein
- Bernstein Center Freiburg, Neurobiology and Biophysics, Faculty of Biology, University of Freiburg Freiburg, Germany
| | | | | | | |
Collapse
|
336
|
LRRK2 controls synaptic vesicle storage and mobilization within the recycling pool. J Neurosci 2011; 31:2225-37. [PMID: 21307259 DOI: 10.1523/jneurosci.3730-10.2011] [Citation(s) in RCA: 214] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) are the single most common cause of inherited Parkinson's disease. Little is known about its involvement in the pathogenesis of Parkinson's disease mainly because of the lack of knowledge about the physiological role of LRRK2. To determine the function of LRRK2, we studied the impact of short hairpin RNA-mediated silencing of LRRK2 expression in cortical neurons. Paired recording indicated that LRRK2 silencing affects evoked postsynaptic currents. Furthermore, LRRK2 silencing induces at the presynaptic site a redistribution of vesicles within the bouton, altered recycling dynamics, and increased vesicle kinetics. Accordingly, LRRK2 protein is present in the synaptosomal compartment of cortical neurons in which it interacts with several proteins involved in vesicular recycling. Our results suggest that LRRK2 modulates synaptic vesicle trafficking and distribution in neurons and in consequence participates in regulating the dynamics between vesicle pools inside the presynaptic bouton.
Collapse
|
337
|
Bock DD, Lee WCA, Kerlin AM, Andermann ML, Hood G, Wetzel AW, Yurgenson S, Soucy ER, Kim HS, Reid RC. Network anatomy and in vivo physiology of visual cortical neurons. Nature 2011; 471:177-82. [PMID: 21390124 PMCID: PMC3095821 DOI: 10.1038/nature09802] [Citation(s) in RCA: 592] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 01/10/2011] [Indexed: 12/11/2022]
Abstract
In the cerebral cortex, local circuits consist of tens of thousands of neurons, each of which makes thousands of synaptic connections. Perhaps the biggest impediment to understanding these networks is that we have no wiring diagrams of their interconnections. Even if we had a partial or complete wiring diagram, however, understanding the network would also require information about each neuron's function. Here we show that the relationship between structure and function can be studied in the cortex with a combination of in vivo physiology and network anatomy. We used two-photon calcium imaging to characterize a functional property—the preferred stimulus orientation—of a group of neurons in the mouse primary visual cortex. We then used large-scale electron microscopy (EM) of serial thin sections to trace a portion of these neurons’ local network. Consistent with a prediction from recent physiological experiments, inhibitory interneurons received convergent anatomical input from nearby excitatory neurons with a broad range of preferred orientations, although weak biases could not be rejected.
Collapse
Affiliation(s)
- Davi D Bock
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
338
|
Kochubey S, Semyanov A, Savtchenko L. Network with shunting synapses as a non-linear frequency modulator. Neural Netw 2011; 24:407-16. [PMID: 21444192 DOI: 10.1016/j.neunet.2011.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 03/01/2011] [Accepted: 03/02/2011] [Indexed: 11/25/2022]
Abstract
The role of 'noisy' excitation in synchronizing interneuron networks with shunting synapses was studied. The excitatory input was simulated as a Poisson pattern of presynaptic conductance with varying frequencies and amplitudes. We find that higher excitation frequencies induce stronger synchronisation of the network. Within the range of 1-10000 Hz, only frequencies between 20 Hz and 200 Hz affected network synchronisation. No detectable network synchronisation was found at excitation frequencies below 20 Hz, and the network's synchronisation was either almost independent of the external input or falling down to zero when the input frequency was greater than 200 Hz. Thus the network transformed the input signals with frequencies above 20 Hz into output signals with the network's synchronisation frequency. The network's synchronisation frequency in our model ranged from 20 to 68 Hz depending on the frequency of the excitatory input. We conclude that a network of interconnected interneurons is capable of converting an asynchronous excitatory input into a synchronous inhibitory output as a frequency amplifier with the amplification coefficient dependent on the number of converging excitatory inputs. Another important result of our work revealed that the external frequency may affect, in opposite ways, the frequency of the network with shunting synapses depending on the excitatory synaptic conductance and the magnitude of leak conductance.
Collapse
|
339
|
Abstract
Neuronal circuitry is often considered a clean slate that can be dynamically and arbitrarily molded by experience. However, when we investigated synaptic connectivity in groups of pyramidal neurons in the neocortex, we found that both connectivity and synaptic weights were surprisingly predictable. Synaptic weights follow very closely the number of connections in a group of neurons, saturating after only 20% of possible connections are formed between neurons in a group. When we examined the network topology of connectivity between neurons, we found that the neurons cluster into small world networks that are not scale-free, with less than 2 degrees of separation. We found a simple clustering rule where connectivity is directly proportional to the number of common neighbors, which accounts for these small world networks and accurately predicts the connection probability between any two neurons. This pyramidal neuron network clusters into multiple groups of a few dozen neurons each. The neurons composing each group are surprisingly distributed, typically more than 100 μm apart, allowing for multiple groups to be interlaced in the same space. In summary, we discovered a synaptic organizing principle that groups neurons in a manner that is common across animals and hence, independent of individual experiences. We speculate that these elementary neuronal groups are prescribed Lego-like building blocks of perception and that acquired memory relies more on combining these elementary assemblies into higher-order constructs.
Collapse
|
340
|
Romand S, Wang Y, Toledo-Rodriguez M, Markram H. Morphological development of thick-tufted layer v pyramidal cells in the rat somatosensory cortex. Front Neuroanat 2011; 5:5. [PMID: 21369363 PMCID: PMC3043270 DOI: 10.3389/fnana.2011.00005] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 01/19/2011] [Indexed: 11/13/2022] Open
Abstract
The thick-tufted layer V pyramidal (TTL5) neuron is a key neuron providing output from the neocortex. Although it has been extensively studied, principles governing its dendritic and axonal arborization during development are still not fully quantified. Using 3-D model neurons reconstructed from biocytin-labeled cells in the rat somatosensory cortex, this study provides a detailed morphological analysis of TTL5 cells at postnatal day (P) 7, 14, 21, 36, and 60. Three developmental periods were revealed, which were characterized by distinct growing rates and properties of alterations in different compartments. From P7 to P14, almost all compartments grew fast, and filopodia-like segments along apical dendrite disappeared; From P14 to P21, the growth was localized on specified segments of each compartment, and the densities of spines and boutons were significantly increased; From P21 to P60, the number of basal dendritic segments was significantly increased at specified branch orders, and some basal and oblique dendritic segments were lengthened or thickened. Development changes were therefore seen in two modes: the fast overall growth during the first period and the slow localized growth (thickening mainly on intermediates or lengthening mainly on terminals) at the subsequent stages. The lengthening may be accompanied by the retraction on different segments. These results reveal a differential regulation in the arborization of neuronal compartments during development, supporting the notion of functional compartmental development. This quantification provides new insight into the potential value of the TTL5 morphology for information processing, and for other purposes as well.
Collapse
Affiliation(s)
- Sandrine Romand
- Blue Brain Project, École Polytechnique Fédérale de LausanneLausanne, Switzerland
| | - Yun Wang
- School of Optometry and Ophthalmology, Wenzhou Medical CollegeWenzhou, Zhejiang, People's Republic of China
- Neurology Research, Caritas St. Elizabeth's Medical Center, Tufts UniversityBoston, MA, USA
| | | | - Henry Markram
- Blue Brain Project, École Polytechnique Fédérale de LausanneLausanne, Switzerland
| |
Collapse
|
341
|
Glutamate receptor subtypes mediating synaptic activation of prefrontal cortex neurons: relevance for schizophrenia. J Neurosci 2011; 31:142-56. [PMID: 21209199 DOI: 10.1523/jneurosci.1970-10.2011] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Schizophrenia may involve hypofunction of NMDA receptor (NMDAR)-mediated signaling, and alterations in parvalbumin-positive fast-spiking (FS) GABA neurons that may cause abnormal gamma oscillations. It was recently hypothesized that prefrontal cortex (PFC) FS neuron activity is highly dependent on NMDAR activation and that, consequently, FS neuron dysfunction in schizophrenia is secondary to NMDAR hypofunction. However, NMDARs are abundant in synapses onto PFC pyramidal neurons; thus, a key question is whether FS neuron or pyramidal cell activation is more dependent on NMDARs. We examined the AMPAR and NMDAR contribution to synaptic activation of FS neurons and pyramidal cells in the PFC of adult mice. In FS neurons, EPSCs had fast decay and weak NMDAR contribution, whereas in pyramidal cells, EPSCs were significantly prolonged by NMDAR-mediated currents. Moreover, the AMPAR/NMDAR EPSC ratio was higher in FS cells. NMDAR antagonists decreased EPSPs and EPSP-spike coupling more strongly in pyramidal cells than in FS neurons, showing that FS neuron activation is less NMDAR dependent than pyramidal cell excitation. The precise EPSP-spike coupling produced by fast-decaying EPSCs in FS cells may be important for network mechanisms of gamma oscillations based on feedback inhibition. To test this possibility, we used simulations in a computational network of reciprocally connected FS neurons and pyramidal cells and found that brief AMPAR-mediated FS neuron activation is crucial to synchronize, via feedback inhibition, pyramidal cells in the gamma frequency band. Our results raise interesting questions about the mechanisms that might link NMDAR hypofunction to alterations of FS neurons in schizophrenia.
Collapse
|
342
|
Matsuzaki M, Ellis-Davies GC, Kanemoto Y, Kasai H. Simultaneous two-photon activation of presynaptic cells and calcium imaging in postsynaptic dendritic spines. NEURAL SYSTEMS & CIRCUITS 2011; 1:2. [PMID: 22330013 PMCID: PMC3269225 DOI: 10.1186/2042-1001-1-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 07/07/2010] [Indexed: 11/10/2022]
Abstract
Background Dendritic spines of pyramidal neurons are distributed along the complicated structure of the dendritic branches and possess a variety of morphologies associated with synaptic strength. The location and structure of dendritic spines determine the extent of synaptic input integration in the postsynaptic neuron. However, how spine location or size relates to the position of innervating presynaptic cells is not yet known. This report describes a new method that represents a first step toward addressing this issue. Results The technique combines two-photon uncaging of glutamate over a broad area (~500 × 250 × 100 μm) with two-photon calcium imaging in a narrow region (~50 × 10 × 1 μm). The former was used for systematic activation of layer 2/3 pyramidal cells in the rat motor cortex, while the latter was used to detect the dendritic spines of layer 5 pyramidal cells that were innervated by some of the photoactivated cells. This technique allowed identification of various sizes of innervated spine located <140 μm laterally from the postsynaptic soma. Spines distal to their parent soma were preferentially innervated by cells on the ipsilateral side. No cluster of neurons innervating the same dendritic branch was detected. Conclusions This new method will be a powerful tool for clarifying the microarchitecture of synaptic connections, including the positional and structural characteristics of dendritic spines along the dendrites.
Collapse
Affiliation(s)
- Masanori Matsuzaki
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.
| | | | | | | |
Collapse
|
343
|
Thomson AM, Armstrong WE. Biocytin-labelling and its impact on late 20th century studies of cortical circuitry. BRAIN RESEARCH REVIEWS 2011; 66:43-53. [PMID: 20399808 PMCID: PMC2949688 DOI: 10.1016/j.brainresrev.2010.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 04/08/2010] [Accepted: 04/12/2010] [Indexed: 11/15/2022]
Abstract
In recognition of the impact that a powerful new anatomical tool, such as the Golgi method, can have, this essay highlights the enormous influence that biocytin-filling has had on modern neuroscience. This method has allowed neurones that have been recorded intracellularly, 'whole-cell' or juxta-cellularly, to be identified anatomically, forming a vital link between functional and structural studies. It has been applied throughout the nervous system and has become a fundamental component of our technical armoury. A comprehensive survey of the applications to which the biocytin-filling approach has been put, would fill a large volume. This essay therefore focuses on one area, neocortical microcircuitry and the ways in which combining physiology and anatomy have revealed rules that help us explain its previously indecipherable variability and complexity.
Collapse
Affiliation(s)
- Alex M Thomson
- Department of Pharmacology, The School of Pharmacy University of London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| | | |
Collapse
|
344
|
Timofeev I. Neuronal plasticity and thalamocortical sleep and waking oscillations. PROGRESS IN BRAIN RESEARCH 2011; 193:121-44. [PMID: 21854960 DOI: 10.1016/b978-0-444-53839-0.00009-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Throughout life, thalamocortical (TC) network alternates between activated states (wake or rapid eye movement sleep) and slow oscillatory state dominating slow-wave sleep. The patterns of neuronal firing are different during these distinct states. I propose that due to relatively regular firing, the activated states preset some steady state synaptic plasticity and that the silent periods of slow-wave sleep contribute to a release from this steady state synaptic plasticity. In this respect, I discuss how states of vigilance affect short-, mid-, and long-term synaptic plasticity, intrinsic neuronal plasticity, as well as homeostatic plasticity. Finally, I suggest that slow oscillation is intrinsic property of cortical network and brain homeostatic mechanisms are tuned to use all forms of plasticity to bring cortical network to the state of slow oscillation. However, prolonged and profound shift from this homeostatic balance could lead to development of paroxysmal hyperexcitability and seizures as in the case of brain trauma.
Collapse
Affiliation(s)
- Igor Timofeev
- The Centre de recherche Université Laval Robert-Giffard (CRULRG), Laval University, Québec, Canada.
| |
Collapse
|
345
|
Attwell D, Buchan AM, Charpak S, Lauritzen M, Macvicar BA, Newman EA. Glial and neuronal control of brain blood flow. Nature 2010; 468:232-43. [PMID: 21068832 PMCID: PMC3206737 DOI: 10.1038/nature09613] [Citation(s) in RCA: 1732] [Impact Index Per Article: 115.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Blood flow in the brain is regulated by neurons and astrocytes. Knowledge of how these cells control blood flow is crucial for understanding how neural computation is powered, for interpreting functional imaging scans of brains, and for developing treatments for neurological disorders. It is now recognized that neurotransmitter-mediated signalling has a key role in regulating cerebral blood flow, that much of this control is mediated by astrocytes, that oxygen modulates blood flow regulation, and that blood flow may be controlled by capillaries as well as by arterioles. These conceptual shifts in our understanding of cerebral blood flow control have important implications for the development of new therapeutic approaches.
Collapse
Affiliation(s)
- David Attwell
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| | | | | | | | | | | |
Collapse
|
346
|
Richardson MJE, Swarbrick R. Firing-rate response of a neuron receiving excitatory and inhibitory synaptic shot noise. PHYSICAL REVIEW LETTERS 2010; 105:178102. [PMID: 21231083 DOI: 10.1103/physrevlett.105.178102] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Indexed: 05/30/2023]
Abstract
The synaptic coupling between neurons in neocortical networks is sufficiently strong so that relatively few synchronous synaptic pulses are required to bring a neuron from rest to the spiking threshold. However, such finite-amplitude effects of fluctuating synaptic drive are missed in the standard diffusion approximation. Here exact solutions for the firing-rate response to modulated presynaptic rates are derived for a neuron receiving additive excitatory and inhibitory synaptic shot noise with exponential amplitude distributions. The shot-noise description of the neuronal response to synaptic dynamics is shown to be richer and qualitatively distinct from that predicted by the diffusion approximation. It is also demonstrated how the framework developed here can be generalized to multiplicative shot noise so as to better capture effects of the inhibitory reversal potential.
Collapse
|
347
|
Fransén E, Tigerholm J. Role of A-type potassium currents in excitability, network synchronicity, and epilepsy. Hippocampus 2010; 20:877-87. [PMID: 19777555 DOI: 10.1002/hipo.20694] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A range of ionic currents have been suggested to be involved in distinct aspects of epileptogenesis. Based on pharmacological and genetic studies, potassium currents have been implicated, in particular the transient A-type potassium current (K(A)). Epileptogenic activity comprises a rich repertoire of characteristics, one of which is synchronized activity of principal cells as revealed by occurrences of for instance fast ripples. Synchronized activity of this kind is particularly efficient in driving target cells into spiking. In the recipient cell, this synchronized input generates large brief compound excitatory postsynaptic potentials (EPSPs). The fast activation and inactivation of K(A) lead us to hypothesize a potential role in suppression of such EPSPs. In this work, using computational modeling, we have studied the activation of K(A) by synaptic inputs of different levels of synchronicity. We find that K(A) participates particularly in suppressing inputs of high synchronicity. We also show that the selective suppression stems from the current's ability to become activated by potentials with high slopes. We further show that K(A) suppresses input mimicking the activity of a fast ripple. Finally, we show that the degree of selectivity of K(A) can be modified by changes to its kinetic parameters, changes of the type that are produced by the modulatory action of KChIPs and DPPs. We suggest that the wealth of modulators affecting K(A) might be explained by a need to control cellular excitability in general and suppression of responses to synchronicity in particular. Wealso suggest that compounds changing K(A)-kinetics may be used to pharmacologically improve epileptic status.
Collapse
Affiliation(s)
- Erik Fransén
- Department of Computational Biology, School of Computer Science and Communication, Royal Institute of Technology, AlbaNova University Center, Stockholm, Sweden.
| | | |
Collapse
|
348
|
Marshel JH, Mori T, Nielsen KJ, Callaway EM. Targeting single neuronal networks for gene expression and cell labeling in vivo. Neuron 2010; 67:562-74. [PMID: 20797534 DOI: 10.1016/j.neuron.2010.08.001] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2010] [Indexed: 11/28/2022]
Abstract
To understand fine-scale structure and function of single mammalian neuronal networks, we developed and validated a strategy to genetically target and trace monosynaptic inputs to a single neuron in vitro and in vivo. The strategy independently targets a neuron and its presynaptic network for specific gene expression and fine-scale labeling, using single-cell electroporation of DNA to target infection and monosynaptic retrograde spread of a genetically modifiable rabies virus. The technique is highly reliable, with transsynaptic labeling occurring in every electroporated neuron infected by the virus. Targeting single neocortical neuronal networks in vivo, we found clusters of both spiny and aspiny neurons surrounding the electroporated neuron in each case, in addition to intricately labeled distal cortical and subcortical inputs. This technique, broadly applicable for probing and manipulating single neuronal networks with single-cell resolution in vivo, may help shed new light on fundamental mechanisms underlying circuit development and information processing by neuronal networks throughout the brain.
Collapse
Affiliation(s)
- James H Marshel
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
349
|
Troca-Marín JA, Geijo-Barrientos E. Inhibition by 5-HT of the synaptic responses evoked by callosal fibers on cortical neurons in the mouse. Pflugers Arch 2010; 460:1073-85. [PMID: 20838806 DOI: 10.1007/s00424-010-0875-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 08/16/2010] [Accepted: 08/17/2010] [Indexed: 02/01/2023]
Abstract
We have studied the modulation by 5-HT of the synaptic excitatory responses evoked by callosal fibers on cortical pyramidal neurons. We have used a mouse brain slice preparation that preserves the callosal fibers and allows their selective activation. EPSCs evoked by callosal stimulation (ccEPSCs) were recorded with patch electrodes from pyramidal neurons identified visually. We observed that 5-HT (10-40 μM) inhibited the ccEPSCs peak amplitude in 64% of the neurons; 5-HT had no effect in the remaining neurons. 5-HT also increased the frequency and amplitude of spontaneous EPSCs. This inhibition was accompanied with an increase in the coefficient of variation of the fluctuations of the ccEPSCs amplitude and with an increase in the ratio of the amplitudes of paired ccEPSCs. Agonists of 5-HT receptor subtypes 5-HT(1A) (8-OH-DPAT) and 5-HT(2A) (DOI) mimicked the effect of 5-HT; also, the effect of 8-OH-DPAT and DOI was blocked in the presence of specific blockers of 5-HT(1A) (WAY 100135) and 5-HT(2A) (MDL 11,939) receptors. Application of 5-HT did not change the amplitude of currents evoked by direct application of glutamate to neurons in which 5-HT decreased the amplitude of ccEPSC. The effects of 5-HT on ccEPSCs and on the synaptic currents evoked by intracortical stimulation were not correlated; this suggests that the effect of 5-HT was specific to particular synaptic inputs to a neuron. These results demonstrate the presynaptic modulation of the callosal synaptic responses by 5-HT and the implication of 5-HT(1A) and 5-HT(2A) receptors in this effect.
Collapse
Affiliation(s)
- José A Troca-Marín
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Campus de San Juan, San Juan, Alicante 03550, Spain
| | | |
Collapse
|
350
|
Berger TK, Silberberg G, Perin R, Markram H. Brief bursts self-inhibit and correlate the pyramidal network. PLoS Biol 2010; 8. [PMID: 20838653 PMCID: PMC2935452 DOI: 10.1371/journal.pbio.1000473] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 07/26/2010] [Indexed: 11/22/2022] Open
Abstract
A multi-cell patch clamp study reveals the summation properties of frequency-dependent disynaptic inhibition between neocortical pyramidal cells and shows how brief bursts of activity in a few cells can synchronize the entire microcircuit. Inhibitory pathways are an essential component in the function of the neocortical microcircuitry. Despite the relatively small fraction of inhibitory neurons in the neocortex, these neurons are strongly activated due to their high connectivity rate and the intricate manner in which they interconnect with pyramidal cells (PCs). One prominent pathway is the frequency-dependent disynaptic inhibition (FDDI) formed between layer 5 PCs and mediated by Martinotti cells (MCs). Here, we show that simultaneous short bursts in four PCs are sufficient to exert FDDI in all neighboring PCs within the dimensions of a cortical column. This powerful inhibition is mediated by few interneurons, leading to strongly correlated membrane fluctuations and synchronous spiking between PCs simultaneously receiving FDDI. Somatic integration of such inhibition is independent and electrically isolated from monosynaptic excitation formed between the same PCs. FDDI is strongly shaped by I(h) in PC dendrites, which determines the effective integration time window for inhibitory and excitatory inputs. We propose a key disynaptic mechanism by which brief bursts generated by a few PCs can synchronize the activity in the pyramidal network. The neocortex of the mammalian brain contains many more excitatory neurons than inhibitory neurons, yet inhibitory neurons are essential components of neocortical circuitry. Inhibitory neurons form dense and intricate connections with excitatory neurons, which are mainly pyramidal cells. One prominent pathway formed between pyramidal cells and inhibitory Martinotti cells is frequency-dependent disynaptic inhibition (FDDI), which mediates a strong inhibitory signal in the microcircuitry of the neocortex. Here, we reveal deeper insight into how FDDI is mediated and recruited within the circuit, showing that short simultaneous bursts in four pyramidal cells are sufficient to exert FDDI in all neighboring pyramidal cells within the dimensions of a cortical column. As few as three synchronous action potentials in three pyramidal cells can trigger FDDI. This powerful inhibition is mediated by only a few inhibitory neurons yet correlates membrane potential fluctuations, leading to synchronous spiking between pyramidal cells that simultaneously receive FDDI. The inhibitory signals are independent and electrically isolated from excitation mediated by neighboring PCs via basal dendrites. We propose FDDI as an important pathway that is readily activated by brief bursts of action potentials and correlates neocortical network activity.
Collapse
Affiliation(s)
- Thomas K. Berger
- Laboratory of Neural Microcircuitry, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Gilad Silberberg
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Rodrigo Perin
- Laboratory of Neural Microcircuitry, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Henry Markram
- Laboratory of Neural Microcircuitry, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- * E-mail:
| |
Collapse
|