301
|
Turner A, Beales J, Faure S, Dunford RP, Laurie DA. The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 2005; 310:1031-4. [PMID: 16284181 DOI: 10.1126/science.1117619] [Citation(s) in RCA: 562] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Plants commonly use photoperiod (day length) to control the timing of flowering during the year, and variation in photoperiod response has been selected in many crops to provide adaptation to different environments and farming practices. Positional cloning identified Ppd-H1, the major determinant of barley photoperiod response, as a pseudo-response regulator, a class of genes involved in circadian clock function. Reduced photoperiod responsiveness of the ppd-H1 mutant, which is highly advantageous in spring-sown varieties, is explained by altered circadian expression of the photoperiod pathway gene CONSTANS and reduced expression of its downstream target, FT, a key regulator of flowering.
Collapse
Affiliation(s)
- Adrian Turner
- Crop Genetics Department, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | | | | | | | | |
Collapse
|
302
|
Stinchcombe JR, Caicedo AL, Hopkins R, Mays C, Boyd EW, Purugganan MD, Schmitt J. Vernalization sensitivity in Arabidopsis thaliana (Brassicaceae): the effects of latitude and FLC variation. AMERICAN JOURNAL OF BOTANY 2005; 92:1701-1707. [PMID: 21646087 DOI: 10.3732/ajb.92.10.1701] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Latitudinal variation in climate is predicted to select for latitudinal differentiation in sensitivity to the environmental cues that signal plants to flower at the appropriate time for a given climate. In Arabidopsis thaliana, flowering is promoted by exposure to cold temperatures (vernalization), and several vernalization pathway loci are known. To test whether natural variation in vernalization sensitivity could account for a previously observed latitudinal cline in flowering time in A. thaliana, we exposed 21 European accessions to 0, 10, 20, or 30 d of vernalization and observed leaf number at flowering under short days in a growth chamber. We observed a significant latitudinal cline in vernalization sensitivity: southern accessions were more sensitive to vernalization than northern accessions. In addition, accessions that were late flowering in the absence of vernalization were more sensitive to vernalization cues. Allelic variation at the flowering time regulatory gene FLC was not associated with mean vernalization sensitivity, but one allele class exhibited greater variance in vernalization sensitivity.
Collapse
Affiliation(s)
- John R Stinchcombe
- Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island 02912 USA
| | | | | | | | | | | | | |
Collapse
|
303
|
Dodd AN, Salathia N, Hall A, Kévei E, Tóth R, Nagy F, Hibberd JM, Millar AJ, Webb AAR. Plant Circadian Clocks Increase Photosynthesis, Growth, Survival, and Competitive Advantage. Science 2005; 309:630-3. [PMID: 16040710 DOI: 10.1126/science.1115581] [Citation(s) in RCA: 936] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Circadian clocks are believed to confer an advantage to plants, but the nature of that advantage has been unknown. We show that a substantial photosynthetic advantage is conferred by correct matching of the circadian clock period with that of the external light-dark cycle. In wild type and in long- and short-circadian period mutants of Arabidopsis thaliana, plants with a clock period matched to the environment contain more chlorophyll, fix more carbon, grow faster, and survive better than plants with circadian periods differing from their environment. This explains why plants gain advantage from circadian control.
Collapse
Affiliation(s)
- Antony N Dodd
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
304
|
Ito S, Nakamichi N, Matsushika A, Fujimori T, Yamashino T, Mizuno T. Molecular dissection of the promoter of the light-induced and circadian-controlled APRR9 gene encoding a clock-associated component of Arabidopsis thaliana. Biosci Biotechnol Biochem 2005; 69:382-90. [PMID: 15725665 DOI: 10.1271/bbb.69.382] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the model higher plant Arabidopsis thaliana, a number of circadian clock-associated protein components have recently been identified. Among them, a small family of ARABIDOPSIS PSEUDO-RESPONSE REGULATORS (APRR1/TOC1, APRR3, APRR5, APRR7, and APRR9) is interesting because the most probable clock component TIMING OF CAB EXPRESSION 1 (TOC1) belongs to this family. Several lines of evidence have already been accumulated to support the view that not only APRR1/TOC1 but also other APRR family members are crucial for a better understanding of the molecular link between circadian rhythm and light-signal transduction. Among the APRR1/TOC1 family members, the circadian-controlled APRR9 gene is unique in that its expression is rapidly induced by light at the level of transcription. In this study we dissected the regulatory cis-elements of the light-induced and/or circadian-controlled APRR9 promoter by employing not only a mutant plant carrying a T-DNA insertion in the APRR9 promoter, but also a series of APRR9-promoter::LUC (luciferase) reporters that were introduced into an Arabidopsis cultured cell line (T87 cells). Taking the results of these approaches together, we provide several lines of evidence that the APRR9 promoter contains at least two distinctive and separable regulatory cis-elements: an "L element" responsible for the light-induced expression, followed by an "R element" necessary for the fundamental rhythmic expression of APRR9. Furthermore, APRR1/TOC1 was implicated in the L-element-mediated light response of APRR9, directly or indirectly.
Collapse
Affiliation(s)
- Shogo Ito
- Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University, Japan
| | | | | | | | | | | |
Collapse
|
305
|
Harmer SL, Kay SA. Positive and negative factors confer phase-specific circadian regulation of transcription in Arabidopsis. THE PLANT CELL 2005; 17:1926-40. [PMID: 15923346 PMCID: PMC1167542 DOI: 10.1105/tpc.105.033035] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The circadian clock exerts a major influence on transcriptional regulation in plants and other organisms. We have previously identified a motif called the evening element (EE) that is overrepresented in the promoters of evening-phased genes. Here, we demonstrate that multimerized EEs are necessary and sufficient to confer evening-phased circadian regulation. Although flanking sequences are not required for EE function, they can modulate EE activity. One flanking sequence, taken from the PSEUDORESPONSE REGULATOR 9 promoter, itself confers dawn-phased rhythms and has allowed us to define a new clock promoter motif (the morning element [ME]). Scanning mutagenesis reveals that both activators and repressors of gene expression act through the ME and EE. Although our experiments confirm that CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY) are likely to act as repressors via the EE, they also show that they have an unexpected positive effect on EE-mediated gene expression as well. We have identified a clock-regulated activity in plant extracts that binds specifically to the EE and has a phase consistent with it being an activator of expression through the EE. This activity is reduced in CCA1/LHY null plants, suggesting it may itself be part of a circadian feedback loop and perhaps explaining the reduction in EE activity in these double mutant plants.
Collapse
Affiliation(s)
- Stacey L Harmer
- Section of Plant Biology, University of California, Davis 95616, USA.
| | | |
Collapse
|
306
|
Werner JD, Borevitz JO, Uhlenhaut NH, Ecker JR, Chory J, Weigel D. FRIGIDA-independent variation in flowering time of natural Arabidopsis thaliana accessions. Genetics 2005; 170:1197-207. [PMID: 15911588 PMCID: PMC1451178 DOI: 10.1534/genetics.104.036533] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
FRIGIDA (FRI) and FLOWERING LOCUS C (FLC) are two genes that, unless plants are vernalized, greatly delay flowering time in Arabidopsis thaliana. Natural loss-of-function mutations in FRI cause the early flowering growth habits of many A. thaliana accessions. To quantify the variation among wild accessions due to FRI, and to identify additional genetic loci in wild accessions that influence flowering time, we surveyed the flowering times of 145 accessions in long-day photoperiods, with and without a 30-day vernalization treatment, and genotyped them for two common natural lesions in FRI. FRI is disrupted in at least 84 of the accessions, accounting for only approximately 40% of the flowering-time variation in long days. During efforts to dissect the causes for variation that are independent of known dysfunctional FRI alleles, we found new loss-of-function alleles in FLC, as well as late-flowering alleles that do not map to FRI or FLC. An FLC nonsense mutation was found in the early flowering Van-0 accession, which has otherwise functional FRI. In contrast, Lz-0 flowers late because of high levels of FLC expression, even though it has a deletion in FRI. Finally, eXtreme array mapping identified genomic regions linked to the vernalization-independent, late-flowering habit of Bur-0, which has an alternatively spliced FLC allele that behaves as a null allele.
Collapse
Affiliation(s)
- Jonathan D. Werner
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037
- Department of Biology, University of California, San Diego, California 92037
| | - Justin O. Borevitz
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037
- Department of Biology, University of California, San Diego, California 92037
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637
| | - N. Henriette Uhlenhaut
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037
| | - Joseph R. Ecker
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037
- Salk Institute, Genome Analysis Laboratory, La Jolla, California 92037
| | - Joanne Chory
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, California 92037
| | - Detlef Weigel
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
- Corresponding author: MPI for Developmental Biology, Spemannstrasse 37-39, D-72076 Tübingen, Germany. E-mail:
| |
Collapse
|
307
|
Farré EM, Harmer SL, Harmon FG, Yanovsky MJ, Kay SA. Overlapping and distinct roles of PRR7 and PRR9 in the Arabidopsis circadian clock. Curr Biol 2005; 15:47-54. [PMID: 15649364 DOI: 10.1016/j.cub.2004.12.067] [Citation(s) in RCA: 310] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The core mechanism of the circadian oscillators described to date rely on transcriptional negative feedback loops with a delay between the negative and the positive components . In plants, the first suggested regulatory loop involves the transcription factors CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY) and the pseudo-response regulator TIMING OF CAB EXPRESSION 1 (TOC1/PRR1). TOC1 is a member of the Arabidopsis circadian-regulated PRR gene family . Analysis of single and double mutants in PRR7 and PRR9 indicates that these morning-expressed genes play a dual role in the circadian clock, being involved in the transmission of light signals to the clock and in the regulation of the central oscillator. Furthermore, CCA1 and LHY had a positive effect on PRR7 and PRR9 expression levels, indicating that they might form part of an additional regulatory feedback loop. We propose that the Arabidopsis circadian oscillator is composed of several interlocking positive and negative feedback loops, a feature of clock regulation that appears broadly conserved between plants, fungi, and animals.
Collapse
Affiliation(s)
- Eva M Farré
- Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
308
|
Paranjpe DA, Sharma VK. Evolution of temporal order in living organisms. J Circadian Rhythms 2005; 3:7. [PMID: 15869714 PMCID: PMC1142335 DOI: 10.1186/1740-3391-3-7] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Accepted: 05/04/2005] [Indexed: 11/10/2022] Open
Abstract
Circadian clocks are believed to have evolved in parallel with the geological history of the earth, and have since been fine-tuned under selection pressures imposed by cyclic factors in the environment. These clocks regulate a wide variety of behavioral and metabolic processes in many life forms. They enhance the fitness of organisms by improving their ability to efficiently anticipate periodic events in their external environments, especially periodic changes in light, temperature and humidity. Circadian clocks provide fitness advantage even to organisms living under constant conditions, such as those prevailing in the depth of oceans or in subterranean caves, perhaps by coordinating several metabolic processes in the internal milieu. Although the issue of adaptive significance of circadian rhythms has always remained central to circadian biology research, it has never been subjected to systematic and rigorous empirical validation. A few studies carried out on free-living animals under field conditions and simulated periodic and aperiodic conditions of the laboratory suggest that circadian rhythms are of adaptive value to their owners. However, most of these studies suffer from a number of drawbacks such as lack of population-level replication, lack of true controls and lack of adequate control on the genetic composition of the populations, which in many ways limits the potential insights gained from the studies. The present review is an effort to critically discuss studies that directly or indirectly touch upon the issue of adaptive significance of circadian rhythms and highlight some shortcomings that should be avoided while designing future experiments.
Collapse
Affiliation(s)
- Dhanashree A Paranjpe
- Chronobiology Laboratory, Evolutionary and Organismal Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, PO Box 6436, Bangalore 560 064, Karnataka, India
| | - Vijay Kumar Sharma
- Chronobiology Laboratory, Evolutionary and Organismal Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, PO Box 6436, Bangalore 560 064, Karnataka, India
| |
Collapse
|
309
|
Mizuno T, Nakamichi N. Pseudo-Response Regulators (PRRs) or True Oscillator Components (TOCs). PLANT & CELL PHYSIOLOGY 2005; 46:677-85. [PMID: 15767264 DOI: 10.1093/pcp/pci087] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In Arabidopsis thaliana, AUTHENTIC RESPONSE REGULATORS (ARRs) act as downstream components of the His-to-Asp phosphorelay (two-component) signaling pathway that is propagated primarily by the cytokinin receptor kinases, AUTHENTIC HIS-KINASES (AHK2, AHK3 and AHK4/CRE1). Thus, this bacterial type of signaling system is essential for responses to a class of hormones in plants. Interestingly, this higher plant has also evolved its own atypical (or unique) variants of two-component signal transducers, PSEUDO-RESPONSE REGULATORS (PRRs). Several lines of recent results suggest that the functions of PRRs are closely relevant to the plant clock (oscillator) that is central to circadian rhythms, the underlying mechanisms of which have long been the subject of debate. Through an overview of recent results, the main issue addressed here is whether or not the pseudo-response regulators (PRRs) are true oscillator components (TOCs).
Collapse
Affiliation(s)
- Takeshi Mizuno
- Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University, Chikusa-ku, Nagoya, 464-8601 Japan.
| | | |
Collapse
|
310
|
Edwards KD, Lynn JR, Gyula P, Nagy F, Millar AJ. Natural allelic variation in the temperature-compensation mechanisms of the Arabidopsis thaliana circadian clock. Genetics 2005; 170:387-400. [PMID: 15781708 PMCID: PMC1449708 DOI: 10.1534/genetics.104.035238] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Accepted: 02/09/2005] [Indexed: 11/18/2022] Open
Abstract
Temperature compensation is a defining feature of circadian oscillators, yet no components contributing to the phenomenon have been identified in plants. We tested 27 accessions of Arabidopsis thaliana for circadian leaf movement at a range of constant temperatures. The accessions showed varying patterns of temperature compensation, but no clear associations to the geographic origin of the accessions could be made. Quantitative trait loci (QTL) were mapped for period and amplitude of leaf movement in the Columbia by Landsberg erecta (CoL) and Cape Verde Islands by Landsberg erecta (CvL) recombinant inbred lines (RILs) at 12 degrees , 22 degrees , and 27 degrees . Six CvL and three CoL QTL were located for circadian period. All of the period QTL were temperature specific, suggesting that they may be involved in temperature compensation. The flowering-time gene GIGANTEA and F-box protein ZEITLUPE were identified as strong candidates for two of the QTL on the basis of mapping in near isogenic lines (NILs) and sequence comparison. The identity of these and other candidates suggests that temperature compensation is not wholly determined by the intrinsic properties of the central clock proteins in Arabidopsis, but rather by other genes that act in trans to alter the regulation of these core proteins.
Collapse
Affiliation(s)
- Kieron D Edwards
- Department of Biological Sciences, University of Warwick, Coventry, UK
| | | | | | | | | |
Collapse
|
311
|
Nakamichi N, Kita M, Ito S, Yamashino T, Mizuno T. PSEUDO-RESPONSE REGULATORS, PRR9, PRR7 and PRR5, Together Play Essential Roles Close to the Circadian Clock of Arabidopsis thaliana. ACTA ACUST UNITED AC 2005; 46:686-98. [PMID: 15767265 DOI: 10.1093/pcp/pci086] [Citation(s) in RCA: 223] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
In Arabidopsis thaliana, a number of clock-associated protein components have been identified. Among them, CCA1 (CIRCADIAN CLOCK-ASSOCIATED 1)/LHY (LATE ELONGATED HYPOCOTYL) and TOC1 (TIMING OF CAB EXPRESSION 1) are believed to be the essential components of the central oscillator. CCA1 and LHY are homologous and partially redundant Myb-related DNA-binding proteins, whereas TOC1 is a member of a small family of proteins, designated as PSEUDO-RESPONSE REGULATOR. It is also believed that these two different types of clock components form an autoregulatory positive/negative feedback loop at the levels of transcription/translation that generates intrinsic rhythms. Nonetheless, it was not yet certain whether or not other PRR family members (PRR9, PRR7, PRR5 and PRR3) are implicated in clock function per se. Employing a set of prr9, prr7 and prr5 mutant alleles, here we established all possible single, double and triple prr mutants. They were examined extensively by comparing them with each other with regard to their phenotypes of circadian rhythms, photoperiodicity-dependent control of flowering time and photomorphogenic responses to red light during de-etiolation. Notably, the prr9 prr7 prr5 triple lesions in plants resulted in severe phenotypes: (i) arrhythmia in the continuous light conditions, and an anomalous phasing of diurnal oscillation of certain circadian-controlled genes even in the entrained light/dark cycle conditions; (ii) late flowering that was no longer sensitive to the photoperiodicity; and (iii) hyposensitivity (or blind) to red light in the photomorphogenic responses. The phenotypes of the single and double mutants were also characterized extensively, showing that they exhibited circadian-associated phenotypes characteristic for each. These results are discussed from the viewpoint that PRR9/PRR7/PRR5 together act as period-controlling factors, and they play overlapping and distinctive roles close to (or within) the central oscillator in which the relative, PRR1/TOC1, plays an essential role.
Collapse
Affiliation(s)
- Norihito Nakamichi
- Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University, Chikusa-ku, Nagoya, 464-8601 Japan
| | | | | | | | | |
Collapse
|
312
|
Nakamichi N, Kita M, Ito S, Sato E, Yamashino T, Mizuno T. The Arabidopsis pseudo-response regulators, PRR5 and PRR7, coordinately play essential roles for circadian clock function. PLANT & CELL PHYSIOLOGY 2005; 46:609-19. [PMID: 15695441 DOI: 10.1093/pcp/pci061] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In Arabidopsis thaliana, a number of clock-associated protein factors have been identified. Among them, TOC1 (TIMING OF CAB EXPRESSION 1) is believed to be a component of the central oscillator. TOC1 is a member of a small family of proteins, designated as ARABIDOPSIS PSEUDO-RESPONSE REGULATOR, including PRR1/TOC1, PRR3, PRR5, PRR7 and PRR9. It has not been certain whether or not other PRR family members are also implicated in clock function per se. To clarify this problem, here we constructed a double mutant line, which is assumed to have severe lesions in both the PRR5 and PRR7 genes. Resulting homozygous prr5-11 prr7-11 young seedlings showed a marked phenotype of hyposensitivity to red light during de-etiolation. In addition, they displayed a phenotype of extremely late flowering under long-day photoperiod conditions, but not short-day conditions. The rhythms at the level of transcription of certain clock-controlled genes were severely perturbed in the double mutant plants when they were released into continuous light (LL) and darkness (DD). The observed phenotype was best interpreted as 'arrhythmic in both LL and DD' and/or 'very short period with markedly reduced amplitude'. Even under the light entrainment (LD) conditions, the mutant plants showed anomalous diurnal oscillation profiles with altered amplitude and/or phase with regard to certain clock-controlled genes, including the clock component CCA1 (CIRCADIAN CLOCK-ASSOCIATED 1) gene. Such events were observed even under temperature entrainment conditions, suggesting that the prr5-11 prr7-11 lesions cannot simply be attributed to a defect in the light signal input pathway. These pleiotropic circadian-associated phenotypes of the double mutant were very remarkable, as compared with those observed previously for each single mutant. Taking these results together, we propose for the first time that PRR5 and PRR7 coordinately (or synergistically) play essential clock-associated roles close to the central oscillator.
Collapse
Affiliation(s)
- Norihito Nakamichi
- Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University, Chikusa-ku, Nagoya, 464-8601 Japan
| | | | | | | | | | | |
Collapse
|
313
|
Abstract
A combination of forward and reverse genetic approaches together with transcriptome-scale gene expression analyses have allowed the elaboration of a model for the Arabidopsis thaliana circadian clock. The working model largely conforms to the expected negative feedback loop model that has emerged from studies in other model systems. Although a core loop has emerged, it is clear that additional components remain to be identified and that the workings of the Arabidopsis clock have been established only in outline. Similarly, the details of resetting by light and temperature are only incompletely known. In contrast, the mechanism of photoperiodic induction of flowering is known in considerable detail and is consistent with the external coincidence model.
Collapse
Affiliation(s)
- Patrice A Salomé
- Department of Biological Sciences, 6044 Gilman Laboratories, Dartmouth College, Hanover, NH 03755-3576, USA
| | | |
Collapse
|
314
|
Dodd AN, Love J, Webb AAR. The plant clock shows its metal: circadian regulation of cytosolic free Ca(2+). TRENDS IN PLANT SCIENCE 2005; 10:15-21. [PMID: 15642519 DOI: 10.1016/j.tplants.2004.12.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Signal transduction events that lead to circadian control of physiology are poorly understood. Signalling elements that could transmit time information include transcription factors, reversible phosphorylation, and changes in the concentration of cytosolic free calcium ([Ca(2+)](cyt)). [Ca(2+)](cyt) oscillates with a circadian rhythm in Arabidopsis and Nicotiana, but does not have a defined role in circadian signalling. [Ca(2+)](cyt) oscillations with shorter periods encode specific signals in several cell types, therefore circadian [Ca(2+)](cyt) oscillations provide a potential mechanism for signalling time information. Cell types such as stomatal guard cells and legume pulvini represent attractive model systems for dissecting circadian Ca(2+) signalling.
Collapse
Affiliation(s)
- Antony N Dodd
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, UK CB2 3EA.
| | | | | |
Collapse
|
315
|
Abstract
In recent decades, most research on the circadian rhythms of higher plants has been driven by molecular genetics. A wide variety of experimental approaches have discovered mutants in the plant circadian clock, yet the screens are far from saturated and there must still be important clock-related genes to identify. Direct methods to screen for circadian mutants include the original assay of rhythmic luminescence from promoter:luciferase constructs in planta or a recently developed assay based on stomatal rhythms. Mutants found through simpler screens of processes only partially controlled by the clock are still identifying novel and interesting circadian phenotypes when their rhythms are tested, while the sequenced genome and the large range of mutant stocks available have made reverse genetics increasingly powerful.
Collapse
Affiliation(s)
- Megan M Southern
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | | |
Collapse
|
316
|
Abstract
Circadian clocks are thought to enhance reproductive fitness. However, most of the evidence that supports the adaptiveness of clocks is not rigorous and falls into the category of "adaptive storytelling." Approaches that an evolutionary biologist would consider appropriate to address this issue are described along with an analysis of the evidence-past and present-that has been evoked to demonstrate the adaptive value of circadian systems.
Collapse
Affiliation(s)
- Carl Hirschie Johnson
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, USA
| |
Collapse
|
317
|
Abstract
This article discusses a number of common methodologies used in the field of population genetics and evolution and reviews their application within circadian rhythm research. We examine the basic principles behind phylogenetic analysis and how these can be used to illuminate clock gene evolution. We then discuss genetic variation between and within species and show how neutrality tests can reveal the signatures of selection or drift on clock genes. These tests are particularly important for moving beyond "just so" stories when discussing the evolution of clock phenotypes, and we provide relevant circadian examples. We also focus on methods that can be used to study genetic variation, such as quantitative trait loci analysis. We discuss the various bootstrapping or resampling techniques that can be applied to generate confidence intervals in the various methodologies and then examine the use of interspecific transformation studies, which can, and have, provide some useful insights, not only into clock gene evolution in particular, but "behavioral" gene evolution in general. Finally, we assess gene/protein alignments and protein structure predictions and their implicit evolutionary bases.
Collapse
|
318
|
Abstract
This year, the biannually organized FASEB meeting 'Mechanisms in Plant Development' took place in August in Vermont, USA, organized by Martin Hulskamp (University of Koln, Koln, Germany) and John Schiefelbein (University of Michigan, Ann Arbor, MI, USA). The meeting covered numerous topics, ranging from patterning and differentiation to the evolution of developmental mechanisms. Despite apparent distinctions between the sessions, many of the talks were broad ranging and most highlighted unifying developmental concepts.
Collapse
Affiliation(s)
- Liam Dolan
- John Innes Centre, Colney, Norwich NR4 7UH, UK
| | | |
Collapse
|
319
|
Woelfle MA, Ouyang Y, Phanvijhitsiri K, Johnson CH. The adaptive value of circadian clocks: an experimental assessment in cyanobacteria. Curr Biol 2004; 14:1481-6. [PMID: 15324665 DOI: 10.1016/j.cub.2004.08.023] [Citation(s) in RCA: 266] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2004] [Revised: 06/21/2004] [Accepted: 06/22/2004] [Indexed: 11/24/2022]
Abstract
Circadian clocks are thought to enhance the fitness of organisms by improving their ability to adapt to extrinsic influences, specifically daily changes in environmental factors such as light, temperature, and humidity. Some investigators have proposed that circadian clocks provide an additional "intrinsic adaptive value," that is, the circadian clock that regulates the timing of internal events has evolved to be such an integral part of the temporal regulation that it is useful in all conditions, even in constant environments. There have been practically no rigorous tests of either of these propositions. Using cyanobacterial strains with different clock properties growing in competition with each other, we found that strains with a functioning biological clock defeat clock-disrupted strains in rhythmic environments. In contrast to the expectations of the "intrinsic value model," this competitive advantage disappears in constant environments. In addition, competition experiments using strains with different circadian periods showed that cyanobacterial strains compete most effectively in a rhythmic environment when the frequency of their internal biological oscillator and that of the environmental cycle are similar. Together, these studies demonstrate the adaptive value of circadian temporal programming in cyanobacteria but indicate that this adaptive value is only fulfilled in cyclic environments.
Collapse
Affiliation(s)
- Mark A Woelfle
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | | | | | | |
Collapse
|
320
|
Mizuno T. Plant response regulators implicated in signal transduction and circadian rhythm. CURRENT OPINION IN PLANT BIOLOGY 2004; 7:499-505. [PMID: 15337091 DOI: 10.1016/j.pbi.2004.07.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The so-called 'response regulators' were originally discovered as common components of the widespread histidine (His)-->aspartate (Asp) phosphorelay signal transduction system in prokaryotes. Through the course of evolution, higher plants have also come to employ such prokaryotic response regulators (RRs) for their own signal transduction, such as the elicitation of plant hormone (e.g. cytokinin) responses. Furthermore, plants have evolved their own atypical variants of response regulators, pseudo response regulators (PRRs), which are used to modulate sophisticated biological processes, including circadian rhythms and other light-signal responses. Recent studies using the model plant Arabidopsis thaliana have begun to shed light on the interesting functions of these plant response regulators.
Collapse
Affiliation(s)
- Takeshi Mizuno
- Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan.
| |
Collapse
|
321
|
Han L, Mason M, Risseeuw EP, Crosby WL, Somers DE. Formation of an SCF(ZTL) complex is required for proper regulation of circadian timing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 40:291-301. [PMID: 15447654 DOI: 10.1111/j.1365-313x.2004.02207.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The circadian timing system involves an autoregulatory transcription/translation feedback loop that incorporates a diverse array of factors to maintain a 24-h periodicity. In Arabidopsis a novel F-box protein, ZEITLUPE (ZTL), plays an important role in the control of the free-running period of the circadian clock. As a class, F-box proteins are well-established components of the Skp/Cullin/F-box (SCF) class of E3 ubiquitin ligases that link the target substrates to the core ubiquitinating activity of the ligase complex via direct association with the Skp protein. Here we identify and characterize the SCFZTL complex in detail. Yeast two-hybrid tests demonstrate the sufficiency and necessity of the F-box domain for Arabidopsis Skp-like protein (ASK) interactions and the dispensability of the unique N-terminal LOV domain in this association. Co-immunoprecipitation of full-length (FL) ZTL with the three known core components of SCF complexes (ASK1, AtCUL1 and AtRBX1) demonstrates that ZTL can assemble into an SCF complex in vivo. F-box-containing truncated versions of ZTL (LOV-F and F-kelch) can complex with SCF components in vivo, whereas stably expressed LOV or kelch domains alone cannot. Stable expression of F-box-mutated FL ZTL eliminates the shortened period caused by mild ZTL overexpression and also abolishes ASK1 interaction in vivo. Reduced levels of the core SCF component AtRBX1 phenocopy the long period phenotype of ztl loss-of-function mutations, demonstrating the functional significance of the SCFZTL complex. Taken together, our data establish SCFZTL as an essential SCF class E3 ligase controlling circadian period in plants.
Collapse
Affiliation(s)
- Linqu Han
- Department of Plant Cellular and Molecular Biology, Ohio State University, Columbus, OH, USA
| | | | | | | | | |
Collapse
|
322
|
Shu Y, Hong-Hui L. Transcription, translation, degradation, and circadian clock. Biochem Biophys Res Commun 2004; 321:1-6. [PMID: 15358206 DOI: 10.1016/j.bbrc.2004.06.093] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Indexed: 01/15/2023]
Abstract
Synthesis and degradation of mRNA together with synthesis and degradation of corresponding protein, this four-step-expression confers great fitness to all organisms. Transcription rate and mRNA stability both are essential for circadian expression of clock genes. In many cases, transcription rates and half-lives of mRNAs and corresponding proteins are not necessarily tightly linked with each other. The methods for measuring four-step-expression should be carefully selected and the experimental conditions should be strictly controlled.
Collapse
Affiliation(s)
- Yuan Shu
- College of Life Science, Sichuan University, 29 Wang-Jiang Road, Chengdu 610064, PR China
| | | |
Collapse
|
323
|
Fujimori T, Yamashino T, Kato T, Mizuno T. Circadian-controlled basic/helix-loop-helix factor, PIL6, implicated in light-signal transduction in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2004; 45:1078-86. [PMID: 15356333 DOI: 10.1093/pcp/pch124] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
PHYTOCHROME-INTERACTING FACTOR-LIKE 6 (PIL6) is a member of the large family of basic/helix-loop-helix (bHLH) factors in Arabidopsis thaliana. This circadian-controlled transcription factor was previously suggested to interact with the clock component, TIMING OF CAB EXPRESSION 1 (TOC1). In this study, we isolated a loss-of-function mutant of PIL6, together with a transgenic line aberrantly expressing PIL6 in a manner independent of circadian rhythm. These mutant plants were simultaneously examined with special reference to circadian rhythm and light-signal transduction. The results suggested that PIL6 appears to be not directly involved in the clock function per se. However, the loss-of-function mutant (pil6-1) showed a remarkable phenotype in that it is hypersensitive to red light in seedling de-etiolation. This phenotype was similar to that observed for transgenic lines overexpressing TOC1 (or APRR1). Conversely, transgenic plants overexpressing PIL6 (PIL6-ox) are hyposensitive to red light under the same conditions. This phenotype was very similar to that observed for phyB mutants. The developmental morphologies of PIL6-ox, including the phenotype of early flowering, were also similar to those of phyB mutants. We propose that PIL6 acts as a negative regulator for a red light-mediated morphogenic response (e.g., elongation of hypocotyls in de-etiolation). Taken together, PIL6 might function at an interface between the circadian clock and red light-signal transduction pathways.
Collapse
Affiliation(s)
- Toru Fujimori
- Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University, Chikusa-ku, Nagoya, 464-8601 Japan
| | | | | | | |
Collapse
|
324
|
Murakami M, Yamashino T, Mizuno T. Characterization of Circadian-Associated APRR3 Pseudo-Response Regulator Belonging to the APRR1/TOC1 Quintet in Arabidopsis thaliana. ACTA ACUST UNITED AC 2004; 45:645-50. [PMID: 15169947 DOI: 10.1093/pcp/pch065] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
In higher plants, there are wide ranges of biological processes that are controlled through the circadian clock. In this connection, we have been characterizing a small family of proteins, designated as ARABIDOPSIS PSEUDO-RESPONSE REGULATORS (APRR1, APRR3, APRR5, APRR7, and APRR9), among which APRR1 is identical to TOC1 (TIMING OF CAB EXPRESSION1) that is believed to be a component of the central oscillator. Through previous genetic studies, several lines of evidence have already been provided to support the view that, not only APRR1/TOC1, but also other APRR1/TOC1 quintet members are important for a better understanding of the molecular links between circadian rhythm, control of flowering time, and also photomorphogenesis. However, the least characterized one was APRR3 in that no genetic study has been conducted to see if APRR3 also plays an important role in the circadian-associated biological events. Here we show that APRR3-overexpressing transgenic plants (APRR3-ox) exhibited: (i). a phenotype of longer period (and/or delayed phase) of rhythms of certain circadian-controlled genes under continuous white light, (ii). a phenotype of late flowering under long-day photoperiod conditions, (iii). a phenotype of hypo-sensitiveness to red light during early photomorphogenesis of de-etiolated seedlings, supporting the current idea as to the APRR1/TOC1 quintet described above.
Collapse
Affiliation(s)
- Masaya Murakami
- Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University, Chikusa-ku, Nagoya, 464-8601 Japan
| | | | | |
Collapse
|
325
|
Abstract
The investigation of circadian clock function in Drosophila has progressed from the identification of clock genes to the analysis of timing mechanisms in the cells and tissues where these genes are expressed. As the biological context for investigating circadian clock systems is expanded, new features of molecular timing mechanisms are becoming apparent. Examples come first from studies on peripheral clocks, which perform local, tissue-specific functions as well as global functions that relate to the control of individual behavior, and second from the evaluation of social influences on circadian rhythms. The identification of inter-organismal components of the circadian system in Drosophila suggests new perspectives as the progression continues from the systems level to the social level and onwards to the level of ecosystems.
Collapse
Affiliation(s)
- Joel D Levine
- University of Toronto at Mississauga, 3359 Mississauga Road North, South Building, Mississauga, Ontario, Canada.
| |
Collapse
|
326
|
Daniel X, Sugano S, Tobin EM. CK2 phosphorylation of CCA1 is necessary for its circadian oscillator function in Arabidopsis. Proc Natl Acad Sci U S A 2004; 101:3292-7. [PMID: 14978263 PMCID: PMC365783 DOI: 10.1073/pnas.0400163101] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The circadian clock controls numerous physiological and molecular processes in organisms ranging from fungi to human. In plants, these processes include leaf movement, stomata opening, and expression of a large number of genes. At the core of the circadian clock, the central oscillator consists of a negative autoregulatory feedback loop that is coordinated with the daily environmental changes, and that generates the circadian rhythms of the overt processes. Phosphorylation of some of the central oscillator proteins is necessary for the generation of normal circadian rhythms of Drosophila, humans, and Neurospora, where CK1 and CK2 are emerging as the main protein kinases involved in the phosphorylation of PER and FRQ. We have previously shown that in Arabidopsis, the protein kinase CK2 can phosphorylate the clock-associated protein CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) in vitro. The overexpression of one of its regulatory subunits, CKB3, affects the regulation of circadian rhythms. Whether the effects of CK2 on the clock were due to its phosphorylation of a clock component had yet to be proven. By examining the effects of constitutively expressing a mutant form of the Arabidopsis clock protein CCA1 that cannot be phosphorylated by CK2, we demonstrate here that CCA1 phosphorylation by CK2 is important for the normal functioning of the central oscillator.
Collapse
Affiliation(s)
- Xavier Daniel
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095-1606, USA
| | | | | |
Collapse
|