301
|
Qbadou S, Becker T, Bionda T, Reger K, Ruprecht M, Soll J, Schleiff E. Toc64 - A Preprotein-receptor at the Outer Membrane with Bipartide Function. J Mol Biol 2007; 367:1330-46. [PMID: 17306301 DOI: 10.1016/j.jmb.2007.01.047] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Revised: 01/15/2007] [Accepted: 01/17/2007] [Indexed: 11/25/2022]
Abstract
Protein translocation across membranes is assisted by translocation machineries present in the membrane targeted by the precursor proteins. Translocon subunits can be functionally divided into receptor proteins warranting the specificity of this machine and a translocation channel. At the outer envelope of chloroplasts two sets of receptor proteins regulate protein translocation facing the cytosol or acting in the intermembrane space. One, Toc64 is a receptor of the translocon at the outer envelope of chloroplasts (Toc complex) with dual function. Toc64 recognizes Hsp90 delivered precursor proteins via a cytosolic exposed domain containing three tetratrico-peptide repeat motifs and as demonstrated in here, Toc64 functions also as a major component of a complex facing the intermembrane space. The latter complex is composed of an Hsp70 localized in the intermembrane space, its interaction partner Toc12, a J-domain containing protein and the intermembrane space protein Tic22. We analyzed the intermembrane space domain of Toc64. This domain is involved in preprotein recognition and association with the Toc-complex independent of the cytosolic domain of the Toc64 receptor. Therefore, Toc64 is involved in preprotein translocation across the outer envelope at both sites of the membrane.
Collapse
Affiliation(s)
- Soumya Qbadou
- Botanik, LMU München, Menzinger Str. 67, 80638 München, Germany
| | | | | | | | | | | | | |
Collapse
|
302
|
Selvan S, Patra P, Ang C, Ying J. Synthesis of Silica-Coated Semiconductor and Magnetic Quantum Dots and Their Use in the Imaging of Live Cells. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200604245] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
303
|
Selvan ST, Patra PK, Ang CY, Ying JY. Synthesis of Silica-Coated Semiconductor and Magnetic Quantum Dots and Their Use in the Imaging of Live Cells. Angew Chem Int Ed Engl 2007; 46:2448-52. [PMID: 17318931 DOI: 10.1002/anie.200604245] [Citation(s) in RCA: 299] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- S Tamil Selvan
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | | | | | | |
Collapse
|
304
|
Balsera M, Stengel A, Soll J, Bölter B. Tic62: a protein family from metabolism to protein translocation. BMC Evol Biol 2007; 7:43. [PMID: 17374152 PMCID: PMC1847441 DOI: 10.1186/1471-2148-7-43] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Accepted: 03/20/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The function and structure of protein translocons at the outer and inner envelope membrane of chloroplasts (Toc and Tic complexes, respectively) are a subject of intensive research. One of the proteins that have been ascribed to the Tic complex is Tic62. This protein was proposed as a redox sensor protein and may possibly act as a regulator during the translocation process. Tic62 is a bimodular protein that comprises an N-terminal module, responsible for binding to pyridine nucleotides, and a C-terminal module which serves as a docking site for ferredoxin-NAD(P)-oxido-reductase (FNR). This work focuses on evolutionary analysis of the Tic62-NAD(P)-related protein family, derived from the comparison of all available sequences, and discusses the structure of Tic62. RESULTS Whereas the N-terminal module of Tic62 is highly conserved among all oxyphototrophs, the C-terminal region (FNR-binding module) is only found in vascular plants. Phylogenetic analyses classify four Tic62-NAD(P)-related protein subfamilies in land plants, closely related to members from cyanobacteria and green sulphur bacteria. Although most of the Tic62-NAD(P)-related eukaryotic proteins are localized in the chloroplast, one subgroup consists of proteins without a predicted transit peptide. The N-terminal module of Tic62 contains the structurally conserved Rossman fold and probably belongs to the extended family of short-chain dehydrogenases-reductases. Key residues involved in NADP-binding and residues that may attach the protein to the inner envelope membrane of chloroplasts or to the Tic complex are proposed. CONCLUSION The Tic62-NAD(P)-related proteins are of ancient origin since they are not only found in cyanobacteria but also in green sulphur bacteria. The FNR-binding module at the C-terminal region of the Tic62 proteins is probably a recent acquisition in vascular plants, with no sequence similarity to any other known motifs. The presence of the FNR-binding domain in vascular plants might be essential for the function of the protein as a Tic component and/or for its regulation.
Collapse
Affiliation(s)
- Mónica Balsera
- Dep Biologie I, Botanisches Institut, LMU München, 80638 München, Germany
| | - Anna Stengel
- Dep Biologie I, Botanisches Institut, LMU München, 80638 München, Germany
| | - Jürgen Soll
- Dep Biologie I, Botanisches Institut, LMU München, 80638 München, Germany
| | - Bettina Bölter
- Dep Biologie I, Botanisches Institut, LMU München, 80638 München, Germany
| |
Collapse
|
305
|
Bernales S, McDonald KL, Walter P. Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLoS Biol 2007; 4:e423. [PMID: 17132049 PMCID: PMC1661684 DOI: 10.1371/journal.pbio.0040423] [Citation(s) in RCA: 796] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Accepted: 10/11/2006] [Indexed: 12/18/2022] Open
Abstract
The protein folding capacity of the endoplasmic reticulum (ER) is regulated by the unfolded protein response (UPR). The UPR senses unfolded proteins in the ER lumen and transmits that information to the cell nucleus, where it drives a transcriptional program that is tailored to re-establish homeostasis. Using thin section electron microscopy, we found that yeast cells expand their ER volume at least 5-fold under UPR-inducing conditions. Surprisingly, we discovered that ER proliferation is accompanied by the formation of autophagosome-like structures that are densely and selectively packed with membrane stacks derived from the UPR-expanded ER. In analogy to pexophagy and mitophagy, which are autophagic processes that selectively sequester and degrade peroxisomes and mitochondria, the ER-specific autophagic process described utilizes several autophagy genes: they are induced by the UPR and are essential for the survival of cells subjected to severe ER stress. Intriguingly, cell survival does not require vacuolar proteases, indicating that ER sequestration into autophagosome-like structures, rather than their degradation, is the important step. Selective ER sequestration may help cells to maintain a new steady-state level of ER abundance even in the face of continuously accumulating unfolded proteins. The authors describe an ER-specific autophagic process induced by the unfolded protein response (UPR), which sequesters ER into autophagosome-like bodies. This process may be involved in re-establishing homeostasis when unfolded proteins accumulate inside cells.
Collapse
Affiliation(s)
- Sebastián Bernales
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, California, United States of America.
| | | | | |
Collapse
|
306
|
Rothman S. The incoherence of the vesicle theory of protein secretion. J Theor Biol 2007; 245:150-60. [PMID: 17101153 DOI: 10.1016/j.jtbi.2006.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Revised: 10/05/2006] [Accepted: 10/05/2006] [Indexed: 10/24/2022]
Abstract
The rates at which cells secrete peptides and proteins must on average equal their rate of synthesis. This basic equality has unanticipated and seemingly categorical negative consequences for the vesicle theory of protein secretion. This is because the transport mechanisms it proposes, such as the budding and fusion of small vesicles and secretion by exocytosis, are not capable of balancing forces. What follows is an account of the analysis that leads to this conclusion.
Collapse
Affiliation(s)
- Stephen Rothman
- University of California, San Francisco, 98 Acacia Avenue, Berkeley, CA 94708, USA.
| |
Collapse
|
307
|
Abstract
Phagosomes are fascinating subcellular structures. After all, there are only a few compartments that are born before our very eyes and whose development we can follow in a light microscope until their contents disintegrate and are completely absorbed. Yet, some phagosomes are taken advantage of by pathogenic microorganisms, which change their fate. Research into phagosome biogenesis has flourished in recent years - the purpose of this review is to give a glimpse of where this research stands, with emphasis on the cell biology of macrophage phagosomes, on new model organisms for the study of phagosome biogenesis and on intracellular pathogens and their interference with normal phagosome function.
Collapse
Affiliation(s)
- Albert Haas
- Cell Biology Institute, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany.
| |
Collapse
|
308
|
Stanley WA, Filipp FV, Kursula P, Schüller N, Erdmann R, Schliebs W, Sattler M, Wilmanns M. Recognition of a functional peroxisome type 1 target by the dynamic import receptor pex5p. Mol Cell 2007; 24:653-663. [PMID: 17157249 PMCID: PMC5030714 DOI: 10.1016/j.molcel.2006.10.024] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Revised: 08/16/2006] [Accepted: 10/16/2006] [Indexed: 10/23/2022]
Abstract
Peroxisomes require the translocation of folded and functional target proteins of various sizes across the peroxisomal membrane. We have investigated the structure and function of the principal import receptor Pex5p, which recognizes targets bearing a C-terminal peroxisomal targeting signal type 1. Crystal structures of the receptor in the presence and absence of a peroxisomal target, sterol carrier protein 2, reveal major structural changes from an open, snail-like conformation into a closed, circular conformation. These changes are caused by a long loop C terminal to the 7-fold tetratricopeptide repeat segments. Mutations in residues of this loop lead to defects in peroxisomal import in human fibroblasts. The structure of the receptor/cargo complex demonstrates that the primary receptor-binding site of the cargo is structurally and topologically autonomous, enabling the cargo to retain its native structure and function.
Collapse
Affiliation(s)
- Will A Stanley
- European Molecular Biology Laboratory-Hamburg Outstation, Notkestrasse 85, 22603 Hamburg
| | - Fabian V Filipp
- Structural and Computational Biology Unit, European Molecular Biology Laboratory-Heidelberg, Meyerhofstrasse 1, 69117 Heidelberg
| | - Petri Kursula
- European Molecular Biology Laboratory-Hamburg Outstation, Notkestrasse 85, 22603 Hamburg
| | - Nicole Schüller
- European Molecular Biology Laboratory-Hamburg Outstation, Notkestrasse 85, 22603 Hamburg
| | - Ralf Erdmann
- Department of Systems Biology, Institute for Physiological Chemistry, Faculty of Medicine, Ruhr University of Bochum, 44780 Bochum, Germany
| | - Wolfgang Schliebs
- Department of Systems Biology, Institute for Physiological Chemistry, Faculty of Medicine, Ruhr University of Bochum, 44780 Bochum, Germany
| | - Michael Sattler
- Structural and Computational Biology Unit, European Molecular Biology Laboratory-Heidelberg, Meyerhofstrasse 1, 69117 Heidelberg
| | - Matthias Wilmanns
- European Molecular Biology Laboratory-Hamburg Outstation, Notkestrasse 85, 22603 Hamburg.
| |
Collapse
|
309
|
Liao HJ, Carpenter G. Role of the Sec61 translocon in EGF receptor trafficking to the nucleus and gene expression. Mol Biol Cell 2007; 18:1064-72. [PMID: 17215517 PMCID: PMC1805100 DOI: 10.1091/mbc.e06-09-0802] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The epidermal growth factor (EGF)-dependent trafficking of the intact EGF receptor to the nucleus and its requirement for growth factor induction of cyclin D and other genes has been reported. Unresolved is the mechanism by which this or other transmembrane proteins are excised from a lipid bilayer before nuclear translocalization. We report that, after the addition of EGF, the cell surface EGF receptor is trafficked to the endoplasmic reticulum (ER) where it associates with Sec61beta, a component of the Sec61 translocon, and is retrotranslocated from the ER to the cytoplasm. Abrogation of Sec61beta expression prevents EGF-dependent localization of EGF receptors to the nucleus and expression of cyclin D. This indicates that EGF receptors are trafficked from the ER to the nucleus by a novel pathway that involves the Sec61 translocon.
Collapse
Affiliation(s)
- Hong-Jun Liao
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146
| | - Graham Carpenter
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146
| |
Collapse
|
310
|
Szabadkai G, Rizzuto R. Chaperones as parts of organelle networks. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 594:64-77. [PMID: 17205676 DOI: 10.1007/978-0-387-39975-1_7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The efficiency, divergence, and specificity of virtually all intracellular metabolic and signalling pathways largely depend on their compartmentalized organization. A corollary of the requirement of compartmentalization is the dynamic structural partition of the intracellular space by endomembrane systems. A branch of these membranes communicate with the extracellular space through the endo- and exocytotic processes. Others, like the mitochondrial and endoplasmic reticulum networks accomplish a further role, being fundamental for the maintenance of cellular energy balance and for determination of cell fate under stress conditions. Recent structural and functional studies revealed that the interaction of these networks and the connectivity state of mitochondria controls metabolic flow, protein transport, intracellular Ca2+ signalling, and cell death. Moreover, reflecting the fact that the above processes are accomplished in a microdomain between collaborating organelle membranes, the existence of macromolecular complexes at their contact sites have also been revealed. Being not only assistants of nascent protein folding, chaperones are proposed to participate in assembling and maintaining the function of the above complexes. In this chapter we discuss recently found examples of such an assembly of protein interactions driven by chaperone proteins, and their role in regulating physiological and pathological processes.
Collapse
Affiliation(s)
- György Szabadkai
- Department of Experimental and Diagnostic Medicine, University of Ferrara, Via Borsari 46, Ferrara, 44100, Italy.
| | | |
Collapse
|
311
|
Abstract
The unfolded protein response (UPR) is an intracellular signaling pathway that is activated by the accumulation of unfolded proteins in the endoplasmic reticulum (ER). UPR activation triggers an extensive transcriptional response, which adjusts the ER protein folding capacity according to need. As such, the UPR constitutes a paradigm of an intracellular control mechanism that adjusts organelle abundance in response to environmental or developmental clues. The pathway involves activation of ER unfolded protein sensors that operate in parallel circuitries to transmit information across the ER membrane, activating a set of downstream transcription factors by mechanisms that are unusual yet rudimentarily conserved in all eukaryotes. Recent results shed light on the mechanisms by which unfolded proteins are sensed in the ER and by which the unfolded protein signals are relayed and integrated to reestablish homeostasis in the cell's protein folding capacity or-if this cannot be achieved-commit cells to apoptosis.
Collapse
Affiliation(s)
- Sebastián Bernales
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143, USA.
| | | | | |
Collapse
|
312
|
Coumans RGE, Elemans JAAW, Nolte RJM, Rowan AE. Processive enzyme mimic: Kinetics and thermodynamics of the threading and sliding process. Proc Natl Acad Sci U S A 2006; 103:19647-51. [PMID: 17172453 PMCID: PMC1750920 DOI: 10.1073/pnas.0603036103] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The kinetics and thermodynamics of the threading and dethreading process of polymers through the cavity of a synthetic toroidal host is investigated by studying its complexation with a series of end-functionalized polymers of different lengths containing an end group that is selectively recognized by the host. The system is designed in such a way that complexation is only observed if the host has traveled all of the way across the complete polymer. Detailed kinetic investigations using fluorescence spectroscopy have revealed that the barrier for this process is length dependent and most likely related to the stretching of the polymer. Moreover, the results indicate that our previously reported processive enzyme mimic most likely operates by randomly sliding along its macromolecular substrate.
Collapse
Affiliation(s)
- Ruud G. E. Coumans
- Institute for Molecules and Materials, Radboud University Nijmegen, Toernooiveld 1, 6525ED Nijmegen, The Netherlands
| | - Johannes A. A. W. Elemans
- Institute for Molecules and Materials, Radboud University Nijmegen, Toernooiveld 1, 6525ED Nijmegen, The Netherlands
| | - Roeland J. M. Nolte
- Institute for Molecules and Materials, Radboud University Nijmegen, Toernooiveld 1, 6525ED Nijmegen, The Netherlands
- *To whom correspondence may be addressed. E-mail:
or
| | - Alan E. Rowan
- Institute for Molecules and Materials, Radboud University Nijmegen, Toernooiveld 1, 6525ED Nijmegen, The Netherlands
- *To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
313
|
Kang SW, Rane NS, Kim SJ, Garrison JL, Taunton J, Hegde RS. Substrate-specific translocational attenuation during ER stress defines a pre-emptive quality control pathway. Cell 2006; 127:999-1013. [PMID: 17129784 PMCID: PMC3656606 DOI: 10.1016/j.cell.2006.10.032] [Citation(s) in RCA: 228] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 08/30/2006] [Accepted: 10/04/2006] [Indexed: 10/23/2022]
Abstract
Eukaryotic proteins entering the secretory pathway are translocated into the ER by signal sequences that vary widely in primary structure. We now provide a functional rationale for this long-observed sequence diversity by demonstrating that differences among signals facilitate substrate-selective modulation of protein translocation. We find that during acute ER stress, translocation of secretory and membrane proteins is rapidly and transiently attenuated in a signal sequence-selective manner. Their cotranslational rerouting to the cytosol for degradation reduces the burden of misfolded substrates entering the ER and represents a pathway for pre-emptive quality control (pQC). Bypassing the pQC pathway for the prion protein increases its rate of aggregation in the ER lumen during prolonged stress and renders cells less capable of viable recovery. Conversely, pharmacologically augmenting pQC during ER stress proved protective. Thus, protein translocation is a physiologically regulated process that is utilized for pQC as part of the ER stress response.
Collapse
Affiliation(s)
- Sang-Wook Kang
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, 18 Library Drive, Building 18T, Room 101, Bethesda, MD, 20892, USA
| | - Neena S. Rane
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, 18 Library Drive, Building 18T, Room 101, Bethesda, MD, 20892, USA
| | - Soo Jung Kim
- Functional Genomic Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-333, Korea
| | - Jennifer L. Garrison
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94107, USA
| | - Jack Taunton
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94107, USA
| | - Ramanujan S. Hegde
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, 18 Library Drive, Building 18T, Room 101, Bethesda, MD, 20892, USA
| |
Collapse
|
314
|
Fujiki Y, Okumoto K, Kinoshita N, Ghaedi K. Lessons from peroxisome-deficient Chinese hamster ovary (CHO) cell mutants. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1374-81. [PMID: 17045664 DOI: 10.1016/j.bbamcr.2006.09.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 09/05/2006] [Accepted: 09/06/2006] [Indexed: 10/24/2022]
Abstract
Cells with a genetic defect affecting a biological activity and/or a cell phenotype are generally called "cell mutants" and are a highly useful tool in genetic, biochemical, as well as cell biological research. To investigate peroxisome biogenesis and human peroxisome biogenesis disorders, more than a dozen complementation groups of Chinese hamster ovary (CHO) cell mutants defective in peroxisome assembly have been successfully isolated and established as a model system. Moreover, successful PEX gene cloning studies by taking advantage of rapid functional complementation assay of CHO cell mutants invaluably contributed to the accomplishment of isolation of pathogenic genes responsible for peroxisome biogenesis diseases. Molecular mechanisms of peroxisome assembly are currently investigated by making use of such mammalian cell mutants.
Collapse
Affiliation(s)
- Yukio Fujiki
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan.
| | | | | | | |
Collapse
|
315
|
Abstract
The characteristic structural organization of mitochondria is the product of synthesis of macromolecules within the mitochondria together with the import of proteins and lipids synthesized outside the organelle. Synthetic and import processes are required for mitochondrial proliferation and might also facilitate the growth of pre-existing mitochondria. Recent evidence indicates that these events are regulated in a complex way by several agonists and environmental conditions, through activation of specific signaling pathways and transcription factors. A newly discovered role of this organelle in retrograde intracellular signaling back to the nucleus has also emerged. This is likely to have far-reaching implications in development, aging, disease and environmental adaptation. Generation of nitric oxide (NO) appears to be an important player in these processes, possibly acting as a unifying molecular switch to trigger the whole mitochondrial biogenesis process. High levels of NO acutely inhibit cell respiration by binding to cytochrome c oxidase. Conversely, chronic, smaller increases in NO levels stimulate mitochondrial biogenesis in diverse cell types. NO-induced mitochondrial biogenesis seems to be linked to proliferation and differentiation of normal and tumor cells, as well as in aging.
Collapse
Affiliation(s)
- Enzo Nisoli
- Department of Pharmacology, Chemotherapy and Medical Toxicology, School of Medicine, Milan University, via Vanvitelli 32, 20129 Milan, Italy.
| | | |
Collapse
|
316
|
Sibbald MJJB, Ziebandt AK, Engelmann S, Hecker M, de Jong A, Harmsen HJM, Raangs GC, Stokroos I, Arends JP, Dubois JYF, van Dijl JM. Mapping the pathways to staphylococcal pathogenesis by comparative secretomics. Microbiol Mol Biol Rev 2006; 70:755-88. [PMID: 16959968 PMCID: PMC1594592 DOI: 10.1128/mmbr.00008-06] [Citation(s) in RCA: 209] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The gram-positive bacterium Staphylococcus aureus is a frequent component of the human microbial flora that can turn into a dangerous pathogen. As such, this organism is capable of infecting almost every tissue and organ system in the human body. It does so by actively exporting a variety of virulence factors to the cell surface and extracellular milieu. Upon reaching their respective destinations, these virulence factors have pivotal roles in the colonization and subversion of the human host. It is therefore of major importance to obtain a clear understanding of the protein transport pathways that are active in S. aureus. The present review aims to provide a state-of-the-art roadmap of staphylococcal secretomes, which include both protein transport pathways and the extracytoplasmic proteins of these organisms. Specifically, an overview is presented of the exported virulence factors, pathways for protein transport, signals for cellular protein retention or secretion, and the exoproteomes of different S. aureus isolates. The focus is on S. aureus, but comparisons with Staphylococcus epidermidis and other gram-positive bacteria, such as Bacillus subtilis, are included where appropriate. Importantly, the results of genomic and proteomic studies on S. aureus secretomes are integrated through a comparative "secretomics" approach, resulting in the first definition of the core and variant secretomes of this bacterium. While the core secretome seems to be largely employed for general housekeeping functions which are necessary to thrive in particular niches provided by the human host, the variant secretome seems to contain the "gadgets" that S. aureus needs to conquer these well-protected niches.
Collapse
Affiliation(s)
- M J J B Sibbald
- Department of Medical Microbiology, University Medical Centre Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
317
|
Champion PAD, Stanley SA, Champion MM, Brown EJ, Cox JS. C-Terminal Signal Sequence Promotes Virulence Factor Secretion in Mycobacterium tuberculosis. Science 2006; 313:1632-6. [PMID: 16973880 DOI: 10.1126/science.1131167] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Mycobacterium tuberculosis uses the ESX-1/Snm system [early secreted antigen 6 kilodaltons (ESAT-6) system 1/secretion in mycobacteria] to deliver virulence factors into host macrophages during infection. Despite its essential role in virulence, the mechanism of ESX-1 secretion is unclear. We found that the unstructured C terminus of the CFP-10 substrate was recognized by Rv3871, a cytosolic component of the ESX-1 system that itself interacts with the membrane protein Rv3870. Point mutations in the signal that abolished binding of CFP-10 to Rv3871 prevented secretion of the CFP-10 (culture filtrate protein, 10 kilodaltons)/ESAT-6 virulence factor complex. Attachment of the signal to yeast ubiquitin was sufficient for secretion from M. tuberculosis cells, demonstrating that this ESX-1 signal is portable.
Collapse
Affiliation(s)
- Patricia A Digiuseppe Champion
- Department of Microbiology and Immunology, University of California, San Francisco, 600 16th Street, Campus Box 2200, San Francisco, CA 94143-2200, USA
| | | | | | | | | |
Collapse
|
318
|
Fisher A, Montal M. Characterization of Clostridial botulinum neurotoxin channels in neuroblastoma cells. Neurotox Res 2006; 9:93-100. [PMID: 16785104 DOI: 10.1007/bf03033926] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The channel and chaperone activities of Clostridial botulinum neurotoxin (BoNT) A were investigated in Neuro 2a neuroblastoma cells under conditions that closely emulate those prevalent at the endosome. Channel activity occurs in bursts interspersed between periods of little or no activity. The channels are voltage dependent, opening only at negative voltages. Within bursts, the channel resides preferentially in the open state. The channels open to a main conductance of 105 +/- 5 pS or 65 +/- 4 pS in 200 mM CsCl or NaCl, respectively. The BoNT channels display a conspicuous subconductance of 10 +/- 2 pS. The neuroblastoma cell line appears, therefore, to be a suitable system to characterize the BoNT channel and to pursue evaluation of plausible strategies for targeted drug delivery thereby minimizing the requirement for in vivo animal testing.
Collapse
Affiliation(s)
- A Fisher
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, 92093-0366, USA
| | | |
Collapse
|
319
|
Wagner S, Bader ML, Drew D, de Gier JW. Rationalizing membrane protein overexpression. Trends Biotechnol 2006; 24:364-71. [PMID: 16820235 DOI: 10.1016/j.tibtech.2006.06.008] [Citation(s) in RCA: 209] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Revised: 04/20/2006] [Accepted: 06/16/2006] [Indexed: 11/27/2022]
Abstract
Functional and structural studies of membrane proteins usually require overexpression of the proteins in question. Often, however, the 'trial and error' approaches that are mainly used to produce membrane proteins are not successful. Our rapidly increasing understanding of membrane protein insertion, folding and degradation means that membrane protein overexpression can be more rationalized, both at the level of the overexpression host and the overexpressed membrane protein. This change of mindset is likely to have a significant impact on membrane protein research.
Collapse
Affiliation(s)
- Samuel Wagner
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | |
Collapse
|
320
|
Holm PJ, Bhakat P, Jegerschöld C, Gyobu N, Mitsuoka K, Fujiyoshi Y, Morgenstern R, Hebert H. Structural Basis for Detoxification and Oxidative Stress Protection in Membranes. J Mol Biol 2006; 360:934-45. [PMID: 16806268 DOI: 10.1016/j.jmb.2006.05.056] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Revised: 05/17/2006] [Accepted: 05/19/2006] [Indexed: 11/25/2022]
Abstract
Synthesis of mediators of fever, pain and inflammation as well as protection against reactive molecules and oxidative stress is a hallmark of the MAPEG superfamily (membrane associated proteins in eicosanoid and glutathione metabolism). The structure of a MAPEG member, rat microsomal glutathione transferase 1, at 3.2 A resolution, solved here in complex with glutathione by electron crystallography, defines the active site location and a cytosolic domain involved in enzyme activation. The glutathione binding site is found to be different from that of the canonical soluble glutathione transferases. The architecture of the homotrimer supports a catalytic mechanism involving subunit interactions and reveals both cytosolic and membraneous substrate entry sites, providing a rationale for the membrane location of the enzyme.
Collapse
Affiliation(s)
- Peter J Holm
- Department of Biosciences and Nutrition, Karolinska Institutet and School of Technology and Health, Royal Institute of Technology, SE-14157 Huddinge, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
321
|
Meinecke M, Wagner R, Kovermann P, Guiard B, Mick DU, Hutu DP, Voos W, Truscott KN, Chacinska A, Pfanner N, Rehling P. Tim50 Maintains the Permeability Barrier of the Mitochondrial Inner Membrane. Science 2006; 312:1523-6. [PMID: 16763150 DOI: 10.1126/science.1127628] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Transport of metabolites across the mitochondrial inner membrane is highly selective, thereby maintaining the electrochemical proton gradient that functions as the main driving force for cellular adenosine triphosphate synthesis. Mitochondria import many preproteins via the presequence translocase of the inner membrane. However, the reconstituted Tim23 protein constitutes a pore remaining mainly in its open form, a state that would be deleterious in organello. We found that the intermembrane space domain of Tim50 induced the Tim23 channel to close. Presequences overcame this effect and activated the channel for translocation. Thus, the hydrophilic cis domain of Tim50 maintains the permeability barrier of mitochondria by closing the translocation pore in a presequence-regulated manner.
Collapse
Affiliation(s)
- Michael Meinecke
- Biophysik, Universität Osnabrück, FB Biologie/Chemie, D-49034 Osnabrück, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
322
|
Abstract
The twin-arginine translocation (Tat) pathway is responsible for the export of folded proteins across the cytoplasmic membrane of bacteria. Substrates for the Tat pathway include redox enzymes requiring cofactor insertion in the cytoplasm, multimeric proteins that have to assemble into a complex prior to export, certain membrane proteins, and proteins whose folding is incompatible with Sec export. These proteins are involved in a diverse range of cellular activities including anaerobic metabolism, cell envelope biogenesis, metal acquisition and detoxification, and virulence. The Escherichia coli translocase consists of the TatA, TatB, and TatC proteins, but little is known about the precise sequence of events that leads to protein translocation, the energetic requirements, or the mechanism that prevents the export of misfolded proteins. Owing to the unique characteristics of the pathway, it holds promise for biotechnological applications.
Collapse
Affiliation(s)
- Philip A Lee
- Institute for Cellular and Molecular Biology, Department of Chemical Engineering, University of Texas, Austin, Texas 78712-0231, USA.
| | | | | |
Collapse
|