301
|
Den Herder G, Van Isterdael G, Beeckman T, De Smet I. The roots of a new green revolution. TRENDS IN PLANT SCIENCE 2010; 15:600-7. [PMID: 20851036 DOI: 10.1016/j.tplants.2010.08.009] [Citation(s) in RCA: 201] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 08/20/2010] [Accepted: 08/23/2010] [Indexed: 05/18/2023]
Abstract
A significant increase in shoot biomass and seed yield has always been the dream of plant biologists who wish to dedicate their fundamental research to the benefit of mankind; the first green revolution about half a century ago represented a crucial step towards contemporary agriculture and the development of high-yield varieties of cereal grains. Although there has been a steady rise in our food production from then onwards, the currently applied technology and the available crop plants will not be sufficient to feed the rapidly growing world population. In this opinion article, we highlight several below-ground characteristics of plants such as root architecture, nutrient uptake and nitrogen fixation as promising features enabling a very much needed new green revolution.
Collapse
Affiliation(s)
- Griet Den Herder
- Genetics, Faculty of Biology, University of Munich (LMU), D-82152 Martinsried-München, Germany
| | | | | | | |
Collapse
|
302
|
Fabra A, Castro S, Taurian T, Angelini J, Ibañez F, Dardanelli M, Tonelli M, Bianucci E, Valetti L. Interaction among Arachis hypogaea L. (peanut) and beneficial soil microorganisms: how much is it known? Crit Rev Microbiol 2010; 36:179-94. [PMID: 20214416 DOI: 10.3109/10408410903584863] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The leguminous crop Arachis hypogaea L. (peanut) is originally from South America and then was disseminated to tropical and subtropical regions. The dissemination of the crop resulted in peanut plants establishing a symbiotic nitrogen-fixing relationship with a wide diversity of indigenous soil bacteria. We present in this review, advances on the molecular basis for the crack-entry infection process involved in the peanut-rhizobia interaction, the diversity of rhizobial and fungal antagonistic bacteria associated with peanut plants, the effect of abiotic and biotic stresses on this interaction and the response of peanut to inoculation.
Collapse
Affiliation(s)
- A Fabra
- Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
303
|
Held M, Hossain MS, Yokota K, Bonfante P, Stougaard J, Szczyglowski K. Common and not so common symbiotic entry. TRENDS IN PLANT SCIENCE 2010; 15:540-545. [PMID: 20829094 DOI: 10.1016/j.tplants.2010.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 07/26/2010] [Accepted: 08/09/2010] [Indexed: 05/29/2023]
Abstract
Great advances have been made in our understanding of the host plant's common symbiosis functions, which in legumes mediate intracellular accommodation of both nitrogen-fixing bacteria and arbuscular mycorrhiza (AM) fungi. However, it has become apparent that additional plant genes are required specifically for bacterial entry inside the host root. In this opinion article, we consider Lotus japonicus nap1 and pir1 symbiotic mutants within the context of other deleterious mutations that impair an intracellular accommodation of bacteria but have no impact on the colonization of roots by AM fungi. We highlight a clear delineation of early signaling events during bacterial versus AM symbioses while suggesting a more intricate origin of the plant's ability for intracellular accommodation of bacteria.
Collapse
Affiliation(s)
- Mark Held
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, Ontario NV5 4T3, Canada
| | | | | | | | | | | |
Collapse
|
304
|
Plasmids of the Rhizobiaceae and Their Role in Interbacterial and Transkingdom Interactions. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/978-3-642-14512-4_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
305
|
Hamel LP, Beaudoin N. Chitooligosaccharide sensing and downstream signaling: contrasted outcomes in pathogenic and beneficial plant-microbe interactions. PLANTA 2010; 232:787-806. [PMID: 20635098 DOI: 10.1007/s00425-010-1215-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 06/14/2010] [Indexed: 05/29/2023]
Abstract
In plants, short chitin oligosaccharides and chitosan fragments (collectively referred to as chitooligosaccharides) are well-known elicitors that trigger defense gene expression, synthesis of antimicrobial compounds, and cell wall strengthening. Recent findings have shed new light on chitin-sensing mechanisms and downstream activation of intracellular signaling networks that mediate plant defense responses. Interestingly, chitin receptors possess several lysin motif domains that are also found in several legume Nod factor receptors. Nod factors are chitin-related molecules produced by nitrogen-fixing rhizobia to induce root nodulation. The fact that chitin and Nod factor receptors share structural similarity suggests an evolutionary conserved relationship between mechanisms enabling recognition of both deleterious and beneficial microorganisms. Here, we will present an update on molecular events involved in chitooligosaccharide sensing and downstream signaling pathways in plants and will discuss how structurally related signals may lead to such contrasted outcomes during plant-microbe interactions.
Collapse
Affiliation(s)
- Louis-Philippe Hamel
- Faculté des Sciences, Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | |
Collapse
|
306
|
Lillis L, Doyle E, Clipson N. Comparison of DNA- and RNA-based bacterial community structures in soil exposed to 2,4-dichlorophenol. J Appl Microbiol 2010; 107:1883-93. [PMID: 20426769 DOI: 10.1111/j.1365-2672.2009.04369.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AIMS To examine the effect of the pollutant 2,4-dichlorophenol on DNA- and RNA-based bacterial communities in soil. METHODS AND RESULTS Soil was exposed to 100 mg kg(-1) of 2,4-dichlorophenol (2,4-DCP), and degradation was monitored over 35 days. DNA and RNA were coextracted, and terminal restriction fragment length polymorphism (T-RFLP) was used to report changes in bacterial communities in response to the presence of the chlorophenol. The phylogenetic composition of the soil during degradation was determined by creating a clone library of amplified 16S rRNA sequences from both DNA and reverse-transcribed RNA from exposed soil. Resulting clones were sequenced, and putative identities were assigned. CONCLUSIONS A significant difference between active (RNA-based) and total (DNA-based) bacterial community structure was observed for both T-RFLP and phylogenetic analyses in response to 2,4-DCP, with more pronounced changes seen in RNA-based communities. Phylogenetic analysis indicated the dominance of Proteobacteria in both profiles. SIGNIFICANCE AND IMPACT OF THE STUDY This study describes the response of soil bacterial communities to the addition of the xenobiotic compound 2,4-DCP, and highlights the importance of including RNA-based 16S rRNA analysis to complement any molecular study in a perturbed soil.
Collapse
Affiliation(s)
- L Lillis
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin, Ireland.
| | | | | |
Collapse
|
307
|
Lorio JC, Kim WS, Krishnan AH, Krishnan HB. Disruption of the glycine cleavage system enables Sinorhizobium fredii USDA257 to form nitrogen-fixing nodules on agronomically improved North American soybean cultivars. Appl Environ Microbiol 2010; 76:4185-93. [PMID: 20453144 PMCID: PMC2897462 DOI: 10.1128/aem.00437-10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 04/26/2010] [Indexed: 11/20/2022] Open
Abstract
The symbiosis between Sinorhizobium fredii USDA257 and soybean [Glycine max (L.) Merr.] exhibits a high degree of cultivar specificity. USDA257 nodulates primitive soybean cultivars but fails to nodulate agronomically improved cultivars such as McCall. In this study we provide evidence for the involvement of a new genetic locus that controls soybean cultivar specificity. This locus was identified in USDA257 by Tn5 transposon mutagenesis followed by nodulation screening on McCall soybean. We have cloned the region corresponding to the site of Tn5 insertion and found that it lies within a 1.5-kb EcoRI fragment. DNA sequence analysis of this fragment and an adjacent 4.4-kb region identified an operon made up of three open reading frames encoding proteins of deduced molecular masses of 41, 13, and 104 kDa, respectively. These proteins revealed significant amino acid homology to glycine cleavage (gcv) system T, H, and P proteins of Escherichia coli and other organisms. Southern blot analysis revealed the presence of similar sequences in diverse rhizobia. Measurement of beta-galactosidase activity of a USDA257 strain containing a transcriptional fusion of gcvT promoter sequences to the lacZ gene revealed that the USDA257 gcvTHP operon was inducible by glycine. Inactivation of either gcvT or gcvP of USDA257 enabled the mutant to nodulate several agronomically improved North American soybean cultivars. These nodules revealed anatomical features typical of determinate nodules, with numerous bacteroids within the infected cells. Unlike for the previously characterized soybean cultivar specificity locus nolBTUVW, inactivation of the gcv locus had no discernible effect on the secretion of nodulation outer proteins of USDA257.
Collapse
Affiliation(s)
- Julio C. Lorio
- Division of Plant Sciences, University of Missouri, Columbia, Missouri 65211, Plant Genetics Research Unit, Agricultural Research Service, U.S. Department of Agriculture, University of Missouri, Columbia, Missouri 65211
| | - Won-Seok Kim
- Division of Plant Sciences, University of Missouri, Columbia, Missouri 65211, Plant Genetics Research Unit, Agricultural Research Service, U.S. Department of Agriculture, University of Missouri, Columbia, Missouri 65211
| | - Ammulu H. Krishnan
- Division of Plant Sciences, University of Missouri, Columbia, Missouri 65211, Plant Genetics Research Unit, Agricultural Research Service, U.S. Department of Agriculture, University of Missouri, Columbia, Missouri 65211
| | - Hari B. Krishnan
- Division of Plant Sciences, University of Missouri, Columbia, Missouri 65211, Plant Genetics Research Unit, Agricultural Research Service, U.S. Department of Agriculture, University of Missouri, Columbia, Missouri 65211
| |
Collapse
|
308
|
Bonaldi K, Gourion B, Fardoux J, Hannibal L, Cartieaux F, Boursot M, Vallenet D, Chaintreuil C, Prin Y, Nouwen N, Giraud E. Large-scale transposon mutagenesis of photosynthetic Bradyrhizobium sp. strain ORS278 reveals new genetic loci putatively important for nod-independent symbiosis with Aeschynomene indica. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:760-70. [PMID: 20459315 DOI: 10.1094/mpmi-23-6-0760] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Photosynthetic Bradyrhizobium strains possess the unusual ability to form nitrogen-fixing nodules on a specific group of legumes in the absence of Nod factors. To obtain insight into the bacterial genes involved in this Nod-independent symbiosis, we screened 15,648 Tn5 mutants of Bradyrhizobium sp. strain ORS278 for clones affected in root symbiosis with Aeschynomene indica. From the 268 isolated mutants, 120 mutants were altered in nodule development (Ndv(-)) and 148 mutants were found to be deficient in nitrogen fixation (Fix(-)). More than 50% of the Ndv(-) mutants were found to be altered in purine biosynthesis, strengthening the previous hypothesis of a symbiotic role of a bacterial purine derivative during the Nod-independent symbiosis. The other Ndv(-) mutants were auxotrophic for pyrimidines and amino acids (leucine, glutamate, and lysine) or impaired in genes encoding proteins of unknown function. The Fix(-) mutants were found to be affected in a wide variety of cellular processes, including both novel (n = 56) and previously identified (n = 31) genes important in symbiosis. Among the novel genes identified, several were involved in the Calvin cycle, suggesting that CO(2) fixation could play an important role during this symbiosis.
Collapse
Affiliation(s)
- Katia Bonaldi
- Laboratoire des Symbioses Tropicales et Méditerranéennes, IRD, UMR-IRD/SupAgro/INRA/UM2/CIRAD, F-34398 Montpellier, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
309
|
Alloisio N, Queiroux C, Fournier P, Pujic P, Normand P, Vallenet D, Médigue C, Yamaura M, Kakoi K, Kucho KI. The Frankia alni symbiotic transcriptome. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:593-607. [PMID: 20367468 DOI: 10.1094/mpmi-23-5-0593] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The actinobacteria Frankia spp. are able to induce the formation of nodules on the roots of a large spectrum of actinorhizal plants, where they convert dinitrogen to ammonia in exchange for plant photosynthates. In the present study, transcriptional analyses were performed on nitrogen-replete free-living Frankia alni cells and on Alnus glutinosa nodule bacteria, using whole-genome microarrays. Distribution of nodule-induced genes on the genome was found to be mostly over regions with high synteny between three Frankia spp. genomes, while nodule-repressed genes, which were mostly hypothetical and not conserved, were spread around the genome. Genes known to be related to nitrogen fixation were highly induced, nif (nitrogenase), hup2 (hydrogenase uptake), suf (sulfur-iron cluster), and shc (hopanoids synthesis). The expression of genes involved in ammonium assimilation and transport was strongly modified, suggesting that bacteria ammonium assimilation was limited. Genes involved in particular in transcriptional regulation, signaling processes, protein drug export, protein secretion, lipopolysaccharide, and peptidoglycan biosynthesis that may play a role in symbiosis were also identified. We also showed that this Frankia symbiotic transcriptome was highly similar among phylogenetically distant plant families Betulaceae and Myricaceae. Finally, comparison with rhizobia transcriptome suggested that F. alni is metabolically more active in symbiosis than rhizobia.
Collapse
|
310
|
Madsen LH, Tirichine L, Jurkiewicz A, Sullivan JT, Heckmann AB, Bek AS, Ronson CW, James EK, Stougaard J. The molecular network governing nodule organogenesis and infection in the model legume Lotus japonicus. Nat Commun 2010; 1:10. [PMID: 20975672 PMCID: PMC2892300 DOI: 10.1038/ncomms1009] [Citation(s) in RCA: 318] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 03/05/2010] [Indexed: 12/30/2022] Open
Abstract
Bacterial infection of interior tissues of legume root nodules is controlled at the epidermal cell layer and is closely coordinated with progressing organ development. Using spontaneous nodulating Lotus japonicus plant mutants to uncouple nodule organogenesis from infection, we have determined the role of 16 genes in these two developmental processes. We show that host-encoded mechanisms control three alternative entry processes operating in the epidermis, the root cortex and at the single cell level. Single cell infection did not involve the formation of trans-cellular infection threads and was independent of host Nod-factor receptors and bacterial Nod-factor signals. In contrast, Nod-factor perception was required for epidermal root hair infection threads, whereas primary signal transduction genes preceding the secondary Ca2+ oscillations have an indirect role. We provide support for the origin of rhizobial infection through direct intercellular epidermal invasion and subsequent evolution of crack entry and root hair invasions observed in most extant legumes.
Collapse
MESH Headings
- Alphaproteobacteria/growth & development
- Alphaproteobacteria/physiology
- Gene Expression Regulation, Plant/genetics
- Gene Expression Regulation, Plant/physiology
- Genotype
- Lotus/growth & development
- Lotus/metabolism
- Lotus/microbiology
- Lotus/ultrastructure
- Microscopy, Electron, Transmission
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified/growth & development
- Plants, Genetically Modified/metabolism
- Plants, Genetically Modified/microbiology
- Plants, Genetically Modified/ultrastructure
- Root Nodules, Plant/growth & development
- Root Nodules, Plant/metabolism
- Root Nodules, Plant/microbiology
- Root Nodules, Plant/ultrastructure
Collapse
Affiliation(s)
- Lene H. Madsen
- Department of Molecular Biology, Centre for Carbohydrate Recognition and Signalling, Aarhus University, Gustav Wieds Vej 10, Aarhus C DK-8000, Denmark
| | - Leïla Tirichine
- Department of Molecular Biology, Centre for Carbohydrate Recognition and Signalling, Aarhus University, Gustav Wieds Vej 10, Aarhus C DK-8000, Denmark
| | - Anna Jurkiewicz
- Department of Molecular Biology, Centre for Carbohydrate Recognition and Signalling, Aarhus University, Gustav Wieds Vej 10, Aarhus C DK-8000, Denmark
| | - John T. Sullivan
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Anne B. Heckmann
- Department of Molecular Biology, Centre for Carbohydrate Recognition and Signalling, Aarhus University, Gustav Wieds Vej 10, Aarhus C DK-8000, Denmark
| | - Anita S. Bek
- Department of Molecular Biology, Centre for Carbohydrate Recognition and Signalling, Aarhus University, Gustav Wieds Vej 10, Aarhus C DK-8000, Denmark
| | - Clive W. Ronson
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Euan K. James
- EPI division, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Jens Stougaard
- Department of Molecular Biology, Centre for Carbohydrate Recognition and Signalling, Aarhus University, Gustav Wieds Vej 10, Aarhus C DK-8000, Denmark
| |
Collapse
|
311
|
Merabet C, Martens M, Mahdhi M, Zakhia F, Sy A, Le Roux C, Domergue O, Coopman R, Bekki A, Mars M, Willems A, de Lajudie P. Multilocus sequence analysis of root nodule isolates from Lotus arabicus (Senegal), Lotus creticus, Argyrolobium uniflorum and Medicago sativa (Tunisia) and description of Ensifer numidicus sp. nov. and Ensifer garamanticus sp. nov. Int J Syst Evol Microbiol 2010; 60:664-674. [DOI: 10.1099/ijs.0.012088-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nine isolates from Argyrolobium uniflorum, Lotus creticus, Medicago sativa (Tunisia) and Lotus arabicus (Senegal) were analysed by multilocus sequence analysis (MLSA) of five housekeeping genes (recA, atpD, glnA, gltA and thrC), the 16S rRNA gene and the nodulation gene nodA. Analysis of the individual and concatenated gene sequences demonstrated that the nine new strains constituted three stable, well-supported (bootstrap and gene sequence similarity values) monophyletic clusters, A, B and C, all belonging to the branch of the genus Ensifer, regardless of the phylogenetic reconstruction method used (maximum likelihood, maximum-parsimony, neighbour-joining). The three groups were further characterized by API 100 auxanographic tests, host specificity and nodA gene sequence analysis. On the basis of these data, clusters A and C are suggested as representing two novel species within the genus Ensifer, for which the names Ensifer numidicus sp. nov. (type strain ORS 1407T=LMG 24690T=CIP 109850T) and Ensifer garamanticus sp. nov. (type strain ORS 1400T=LMG 24692T=CIP 109916T) are proposed. The cluster B strains were assigned to Ensifer adhaerens genomovar A.
Collapse
Affiliation(s)
- C. Merabet
- IRD, UMR 113 Symbioses Tropicales et Méditerranéennes F-34398 Montpellier, France
- Laboratoire de Rhizobiologie, Université d'Oran, Es-Senia, Algeria
| | - M. Martens
- Laboratorium voor Microbiologie (WE10), Universiteit Gent, Belgium
| | - M. Mahdhi
- Faculté des Sciences, Gabès, Tunisia
- IRD, UMR 113 Symbioses Tropicales et Méditerranéennes F-34398 Montpellier, France
| | - F. Zakhia
- IRD, UMR 113 Symbioses Tropicales et Méditerranéennes F-34398 Montpellier, France
| | - A. Sy
- IRD-UCAD-ISRA, Laboratoire Commun de Microbiologie, Dakar, Senegal, West Africa
| | - C. Le Roux
- IRD, UMR 113 Symbioses Tropicales et Méditerranéennes F-34398 Montpellier, France
| | - O. Domergue
- IRD, UMR 113 Symbioses Tropicales et Méditerranéennes F-34398 Montpellier, France
| | - R. Coopman
- Laboratorium voor Microbiologie (WE10), Universiteit Gent, Belgium
| | - A. Bekki
- Laboratoire de Rhizobiologie, Université d'Oran, Es-Senia, Algeria
| | - M. Mars
- Faculté des Sciences, Gabès, Tunisia
| | - A. Willems
- Laboratorium voor Microbiologie (WE10), Universiteit Gent, Belgium
| | - P. de Lajudie
- IRD, UMR 113 Symbioses Tropicales et Méditerranéennes F-34398 Montpellier, France
| |
Collapse
|
312
|
Thiosulfate-dependent chemolithoautotrophic growth of Bradyrhizobium japonicum. Appl Environ Microbiol 2010; 76:2402-9. [PMID: 20173070 DOI: 10.1128/aem.02783-09] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thiosulfate-oxidizing sox gene homologues were found at four loci (I, II, III, and IV) on the genome of Bradyrhizobium japonicum USDA110, a symbiotic nitrogen-fixing bacterium in soil. In fact, B. japonicum USDA110 can oxidize thiosulfate and grow under a chemolithotrophic condition. The deletion mutation of the soxY(1) gene at the sox locus I, homologous to the sulfur-oxidizing (Sox) system in Alphaproteobacteria, left B. japonicum unable to oxidize thiosulfate and grow under chemolithotrophic conditions, whereas the deletion mutation of the soxY(2) gene at sox locus II, homologous to the Sox system in green sulfur bacteria, produced phenotypes similar to those of wild-type USDA110. Thiosulfate-dependent O(2) respiration was observed only in USDA110 and the soxY(2) mutant and not in the soxY(1) mutant. In the cells, 1 mol of thiosulfate was stoichiometrically converted to approximately 2 mol of sulfate and consumed approximately 2 mol of O(2). B. japonicum USDA110 showed (14)CO(2) fixation under chemolithotrophic growth conditions. The CO(2) fixation of resting cells was significantly dependent on thiosulfate addition. These results show that USDA110 is able to grow chemolithoautotrophically using thiosulfate as an electron donor, oxygen as an electron acceptor, and carbon dioxide as a carbon source, which likely depends on sox locus I including the soxY(1) gene on USDA110 genome. Thiosulfate oxidation capability is frequently found in members of the Bradyrhizobiaceae, which phylogenetic analysis showed to be associated with the presence of sox locus I homologues, including the soxY(1) gene of B. japonicum USDA110.
Collapse
|
313
|
Carvalho FM, Souza RC, Barcellos FG, Hungria M, Vasconcelos ATR. Genomic and evolutionary comparisons of diazotrophic and pathogenic bacteria of the order Rhizobiales. BMC Microbiol 2010; 10:37. [PMID: 20144182 PMCID: PMC2907836 DOI: 10.1186/1471-2180-10-37] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 02/08/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Species belonging to the Rhizobiales are intriguing and extensively researched for including both bacteria with the ability to fix nitrogen when in symbiosis with leguminous plants and pathogenic bacteria to animals and plants. Similarities between the strategies adopted by pathogenic and symbiotic Rhizobiales have been described, as well as high variability related to events of horizontal gene transfer. Although it is well known that chromosomal rearrangements, mutations and horizontal gene transfer influence the dynamics of bacterial genomes, in Rhizobiales, the scenario that determine pathogenic or symbiotic lifestyle are not clear and there are very few studies of comparative genomic between these classes of prokaryotic microorganisms trying to delineate the evolutionary characterization of symbiosis and pathogenesis. RESULTS Non-symbiotic nitrogen-fixing bacteria and bacteria involved in bioremediation closer to symbionts and pathogens in study may assist in the origin and ancestry genes and the gene flow occurring in Rhizobiales. The genomic comparisons of 19 species of Rhizobiales, including nitrogen-fixing, bioremediators and pathogens resulted in 33 common clusters to biological nitrogen fixation and pathogenesis, 15 clusters exclusive to all nitrogen-fixing bacteria and bacteria involved in bioremediation, 13 clusters found in only some nitrogen-fixing and bioremediation bacteria, 01 cluster exclusive to some symbionts, and 01 cluster found only in some pathogens analyzed. In BBH performed to all strains studied, 77 common genes were obtained, 17 of which were related to biological nitrogen fixation and pathogenesis. Phylogenetic reconstructions for Fix, Nif, Nod, Vir, and Trb showed possible horizontal gene transfer events, grouping species of different phenotypes. CONCLUSIONS The presence of symbiotic and virulence genes in both pathogens and symbionts does not seem to be the only determinant factor for lifestyle evolution in these microorganisms, although they may act in common stages of host infection. The phylogenetic analysis for many distinct operons involved in these processes emphasizes the relevance of horizontal gene transfer events in the symbiotic and pathogenic similarity.
Collapse
Affiliation(s)
- Fabíola M Carvalho
- Laboratório Nacional de Computação Científica, Laboratório de Bioinformática, Av Getúlio Vargas 333, 25651-075 Petrópolis, Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
314
|
Hakoyama T, Niimi K, Watanabe H, Tabata R, Matsubara J, Sato S, Nakamura Y, Tabata S, Jichun L, Matsumoto T, Tatsumi K, Nomura M, Tajima S, Ishizaka M, Yano K, Imaizumi-Anraku H, Kawaguchi M, Kouchi H, Suganuma N. Host plant genome overcomes the lack of a bacterial gene for symbiotic nitrogen fixation. Nature 2010; 462:514-7. [PMID: 19940927 DOI: 10.1038/nature08594] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 10/19/2009] [Indexed: 11/10/2022]
Abstract
Homocitrate is a component of the iron-molybdenum cofactor in nitrogenase, where nitrogen fixation occurs. NifV, which encodes homocitrate synthase (HCS), has been identified from various diazotrophs but is not present in most rhizobial species that perform efficient nitrogen fixation only in symbiotic association with legumes. Here we show that the FEN1 gene of a model legume, Lotus japonicus, overcomes the lack of NifV in rhizobia for symbiotic nitrogen fixation. A Fix(-) (non-fixing) plant mutant, fen1, forms morphologically normal but ineffective nodules. The causal gene, FEN1, was shown to encode HCS by its ability to complement a HCS-defective mutant of Saccharomyces cerevisiae. Homocitrate was present abundantly in wild-type nodules but was absent from ineffective fen1 nodules. Inoculation with Mesorhizobium loti carrying FEN1 or Azotobacter vinelandii NifV rescued the defect in nitrogen-fixing activity of the fen1 nodules. Exogenous supply of homocitrate also recovered the nitrogen-fixing activity of the fen1 nodules through de novo nitrogenase synthesis in the rhizobial bacteroids. These results indicate that homocitrate derived from the host plant cells is essential for the efficient and continuing synthesis of the nitrogenase system in endosymbionts, and thus provide a molecular basis for the complementary and indispensable partnership between legumes and rhizobia in symbiotic nitrogen fixation.
Collapse
Affiliation(s)
- Tsuneo Hakoyama
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
315
|
Kaneko T, Minamisawa K, Isawa T, Nakatsukasa H, Mitsui H, Kawaharada Y, Nakamura Y, Watanabe A, Kawashima K, Ono A, Shimizu Y, Takahashi C, Minami C, Fujishiro T, Kohara M, Katoh M, Nakazaki N, Nakayama S, Yamada M, Tabata S, Sato S. Complete genomic structure of the cultivated rice endophyte Azospirillum sp. B510. DNA Res 2010; 17:37-50. [PMID: 20047946 PMCID: PMC2818188 DOI: 10.1093/dnares/dsp026] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We determined the nucleotide sequence of the entire genome of a diazotrophic endophyte, Azospirillum sp. B510. Strain B510 is an endophytic bacterium isolated from stems of rice plants (Oryza sativa cv. Nipponbare). The genome of B510 consisted of a single chromosome (3 311 395 bp) and six plasmids, designated as pAB510a (1 455 109 bp), pAB510b (723 779 bp), pAB510c (681 723 bp), pAB510d (628 837 bp), pAB510e (537 299 bp), and pAB510f (261 596 bp). The chromosome bears 2893 potential protein-encoding genes, two sets of rRNA gene clusters (rrns), and 45 tRNA genes representing 37 tRNA species. The genomes of the six plasmids contained a total of 3416 protein-encoding genes, seven sets of rrns, and 34 tRNAs representing 19 tRNA species. Eight genes for plasmid-specific tRNA species are located on either pAB510a or pAB510d. Two out of eight genomic islands are inserted in the plasmids, pAB510b and pAB510e, and one of the islands is inserted into trnfM-CAU in the rrn located on pAB510e. Genes other than the nif gene cluster that are involved in N2 fixation and are homologues of Bradyrhizobium japonicum USDA110 include fixABCX, fixNOQP, fixHIS, fixG, and fixLJK. Three putative plant hormone-related genes encoding tryptophan 2-monooxytenase (iaaM) and indole-3-acetaldehyde hydrolase (iaaH), which are involved in IAA biosynthesis, and ACC deaminase (acdS), which reduces ethylene levels, were identified. Multiple gene-clusters for tripartite ATP-independent periplasmic-transport systems and a diverse set of malic enzymes were identified, suggesting that B510 utilizes C4-dicarboxylate during its symbiotic relationship with the host plant.
Collapse
|
316
|
Ferguson BJ, Indrasumunar A, Hayashi S, Lin MH, Lin YH, Reid DE, Gresshoff PM. Molecular analysis of legume nodule development and autoregulation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2010; 52:61-76. [PMID: 20074141 DOI: 10.1111/j.1744-7909.2010.00899.x] [Citation(s) in RCA: 338] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Legumes are highly important food, feed and biofuel crops. With few exceptions, they can enter into an intricate symbiotic relationship with specific soil bacteria called rhizobia. This interaction results in the formation of a new root organ called the nodule in which the rhizobia convert atmospheric nitrogen gas into forms of nitrogen that are useable by the plant. The plant tightly controls the number of nodules it forms, via a complex root-to-shoot-to-root signaling loop called autoregulation of nodulation (AON). This regulatory process involves peptide hormones, receptor kinases and small metabolites. Using modern genetic and genomic techniques, many of the components required for nodule formation and AON have now been isolated. This review addresses these recent findings, presents detailed models of the nodulation and AON processes, and identifies gaps in our understanding of these process that have yet to be fully explained.
Collapse
Affiliation(s)
- Brett J Ferguson
- ARC Centre of Excellence for Integrative Legume Research, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | | | | | | | | | | |
Collapse
|
317
|
Rhizosphere Signals for Plant–Microbe Interactions: Implications for Field-Grown Plants. PROGRESS IN BOTANY 72 2010. [DOI: 10.1007/978-3-642-13145-5_5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
318
|
López-López A, Rosenblueth M, Martínez J, Martínez-Romero E. Rhizobial Symbioses in Tropical Legumes and Non-Legumes. SOIL BIOLOGY 2010. [DOI: 10.1007/978-3-642-05076-3_8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
319
|
Downie JA. The roles of extracellular proteins, polysaccharides and signals in the interactions of rhizobia with legume roots. FEMS Microbiol Rev 2009; 34:150-70. [PMID: 20070373 DOI: 10.1111/j.1574-6976.2009.00205.x] [Citation(s) in RCA: 227] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Rhizobia adopt many different lifestyles including survival in soil, growth in the rhizosphere, attachment to root hairs and infection and growth within legume roots, both in infection threads and in nodules where they fix nitrogen. They are actively involved in extracellular signalling to their host legumes to initiate infection and nodule morphogenesis. Rhizobia also use quorum-sensing gene regulation via N-acyl-homoserine lactone signals and this can enhance their interaction with legumes as well as their survival under stress and their ability to induce conjugation of plasmids and symbiotic islands, thereby spreading their symbiotic capacity. They produce several surface polysaccharides that are critical for attachment and biofilm formation; some of these polysaccharides are specific for their growth on root hairs and can considerably enhance their ability to infect their host legumes. Different rhizobia use several different types of protein secretion mechanisms (Types I, III, IV, V and VI), and many of the secreted proteins play an important role in their interaction with plants. This review summarizes many of the aspects of the extracellular biology of rhizobia, in particular in relation to their symbiotic interaction with legumes.
Collapse
|
320
|
Bontemps C, Elliott GN, Simon MF, Dos Reis Júnior FB, Gross E, Lawton RC, Neto NE, de Fátima Loureiro M, De Faria SM, Sprent JI, James EK, Young JPW. Burkholderia species are ancient symbionts of legumes. Mol Ecol 2009; 19:44-52. [PMID: 20002602 DOI: 10.1111/j.1365-294x.2009.04458.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Burkholderia has only recently been recognized as a potential nitrogen-fixing symbiont of legumes, but we find that the origins of symbiosis in Burkholderia are much deeper than previously suspected. We sampled 143 symbionts from 47 native species of Mimosa across 1800 km in central Brazil and found that 98% were Burkholderia. Gene sequences defined seven distinct and divergent species complexes within the genus Burkholderia. The symbiosis-related genes formed deep Burkholderia-specific clades, each specific to a species complex, implying that these genes diverged over a long period within Burkholderia without substantial horizontal gene transfer between species complexes.
Collapse
Affiliation(s)
- Cyril Bontemps
- Department of Biology, University of York, PO Box 373, York YO10 5YW, England, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
321
|
Grassano AE, Ronchi AL, Garcia PG, Mazzaferro L, Breccia JD. Quantitative relationship between maximum growth rates and the intracellular pattern of alpha-esterase and beta-esterase activity of leguminous infecting bacteria. N Biotechnol 2009; 26:234-8. [PMID: 19833241 DOI: 10.1016/j.nbt.2009.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 09/08/2009] [Accepted: 10/04/2009] [Indexed: 10/20/2022]
Abstract
Sixteen strains belonging to three families of the Rhizobiales order (Bradyrhizobiaceae, Phyllobacteriaceae and Rhizobiaceae) were evaluated according their specific growth rates (micro) and the activity of intracellular alpha-esterase and beta-esterase isoenzymes. The average esterase activity of 48 isoenzymes assayed belonging to five strains with low (micro(max) = 0.08-0.12 h(-1)), four medium (micro(max) = 0.13-0.22 h(-1)) and seven high (micro(max) = 0.24-0.28 h(-1)) growth rate values were 22.1 +/- 4.3; 8.7 +/- 2.2 and 3.9 +/-1.7 U g(-1) respectively. An inversely proportional relationship between the activity of the whole pattern of esterases and micro(max) was found. Our results illustrate a feature of intracellular esterases, ascribable in a variety of cellular functions, which might be related to characteristics micro(max) of legume infecting bacteria.
Collapse
Affiliation(s)
- Alicia E Grassano
- Depto. de Química, CONICET, (FCEyN) Universidad Nacional de La Pampa (UNLPam), (6300) Santa Rosa, La Pampa, Argentina
| | | | | | | | | |
Collapse
|
322
|
Zhukov VA, Shtark OY, Borisov AY, Tikhonovich IA. Molecular genetic mechanisms used by legumes to control early stages of mutually beneficial (mutualistic) symbiosis. RUSS J GENET+ 2009. [DOI: 10.1134/s1022795409110039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
323
|
Sinharoy S, DasGupta M. RNA interference highlights the role of CCaMK in dissemination of endosymbionts in the Aeschynomeneae legume Arachis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:1466-75. [PMID: 19810815 DOI: 10.1094/mpmi-22-11-1466] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
In legume-rhizobia symbiosis, Ca2+/calmodulin-dependent protein kinase (CCaMK) is essential for rhizobial invasion through infection threads in the epidermis and nodule organogenesis in the cortex. Though CCaMK is actively transcribed in the infected zone of nodules, its role in the later stages of nodule development remain elusive because of the epidermal arrest of "loss-of-function" mutants. In Aeschynomeneae legumes such as Arachis hypogea, rhizobia directly access the cortex, where nodule organogenesis as well as endosymbiont dissemination take place by multiplication of infected cortical cells. We characterized CCaMK (GI:195542474) from A. hypogea and downregulated the kinase through RNA interference (RNAi) to understand its role during organogenesis of its characteristic aeschynomenoid nodules. In CCaMK downregulated plants, the inception of nodules was delayed by approximately 4 weeks and nodulation capacity was decreased (>90%). The infected zones of the RNA interference nodules were scattered with uninfected or binucleated cells as opposed to the homogeneous infection zone in empty-vector-transformed nodules. Symbiosomes in RNAi nodules were pleomorphic with diverse geometrical shapes or arrested during division in the final stages of their fission as opposed to uniform-sized, spherical symbiosomes in empty-vector-transformed nodules. Together, our results reveal CCaMK to be essential for development of functional aeschynomenoid nodules, with a critical role in rhizobial dissemination during nodule organogenesis.
Collapse
Affiliation(s)
- Senjuti Sinharoy
- Department of Biochemistry, Calcutta University, 35 Ballygaunge Circular Road, Calcutta 700019, India
| | | |
Collapse
|
324
|
Abstract
Our view of bacteria, from the earliest observations through the heyday of antibiotic discovery, has shifted dramatically. We recognize communities of bacteria as integral and functionally important components of diverse habitats, ranging from soil collectives to the human microbiome. To function as productive communities, bacteria coordinate metabolic functions, often requiring shifts in growth and development. The hallmark of cellular development, which we characterize as physiological change in response to environmental stimuli, is a defining feature of many bacterial interspecies interactions. Bacterial communities rely on chemical exchanges to provide the cues for developmental change. Traditional methods in microbiology focus on isolation and characterization of bacteria in monoculture, separating the organisms from the surroundings in which interspecies chemical communication has relevance. Developing multispecies experimental systems that incorporate knowledge of bacterial physiology and metabolism with insights from biodiversity and metagenomics shows great promise for understanding interspecies chemical communication in the microbial world.
Collapse
Affiliation(s)
- Paul D Straight
- Biochemistry and Biophysics Department, Texas A&M University, College Station, Texas 77843, USA.
| | | |
Collapse
|
325
|
Miché L, Moulin L, Chaintreuil C, Contreras-Jimenez JL, Munive-Hernández JA, Del Carmen Villegas-Hernandez M, Crozier F, Béna G. Diversity analyses of Aeschynomene symbionts in Tropical Africa and Central America reveal that nod-independent stem nodulation is not restricted to photosynthetic bradyrhizobia. Environ Microbiol 2009; 12:2152-64. [PMID: 21966910 DOI: 10.1111/j.1462-2920.2009.02090.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tropical aquatic legumes of the genus Aeschynomene are unique in that they can be stem-nodulated by photosynthetic bradyrhizobia. Moreover, a recent study demonstrated that two Aeschynomene indica symbionts lack canonical nod genes, thereby raising questions about the distribution of such atypical symbioses among rhizobial-legume interactions. Population structure and genomic diversity were compared among stem-nodulating bradyrhizobia isolated from various Aeschynomene species of Central America and Tropical Africa. Phylogenetic analyses based on the recA gene and whole-genome amplified fragment length polymorphism (AFLP) fingerprints on 110 bacterial strains highlighted that all the photosynthetic strains form a separate cluster among bradyrhizobia, with no obvious structuring according to their geographical or plant origins. Nod-independent symbiosis was present in all sampling areas and seemed to be linked to Aeschynomene host species. However, it was not strictly dependent on photosynthetic ability, as exemplified by a newly identified cluster of strains that lacked canonical nod genes and efficiently stem-nodulated A. indica, but were not photosynthetic. Interestingly, the phenotypic properties of this new cluster of bacteria were reflected by their phylogenetical position, as being intermediate in distance between classical root-nodulatingBradyrhizobium spp. and photosynthetic ones. This result opens new prospects about stem-nodulating bradyrhizobial evolution.
Collapse
|
326
|
Werner T, Schmülling T. Cytokinin action in plant development. CURRENT OPINION IN PLANT BIOLOGY 2009; 12:527-38. [PMID: 19740698 DOI: 10.1016/j.pbi.2009.07.002] [Citation(s) in RCA: 396] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Accepted: 07/13/2009] [Indexed: 05/20/2023]
Abstract
Cytokinin regulates many important aspects of plant development in aerial and subterranean organs. The hormone is part of an intrinsic genetic network controlling organ development and growth in these two distinct environments that plants have to cope with. Cytokinin also mediates the responses to variable extrinsic factors, such as light conditions in the shoot and availability of nutrients and water in the root, and has a role in the response to biotic and abiotic stress. Together, these activities contribute to the fine-tuning of quantitative growth regulation in plants. We review recent progress in understanding the cytokinin system and its links to the regulatory pathways that respond to internal and external signals.
Collapse
Affiliation(s)
- Tomás Werner
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Albrecht-Thaer-Weg 6, D-14195 Berlin, Germany.
| | | |
Collapse
|
327
|
Rivas R, García-Fraile P, Velázquez E. Taxonomy of Bacteria Nodulating Legumes. Microbiol Insights 2009. [DOI: 10.4137/mbi.s3137] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Over the years, the term “rhizobia” has come to be used for all the bacteria that are capable of nodulation and nitrogen fixation in association with legumes but the taxonomy of rhizobia has changed considerably over the last 30 year. Recently, several non-rhizobial species belonging to alpha and beta subgroup of Proteobacteria have been identified as nitrogen-fixing legume symbionts. Here we provide an overview of the history of the rhizobia and the widespread phylogenetic diversity of nitrogen-fixing legume symbionts.
Collapse
Affiliation(s)
- Raúl Rivas
- Departamento de Microbiología y Genética, Laboratorio 209, Edificio Departamental de Biología, Doctores de la Reina s/n, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Paula García-Fraile
- Departamento de Microbiología y Genética, Laboratorio 209, Edificio Departamental de Biología, Doctores de la Reina s/n, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Encarna Velázquez
- Departamento de Microbiología y Genética, Laboratorio 209, Edificio Departamental de Biología, Doctores de la Reina s/n, Universidad de Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
328
|
Masson-Boivin C, Giraud E, Perret X, Batut J. Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes? Trends Microbiol 2009; 17:458-66. [PMID: 19766492 DOI: 10.1016/j.tim.2009.07.004] [Citation(s) in RCA: 324] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 07/06/2009] [Accepted: 07/13/2009] [Indexed: 11/27/2022]
Abstract
Rhizobia are phylogenetically disparate alpha- and beta-proteobacteria that have achieved the environmentally essential function of fixing atmospheric nitrogen (N(2)) in symbiosis with legumes. All rhizobia elicit the formation of root - or occasionally stem - nodules, plant organs dedicated to the fixation and assimilation of nitrogen. Bacterial colonization of these nodules culminates in a remarkable case of sustained intracellular infection in plants. Rhizobial phylogenetic diversity raised the question of whether these soil bacteria shared a common core of symbiotic genes. In this article, we review the cumulative evidence from recent genomic and genetic analyses pointing toward an unexpected variety of mechanisms that lead to symbiosis with legumes.
Collapse
Affiliation(s)
- Catherine Masson-Boivin
- Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR CNRS-INRA 2594/441, BP 52627, 31326 Castanet Tolosan Cedex, France.
| | | | | | | |
Collapse
|
329
|
Abstract
Legume nodules, specialized structures for nitrogen fixation, are probably the result of coevolution of plants and ancestral rhizobia. Among the evolutionary processes leading to legume radiation and divergence, coevolution with rhizobia might have occurred. Alternatively, bacteria could have been constantly selected by plants, with bacteria slightly influencing plant evolution (required to fulfill the criteria for a coevolutionary hypothesis). Evidence of bacterial effects on plant evolution is scarce but being searched for. Bacterial genetic plasticity may be indicative of the large capacity of Rhizobium to adapt to legumes. Events such as symbiotic replacement, easy recruitment of symbiotic bacteria by legume plants, and lateral transfer of symbiotic genes seem to erase the coevolutionary or selected relationships in rhizobial-legume symbiosis. In particular, the hypotheses proposed are (1) Rhizobium replaced Bradyrhizobium in a few hosts of the Phaseoleae tribe, Phaseolus vulgaris and P. coccineus; (2) Rhizobium etli as a species did not coevolve with bean; and (3) beta-Proteobacteria replaced alpha-Proteobacteria in South American mimosas. Novel results on symbiosis suggest a more complex evolutionary process for nodulation that may include multiple organisms, such as mycorrhiza, nematodes, and other bacteria in addition to rhizobia.
Collapse
|
330
|
Abstract
To develop new shuttle vectors for Deinococcus species, the nucleotide sequence of the small cryptic plasmid pUE30 from Deinococcus radiopugnans ATCC19172 was determined. The 2467-bp plasmid possesses two open reading frames, one encoding 88 amino acid residues (Orf1) and the other encoding 501 amino acid residues (Orf2). The predicted amino acid sequence encoded by Orf1 exhibits similarity to the N-terminal regions of replication proteins encoded by repABC-type plasmids of a-proteobacteria. On the other hand, the predicted amino acid sequence encoded by Orf2 exhibits similarity to replication proteins encoded by plasmids of D. radiodurans SARK and Thermus species. Hybrid plasmids consisting of pUE30 and pKatCAT5, which replicates in E. coli with a chloramphenicol resistance determinant, were shown to autonomously replicate in D. grandis ATCC43672. Deletion analysis revealed that Orf2 was necessary for replication of the plasmids in D. grandis. On the other hand, a DNA fragment encompassing the Orf1-coding region was involved in the instability of the plasmid in D. grandis. An expression plasmid that possesses the D. radiodurans minimal groE promoter was constructed, and a firefly luciferase gene was successfully expressed in D. grandis. The D. grandis host-vector system developed in this study should prove useful in the bioremediation of radioactive waste and for the investigation of DNA repair mechanisms.
Collapse
|
331
|
Xie B, Chen D, Cheng G, Ying Z, Xie F, Li Y, Zhou J. Effects of the purL gene expression level on the competitive nodulation ability of Sinorhizobium fredii. Curr Microbiol 2009; 59:193-8. [PMID: 19459004 DOI: 10.1007/s00284-009-9420-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 03/19/2009] [Accepted: 04/20/2009] [Indexed: 10/20/2022]
Abstract
Purine pathway in Rhizobium is important during the nodulation processes. The purL gene in Sinorhizobium fredii (S. fredii) has been identified to be required for the whole establishment of a nitrogen-fixing nodule. To get a better understanding of the purL gene's impacts on Rhizobium-plant interaction, the competitive nodulation abilities of S. fredii containing different purL expression plasmids were studied. Several kinds of coinoculations were performed, including using different bacterial concentration ratios, with or without the supplementation of purine source in the plant nutrient solution, and the delayed coinoculation tests. The results indicated that the competitive nodule occupancy of S. fredii was affected significantly by the purL expression level during the early nodulation periods. The mutant strain containing no purL expression could not elicit competitive nodules both in the presence and absence of purine source. A positive linear correlation within certain limits was observed between strain's competitive nodule occupancy and purL gene expression level. All these results suggested that the purL gene played a role in the competitive nodulation of S. fredii.
Collapse
Affiliation(s)
- Bo Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
332
|
Lu YL, Chen WF, Wang ET, Guan SH, Yan XR, Chen WX. Genetic diversity and biogeography of rhizobia associated with Caragana species in three ecological regions of China. Syst Appl Microbiol 2009; 32:351-61. [DOI: 10.1016/j.syapm.2008.10.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 10/03/2008] [Accepted: 10/09/2008] [Indexed: 11/17/2022]
|
333
|
Sudtachat N, Ito N, Itakura M, Masuda S, Eda S, Mitsui H, Kawaharada Y, Minamisawa K. Aerobic vanillate degradation and C1 compound metabolism in Bradyrhizobium japonicum. Appl Environ Microbiol 2009; 75:5012-7. [PMID: 19502448 PMCID: PMC2725485 DOI: 10.1128/aem.00755-09] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 05/27/2009] [Indexed: 11/20/2022] Open
Abstract
Bradyrhizobium japonicum, a symbiotic nitrogen-fixing soil bacterium, has multiple gene copies for aromatic degradation on the genome and is able to use low concentrations of vanillate, a methoxylated lignin monomer, as an energy source. A transcriptome analysis indicated that one set of vanA1B, pcaG1H1, and genes for C(1) compound catabolism was upregulated in B. japonicum USDA110 cells grown in vanillate (N. Ito, M. Itakura, S. Eda, K. Saeki, H. Oomori, T. Yokoyama, T. Kaneko, S. Tabata, T. Ohwada, S. Tajima, T. Uchiumi, E. Masai, M. Tsuda, H. Mitsui, and K. Minamisawa, Microbes Environ. 21:240-250, 2006). To examine the functions of these genes in vanillate degradation, we tested cell growth and substrate consumption in vanA1B, pcaG1H1, and mxaF mutants of USDA110. The vanA1B and pcaG1H1 mutants were unable to grow in minimal media containing 1 mM vanillate and protocatechuate, respectively, although wild-type USDA110 was able to grow in both media, indicating that the upregulated copies of vanA1B and pcaG1H1 are exclusively responsible for vanillate degradation. Mutating mxaF eliminated expression of gfa and flhA, which contribute to glutathione-dependent C(1) metabolism. The mxaF mutant had markedly lower cell growth in medium containing vanillate than the wild-type strain. In the presence of protocatechuate, there was no difference in cell growth between the mxaF mutant and the wild-type strain. These results suggest that the C(1) pathway genes are required for efficient vanillate catabolism. In addition, wild-type USDA110 oxidized methanol, whereas the mxaF mutant did not, suggesting that the metabolic capability of the C(1) pathway in B. japonicum extends to methanol oxidation. The mxaF mutant showed normal nodulation and N(2) fixation phenotypes with soybeans, which was not similar to symbiotic phenotypes of methylotrophic rhizobia.
Collapse
|
334
|
Nzoué A, Miché L, Klonowska A, Laguerre G, de Lajudie P, Moulin L. Multilocus sequence analysis of bradyrhizobia isolated from Aeschynomene species in Senegal. Syst Appl Microbiol 2009; 32:400-12. [PMID: 19556090 DOI: 10.1016/j.syapm.2009.06.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This study reports the multilocus sequence analysis (MLSA) of nine house-keeping gene fragments (atpD, dnaK, glnA, glnB, gltA, gyrB, recA, rpoB and thrC) on a collection of 38 Bradyrhizobium isolated from Aeschynomene species in Senegal, which had previously been characterised by several phenotypic and genotypic techniques, allowing a comparative analysis of MLSA resolution power for species delineation in this genus. The nifH locus was also studied to compare house-keeping and symbiotic gene phylogenies and obtain insights into the unusual symbiotic properties of these Aeschynomene symbionts. Phylogenetic analyses (maximum likelihood, Bayesian) of concatenated nine loci produced a well-resolved phylogeny of the strain collection separating photosynthetic bradyrhizobial strains (PB) from non-photosynthetic bradyrhizobial (NPB) ones. The PB clade was interpreted as the remains an expanding ancient species that presently shows high diversification, giving rise to potential new species. B. denitrificans LMG8443 and BTAi1 strains formed a sub-clade that was identified as recently emerging new species. Congruence analyses (by Shimodaira-Hasegawa (S-H) tests) identified three gene-fragments (dnaK, glnB and recA) that should be preferred for MLSA analyses in Bradyrhizobium genus. The nine loci or nifH phylogenies were not correlated with the unusual symbiotic properties of PB (nod-dependent/nod-independent). Advantages and drawbacks of MLSA for species delineation in Bradyrhizobium are discussed.
Collapse
Affiliation(s)
- A Nzoué
- IRD, UMR 113, Symbioses Tropicales et Méditerranéennes, F-34398 Montpellier, France
| | | | | | | | | | | |
Collapse
|
335
|
Jaubert M, Hannibal L, Fardoux J, Giraud E, Verméglio A. Identification of novel genes putatively involved in the photosystem synthesis of Bradyrhizobium sp. ORS 278. PHOTOSYNTHESIS RESEARCH 2009; 100:97-105. [PMID: 19452262 DOI: 10.1007/s11120-009-9433-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Accepted: 05/04/2009] [Indexed: 05/27/2023]
Abstract
In aerobic anoxygenic phototrophs, oxygen is required for both the formation of the photosynthetic apparatus and an efficient cyclic electron transfer. Mutants of Bradyrhizobium sp. ORS278 affected in photosystem synthesis were selected by a bacteriochlorophyll fluorescence-based screening. Out of the 9,600 mutants of a random Tn5 insertion library, 50 clones, corresponding to insertions in 28 different genes, present a difference in fluorescence intensity compared to the WT. Besides enzymes and regulators known to be involved in photosystem synthesis, 14 novel components of the photosynthesis control are identified. Among them, two genes, hsIU and hsIV, encode components of a protein degradation complex, probably linked to the renewal of photosystem, an important issue in Bradyrhizobia which have to deal with harmful reactive oxygen species. The presence of homologs in non-photosynthetic bacteria for most of the regulatory genes identified during study suggests that they could be global regulators, as the RegA-RegB system.
Collapse
Affiliation(s)
- Marianne Jaubert
- Laboratoire des Symbioses Tropicales et Méditerranéennes, IRD, CIRAD, AGRO-M, INRA, UM2. TA A-82/J, Campus de Baillarguet, 34398, Montpellier Cedex 5, France
| | | | | | | | | |
Collapse
|
336
|
Rhizobium sp. strain NGR234 possesses a remarkable number of secretion systems. Appl Environ Microbiol 2009; 75:4035-45. [PMID: 19376903 DOI: 10.1128/aem.00515-09] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhizobium sp. strain NGR234 is a unique alphaproteobacterium (order Rhizobiales) that forms nitrogen-fixing nodules with more legumes than any other microsymbiont. We report here that the 3.93-Mbp chromosome (cNGR234) encodes most functions required for cellular growth. Few essential functions are encoded on the 2.43-Mbp megaplasmid (pNGR234b), and none are present on the second 0.54-Mbp symbiotic plasmid (pNGR234a). Among many striking features, the 6.9-Mbp genome encodes more different secretion systems than any other known rhizobia and probably most known bacteria. Altogether, 132 genes and proteins are linked to secretory processes. Secretion systems identified include general and export pathways, a twin arginine translocase secretion system, six type I transporter genes, one functional and one putative type III system, three type IV attachment systems, and two putative type IV conjugation pili. Type V and VI transporters were not identified, however. NGR234 also carries genes and regulatory networks linked to the metabolism of a wide range of aromatic and nonaromatic compounds. In this way, NGR234 can quickly adapt to changing environmental stimuli in soils, rhizospheres, and plants. Finally, NGR234 carries at least six loci linked to the quenching of quorum-sensing signals, as well as one gene (ngrI) that possibly encodes a novel type of autoinducer I molecule.
Collapse
|
337
|
Abstract
Rhizobia - a diverse group of soil bacteria - induce the formation of nitrogen-fixing nodules on the roots of legumes. Nodulation begins when the roots initiate a molecular dialogue with compatible rhizobia in the soil. Most rhizobia reply by secreting lipochitooligosaccharidic nodulation factors that enable entry into the legume. A molecular exchange continues, which, in compatible interactions, permits rhizobia to invade root cortical cells, differentiate into bacteroids and fix nitrogen. Rhizobia also use additional molecular signals, such as secreted proteins or surface polysaccharides. One group of proteins secreted by rhizobia have homologues in bacterial pathogens and may have been co-opted by rhizobia for symbiotic purposes.
Collapse
|
338
|
Itakura M, Saeki K, Omori H, Yokoyama T, Kaneko T, Tabata S, Ohwada T, Tajima S, Uchiumi T, Honnma K, Fujita K, Iwata H, Saeki Y, Hara Y, Ikeda S, Eda S, Mitsui H, Minamisawa K. Genomic comparison of Bradyrhizobium japonicum strains with different symbiotic nitrogen-fixing capabilities and other Bradyrhizobiaceae members. THE ISME JOURNAL 2009; 3:326-39. [PMID: 18971963 DOI: 10.1038/ismej.2008.88] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Comparative genomic hybridization (CGH) was performed with nine strains of Bradyrhizobium japonicum (a symbiotic nitrogen-fixing bacterium associated with soybean) and eight other members of the Bradyrhizobiaceae by DNA macroarray of B. japonicum USDA110. CGH clearly discriminated genomic variations in B. japonicum strains, but similar CGH patterns were observed in other members of the Bradyrhizobiaceae. The most variable regions were 14 genomic islands (4-97 kb) and low G+C regions on the USDA110 genome, some of which were missing in several strains of B. japonicum and other members of the Bradyrhizobiaceae. The CGH profiles of B. japonicum were classified into three genome types: 110, 122 and 6. Analysis of DNA sequences around the boundary regions showed that at least seven genomic islands were missing in genome type 122 as compared with type 110. Phylogenetic analysis for internal transcribed sequences revealed that strains belonging to genome types 110 and 122 formed separate clades. Thus genomic islands were horizontally inserted into the ancestor genome of type 110 after divergence of the type 110 and 122 strains. To search for functional relationships of variable genomic islands, we conducted linear models of the correlation between the existence of genomic regions and the parameters associated with symbiotic nitrogen fixation in soybean. Variable genomic regions including genomic islands were associated with the enhancement of symbiotic nitrogen fixation in B. japonicum USDA110.
Collapse
Affiliation(s)
- Manabu Itakura
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
339
|
Rivas R, Martens M, de Lajudie P, Willems A. Multilocus sequence analysis of the genus Bradyrhizobium. Syst Appl Microbiol 2009; 32:101-10. [PMID: 19201125 DOI: 10.1016/j.syapm.2008.12.005] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 12/18/2008] [Accepted: 12/22/2008] [Indexed: 11/17/2022]
Abstract
The use of multilocus sequence analysis (MLSA) for the taxonomy of Bradyrhizobium was assessed. We compared partial sequences for atpD, recA, gyrB, rpoB and dnaK for a set of reference strains representing named species and genospecies, and a number of new isolates from Lupinus albus, Arachis hypogaea and Ornithopus compressus from Spain. The phylogenies of the individual genes were compared with previous DNA-DNA hybridization results. High hybridization values were well reflected, but intermediary hybridization values were less clearly apparent. However, the phylogeny of a concatenated dataset of the five genes did reflect all values and thus is more informative of overall genome similarity. Our results indicate that only for the genes gyrB, rpoB and dnaK there is a small gap between the interspecies sequence similarities and the intraspecies similarity, and therefore cut-off levels for species delineation cannot be set, although high sequence similarity (>99%) does permit identification. In a few instances, a reference strain did not group as expected for one of the five genes tested. This may be a result of horizontal gene transfer and recombination events occasionally involving housekeeping genes. This observation indicates it is best to consider more than one gene for taxonomic inferences. The majority of the new isolates from the three host species was identified as Bradyrhizobium canariense. Four strains from L. albus from León, Spain, formed a separate group close to Bradyrhizobium japonicum.
Collapse
Affiliation(s)
- Raul Rivas
- Laboratory of Microbiology (WE10), Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | | | | | | |
Collapse
|
340
|
Sinharoy S, Saha S, Chaudhury SR, Dasgupta M. Transformed hairy roots of Arachis hypogea: a tool for studying root nodule symbiosis in a non-infection thread legume of the Aeschynomeneae tribe. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:132-142. [PMID: 19132866 DOI: 10.1094/mpmi-22-2-0132] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Arachis hypogea is a non-"infection thread" (IT) legume where rhizobial entry or dissemination in the nodules never involves IT. Rhizobia invade through epidermal "cracks" and directly access the cortical cells to develop the characteristic aeschynomenoid nodules. For investigating these nonclassical nodulation features in Arachis spp., we developed an efficient procedure for Agrobacterium rhizogenes R1000-mediated transformation of this plant. In this study, we optimized the induction of hairy roots and nodulation of composite Arachis hypogea plants in the presence of Bradyrhizobium sp. (Arachis) strain NC92. 35S promoter-driven green fluorescent protein and beta-glucuronidase expression indicated transformation frequency to be above 80%. The transformed roots had the characteristic rosette-type root hairs and had normal level of expression of symbiosis-related genes SymRK and CCaMK. The transgenic nodules resembled the wild-type nodules with an exception of 2 to 3%, where they structurally deviated from the wild-type nodules to form nodular roots. A 16S rRNA profile of an infected-zone metagenome indicated that identical populations of bradyrhizobia invaded both composite wild-type plants grown in natural soil. Our results demonstrate that Arachis hairy root is an attractive system for undertaking investigations of the nonclassical features associated with its nitrogen-fixing symbiotic interactions.
Collapse
Affiliation(s)
- Senjuti Sinharoy
- Department of Biochemistry, Calcutta University, Calcutta, India
| | | | | | | |
Collapse
|
341
|
Markmann K, Parniske M. Evolution of root endosymbiosis with bacteria: How novel are nodules? TRENDS IN PLANT SCIENCE 2009; 14:77-86. [PMID: 19167260 DOI: 10.1016/j.tplants.2008.11.009] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 11/03/2008] [Accepted: 11/05/2008] [Indexed: 05/17/2023]
Abstract
Plants form diverse symbioses with nitrogen-fixing bacteria to gain access to ammonium, a product of the prokaryote-exclusive enzyme nitrogenase. Improving the symbiotic effectiveness of crop plants like maize, wheat or rice is a highly topical challenge and could help reduce the need for energy-intense nitrogen fertilizer in staple food production. Root nodule symbiosis (RNS) constitutes one of the most productive nitrogen-fixing systems, but it is restricted to a small group of related angiosperms. Here, we review the genetic regulation of RNS and its interconnections with other plant symbiosis or plant developmental programs. Since RNS uses genetic programs that are widely conserved in land plants, we evaluate the prospects for a transfer to plants that are currently non-nodulating.
Collapse
Affiliation(s)
- Katharina Markmann
- Genetics, Faculty of Biology, Ludwig Maximilians Universität, Munich, Germany.
| | | |
Collapse
|
342
|
Role of potassium uptake systems in Sinorhizobium meliloti osmoadaptation and symbiotic performance. J Bacteriol 2009; 191:2133-43. [PMID: 19181803 DOI: 10.1128/jb.01567-08] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stimulation of potassium uptake is the most rapid response to an osmotic upshock in bacteria. This cation accumulates by a number of different transport systems whose importance has not been previously addressed for rhizobia. In silico analyses reveal the presence of genes encoding four possible potassium uptake systems in the genome of Sinorhizobium meliloti 1021: Kup1, Kup2, Trk, and Kdp. The study of the relevance of these systems under a number of different growth conditions and in symbiosis showed that the integrity of Kup1 or Trk is essential for growth under laboratory conditions even in osmotically balanced media and the absence of both systems leads to a reduced infectivity and competitiveness of the bacteria in alfalfa roots. Trk is the main system involved in the accumulation of potassium after an osmotic upshift and the most important system for growth of S. meliloti under hyperosmotic conditions. The other three systems, especially Kup1, are also relevant during the osmotic adaptation of the cell, and the relative importance of the Kdp system increases at low potassium concentrations.
Collapse
|
343
|
Swingley WD, Blankenship RE, Raymond J. Evolutionary Relationships Among Purple Photosynthetic Bacteria and the Origin of Proteobacterial Photosynthetic Systems. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/978-1-4020-8815-5_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
344
|
Genetic diversity and host range of rhizobia nodulating Lotus tenuis in typical soils of the Salado River Basin (Argentina). Appl Environ Microbiol 2008; 75:1088-98. [PMID: 19074602 DOI: 10.1128/aem.02405-08] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A total of 103 root nodule isolates were used to estimate the diversity of bacteria nodulating Lotus tenuis in typical soils of the Salado River Basin. A high level of genetic diversity was revealed by repetitive extragenic palindromic PCR, and 77 isolates with unique genomic fingerprints were further differentiated into two clusters, clusters A and B, after 16S rRNA restriction fragment length polymorphism analysis. Cluster A strains appeared to be related to the genus Mesorhizobium, whereas cluster B was related to the genus Rhizobium. 16S rRNA sequence and phylogenetic analysis further supported the distribution of most of the symbiotic isolates in either Rhizobium or Mesorhizobium: the only exception was isolate BA135, whose 16S rRNA gene was closely related to the 16S rRNA gene of the genus Aminobacter. Most Mesorhizobium-like isolates were closely related to Mesorhizobium amorphae, Mesorhizobium mediterraneum, Mesorhizobium tianshanense, or the broad-host-range strain NZP2037, but surprisingly few isolates grouped with Mesorhizobium loti type strain NZP2213. Rhizobium-like strains were related to Rhizobium gallicum, Rhizobium etli, or Rhizobium tropici, for which Phaseolus vulgaris is a common host. However, no nodC or nifH genes could be amplified from the L. tenuis isolates, suggesting that they have rather divergent symbiosis genes. In contrast, nodC genes from the Mesorhizobium and Aminobacter strains were closely related to nodC genes from narrow-host-range M. loti strains. Likewise, nifH gene sequences were very highly conserved among the Argentinian isolates and reference Lotus rhizobia. The high levels of conservation of the nodC and nifH genes suggest that there was a common origin of the symbiosis genes in narrow-host-range Lotus symbionts, supporting the hypothesis that both intrageneric horizontal gene transfer and intergeneric horizontal gene transfer are important mechanisms for the spread of symbiotic capacity in the Salado River Basin.
Collapse
|
345
|
Crespi M, Frugier F. De Novo Organ Formation from Differentiated Cells: Root Nodule Organogenesis. Sci Signal 2008; 1:re11. [DOI: 10.1126/scisignal.149re11] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
346
|
Abstract
This review describes secondary metabolites that have been shown to be synthesized by symbiotic bacteria, or for which this possibility has been discussed. It includes 365 references.
Collapse
Affiliation(s)
- Jörn Piel
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany.
| |
Collapse
|
347
|
Ibáñez F, Angelini J, Taurian T, Tonelli ML, Fabra A. Endophytic occupation of peanut root nodules by opportunistic Gammaproteobacteria. Syst Appl Microbiol 2008; 32:49-55. [PMID: 19054642 DOI: 10.1016/j.syapm.2008.10.001] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Several bacterial isolates were recovered from surface-sterilized root nodules of Arachis hypogaea L. (peanut) plants growing in soils from Córdoba, Argentina. The 16S rDNA sequences of seven fast-growing strains were obtained and the phylogenetic analysis showed that these isolates belonged to the Phylum Proteobacteria, Class Gammaproteobacteria, and included Pseudomonas spp., Enterobacter spp., and Klebsiella spp. After storage, these strains became unable to induce nodule formation in Arachis hypogaea L. plants, but they enhanced plant yield. When the isolates were co-inoculated with an infective Bradyrhizobium strain, they were even found colonizing pre-formed nodules. Analysis of symbiotic genes showed that the nifH gene was only detected for the Klebsiella-like isolates and the nodC gene could not be amplified by PCR or be detected by Southern blotting in any of the isolates. The results obtained support the idea that these isolates are opportunistic bacteria able to colonize nodules induced by rhizobia.
Collapse
Affiliation(s)
- Fernando Ibáñez
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto. Enlace Rutas 8 y 36, Km 601, 5800 Río Cuarto, Córdoba, Argentina
| | | | | | | | | |
Collapse
|
348
|
Mathesius U. Auxin: at the root of nodule development? FUNCTIONAL PLANT BIOLOGY : FPB 2008; 35:651-668. [PMID: 32688821 DOI: 10.1071/fp08177] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Accepted: 08/14/2008] [Indexed: 06/11/2023]
Abstract
Root nodules are formed as a result of an orchestrated exchange of chemical signals between symbiotic nitrogen fixing bacteria and certain plants. In plants that form nodules in symbiosis with actinorhizal bacteria, nodules are derived from lateral roots. In most legumes, nodules are formed de novo from pericycle and cortical cells that are re-stimulated for division and differentiation by rhizobia. The ability of plants to nodulate has only evolved recently and it has, therefore, been suggested that nodule development is likely to have co-opted existing mechanisms for development and differentiation from lateral root formation. Auxin is an important regulator of cell division and differentiation, and changes in auxin accumulation and transport are essential for lateral root development. There is growing evidence that rhizobia alter the root auxin balance as a prerequisite for nodule formation, and that nodule numbers are regulated by shoot-to-root auxin transport. Whereas auxin requirements appear to be similar for lateral root and nodule primordium activation and organ differentiation, the major difference between the two developmental programs lies in the specification of founder cells. It is suggested that differing ratios of auxin and cytokinin are likely to specify the precursors of the different root organs.
Collapse
Affiliation(s)
- Ulrike Mathesius
- School of Biochemistry and Molecular Biology, Australian National University and Australian Research Council Centre of Excellence for Integrative Legume Research, Linnaeus Way, Canberra, ACT 0200, Australia. Email
| |
Collapse
|
349
|
Use of the frc gene as a molecular marker to characterize oxalate-oxidizing bacterial abundance and diversity structure in soil. J Microbiol Methods 2008; 76:120-7. [PMID: 18930770 DOI: 10.1016/j.mimet.2008.09.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 09/18/2008] [Accepted: 09/22/2008] [Indexed: 11/20/2022]
Abstract
Oxalate catabolism, which can have both medical and environmental implications, is performed by phylogenetically diverse bacteria. The formyl-CoA-transferase gene was chosen as a molecular marker of the oxalotrophic function. Degenerated primers were deduced from an alignment of frc gene sequences available in databases. The specificity of primers was tested on a variety of frc-containing and frc-lacking bacteria. The frc-primers were then used to develop PCR-DGGE and real-time SybrGreen PCR assays in soils containing various amounts of oxalate. Some PCR products from pure cultures and from soil samples were cloned and sequenced. Data were used to generate a phylogenetic tree showing that environmental PCR products belonged to the target physiological group. The extent of diversity visualised on DGGE pattern was higher for soil samples containing carbonate resulting from oxalate catabolism. Moreover, the amount of frc gene copies in the investigated soils was detected in the range of 1.64x10(7) to 1.75x10(8)/g of dry soil under oxalogenic tree (representing 0.5 to 1.2% of total 16S rRNA gene copies), whereas the number of frc gene copies in the reference soil was 6.4x10(6) (or 0.2% of 16S rRNA gene copies). This indicates that oxalotrophic bacteria are numerous and widespread in soils and that a relationship exists between the presence of the oxalogenic trees Milicia excelsa and Afzelia africana and the relative abundance of oxalotrophic guilds in the total bacterial communities. This is obviously related to the accomplishment of the oxalate-carbonate pathway, which explains the alkalinization and calcium carbonate accumulation occurring below these trees in an otherwise acidic soil. The molecular tools developed in this study will allow in-depth understanding of the functional implication of these bacteria on carbonate accumulation as a way of atmospheric CO(2) sequestration.
Collapse
|
350
|
Zhao CT, Wang ET, Chen WF, Chen WX. Diverse genomic species and evidences of symbiotic gene lateral transfer detected among the rhizobia associated withAstragalusspecies grown in the temperate regions of China. FEMS Microbiol Lett 2008; 286:263-73. [DOI: 10.1111/j.1574-6968.2008.01282.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|