301
|
Making the cut: intramembrane cleavage by a rhomboid protease promotes ERAD. Nat Struct Mol Biol 2013; 19:979-81. [PMID: 23037595 DOI: 10.1038/nsmb.2398] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Endoplasmic reticulum–associated degradation (ERAD) is a cellular protein quality-control process that disposes of proteasomal substrates from the early secretory pathway. Recent work shows that the endoplasmic reticulum–resident rhomboid protease RHBDL4 facilitates ERAD by recognizing and cleaving integral membrane substrates. The work indicates that intramembrane proteolysis may have a general role in the extraction of misfolded membrane proteins from the endoplasmic reticulum.
Collapse
|
302
|
Ahmedli NB, Gribanova Y, Njoku CC, Naidu A, Young A, Mendoza E, Yamashita CK, Özgül RK, Johnson JE, Fox DA, Farber DB. Dynamics of the rhomboid-like protein RHBDD2 expression in mouse retina and involvement of its human ortholog in retinitis pigmentosa. J Biol Chem 2013; 288:9742-9754. [PMID: 23386608 DOI: 10.1074/jbc.m112.419960] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The novel rhomboid-like protein RHBDD2 is distantly related to rhomboid proteins, a group of highly specialized membrane-bound proteases that catalyze regulated intramembrane proteolysis. In retina, RHBDD2 is expressed from embryonic stages to adulthood, and its levels show age-dependent changes. RHBDD2 is distinctly abundant in the perinuclear region of cells, and it localizes to their Golgi. A glycine zipper motif present in one of the transmembrane domains of RHBDD2 is important for its packing into the Golgi membranes. Its deletion causes dislodgment of RHBDD2 from the Golgi. A specific antibody against RHBDD2 recognizes two forms of the protein, one with low (39 kDa; RHBDD2(L)) and the other with high (117 kDa; RHBDD2H) molecular masses in mouse retinal extracts. RHBDD2(L) seems to be ubiquitously expressed in all retinal cells. In contrast, RHBDD2H seems to be present only in the outer segments of cone photoreceptors and may correspond to a homotrimer of RHBDD2(L). This protein consistently co-localizes with S- and M-types of cone opsins. We identified a homozygous mutation in the human RHBDD2 gene, R85H, that co-segregates with disease in affected members of a family with autosomal recessive retinitis pigmentosa. Our findings suggest that the RHBDD2 protein plays important roles in the development and normal function of the retina.
Collapse
Affiliation(s)
| | | | - Collins C Njoku
- Jules Stein Eye Institute, UCLA, Los Angeles, California 90095
| | - Akash Naidu
- Jules Stein Eye Institute, UCLA, Los Angeles, California 90095
| | - Alejandra Young
- Jules Stein Eye Institute, UCLA, Los Angeles, California 90095
| | | | | | - Riza Köksal Özgül
- Department of Molecular Biology, Hacettepe University, 06230 Beytepe-Ankara, Turkey
| | - Jerry E Johnson
- Department of Natural Sciences, University of Houston-Downtown, Houston, Texas 77002
| | - Donald A Fox
- College of Optometry, University of Houston, Houston, Texas 77004; Department of Biology and Biochemistry, University of Houston, Houston, Texas 77004; Department of Pharmacology and Pharmaceutical Sciences, University of Houston, Houston, Texas 77004
| | - Debora B Farber
- Jules Stein Eye Institute, UCLA, Los Angeles, California 90095; Molecular Biology Institute, UCLA, Los Angeles, California 90095; Brain Research Institute, UCLA, Los Angeles, California 90095
| |
Collapse
|
303
|
Lemberg MK. Sampling the membrane: function of rhomboid-family proteins. Trends Cell Biol 2013; 23:210-7. [PMID: 23369641 DOI: 10.1016/j.tcb.2013.01.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 12/19/2012] [Accepted: 01/03/2013] [Indexed: 12/29/2022]
Abstract
Rhomboids constitute a conserved protein superfamily that specifically binds membrane proteins and directs them into various different cellular pathways ranging from regulated secretion to endoplasmic reticulum (ER)-associated degradation (ERAD). Rhomboid proteases are known to release protein domains from membranes by a cut in their membrane anchor, whereas an emerging new class of rhomboid-family proteins lacks key catalytic residues and is not proteolytically active. Recent work has shown that these rhomboid pseudoproteases, including iRhoms and derlins, bind membrane proteins to regulate their fate, but the underlying molecular mechanism is not known. This review summarizes recent advances in the molecular understanding of rhomboid-family proteins and discusses common principles in how they recognize and bind proteins in the plane of the membrane.
Collapse
Affiliation(s)
- Marius K Lemberg
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Allianz, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany.
| |
Collapse
|
304
|
Menghini R, Fiorentino L, Casagrande V, Lauro R, Federici M. The role of ADAM17 in metabolic inflammation. Atherosclerosis 2013; 228:12-7. [PMID: 23384719 DOI: 10.1016/j.atherosclerosis.2013.01.024] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 01/12/2013] [Accepted: 01/14/2013] [Indexed: 01/04/2023]
Abstract
The TNF-alpha Converting Enzyme (TACE), also called ADAM17 (A Disintegrin and A Metalloproteinase 17) is a type I transmembrane metalloproteinase involved in the shedding of the extracellular domain of several transmembrane proteins such as cytokines, growth factors, receptors and adhesion molecules. Some of these proteolytic events are part of cleavage cascades known as Regulated Intramembrane Proteolysis and lead to intracellular signaling. Evidence is provided that ADAM17 plays a role in atherosclerosis, in adipose tissue metabolism, insulin resistance and diabetes. The multitude of substrates cleaved by ADAM17 makes this enzyme an attractive candidate to study its role in inflammatory disorders. This review is focused on effects of ADAM17 in major metabolic tissues.
Collapse
Affiliation(s)
- Rossella Menghini
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | | | | | | | | |
Collapse
|
305
|
Abstract
The cytokine TNF-α is a major drug target for rheumatoid arthritis, an inflammatory joint disorder. An alternative approach is to target the protease TNF-α convertase (TACE), which releases TNF-α from cells. However, because TACE cleaves other proteins involved in development and cancer, a tissue-specific inhibition of TACE in immune cells appears mandatory. In this issue of the JCI, Issuree et al. report that iRHOM2 is a TACE activator in immune cells. Loss of iRHOM2 largely protects mice from inflammatory arthritis, making iRHOM2 a potential drug target for this condition.
Collapse
|
306
|
Issuree PDA, Maretzky T, McIlwain DR, Monette S, Qing X, Lang PA, Swendeman SL, Park-Min KH, Binder N, Kalliolias GD, Yarilina A, Horiuchi K, Ivashkiv LB, Mak TW, Salmon JE, Blobel CP. iRHOM2 is a critical pathogenic mediator of inflammatory arthritis. J Clin Invest 2013; 123:928-32. [PMID: 23348744 DOI: 10.1172/jci66168] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 11/08/2012] [Indexed: 12/17/2022] Open
Abstract
iRHOM2, encoded by the gene Rhbdf2, regulates the maturation of the TNF-α convertase (TACE), which controls shedding of TNF-α and its biological activity in vivo. TACE is a potential target to treat TNF-α-dependent diseases, such as rheumatoid arthritis, but there are concerns about potential side effects, because TACE also protects the skin and intestinal barrier by activating EGFR signaling. Here we report that inactivation of Rhbdf2 allows tissue-specific regulation of TACE by selectively preventing its maturation in immune cells, without affecting its homeostatic functions in other tissues. The related iRHOM1, which is widely expressed, except in hematopoietic cells, supported TACE maturation and shedding of the EGFR ligand TGF-α in Rhbdf2-deficient cells. Remarkably, mice lacking Rhbdf2 were protected from K/BxN inflammatory arthritis to the same extent as mice lacking TACE in myeloid cells or Tnfa-deficient mice. In probing the underlying mechanism, we found that two main drivers of K/BxN arthritis, complement C5a and immune complexes, stimulated iRHOM2/TACE-dependent shedding of TNF-α in mouse and human cells. These data demonstrate that iRHOM2 and myeloid-expressed TACE play a critical role in inflammatory arthritis and indicate that iRHOM2 is a potential therapeutic target for selective inactivation of TACE in myeloid cells.
Collapse
Affiliation(s)
- Priya Darshinee A Issuree
- Arthritis and Tissue Degeneration Program, Autoimmunity and Inflammation Program, Hospital for Special Surgery, Weill Cornell University, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
307
|
Yoda M, Kimura T, Tohmonda T, Morioka H, Matsumoto M, Okada Y, Toyama Y, Horiuchi K. Systemic overexpression of TNFα-converting enzyme does not lead to enhanced shedding activity in vivo. PLoS One 2013; 8:e54412. [PMID: 23342154 PMCID: PMC3544834 DOI: 10.1371/journal.pone.0054412] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 12/13/2012] [Indexed: 01/12/2023] Open
Abstract
TNFα-converting enzyme (TACE/ADAM17) is a membrane-bound proteolytic enzyme with a diverse set of target molecules. Most importantly, TACE is indispensable for the release and activation of pro-TNFα and the ligands for epidermal growth factor receptor in vivo. Previous studies suggested that the overproduction of TACE is causally related to the pathogenesis of inflammatory diseases and cancers. To test this hypothesis, we generated a transgenic line in which the transcription of exogenous Tace is driven by a CAG promoter. The Tace-transgenic mice were viable and exhibited no overt defects, and the quantitative RT-PCR and Western blot analyses confirmed that the transgenically introduced Tace gene was highly expressed in all of the tissues examined. The Tace-transgenic mice were further crossed with Tace⁻/⁺ mice to abrogate the endogenous TACE expression, and the Tace-transgenic mice lacking endogenous Tace gene were also viable without any apparent defects. Furthermore, there was no difference in the serum TNFα levels after lipopolysaccharide injection between the transgenic mice and control littermates. These observations indicate that TACE activity is not necessarily dependent on transcriptional regulation and that excess TACE does not necessarily result in aberrant proteolytic activity in vivo.
Collapse
Affiliation(s)
- Masaki Yoda
- Anti-aging Orthopedic Research, School of Medicine, Keio University, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
308
|
Kawasaki S, Motoshima H, Hanatani S, Takaki Y, Igata M, Tsutsumi A, Matsumura T, Kondo T, Senokuchi T, Ishii N, Kinoshita H, Fukuda K, Kawashima J, Shimoda S, Nishikawa T, Araki E. Regulation of TNFα converting enzyme activity in visceral adipose tissue of obese mice. Biochem Biophys Res Commun 2012; 430:1189-94. [PMID: 23274494 DOI: 10.1016/j.bbrc.2012.12.086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 12/20/2012] [Indexed: 01/11/2023]
Abstract
Tumor necrosis factor α (TNFα) is a pro-inflammatory cytokine and one of the major mediators of obesity-induced insulin resistance. TNFα is generated through TNFα converting enzyme (TACE)-mediated cleavage of the transmembrane precursor pro-TNFα. Inhibition of TACE resulted in the improvement in glucose and insulin levels in diabetic animals, suggesting a crucial role of TACE activity in glucose metabolism. However, the regulation of TACE activity in insulin-sensitive tissues has not been fully determined. This study aimed to investigate the impact of TACE in insulin-sensitive tissues in the early stage of the development of obesity. C57BL6 mice were fed standard chow (B6-SC) or high-fat/high-sucrose diet (B6-HF/HS). KK-Ay mice were fed SC ad libitum (Ay-AL) or fed reduced amounts of SC (caloric restriction (CR); Ay-CR). As control for Ay-AL, KK mice fed SC ad libitum (KK-AL) were used. TACE activity in visceral adipose tissue (VAT), but not in liver or skeletal muscle, was significantly elevated in B6-HF/HS and Ay-AL compared with B6-SC and KK-AL, respectively. Phosphorylation of JNK and p38MAPK, but not ERK, in VATs from B6-HF/HS and Ay-AL was also significantly elevated. Ay-CR showed significantly lower TACE, JNK and p38MAPK activities in VAT and serum TNFα level compared with those of Ay-AL. In contrast, intraperitoneal injection of TNFα activated TACE, JNK and p38MAPK activities in VAT in KK mice. In conclusion, during the development of obesity, TACE activity is elevated only in VAT, and CR effectively reduced TACE activity and TACE-mediated pro-TNFα shedding in VAT.
Collapse
Affiliation(s)
- Shuji Kawasaki
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
309
|
Rhomboid proteins: a role in keratinocyte proliferation and cancer. Cell Tissue Res 2012; 351:301-7. [DOI: 10.1007/s00441-012-1542-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 11/27/2012] [Indexed: 02/02/2023]
|
310
|
Laflamme BA, Wolfner MF. Identification and function of proteolysis regulators in seminal fluid. Mol Reprod Dev 2012; 80:80-101. [PMID: 23109270 DOI: 10.1002/mrd.22130] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 10/20/2012] [Indexed: 01/17/2023]
Abstract
Proteins in the seminal fluid of animals with internal fertilization effect numerous responses in mated females that impact both male and female fertility. Among these proteins is the highly represented class of proteolysis regulators (proteases and their inhibitors). Though proteolysis regulators have now been identified in the seminal fluid of all animals in which proteomic studies of the seminal fluid have been conducted (as well as several other species in which they have not), a unified understanding of the importance of proteolysis to male fertilization success and other reproductive processes has not yet been achieved. In this review, we provide an overview of the identification of proteolysis regulators in the seminal fluid of humans and Drosophila melanogaster, the two species with the most comprehensively known seminal fluid proteomes. We also highlight reports demonstrating the functional significance of specific proteolysis regulators in reproductive and post-mating processes. Finally, we make broad suggestions for the direction of future research into the roles of both active seminal fluid proteolysis regulators and their inactive homologs, another significant class of seminal fluid proteins. We hope that this review aids researchers in pursuing a coordinated study of the functional significance of proteolysis regulators in semen.
Collapse
Affiliation(s)
- Brooke A Laflamme
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703, USA
| | | |
Collapse
|
311
|
Abstract
Proteolytic enzymes belonging to the A Disintegin And Metalloproteinase (ADAM) family are able to cleave transmembrane proteins close to the cell surface, in a process referred to as ectodomain shedding. Substrates for ADAMs include growth factors, cytokines, chemokines and adhesion molecules, and, as such, many ADAM proteins play crucial roles in cell-cell adhesion, extracellular and intracellular signaling, cell differentiation and cell proliferation. In this Review, we summarize the fascinating roles of ADAMs in embryonic and adult tissue development in both vertebrates and invertebrates.
Collapse
Affiliation(s)
- Silvio Weber
- Heart Research Centre Göttingen, Universitaetsmedizin Göttingen, Department of Cardiology and Pneumology, Georg-August-University Göttingen, Germany
| | | |
Collapse
|
312
|
Wahome PG, Ahlawat S, Mantis NJ. Identification of small molecules that suppress ricin-induced stress-activated signaling pathways. PLoS One 2012; 7:e49075. [PMID: 23133670 PMCID: PMC3486792 DOI: 10.1371/journal.pone.0049075] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 10/03/2012] [Indexed: 02/03/2023] Open
Abstract
Ricin is a member of the ribosome-inactivating protein (RIP) family of plant and bacterial toxins. In this study we used a high-throughput, cell-based assay to screen more than 118,000 compounds from diverse chemical libraries for molecules that reduced ricin-induced cell death. We describe three compounds, PW66, PW69, and PW72 that at micromolar concentrations significantly delayed ricin-induced cell death. None of the compounds had any demonstrable effect on ricin's ability to arrest protein synthesis in cells or on ricin's enzymatic activity as assessed in vitro. Instead, all three compounds appear to function by blocking downstream stress-induced signaling pathways associated with the toxin-mediated apoptosis. PW66 virtually eliminated ricin-induced TNF-α secretion by J774A.1 macrophages and concomitantly blocked activation of the p38 MAPK and JNK signaling pathways. PW72 suppressed ricin-induced TNF-α secretion, but not p38 MAPK and JNK signaling. PW69 suppressed activity of the executioner caspases 3/7 in ricin toxin- and Shiga toxin 2-treated cells. While the actual molecular targets of the three compounds have yet to be identified, these data nevertheless underscore the potential of small molecules to down-regulate inflammatory signaling pathways associated with exposure to the RIP family of toxins.
Collapse
Affiliation(s)
- Paul G. Wahome
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Sarita Ahlawat
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Nicholas J. Mantis
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- Department of Biomedical Sciences, University at Albany School of Public Health, Albany, New York, United States of America
- * E-mail:
| |
Collapse
|
313
|
Enomoto T, Shibata R, Ohashi K, Kambara T, Kataoka Y, Uemura Y, Yuasa D, Murohara T, Ouchi N. Regulation of adipolin/CTRP12 cleavage by obesity. Biochem Biophys Res Commun 2012; 428:155-9. [DOI: 10.1016/j.bbrc.2012.10.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 10/05/2012] [Indexed: 12/29/2022]
|
314
|
Abstract
Proteins are degraded from the ER by endoplasmic reticulum-associated degradation (ERAD). In a recent issue of Molecular Cell, Fleig et al. (2012) describe a role for a ubiquitin-binding rhomboid protease, RHBDL4, in degradation of select ERAD substrates. These findings and the significance of rhomboids and other intramembrane proteases are discussed.
Collapse
Affiliation(s)
- Yien Che Tsai
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, 1050 Boyles Street, Frederick, MD 21701, USA.
| | | |
Collapse
|
315
|
Chanthaphavong RS, Loughran PA, Lee TYS, Scott MJ, Billiar TR. A role for cGMP in inducible nitric-oxide synthase (iNOS)-induced tumor necrosis factor (TNF) α-converting enzyme (TACE/ADAM17) activation, translocation, and TNF receptor 1 (TNFR1) shedding in hepatocytes. J Biol Chem 2012; 287:35887-98. [PMID: 22898814 DOI: 10.1074/jbc.m112.365171] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We and others have previously shown that the inducible nitric-oxide synthase (iNOS) and nitric oxide (NO) are hepatoprotective in a number of circumstances, including endotoxemia. In vitro, hepatocytes are protected from tumor necrosis factor (TNF) α-induced apoptosis via cGMP-dependent and cGMP-independent mechanisms. We have shown that the cGMP-dependent protective mechanisms involve the inhibition of death-inducing signaling complex formation. We show here that LPS-induced iNOS expression leads to rapid TNF receptor shedding from the surface of hepatocytes via NO/cGMP/protein kinase G-dependent activation and surface translocation of TNFα-converting enzyme (TACE/ADAM17). The activation of TACE is associated with the up-regulation of iRhom2 as well as the interaction and phosphorylation of TACE and iRhom2, which are also NO/cGMP/protein kinase G-dependent. These findings suggest that one mechanism of iNOS/NO-mediated protection of hepatocytes involves the rapid shedding of TNF receptor 1 to limit TNFα signaling.
Collapse
Affiliation(s)
- R Savanh Chanthaphavong
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | |
Collapse
|
316
|
Adrain C, Freeman M. New lives for old: evolution of pseudoenzyme function illustrated by iRhoms. Nat Rev Mol Cell Biol 2012; 13:489-98. [PMID: 22781900 DOI: 10.1038/nrm3392] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Large-scale sequencing of genomes has revealed that most enzyme families include inactive homologues. These pseudoenzymes are often well conserved, implying a selective pressure to retain them during evolution, and therefore that they have significant function. Mechanistic insights and evolutionary lessons are now emerging from the study of a broad range of such 'dead' enzymes. The recently discovered iRhoms - inactive homologues of rhomboid proteases - have joined derlins and other members of the rhomboid-like clan in regulating the fate of proteins as they pass through the secretory pathway. There is a strong case that dead enzymes, which have been rather overlooked, may be a rich source of biological regulators.
Collapse
Affiliation(s)
- Colin Adrain
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | | |
Collapse
|
317
|
Guinea-Viniegra J, Zenz R, Scheuch H, Jiménez M, Bakiri L, Petzelbauer P, Wagner EF. Differentiation-induced skin cancer suppression by FOS, p53, and TACE/ADAM17. J Clin Invest 2012; 122:2898-910. [PMID: 22772468 DOI: 10.1172/jci63103] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 05/30/2012] [Indexed: 12/22/2022] Open
Abstract
Squamous cell carcinomas (SCCs) are heterogeneous and aggressive skin tumors for which innovative, targeted therapies are needed. Here, we identify a p53/TACE pathway that is negatively regulated by FOS and show that the FOS/p53/TACE axis suppresses SCC by inducing differentiation. We found that epidermal Fos deletion in mouse tumor models or pharmacological FOS/AP-1 inhibition in human SCC cell lines induced p53 expression. Epidermal cell differentiation and skin tumor suppression were caused by a p53-dependent transcriptional activation of the metalloprotease TACE/ADAM17 (TNF-α-converting enzyme), a previously unknown p53 target gene that was required for NOTCH1 activation. Although half of cutaneous human SCCs display p53-inactivating mutations, restoring p53/TACE activity in mouse and human skin SCCs induced tumor cell differentiation independently of the p53 status. We propose FOS/AP-1 inhibition or p53/TACE reactivating strategies as differentiation-inducing therapies for SCCs.
Collapse
Affiliation(s)
- Juan Guinea-Viniegra
- Fundación Banco Bilbao Vizcaya (F-BBVA) - CNIO Cancer Cell Biology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
318
|
Bergamaschi C, Bear J, Rosati M, Beach RK, Alicea C, Sowder R, Chertova E, Rosenberg SA, Felber BK, Pavlakis GN. Circulating IL-15 exists as heterodimeric complex with soluble IL-15Rα in human and mouse serum. Blood 2012; 120:e1-8. [PMID: 22496150 PMCID: PMC3390963 DOI: 10.1182/blood-2011-10-384362] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 03/24/2012] [Indexed: 01/24/2023] Open
Abstract
IL-15 is an important cytokine for the function of the immune system, but the form(s) of IL-15 produced in the human body are not fully characterized. Coexpression of the single-chain IL-15 and the IL-15 receptor alpha (IL-15Rα) in the same cell allows for efficient production, surface display, and eventual cleavage and secretion of the bioactive IL-15/IL-15Rα heterodimer in vivo, whereas the single-chain IL-15 is poorly secreted and unstable. This observation led to the hypothesis that IL-15 is produced and secreted only as a heterodimer with IL-15Rα. We purified human IL-15/IL-15Rα complexes from overproducing human cell lines and developed an ELISA specifically measuring the heterodimeric form of IL-15. Analysis of sera from melanoma patients after lymphodepletion revealed the presence of circulating IL-15/IL-15Rα complexes in amounts similar to the total IL-15 quantified by a commercial IL-15 ELISA that detects both the single-chain and the heterodimeric forms of the cytokine. Therefore, in lymphodepleted cancer patients, the serum IL-15 is exclusively present in its heterodimeric form. Analysis of the form of IL-15 present in either normal or lymphodepleted mice agrees with the human data. These results have important implications for development of assays and materials for clinical applications of IL-15.
Collapse
Affiliation(s)
- Cristina Bergamaschi
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
319
|
A novel bispecific single-chain antibody for ADAM17 and CD3 induces T-cell-mediated lysis of prostate cancer cells. Biochem J 2012; 445:135-44. [DOI: 10.1042/bj20120433] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
ADAM17 (A disintegrin and metalloproteinase 17) is a membrane-bound protease that cleaves various cell surface proteins, including cytokines and cytokine receptors. Recently it was shown that ADAM17 is highly expressed on the surface of many cancer cells, whereas normal cells express low levels of ADAM17, implying that ADAM17 is a potential immunotherapeutic target. We have generated a monoclonal antibody against human ADAM17, which recognized the membrane proximal cysteine-rich extension of the ADAM17 protein. Unlike normal cells, tumour cell lines, such as a prostate cancer cell line, pancreatic cancer cell lines, a breast cancer cell line and a non-small lung cancer cell line, expressed ADAM17 on the cell surface. Using the sequence of the antibody we generated an ADAM17-specific scFv (single-chain variable fragment) and fused this to a CD3-specific scFv to generate a bispecific T-cell engager antibody [A300E-BiTE (bispecific T-cell engager antibody)]. Specificity was demonstrated on cells in which ADAM17 was knocked down with a specific shRNA (short hairpin RNA). A300E-BiTE recognized ADAM17 and CD3 on the cell surface of tumour cells and T-cells respectively. In the presence of primary human peripheral blood mononuclear cells or human T-cells the addition of A300E-BiTE led to ADAM17-specific killing of prostate tumour cells indicating a novel strategy for the treatment of cancer.
Collapse
|
320
|
Saarinen S, Vahteristo P, Lehtonen R, Aittomäki K, Launonen V, Kiviluoto T, Aaltonen LA. Analysis of a Finnish family confirms RHBDF2 mutations as the underlying factor in tylosis with esophageal cancer. Fam Cancer 2012; 11:525-8. [DOI: 10.1007/s10689-012-9532-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
321
|
Jeyaraju DV, Sood A, Laforce-Lavoie A, Pellegrini L. Rhomboid proteases in mitochondria and plastids: keeping organelles in shape. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:371-80. [PMID: 22634239 DOI: 10.1016/j.bbamcr.2012.05.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Revised: 05/10/2012] [Accepted: 05/17/2012] [Indexed: 01/16/2023]
Abstract
Rhomboids constitute the most widespread and conserved family of intramembrane cleaving proteases. They are key regulators of critical cellular processes in bacteria and animals, and are poised to play an equally important role also in plants. Among eukaryotes, a distinct subfamily of rhomboids, prototyped by the mammalian mitochondrial protein Parl, ensures the maintenance of the structural and functional integrity of mitochondria and plastids. Here, we discuss the studies that in the past decade have unveiled the role, regulation, and structure of this unique group of rhomboid proteases. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.
Collapse
Affiliation(s)
- Danny V Jeyaraju
- Institut universitaire en santé mentale de Québec, Université Laval, Québec, Canada
| | | | | | | |
Collapse
|
322
|
Xu P, Liu J, Sakaki-Yumoto M, Derynck R. TACE activation by MAPK-mediated regulation of cell surface dimerization and TIMP3 association. Sci Signal 2012; 5:ra34. [PMID: 22550340 DOI: 10.1126/scisignal.2002689] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ectodomain shedding mediated by tumor necrosis factor-α (TNF-α)-converting enzyme [TACE; also known as ADAM17 (a disintegrin and metalloproteinase 17)] provides an important switch in regulating cell proliferation, inflammation, and cancer progression. TACE-mediated ectodomain cleavage is activated by signaling of the mitogen-activated protein kinases (MAPKs) p38 and ERK (extracellular signal-regulated kinase). Here, we found that under basal conditions, TACE was predominantly present as dimers at the cell surface, which required its cytoplasmic domain and enabled efficient association with tissue inhibitor of metalloproteinase-3 (TIMP3) and silencing of TACE activity. Upon activation of the ERK or p38 MAPK pathway, the balance shifted from TACE dimers to monomers, and this shift was associated with increased cell surface presentation of TACE and decreased TIMP3 association, which relieved the inhibition of TACE by TIMP3 and increased TACE-mediated proteolysis of transforming growth factor-α. Thus, cell signaling altered the dimer-monomer equilibrium and inhibitor association to promote activation of TACE-mediated ectodomain shedding, a regulatory mechanism that may extend to other ADAM proteases.
Collapse
Affiliation(s)
- Pinglong Xu
- Department of Cell and Tissue Biology, Programs in Cell Biology and Developmental Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
323
|
Abstract
TNFα is a powerful inflammatory stimulus, central both to the control of infection, and as an agent of inflammatory disease. The most potent inducers of TNFα secretion signal through the Toll-like receptors, and we describe here a chemically-induced mutation that impairs this response in macrophages. A missense mutation was revealed in the gene encoding the inactive rhomboid protease iRhom2, which was not complemented by a null allele of the same gene. Neither the missense nor the null allele affected TLR-induced secretion of IL-6. Moreover, unlike a mutation in TNFα, the iRhom2 missense mutation did not cause enhanced susceptibility to colitis induced by dextran sodium sulfate. These results establish a specific role for iRhom2 in the secretion of TNFα, and present a new target for the modulation of inflammation.
Collapse
|
324
|
Ogawa H, Mukai K, Kawano Y, Minegishi Y, Karasuyama H. Th2-inducing cytokines IL-4 and IL-33 synergistically elicit the expression of transmembrane TNF-α on macrophages through the autocrine action of IL-6. Biochem Biophys Res Commun 2012; 420:114-8. [PMID: 22405769 DOI: 10.1016/j.bbrc.2012.02.124] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 02/22/2012] [Indexed: 12/21/2022]
Abstract
Tumor necrosis factor-α (TNF-α) is a potent proinflammatory cytokine produced predominantly by activated macrophages, and plays a central role in the protective immunity against intracellular pathogens and the pathogenesis of autoimmune and inflammatory diseases. While both the soluble and transmembrane forms of TNF-α (sTNF-α and tmTNF-α) are biologically functional, the latter but not the former acts as a receptor besides as a ligand, and transmit a retrograde signal in a cell-to-cell contact manner. The production of TNF-α by macrophages under Th2-type (allergic) inflammatory conditions has been ill defined, compared to that under Th1-type inflammatory conditions. Here we examined the effect of representative Th2-inducing cytokines IL-4 and IL-33 on the TNF-α expression in macrophages. IL-4 induced the production of neither sTNF-α nor tmTNF-α while IL-33 promoted the production of sTNF-α with no detectable tmTNF-α. Notably, the combination of IL-4 and IL-33 elicited the tmTNF-α expression on macrophages, in addition to the enhanced production of sTNF-α and IL-6. The IL-4/IL-33-elicited tmTNF-α expression was not observed in IL-6-deficient macrophages, suggesting the involvement of macrophage-derived IL-6 in the tmTNF-α expression. Indeed, the stimulation of macrophages with the combination of IL-4 and IL-6 induced the tmTNF-α expression with no detectable production of sTNF-α. Thus, IL-4 and IL-33 synergistically elicit the tmTNF-α expression on macrophages through the autocrine action of IL-6.
Collapse
Affiliation(s)
- Hiromi Ogawa
- Department of Immune Regulation, Tokyo Medical and Dental University Graduate School, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | | | | | | | | |
Collapse
|
325
|
McIlwain DR, Lang PA, Maretzky T, Hamada K, Ohishi K, Maney SK, Berger T, Murthy A, Duncan G, Xu HC, Lang KS, Häussinger D, Wakeham A, Itie-Youten A, Khokha R, Ohashi PS, Blobel CP, Mak TW. iRhom2 regulation of TACE controls TNF-mediated protection against Listeria and responses to LPS. Science 2012; 335:229-32. [PMID: 22246778 DOI: 10.1126/science.1214448] [Citation(s) in RCA: 266] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Innate immune responses are vital for pathogen defense but can result in septic shock when excessive. A key mediator of septic shock is tumor necrosis factor-α (TNFα), which is shed from the plasma membrane after cleavage by the TNFα convertase (TACE). We report that the rhomboid family member iRhom2 interacted with TACE and regulated TNFα shedding. iRhom2 was critical for TACE maturation and trafficking to the cell surface in hematopoietic cells. Gene-targeted iRhom2-deficient mice showed reduced serum TNFα in response to lipopolysaccharide (LPS) and could survive a lethal LPS dose. Furthermore, iRhom2-deficient mice failed to control the replication of Listeria monocytogenes. Our study has identified iRhom2 as a regulator of innate immunity that may be an important target for modulating sepsis and pathogen defense.
Collapse
Affiliation(s)
- David R McIlwain
- Campell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network (UHN), 620 University Avenue, Toronto, Ontario M5G 2C1, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
326
|
|