301
|
Concordant species delimitation from multiple independent evidence: A case study with the Pachytriton brevipes complex (Caudata: Salamandridae). Mol Phylogenet Evol 2015; 92:108-17. [DOI: 10.1016/j.ympev.2015.06.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 11/22/2022]
|
302
|
|
303
|
Abstract
Although initial studies suggested that Denisovan ancestry was found only in modern human populations from island Southeast Asia and Oceania, more recent studies have suggested that Denisovan ancestry may be more widespread. However, the geographic extent of Denisovan ancestry has not been determined, and moreover the relationship between the Denisovan ancestry in Oceania and that elsewhere has not been studied. Here we analyze genome-wide single nucleotide polymorphism data from 2,493 individuals from 221 worldwide populations, and show that there is a widespread signal of a very low level of Denisovan ancestry across Eastern Eurasian and Native American (EE/NA) populations. We also verify a higher level of Denisovan ancestry in Oceania than that in EE/NA; the Denisovan ancestry in Oceania is correlated with the amount of New Guinea ancestry, but not the amount of Australian ancestry, indicating that recent gene flow from New Guinea likely accounts for signals of Denisovan ancestry across Oceania. However, Denisovan ancestry in EE/NA populations is equally correlated with their New Guinea or their Australian ancestry, suggesting a common source for the Denisovan ancestry in EE/NA and Oceanian populations. Our results suggest that Denisovan ancestry in EE/NA is derived either from common ancestry with, or gene flow from, the common ancestor of New Guineans and Australians, indicating a more complex history involving East Eurasians and Oceanians than previously suspected.
Collapse
Affiliation(s)
- Pengfei Qin
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Mark Stoneking
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
304
|
Reyes-Centeno H, Hubbe M, Hanihara T, Stringer C, Harvati K. Testing modern human out-of-Africa dispersal models and implications for modern human origins. J Hum Evol 2015; 87:95-106. [DOI: 10.1016/j.jhevol.2015.06.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 03/02/2015] [Accepted: 06/14/2015] [Indexed: 11/26/2022]
|
305
|
Rogers RL. Chromosomal Rearrangements as Barriers to Genetic Homogenization between Archaic and Modern Humans. Mol Biol Evol 2015; 32:3064-78. [PMID: 26399483 DOI: 10.1093/molbev/msv204] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chromosomal rearrangements, which shuffle DNA throughout the genome, are an important source of divergence across taxa. Using a paired-end read approach with Illumina sequence data for archaic humans, I identify changes in genome structure that occurred recently in human evolution. Hundreds of rearrangements indicate genomic trafficking between the sex chromosomes and autosomes, raising the possibility of sex-specific changes. Additionally, genes adjacent to genome structure changes in Neanderthals are associated with testis-specific expression, consistent with evolutionary theory that new genes commonly form with expression in the testes. I identify one case of new-gene creation through transposition from the Y chromosome to chromosome 10 that combines the 5'-end of the testis-specific gene Fank1 with previously untranscribed sequence. This new transcript experienced copy number expansion in archaic genomes, indicating rapid genomic change. Among rearrangements identified in Neanderthals, 13% are transposition of selfish genetic elements, whereas 32% appear to be ectopic exchange between repeats. In Denisovan, the pattern is similar but numbers are significantly higher with 18% of rearrangements reflecting transposition and 40% ectopic exchange between distantly related repeats. There is an excess of divergent rearrangements relative to polymorphism in Denisovan, which might result from nonuniform rates of mutation, possibly reflecting a burst of transposable element activity in the lineage that led to Denisovan. Finally, loci containing genome structure changes show diminished rates of introgression from Neanderthals into modern humans, consistent with the hypothesis that rearrangements serve as barriers to gene flow during hybridization. Together, these results suggest that this previously unidentified source of genomic variation has important biological consequences in human evolution.
Collapse
Affiliation(s)
- Rebekah L Rogers
- Department of Integrative Biology, University of California, Berkeley
| |
Collapse
|
306
|
Simonti CN, Capra JA. The evolution of the human genome. Curr Opin Genet Dev 2015; 35:9-15. [PMID: 26338498 DOI: 10.1016/j.gde.2015.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 08/08/2015] [Accepted: 08/12/2015] [Indexed: 02/05/2023]
Abstract
Human genomes hold a record of the evolutionary forces that have shaped our species. Advances in DNA sequencing, functional genomics, and population genetic modeling have deepened our understanding of human demographic history, natural selection, and many other long-studied topics. These advances have also revealed many previously underappreciated factors that influence the evolution of the human genome, including functional modifications to DNA and histones, conserved 3D topological chromatin domains, structural variation, and heterogeneous mutation patterns along the genome. Using evolutionary theory as a lens to study these phenomena will lead to significant breakthroughs in understanding what makes us human and why we get sick.
Collapse
Affiliation(s)
- Corinne N Simonti
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN 37235, USA
| | - John A Capra
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN 37235, USA; Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Department of Biomedical Informatics, Vanderbilt University, Nashville, TN 37235, USA.
| |
Collapse
|
307
|
Palmer DH, Kronforst MR. Divergence and gene flow among Darwin's finches: A genome-wide view of adaptive radiation driven by interspecies allele sharing. Bioessays 2015; 37:968-74. [PMID: 26200327 PMCID: PMC4659394 DOI: 10.1002/bies.201500047] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A recent analysis of the genomes of Darwin's finches revealed extensive interspecies allele sharing throughout the history of the radiation and identified a key locus responsible for morphological evolution in this group. The radiation of Darwin's finches on the Galápagos archipelago has long been regarded as an iconic study system for field ecology and evolutionary biology. Coupled with an extensive history of field work, these latest findings affirm the increasing acceptance of introgressive hybridization, or gene flow between species, as a significant contributor to adaptive evolution. Here, we review and discuss these findings in relation to both classical work on Darwin's finches and contemporary work showing similar evolutionary signatures in other biological systems. The continued unification of genomic data with field biology promises to further elucidate the molecular basis of adaptation in Darwin's finches and well beyond.
Collapse
Affiliation(s)
- Daniela H. Palmer
- Committee on Evolutionary Biology, University of Chicago, Chicago, IL
| | - Marcus R. Kronforst
- Committee on Evolutionary Biology, University of Chicago, Chicago, IL
- Department of Ecology & Evolution, University of Chicago, Chicago, IL
| |
Collapse
|
308
|
Huerta-Sánchez E, Casey FP. Archaic inheritance: supporting high-altitude life in Tibet. J Appl Physiol (1985) 2015; 119:1129-34. [PMID: 26294746 DOI: 10.1152/japplphysiol.00322.2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 08/14/2015] [Indexed: 01/15/2023] Open
Abstract
The Tibetan Plateau, often called the roof of the world, sits at an average altitude exceeding 4,500 m. Because of its extreme altitude, the Plateau is one of the harshest human-inhabited environments in the world. This, however, did not impede human colonization, and the Tibetan people have made the Tibetan Plateau their home for many generations. Many studies have quantified their markedly different physiological response to altitude and proposed that Tibetans were genetically adapted. Recently, advances in sequencing technologies led to the discovery of a set of candidate genes which harbor mutations that are likely beneficial at high altitudes in Tibetans. Since then, other studies have further characterized this impressive adaptation. Here, in this minireview, we discuss the progress made since the discovery of the genes involved in Tibetans' adaptation to high altitude with a particular emphasis on describing the series of studies that led us to conclude that archaic human DNA likely contributed to this impressive adaptation.
Collapse
|
309
|
Abstract
Our understanding of human evolutionary and population history can be advanced by ecological and evolutionary studies of our parasites. Many parasites flourish only in the presence of very specific human behaviors and in specific habitats, are wholly dependent on us, and have evolved with us for thousands or millions of years. Therefore, by asking when and how we first acquired those parasites, under which environmental and cultural conditions we are the most susceptible, and how the parasites have evolved and adapted to us and we in response to them, we can gain considerable insight into our own evolutionary history. As examples, the tapeworm life cycle is dependent on our consumption of meat, the divergence of body and head lice may have been subsequent to the development of clothing, and malaria hyperendemicity may be associated with agriculture. Thus, the evolutionary and population histories of these parasites are likely intertwined with critical aspects of human biology and culture. Here I review the mechanics of these and multiple other parasite proxies for human evolutionary history and discuss how they currently complement our fossil, archeological, molecular, linguistic, historical, and ethnographic records. I also highlight potential future applications of this promising model for the field of evolutionary anthropology.
Collapse
|
310
|
Sánchez-Quinto F, Lalueza-Fox C. Almost 20 years of Neanderthal palaeogenetics: adaptation, admixture, diversity, demography and extinction. Philos Trans R Soc Lond B Biol Sci 2015; 370:20130374. [PMID: 25487326 DOI: 10.1098/rstb.2013.0374] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nearly two decades since the first retrieval of Neanderthal DNA, recent advances in next-generation sequencing technologies have allowed the generation of high-coverage genomes from two archaic hominins, a Neanderthal and a Denisovan, as well as a complete mitochondrial genome from remains which probably represent early members of the Neanderthal lineage. This genomic information, coupled with diversity exome data from several Neanderthal specimens is shedding new light on evolutionary processes such as the genetic basis of Neanderthal and modern human-specific adaptations-including morphological and behavioural traits-as well as the extent and nature of the admixture events between them. An emerging picture is that Neanderthals had a long-term small population size, lived in small and isolated groups and probably practised inbreeding at times. Deleterious genetic effects associated with these demographic factors could have played a role in their extinction. The analysis of DNA from further remains making use of new large-scale hybridization-capture-based methods as well as of new approaches to discriminate contaminant DNA sequences will provide genetic information in spatial and temporal scales that could help clarify the Neanderthal's-and our very own-evolutionary history.
Collapse
Affiliation(s)
- Federico Sánchez-Quinto
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Carles Lalueza-Fox
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Dr. Aiguader 88, 08003 Barcelona, Spain
| |
Collapse
|
311
|
Campbell MC, Hirbo JB, Townsend JP, Tishkoff SA. The peopling of the African continent and the diaspora into the new world. Curr Opin Genet Dev 2015; 29:120-32. [PMID: 25461616 DOI: 10.1016/j.gde.2014.09.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 09/03/2014] [Accepted: 09/05/2014] [Indexed: 12/22/2022]
Abstract
Africa is the birthplace of anatomically modern humans, and is the geographic origin of human migration across the globe within the last 100,000 years. The history of African populations has consisted of a number of demographic events that have influenced patterns of genetic and phenotypic variation across the continent. With the increasing amount of genomic data and corresponding developments in computational methods, researchers are able to explore long-standing evolutionary questions, expanding our understanding of human history within and outside of Africa. This review will summarize some of the recent findings regarding African demographic history, including the African Diaspora, and will briefly explore their implications for disease susceptibility in populations of African descent.
Collapse
|
312
|
|
313
|
Racimo F, Sankararaman S, Nielsen R, Huerta-Sánchez E. Evidence for archaic adaptive introgression in humans. Nat Rev Genet 2015; 16:359-71. [PMID: 25963373 PMCID: PMC4478293 DOI: 10.1038/nrg3936] [Citation(s) in RCA: 336] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
As modern and ancient DNA sequence data from diverse human populations accumulate, evidence is increasing in support of the existence of beneficial variants acquired from archaic humans that may have accelerated adaptation and improved survival in new environments - a process known as adaptive introgression. Within the past few years, a series of studies have identified genomic regions that show strong evidence for archaic adaptive introgression. Here, we provide an overview of the statistical methods developed to identify archaic introgressed fragments in the genome sequences of modern humans and to determine whether positive selection has acted on these fragments. We review recently reported examples of adaptive introgression, grouped by selection pressure, and consider the level of supporting evidence for each. Finally, we discuss challenges and recommendations for inferring selection on introgressed regions.
Collapse
Affiliation(s)
- Fernando Racimo
- Department of Integrative Biology, UC Berkeley, Berkeley CA 97420
| | | | - Rasmus Nielsen
- Department of Integrative Biology, UC Berkeley, Berkeley CA 97420
- Department of Statistics, UC Berkeley, Berkeley CA 97420
| | | |
Collapse
|
314
|
Abstract
The dispersal of humans throughout the world was accompanied by adaptations to local environments. New research shows that a previously identified haplotype of the EPAS1 gene, which allows Tibetans to live at high altitude, was inherited from archaic hominin ancestors.
Collapse
Affiliation(s)
- Benjamin Vernot
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Box 355065, Seattle WA 98195-5065, USA
| | - Joshua M Akey
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Box 355065, Seattle WA 98195-5065, USA.
| |
Collapse
|
315
|
Hodgson JA, Pickrell JK, Pearson LN, Quillen EE, Prista A, Rocha J, Soodyall H, Shriver MD, Perry GH. Natural selection for the Duffy-null allele in the recently admixed people of Madagascar. Proc Biol Sci 2015; 281:20140930. [PMID: 24990677 DOI: 10.1098/rspb.2014.0930] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
While gene flow between distantly related populations is increasingly recognized as a potentially important source of adaptive genetic variation for humans, fully characterized examples are rare. In addition, the role that natural selection for resistance to vivax malaria may have played in the extreme distribution of the protective Duffy-null allele, which is nearly completely fixed in mainland sub-Saharan Africa and absent elsewhere, is controversial. We address both these issues by investigating the evolution of the Duffy-null allele in the Malagasy, a recently admixed population with major ancestry components from both East Asia and mainland sub-Saharan Africa. We used genome-wide genetic data and extensive computer simulations to show that the high frequency of the Duffy-null allele in Madagascar can only be explained in the absence of positive natural selection under extreme demographic scenarios involving high genetic drift. However, the observed genomic single nucleotide polymorphism diversity in the Malagasy is incompatible with such extreme demographic scenarios, indicating that positive selection for the Duffy-null allele best explains the high frequency of the allele in Madagascar. We estimate the selection coefficient to be 0.066. Because vivax malaria is endemic to Madagascar, this result supports the hypothesis that malaria resistance drove fixation of the Duffy-null allele in mainland sub-Saharan Africa.
Collapse
Affiliation(s)
- Jason A Hodgson
- Department of Anthropology, The Pennsylvania State University, University Park, PA 16802, USA Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY, UK
| | - Joseph K Pickrell
- New York Genome Center, New York, NY 10013, USA Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Laurel N Pearson
- Department of Anthropology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Ellen E Quillen
- Department of Anthropology, The Pennsylvania State University, University Park, PA 16802, USA Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX 78245, USA
| | - António Prista
- Faculdade de Educação Física e Desporto, Universidade Pedagógica, Maputo, Moçambique
| | - Jorge Rocha
- Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto (CIBIO), Vairão, Portugal Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Himla Soodyall
- Human Genomic Diversity and Disease Research Unit, Division of Human Genetics, School of Pathology, Faculty of Health Sciences, University of Witwatersrand and the National Health Laboratory Service, Johannesburg 2000, South Africa
| | - Mark D Shriver
- Department of Anthropology, The Pennsylvania State University, University Park, PA 16802, USA
| | - George H Perry
- Department of Anthropology, The Pennsylvania State University, University Park, PA 16802, USA Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
316
|
Valverde G, Zhou H, Lippold S, de Filippo C, Tang K, López Herráez D, Li J, Stoneking M. A novel candidate region for genetic adaptation to high altitude in Andean populations. PLoS One 2015; 10:e0125444. [PMID: 25961286 PMCID: PMC4427407 DOI: 10.1371/journal.pone.0125444] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 03/12/2015] [Indexed: 02/07/2023] Open
Abstract
Humans living at high altitude (≥2,500 meters above sea level) have acquired unique abilities to survive the associated extreme environmental conditions, including hypoxia, cold temperature, limited food availability and high levels of free radicals and oxidants. Long-term inhabitants of the most elevated regions of the world have undergone extensive physiological and/or genetic changes, particularly in the regulation of respiration and circulation, when compared to lowland populations. Genome scans have identified candidate genes involved in altitude adaption in the Tibetan Plateau and the Ethiopian highlands, in contrast to populations from the Andes, which have not been as intensively investigated. In the present study, we focused on three indigenous populations from Bolivia: two groups of Andean natives, Aymara and Quechua, and the low-altitude control group of Guarani from the Gran Chaco lowlands. Using pooled samples, we identified a number of SNPs exhibiting large allele frequency differences over 900,000 genotyped SNPs. A region in chromosome 10 (within the cytogenetic bands q22.3 and q23.1) was significantly differentiated between highland and lowland groups. We resequenced ~1.5 Mb surrounding the candidate region and identified strong signals of positive selection in the highland populations. A composite of multiple signals like test localized the signal to FAM213A and a related enhancer; the product of this gene acts as an antioxidant to lower oxidative stress and may help to maintain bone mass. The results suggest that positive selection on the enhancer might increase the expression of this antioxidant, and thereby prevent oxidative damage. In addition, the most significant signal in a relative extended haplotype homozygosity analysis was localized to the SFTPD gene, which encodes a surfactant pulmonary-associated protein involved in normal respiration and innate host defense. Our study thus identifies two novel candidate genes and associated pathways that may be involved in high-altitude adaptation in Andean populations.
Collapse
Affiliation(s)
- Guido Valverde
- Australian Centre for Ancient DNA, School of Earth & Environmental Sciences, The University of Adelaide, Adelaide, Australia
| | - Hang Zhou
- Department of Computational Regulatory Genomics, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Shanghai, China
| | - Sebastian Lippold
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Cesare de Filippo
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Kun Tang
- Department of Computational Regulatory Genomics, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Shanghai, China
| | - David López Herráez
- Department Effect-Directed Analysis, Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
- * E-mail: (DLH); (JL); (MS)
| | - Jing Li
- Department of Computational Regulatory Genomics, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Shanghai, China
- * E-mail: (DLH); (JL); (MS)
| | - Mark Stoneking
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- * E-mail: (DLH); (JL); (MS)
| |
Collapse
|
317
|
Abstract
Human genomes are diploid and, for their complete description and interpretation, it is necessary not only to discover the variation they contain but also to arrange it onto chromosomal haplotypes. Although whole-genome sequencing is becoming increasingly routine, nearly all such individual genomes are mostly unresolved with respect to haplotype, particularly for rare alleles, which remain poorly resolved by inferential methods. Here, we review emerging technologies for experimentally resolving (that is, 'phasing') haplotypes across individual whole-genome sequences. We also discuss computational methods relevant to their implementation, metrics for assessing their accuracy and completeness, and the relevance of haplotype information to applications of genome sequencing in research and clinical medicine.
Collapse
|
318
|
Rotwein PS. Editorial: is it time for an evolutionarily based human endocrinology? Mol Endocrinol 2015; 29:487-9. [PMID: 25827340 DOI: 10.1210/me.2015-1063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Peter S Rotwein
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, Texas 79905
| |
Collapse
|
319
|
Vernot B, Akey JM. Complex history of admixture between modern humans and Neandertals. Am J Hum Genet 2015; 96:448-53. [PMID: 25683119 DOI: 10.1016/j.ajhg.2015.01.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 01/09/2015] [Indexed: 12/25/2022] Open
Abstract
Recent analyses have found that a substantial amount of the Neandertal genome persists in the genomes of contemporary non-African individuals. East Asians have, on average, higher levels of Neandertal ancestry than do Europeans, which might be due to differences in the efficiency of purifying selection, an additional pulse of introgression into East Asians, or other unexplored scenarios. To better define the scope of plausible models of archaic admixture between Neandertals and anatomically modern humans, we analyzed patterns of introgressed sequence in whole-genome data of 379 Europeans and 286 East Asians. We found that inferences of demographic history restricted to neutrally evolving genomic regions allowed a simple one-pulse model to be robustly rejected, suggesting that differences in selection cannot explain the differences in Neandertal ancestry. We show that two additional demographic models, involving either a second pulse of Neandertal gene flow into the ancestors of East Asians or a dilution of Neandertal lineages in Europeans by admixture with an unknown ancestral population, are consistent with the data. Thus, the history of admixture between modern humans and Neandertals is most likely more complex than previously thought.
Collapse
Affiliation(s)
- Benjamin Vernot
- Department of Genome Sciences, University of Washington, 3720 15(th) Avenue NE, PO Box 355065, Seattle WA 98195-5065, USA.
| | - Joshua M Akey
- Department of Genome Sciences, University of Washington, 3720 15(th) Avenue NE, PO Box 355065, Seattle WA 98195-5065, USA.
| |
Collapse
|
320
|
Kim BY, Lohmueller KE. Selection and reduced population size cannot explain higher amounts of Neandertal ancestry in East Asian than in European human populations. Am J Hum Genet 2015; 96:454-61. [PMID: 25683122 DOI: 10.1016/j.ajhg.2014.12.029] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/31/2014] [Indexed: 11/15/2022] Open
Abstract
It has been hypothesized that the greater proportion of Neandertal ancestry in East Asians than in Europeans is due to the fact that purifying selection is less effective at removing weakly deleterious Neandertal alleles from East Asian populations. Using simulations of a broad range of models of selection and demography, we have shown that this hypothesis cannot account for the higher proportion of Neandertal ancestry in East Asians than in Europeans. Instead, more complex demographic scenarios, most likely involving multiple pulses of Neandertal admixture, are required to explain the data.
Collapse
Affiliation(s)
- Bernard Y Kim
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kirk E Lohmueller
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Interdepartmental Program in Bioinformatics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
321
|
Han TS, Wu Q, Hou XH, Li ZW, Zou YP, Ge S, Guo YL. Frequent introgressions from diploid species contribute to the adaptation of the tetraploid Shepherd's purse (Capsella bursa-pastoris). MOLECULAR PLANT 2015; 8:427-438. [PMID: 25661060 DOI: 10.1016/j.molp.2014.11.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 11/19/2014] [Accepted: 11/30/2014] [Indexed: 06/04/2023]
Abstract
Adaptation is the most important ability for organisms to survive in diverse habitats. Animals have the option to escape from stressful environments, but plants do not. In plants, polyploids consist of about 30%-70% angiosperms and 95% ferns, of which some are important crops such as cotton and wheat. How polyploid plants adapt to various habitats has been a fundamental question remained largely unanswered. The tetraploid Shepherd's purse (Capsella bursa-pastoris) is one of the most successful plants on earth and has been distributed across the world, thus being an ideal model system for studying the adaptation of polyploids. We found that there are frequent introgressions from congeneric diploids to Shepherd's purse. Ecological niche modeling suggests that ecological differentiation is evident between the introgressed and non-introgressed C. bursa-pastoris, and the introgressions are a source of adaptation. This result links an evolutionary process to the adaptation of polyploids, and sheds light on the breeding strategy of polyploids as well. We conclude that frequent introgressions from congeneric diploids contributed to the acquisition of adequate genetic variations, thereby allowing C. bursa-pastoris to adapt to various habitats across the world. Our results highlight how a polyploid could have successfully established after it originated.
Collapse
Affiliation(s)
- Ting-Shen Han
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiong Wu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xing-Hui Hou
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zi-Wen Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yu-Pan Zou
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Song Ge
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Ya-Long Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
322
|
Perry GH, Orlando L. Ancient DNA and human evolution. J Hum Evol 2015; 79:1-3. [DOI: 10.1016/j.jhevol.2014.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
323
|
Insights into hominin phenotypic and dietary evolution from ancient DNA sequence data. J Hum Evol 2015; 79:55-63. [DOI: 10.1016/j.jhevol.2014.10.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 09/21/2014] [Accepted: 10/28/2014] [Indexed: 01/02/2023]
|
324
|
Quinlan RA, Bromley EH, Pohl E. A silk purse from a sow's ear-bioinspired materials based on α-helical coiled coils. Curr Opin Cell Biol 2015; 32:131-7. [PMID: 25638492 DOI: 10.1016/j.ceb.2014.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 12/30/2014] [Accepted: 12/31/2014] [Indexed: 11/28/2022]
Abstract
This past few years have heralded remarkable times for intermediate filaments with new revelations of their structural properties that has included the first crystallographic-based model of vimentin to build on the experimental data of intra-filament interactions determined by chemical cross-linking. Now with these and other advances on their assembly, their biomechanical and their cell biological properties outlined in this review, the exploitation of the biomechanical and structural properties of intermediate filaments, their nanocomposites and biomimetic derivatives in the biomedical and private sectors has started.
Collapse
Affiliation(s)
- Roy A Quinlan
- School of Biological and Biomedical Sciences, The University of Durham, Stockton Road, Durham DH1 3LE, UK; Biophysical Sciences Institute, The University of Durham, Stockton Road, Durham DH1 3LE, UK.
| | - Elizabeth H Bromley
- Biophysical Sciences Institute, The University of Durham, Stockton Road, Durham DH1 3LE, UK; Department of Physics, The University of Durham, Stockton Road, Durham DH1 3LE, UK
| | - Ehmke Pohl
- School of Biological and Biomedical Sciences, The University of Durham, Stockton Road, Durham DH1 3LE, UK; Biophysical Sciences Institute, The University of Durham, Stockton Road, Durham DH1 3LE, UK; Department of Chemistry, The University of Durham, Stockton Road, Durham DH1 3LE, UK
| |
Collapse
|
325
|
Abstract
Science has always been a competitive undertaking. Despite recognition of the benefits of cooperation and team science, reduced availability of funding and jobs has made science more competitive than ever. Here we consider the benefits of competition in providing incentives to scientists and the adverse effects of competition on resource sharing, research integrity, and creativity. The history of science shows that transformative discoveries often occur in the absence of competition, which only emerges once fields are established and goals are defined. Measures to encourage collaboration and ameliorate competition in the scientific enterprise are discussed.
Collapse
|
326
|
Lin YL, Pavlidis P, Karakoc E, Ajay J, Gokcumen O. The evolution and functional impact of human deletion variants shared with archaic hominin genomes. Mol Biol Evol 2015; 32:1008-19. [PMID: 25556237 PMCID: PMC4379406 DOI: 10.1093/molbev/msu405] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Allele sharing between modern and archaic hominin genomes has been variously interpreted to have originated from ancestral genetic structure or through non-African introgression from archaic hominins. However, evolution of polymorphic human deletions that are shared with archaic hominin genomes has yet to be studied. We identified 427 polymorphic human deletions that are shared with archaic hominin genomes, approximately 87% of which originated before the Human–Neandertal divergence (ancient) and only approximately 9% of which have been introgressed from Neandertals (introgressed). Recurrence, incomplete lineage sorting between human and chimp lineages, and hominid-specific insertions constitute the remaining approximately 4% of allele sharing between humans and archaic hominins. We observed that ancient deletions correspond to more than 13% of all common (>5% allele frequency) deletion variation among modern humans. Our analyses indicate that the genomic landscapes of both ancient and introgressed deletion variants were primarily shaped by purifying selection, eliminating large and exonic variants. We found 17 exonic deletions that are shared with archaic hominin genomes, including those leading to three fusion transcripts. The affected genes are involved in metabolism of external and internal compounds, growth and sperm formation, as well as susceptibility to psoriasis and Crohn’s disease. Our analyses suggest that these “exonic” deletion variants have evolved through different adaptive forces, including balancing and population-specific positive selection. Our findings reveal that genomic structural variants that are shared between humans and archaic hominin genomes are common among modern humans and can influence biomedically and evolutionarily important phenotypes.
Collapse
Affiliation(s)
- Yen-Lung Lin
- Department of Biological Sciences, State University of New York at Buffalo, NY, US
| | - Pavlos Pavlidis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation of Research and Technology-Hellas, Heraklion, Crete, Greece
| | - Emre Karakoc
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Jerry Ajay
- Department of Computer Science and Engineering, State University of New York at Buffalo, NY, US
| | - Omer Gokcumen
- Department of Biological Sciences, State University of New York at Buffalo, NY, US
| |
Collapse
|
327
|
Geigl EM, Bennett EA, Grange T. Tracing the origin of our species through palaeogenomics. BIO WEB OF CONFERENCES 2015. [DOI: 10.1051/bioconf/20150400005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
328
|
Gautam P, Chaurasia A, Bhattacharya A, Grover R, Mukerji M, Natarajan VT. Population diversity and adaptive evolution in keratinization genes: impact of environment in shaping skin phenotypes. Mol Biol Evol 2014; 32:555-73. [PMID: 25534032 DOI: 10.1093/molbev/msu342] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Several studies have demonstrated the role of climatic factors in shaping skin phenotypes, particularly pigmentation. Keratinization is another well-designed feature of human skin, which is involved in modulating transepidermal water loss (TEWL). Although this physiological process is closely linked to climate, presently it is not clear whether genetic diversity is observed in keratinization and whether this process also responds to the environmental pressure. To address this, we adopted a multipronged approach, which involved analysis of 1) copy number variations in diverse Indian and HapMap populations from varied geographical regions; 2) genetic association with geoclimatic parameters in 61 populations of dbCLINE database in a set of 549 genes from four processes namely keratinization, pigmentation, epidermal differentiation, and housekeeping functions; 3) sequence divergence in 4,316 orthologous promoters and corresponding exonic regions of human and chimpanzee with macaque as outgroup, and 4) protein sequence divergence (Ka/Ks) across nine vertebrate classes, which differ in their extent of TEWL. Our analyses demonstrate that keratinization and epidermal differentiation genes are under accelerated evolution in the human lineage, relative to pigmentation and housekeeping genes. We show that this entire pathway may have been driven by environmental selection pressure through concordant functional polymorphisms across several genes involved in skin keratinization. Remarkably, this underappreciated function of skin may be a crucial determinant of adaptation to diverse environmental pressures across world populations.
Collapse
Affiliation(s)
- Pramod Gautam
- Genomics and Molecular Medicine, Council for Scientific and Industrial Research-Institute of Genomics and Integrative Biology, Delhi, India
| | - Amit Chaurasia
- Genomics and Molecular Medicine, Council for Scientific and Industrial Research-Institute of Genomics and Integrative Biology, Delhi, India
| | - Aniket Bhattacharya
- Genomics and Molecular Medicine, Council for Scientific and Industrial Research-Institute of Genomics and Integrative Biology, Delhi, India Academy of Scientific and Innovative Research, Delhi, India
| | - Ritika Grover
- Academy of Scientific and Innovative Research, Delhi, India Systems Biology Group, Council for Scientific and Industrial Research-Institute of Genomics and Integrative Biology, Delhi, India
| | | | - Mitali Mukerji
- Genomics and Molecular Medicine, Council for Scientific and Industrial Research-Institute of Genomics and Integrative Biology, Delhi, India Academy of Scientific and Innovative Research, Delhi, India
| | - Vivek T Natarajan
- Academy of Scientific and Innovative Research, Delhi, India Systems Biology Group, Council for Scientific and Industrial Research-Institute of Genomics and Integrative Biology, Delhi, India
| |
Collapse
|
329
|
Major transitions in human evolution revisited: a tribute to ancient DNA. J Hum Evol 2014; 79:4-20. [PMID: 25532800 DOI: 10.1016/j.jhevol.2014.06.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 06/06/2014] [Accepted: 06/19/2014] [Indexed: 11/23/2022]
Abstract
The origin and diversification of modern humans have been characterized by major evolutionary transitions and demographic changes. Patterns of genetic variation within modern populations can help with reconstructing this ∼200 thousand year-long population history. However, by combining this information with genomic data from ancient remains, one can now directly access our evolutionary past and reveal our population history in much greater detail. This review outlines the main recent achievements in ancient DNA research and illustrates how the field recently moved from the polymerase chain reaction (PCR) amplification of short mitochondrial fragments to whole-genome sequencing and thereby revisited our own history. Ancient DNA research has revealed the routes that our ancestors took when colonizing the planet, whom they admixed with, how they domesticated plant and animal species, how they genetically responded to changes in lifestyle, and also, which pathogens decimated their populations. These approaches promise to soon solve many pending controversies about our own origins that are indecipherable from modern patterns of genetic variation alone, and therefore provide an extremely powerful toolkit for a new generation of molecular anthropologists.
Collapse
|
330
|
|
331
|
Kelso J, Prüfer K. Ancient humans and the origin of modern humans. Curr Opin Genet Dev 2014; 29:133-8. [DOI: 10.1016/j.gde.2014.09.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/03/2014] [Accepted: 09/05/2014] [Indexed: 01/06/2023]
|
332
|
Seguin-Orlando A, Korneliussen TS, Sikora M, Malaspinas AS, Manica A, Moltke I, Albrechtsen A, Ko A, Margaryan A, Moiseyev V, Goebel T, Westaway M, Lambert D, Khartanovich V, Wall JD, Nigst PR, Foley RA, Lahr MM, Nielsen R, Orlando L, Willerslev E. Paleogenomics. Genomic structure in Europeans dating back at least 36,200 years. Science 2014; 346:1113-8. [PMID: 25378462 DOI: 10.1126/science.aaa0114] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The origin of contemporary Europeans remains contentious. We obtained a genome sequence from Kostenki 14 in European Russia dating from 38,700 to 36,200 years ago, one of the oldest fossils of anatomically modern humans from Europe. We find that Kostenki 14 shares a close ancestry with the 24,000-year-old Mal'ta boy from central Siberia, European Mesolithic hunter-gatherers, some contemporary western Siberians, and many Europeans, but not eastern Asians. Additionally, the Kostenki 14 genome shows evidence of shared ancestry with a population basal to all Eurasians that also relates to later European Neolithic farmers. We find that Kostenki 14 contains more Neandertal DNA that is contained in longer tracts than present Europeans. Our findings reveal the timing of divergence of western Eurasians and East Asians to be more than 36,200 years ago and that European genomic structure today dates back to the Upper Paleolithic and derives from a metapopulation that at times stretched from Europe to central Asia.
Collapse
Affiliation(s)
- Andaine Seguin-Orlando
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Thorfinn S Korneliussen
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Martin Sikora
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Anna-Sapfo Malaspinas
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Andrea Manica
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Ida Moltke
- Department of Human Genetics, University of Chicago, 920 East 58th Street, Cummings Life Science Center, Chicago, IL 60637, USA. The Bioinformatics Center, University of Copenhagen, Ole Maaløes Vej 5, 2200 København N, Denmark
| | - Anders Albrechtsen
- The Bioinformatics Center, University of Copenhagen, Ole Maaløes Vej 5, 2200 København N, Denmark
| | - Amy Ko
- Environmental Futures Research Institute, Griffith University, 170 Kessels Road, Nathan, Brisbane, Queensland 4111, Australia
| | - Ashot Margaryan
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Vyacheslav Moiseyev
- Department of Physical Anthropology, Kunstkamera, Peter the Great Museum of Anthropology and Ethnography, Russian Academy of Sciences, 24 Srednii Prospect, Vassilievskii Island, St. Petersburg, Russia
| | - Ted Goebel
- Center for the Study of the First Americans and Department of Anthropology, Texas A&M University, TAMU-4352, College Station, Texas 77845-4352, USA
| | - Michael Westaway
- Environmental Futures Research Institute, Griffith University, 170 Kessels Road, Nathan, Brisbane, Queensland 4111, Australia
| | - David Lambert
- Environmental Futures Research Institute, Griffith University, 170 Kessels Road, Nathan, Brisbane, Queensland 4111, Australia
| | - Valeri Khartanovich
- Department of Physical Anthropology, Kunstkamera, Peter the Great Museum of Anthropology and Ethnography, Russian Academy of Sciences, 24 Srednii Prospect, Vassilievskii Island, St. Petersburg, Russia
| | - Jeffrey D Wall
- Department of Epidemiology and Biostatistics, University of California San Francisco, 185 Berry Street, Lobby 5, Suite 5700, San Francisco, CA 94107, USA
| | - Philip R Nigst
- Division of Archaeology, University of Cambridge, Cambridge, Downing Street, CB2 3DZ, UK. Department of Human Evolution, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Deutscher Platz 6, D-04103, Germany
| | - Robert A Foley
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark. Leverhulme Centre for Human Evolutionary Studies, Department of Archaeology and Anthropology, University of Cambridge, Cambridge, Fitzwilliam Street, CB2 1QH, UK
| | - Marta Mirazon Lahr
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark. Leverhulme Centre for Human Evolutionary Studies, Department of Archaeology and Anthropology, University of Cambridge, Cambridge, Fitzwilliam Street, CB2 1QH, UK.
| | - Rasmus Nielsen
- Environmental Futures Research Institute, Griffith University, 170 Kessels Road, Nathan, Brisbane, Queensland 4111, Australia.
| | - Ludovic Orlando
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Eske Willerslev
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark.
| |
Collapse
|
333
|
Bhatia G, Tandon A, Patterson N, Aldrich MC, Ambrosone CB, Amos C, Bandera EV, Berndt SI, Bernstein L, Blot WJ, Bock CH, Caporaso N, Casey G, Deming SL, Diver WR, Gapstur SM, Gillanders EM, Harris CC, Henderson BE, Ingles SA, Isaacs W, De Jager PL, John EM, Kittles RA, Larkin E, McNeill LH, Millikan RC, Murphy A, Neslund-Dudas C, Nyante S, Press MF, Rodriguez-Gil JL, Rybicki BA, Schwartz AG, Signorello LB, Spitz M, Strom SS, Tucker MA, Wiencke JK, Witte JS, Wu X, Yamamura Y, Zanetti KA, Zheng W, Ziegler RG, Chanock SJ, Haiman CA, Reich D, Price AL. Genome-wide scan of 29,141 African Americans finds no evidence of directional selection since admixture. Am J Hum Genet 2014; 95:437-44. [PMID: 25242497 PMCID: PMC4185117 DOI: 10.1016/j.ajhg.2014.08.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 08/22/2014] [Indexed: 10/24/2022] Open
Abstract
The extent of recent selection in admixed populations is currently an unresolved question. We scanned the genomes of 29,141 African Americans and failed to find any genome-wide-significant deviations in local ancestry, indicating no evidence of selection influencing ancestry after admixture. A recent analysis of data from 1,890 African Americans reported that there was evidence of selection in African Americans after their ancestors left Africa, both before and after admixture. Selection after admixture was reported on the basis of deviations in local ancestry, and selection before admixture was reported on the basis of allele-frequency differences between African Americans and African populations. The local-ancestry deviations reported by the previous study did not replicate in our very large sample, and we show that such deviations were expected purely by chance, given the number of hypotheses tested. We further show that the previous study's conclusion of selection in African Americans before admixture is also subject to doubt. This is because the FST statistics they used were inflated and because true signals of unusual allele-frequency differences between African Americans and African populations would be best explained by selection that occurred in Africa prior to migration to the Americas.
Collapse
Affiliation(s)
- Gaurav Bhatia
- Division of Health, Science, and Technology, the Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA.
| | - Arti Tandon
- Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA; Harvard Medical School, New Research Building, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Nick Patterson
- Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Melinda C Aldrich
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Nashville, TN 37203, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA; Department of Thoracic Surgery, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | - Christine B Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Christopher Amos
- Section of Biostatistics and Epidemiology, Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH 03766, USA
| | - Elisa V Bandera
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Leslie Bernstein
- Division of Cancer Etiology, Department of Population Sciences, Beckman Research Institute, City of Hope, CA 91010, USA
| | - William J Blot
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Nashville, TN 37203, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA; International Epidemiology Institute, Rockville, MD 20850, USA
| | - Cathryn H Bock
- Karmanos Cancer Institute and Department of Oncology, Wayne State University of Medicine, Detroit, MI 48201, USA
| | - Neil Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Graham Casey
- Departments of Preventive Medicine and Pathology, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA
| | - Sandra L Deming
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Nashville, TN 37203, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | - W Ryan Diver
- Epidemiology Research Program, American Cancer Society, Atlanta, GA 30303, USA
| | - Susan M Gapstur
- Epidemiology Research Program, American Cancer Society, Atlanta, GA 30303, USA
| | - Elizabeth M Gillanders
- Division of Cancer Control and Population Sciences, National Cancer Institute, Bethesda, MD 20892, USA
| | - Curtis C Harris
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Brian E Henderson
- Departments of Preventive Medicine and Pathology, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA
| | - Sue A Ingles
- Departments of Preventive Medicine and Pathology, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA
| | - William Isaacs
- James Buchanan Brady Urological Institute, Johns Hopkins Hospital and Medical Institutions, Baltimore, MD 21287, USA
| | - Phillip L De Jager
- Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA; Harvard Medical School, New Research Building, 77 Avenue Louis Pasteur, Boston, MA 02115, USA; Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Esther M John
- Cancer Prevention Institute of California, Fremont, CA 94538, USA; Stanford Cancer Center, Stanford Medicine, Stanford, CA 94305, USA
| | - Rick A Kittles
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Emma Larkin
- Division of Allergy, Pulmonary, and Critical Care, Department of Medicine, Vanderbilt University Medical Center, 6100 Medical Center East, Nashville, TN 37232-8300, USA
| | - Lorna H McNeill
- Department of Health Disparities Research, Cancer Prevention and Population Sciences, the University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; Center for Community Implementation and Dissemination Research, Duncan Family Institute, the University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Robert C Millikan
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Adam Murphy
- Department of Urology, Northwestern University, Chicago, IL 60611, USA
| | | | - Sarah Nyante
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Michael F Press
- Departments of Preventive Medicine and Pathology, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA
| | - Jorge L Rodriguez-Gil
- Sylvester Comprehensive Cancer Center and Department of Epidemiology and Public Health, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Benjamin A Rybicki
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Ann G Schwartz
- Karmanos Cancer Institute and Department of Oncology, Wayne State University of Medicine, Detroit, MI 48201, USA
| | - Lisa B Signorello
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Nashville, TN 37203, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA; International Epidemiology Institute, Rockville, MD 20850, USA
| | - Margaret Spitz
- Section of Biostatistics and Epidemiology, Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH 03766, USA
| | - Sara S Strom
- Department of Epidemiology, the University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Margaret A Tucker
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - John K Wiencke
- University of California, San Francisco, San Francisco, CA 94158, USA
| | - John S Witte
- Departments of Epidemiology and Biostatistics and Urology, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Xifeng Wu
- Section of Biostatistics and Epidemiology, Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH 03766, USA
| | - Yuko Yamamura
- Department of Epidemiology, the University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Krista A Zanetti
- Division of Cancer Control and Population Sciences, National Cancer Institute, Bethesda, MD 20892, USA; Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Nashville, TN 37203, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | - Regina G Ziegler
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Christopher A Haiman
- Departments of Preventive Medicine and Pathology, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA
| | - David Reich
- Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA; Harvard Medical School, New Research Building, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Alkes L Price
- Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA; Departments of Epidemiology and Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
334
|
Warschefsky E, Penmetsa RV, Cook DR, von Wettberg EJB. Back to the wilds: tapping evolutionary adaptations for resilient crops through systematic hybridization with crop wild relatives. AMERICAN JOURNAL OF BOTANY 2014; 101:1791-800. [PMID: 25326621 DOI: 10.3732/ajb.1400116] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The genetic diversity of our crop plants has been substantially reduced during the process of domestication and breeding. This reduction in diversity necessarily constrains our ability to expand a crop's range of cultivation into environments that are more extreme than those in which it was domesticated, including into "sustainable" agricultural systems with reduced inputs of pesticides, water, and fertilizers. Conversely, the wild progenitors of crop plants typically possess high levels of genetic diversity, which underlie an expanded (relative to domesticates) range of adaptive traits that may be of agricultural relevance, including resistance to pests and pathogens, tolerance to abiotic extremes, and reduced dependence on inputs. Despite their clear potential for crop improvement, wild relatives have rarely been used systematically for crop improvement, and in no cases, have full sets of wild diversity been introgressed into a crop. Instead, most breeding efforts have focused on specific traits and dealt with wild species in a limited and typically ad hoc manner. Although expedient, this approach misses the opportunity to test a large suite of traits and deploy the full potential of crop wild relatives in breeding for the looming challenges of the 21st century. Here we review examples of hybridization in several species, both intentionally produced and naturally occurring, to illustrate the gains that are possible. We start with naturally occurring hybrids, and then examine a range of examples of hybridization in agricultural settings.
Collapse
Affiliation(s)
- Emily Warschefsky
- Department of Biological Sciences, Florida International University 12200 SW 8th Street, Miami, Florida 33199 USA Kushlan Center for Tropical Science, Fairchild Tropical Botanic Garden 10901 Old Cutler Road, Coral Gables, Florida 33156 USA
| | - R Varma Penmetsa
- Department of Plant Pathology, University of California-Davis, One Shields Avenue, Davis, California 95616 USA
| | - Douglas R Cook
- Department of Plant Pathology, University of California-Davis, One Shields Avenue, Davis, California 95616 USA
| | - Eric J B von Wettberg
- Department of Biological Sciences, Florida International University 12200 SW 8th Street, Miami, Florida 33199 USA Kushlan Center for Tropical Science, Fairchild Tropical Botanic Garden 10901 Old Cutler Road, Coral Gables, Florida 33156 USA
| |
Collapse
|
335
|
Lippold S, Xu H, Ko A, Li M, Renaud G, Butthof A, Schröder R, Stoneking M. Human paternal and maternal demographic histories: insights from high-resolution Y chromosome and mtDNA sequences. INVESTIGATIVE GENETICS 2014; 5:13. [PMID: 25254093 PMCID: PMC4174254 DOI: 10.1186/2041-2223-5-13] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 08/22/2014] [Indexed: 02/07/2023]
Abstract
Background Comparisons of maternally-inherited mitochondrial DNA (mtDNA) and paternally-inherited non-recombining Y chromosome (NRY) variation have provided important insights into the impact of sex-biased processes (such as migration, residence pattern, and so on) on human genetic variation. However, such comparisons have been limited by the different molecular methods typically used to assay mtDNA and NRY variation (for example, sequencing hypervariable segments of the control region for mtDNA vs. genotyping SNPs and/or STR loci for the NRY). Here, we report a simple capture array method to enrich Illumina sequencing libraries for approximately 500 kb of NRY sequence, which we use to generate NRY sequences from 623 males from 51 populations in the CEPH Human Genome Diversity Panel (HGDP). We also obtained complete mtDNA genome sequences from the same individuals, allowing us to compare maternal and paternal histories free of any ascertainment bias. Results We identified 2,228 SNPs in the NRY sequences and 2,163 SNPs in the mtDNA sequences. Our results confirm the controversial assertion that genetic differences between human populations on a global scale are bigger for the NRY than for mtDNA, although the differences are not as large as previously suggested. More importantly, we find substantial regional variation in patterns of mtDNA versus NRY variation. Model-based simulations indicate very small ancestral effective population sizes (<100) for the out-of-Africa migration as well as for many human populations. We also find that the ratio of female effective population size to male effective population size (Nf/Nm) has been greater than one throughout the history of modern humans, and has recently increased due to faster growth in Nf than Nm. Conclusions The NRY and mtDNA sequences provide new insights into the paternal and maternal histories of human populations, and the methods we introduce here should be widely applicable for further such studies.
Collapse
Affiliation(s)
- Sebastian Lippold
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig D04103, Germany
| | - Hongyang Xu
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig D04103, Germany ; Department of Computational Genetics, CAS-MPG Partner Institute for Computational Biology, Shanghai 200031, China
| | - Albert Ko
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig D04103, Germany
| | - Mingkun Li
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig D04103, Germany ; Present address: Fondation Mérieux, 17 rue Bourgelat, Lyon 69002, France
| | - Gabriel Renaud
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig D04103, Germany
| | - Anne Butthof
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig D04103, Germany ; Present address: Institute of Biochemistry, Faculty of Medicine, University of Leipzig, Leipzig D04103, Germany
| | - Roland Schröder
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig D04103, Germany
| | - Mark Stoneking
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig D04103, Germany
| |
Collapse
|
336
|
Johansson S. The thinking Neanderthals: What do we know about Neanderthal cognition? WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2014; 5:613-620. [PMID: 26308868 DOI: 10.1002/wcs.1317] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 07/28/2014] [Accepted: 08/04/2014] [Indexed: 01/12/2023]
Abstract
The study of Neanderthal cognition is difficult, because of the archaeological invisibility of cognition, and because of the methodological issues that arise both from that invisibility and from their being close to modern humans. Nevertheless, fair progress has been made in gathering relevant evidence. There is now good evidence that Neanderthals were cognitively sophisticated, displaying many of the cognitive traits that were traditionally regarded as proxies for modern human cognition, notably including language. It can neither be proven nor excluded that they were our cognitive equals, but they were close enough to us, biologically and cognitively, to interbreed successfully and leave a genetic legacy in our DNA. WIREs Cogn Sci 2014, 5:613-620. doi: 10.1002/wcs.1317 CONFLICT OF INTEREST: The author has declared no conflicts of interest for this article. For further resources related to this article, please visit the WIREs website.
Collapse
|
337
|
Impact of range expansions on current human genomic diversity. Curr Opin Genet Dev 2014; 29:22-30. [PMID: 25156518 DOI: 10.1016/j.gde.2014.07.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 07/09/2014] [Accepted: 07/25/2014] [Indexed: 12/19/2022]
Abstract
The patterns of population genetic diversity depend to a large extent on past demographic history. Most human populations are known to have gone recently through a series of range expansions within and out of Africa, but these spatial expansions are rarely taken into account when interpreting observed genomic diversity, possibly because they are difficult to model. Here we review available evidence in favour of range expansions out of Africa, and we discuss several of their consequences on neutral and selected diversity, including some recent observations on an excess of rare neutral and selected variants in large samples. We further show that in spatially subdivided populations, the sampling strategy can severely impact the resulting genetic diversity and be confounded by past demography. We conclude that ignoring the spatial structure of human population can lead to some misinterpretations of extant genetic diversity.
Collapse
|
338
|
Harrison RG, Larson EL. Hybridization, Introgression, and the Nature of Species Boundaries. J Hered 2014; 105 Suppl 1:795-809. [DOI: 10.1093/jhered/esu033] [Citation(s) in RCA: 418] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
339
|
Borzan V, Tomašević B, Kurbel S. Hypothesis: Possible respiratory advantages for heterozygote carriers of cystic fibrosis linked mutations during dusty climate of last glaciation. J Theor Biol 2014; 363:164-8. [PMID: 25150458 DOI: 10.1016/j.jtbi.2014.08.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 08/04/2014] [Accepted: 08/09/2014] [Indexed: 11/29/2022]
Abstract
This paper puts forward a new hypothesis to interpret the high carrier frequency of CFTR mutations in individuals of European descent. The proposed heterozygote advantage factor is related to the specific climate conditions in Europe during the last 50 ky that might have heavily compromised the respiratory function of our ancestors in Eurasia. A large part of the last 50 ky was cold, and the coldest period was the Last Glacial Maximum (LGM) (26.5 to 19 kya). The global climate was dry with a dust-laden atmosphere (20 to 25 times more dust than the present level). High levels of atmospheric dust started more than 40 kya and ended less than 10 kya. Secretion of airway fluid is usually related to the submucosal tissue hydration, while salt reabsorption relies on activation of CFTRs that allow ENaCs to absorb salt and water. The water loss by evaporation depends on the air humidity and flow rate. Salt accumulation in the mucus is normally prevented by reabsorption of Na(+) and Cl(-) by epithelial cells if the presence of functional CFTRs is normal. If one gene for CFTR is mutated, the number of functional CFTRs is reduced and this limits the capacity of salt reabsorption by epithelial cells. This means that evaporation makes the airway fluid more hypertonic, and osmotic forces bring more water from the interstitial space, thus leading to a new balance in mucosal fluid traffic. Increased osmolarity and volume of airway fluid can be more moveable in cases when evaporation and dust exposure is increased. If both CFTR genes are mutated, low number of functional CFTRs diminishes salt resorption of epithelial cells. Salt accumulated in the mucous fluid within respiratory ducts, as previously described. The hypertonic ductal content forces more water and some electrolytes to enter the airway fluid from the interstitial fluid, and evaporation leads to further concentration of thick immobile mucus. The proposed interpretation is that CFTR mutations have spread among our ancestors that roamed the central Eurasia after the LGM. The heterozygote individuals might have benefitted from the limited water resorption in their respiratory mucosa that allowed improved airway cleansing.
Collapse
Affiliation(s)
- Vladimir Borzan
- Osijek University Hospital, Dept. of Internal Medicine, Osijek, Croatia
| | - Boris Tomašević
- Zagreb University Hospital, Dept. of Anesthesiology, Zagreb, Croatia
| | - Sven Kurbel
- Osijek Medical Faculty, Dept. of Physiology, Osijek, Croatia.
| |
Collapse
|
340
|
Weiss KM, Dunsworth H. Catastrophes in evolution: Is Cuvier's world extinct or extant? Evol Anthropol 2014; 23:130-5. [DOI: 10.1002/evan.21414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
341
|
Huerta-Sánchez E, Jin X, Asan, Bianba Z, Peter BM, Vinckenbosch N, Liang Y, Yi X, He M, Somel M, Ni P, Wang B, Ou X, Huasang, Luosang J, Cuo ZXP, Li K, Gao G, Yin Y, Wang W, Zhang X, Xu X, Yang H, Li Y, Wang J, Wang J, Nielsen R. Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA. Nature 2014; 512:194-7. [PMID: 25043035 PMCID: PMC4134395 DOI: 10.1038/nature13408] [Citation(s) in RCA: 650] [Impact Index Per Article: 59.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 04/28/2014] [Indexed: 01/01/2023]
Affiliation(s)
- Emilia Huerta-Sánchez
- 1] BGI-Shenzhen, Shenzhen 518083, China [2] Department of Integrative Biology, University of California, Berkeley, California 94720 USA [3] School of Natural Sciences, University of California, Merced, California 95343 USA [4]
| | - Xin Jin
- 1] BGI-Shenzhen, Shenzhen 518083, China [2] School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China [3]
| | - Asan
- 1] BGI-Shenzhen, Shenzhen 518083, China [2] Binhai Genomics Institute, BGI-Tianjin, Tianjin 300308, China [3] Tianjin Translational Genomics Center, BGI-Tianjin, Tianjin 300308, China [4]
| | - Zhuoma Bianba
- 1] The People's Hospital of Lhasa, Lhasa 850000, China [2]
| | - Benjamin M Peter
- Department of Integrative Biology, University of California, Berkeley, California 94720 USA
| | - Nicolas Vinckenbosch
- Department of Integrative Biology, University of California, Berkeley, California 94720 USA
| | - Yu Liang
- 1] BGI-Shenzhen, Shenzhen 518083, China [2] Binhai Genomics Institute, BGI-Tianjin, Tianjin 300308, China [3] Tianjin Translational Genomics Center, BGI-Tianjin, Tianjin 300308, China
| | - Xin Yi
- 1] BGI-Shenzhen, Shenzhen 518083, China [2] Binhai Genomics Institute, BGI-Tianjin, Tianjin 300308, China [3] Tianjin Translational Genomics Center, BGI-Tianjin, Tianjin 300308, China
| | - Mingze He
- 1] BGI-Shenzhen, Shenzhen 518083, China [2] Bioinformatics and Computational Biology Program, Iowa State University, Ames, Iowa 50011, USA
| | - Mehmet Somel
- Department of Biological Sciences, Middle East Technical University, 06800 Ankara, Turkey
| | | | - Bo Wang
- BGI-Shenzhen, Shenzhen 518083, China
| | | | - Huasang
- BGI-Shenzhen, Shenzhen 518083, China
| | | | - Zha Xi Ping Cuo
- The Second People's Hospital of Tibet Autonomous Region, Lhasa 850000, China
| | - Kui Li
- The People's Hospital of the Tibet Autonomous Region, Lhasa 850000, China
| | - Guoyi Gao
- The hospital of XiShuangBanNa Dai Nationalities, Autonomous Jinghong, 666100 Yunnan, China
| | - Ye Yin
- BGI-Shenzhen, Shenzhen 518083, China
| | - Wei Wang
- BGI-Shenzhen, Shenzhen 518083, China
| | - Xiuqing Zhang
- 1] BGI-Shenzhen, Shenzhen 518083, China [2] The Guangdong Enterprise Key Laboratory of Human Disease Genomics, BGI-Shenzhen, 518083 Shenzhen, China [3] Shenzhen Key Laboratory of Transomics Biotechnologies, BGI-Shenzhen, 518083 Shenzhen, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Huanming Yang
- 1] BGI-Shenzhen, Shenzhen 518083, China [2] Princess Al Jawhara Center of Excellence in the Research of Hereditary Disorders, King Abdulaziz University, Jeddah 21589, Saudi Arabia [3] James D. Watson Institute of Genome Science, 310008 Hangzhou, China
| | | | - Jian Wang
- 1] BGI-Shenzhen, Shenzhen 518083, China [2] James D. Watson Institute of Genome Science, 310008 Hangzhou, China
| | - Jun Wang
- 1] BGI-Shenzhen, Shenzhen 518083, China [2] Princess Al Jawhara Center of Excellence in the Research of Hereditary Disorders, King Abdulaziz University, Jeddah 21589, Saudi Arabia [3] Department of Biology, University of Copenhagen, Ole MaaløesVej 5, 2200 Copenhagen, Denmark [4] Macau University of Science and Technology, AvenidaWai long, Taipa, Macau 999078, China [5] Department of Medicine, University of Hong Kong 999077, Hong Kong
| | - Rasmus Nielsen
- 1] BGI-Shenzhen, Shenzhen 518083, China [2] Department of Integrative Biology, University of California, Berkeley, California 94720 USA [3] Department of Statistics, University of California, Berkeley, California 94720, USA [4] Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
342
|
Visser M, Palstra RJ, Kayser M. Human skin color is influenced by an intergenic DNA polymorphism regulating transcription of the nearby BNC2 pigmentation gene. Hum Mol Genet 2014; 23:5750-62. [PMID: 24916375 DOI: 10.1093/hmg/ddu289] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Single nucleotide polymorphisms (SNPs) found to be statistically significant when associated with human diseases, and other phenotypes are most often located in non-coding regions of the genome. One example is rs10765819 located in the first intron of the BNC2 gene previously associated with (saturation of) human skin color. Here, we demonstrate that a nearby intergenic SNP (rs12350739) in high linkage disequilibrium with rs10756819 is likely the causal DNA variant for the observed BNC2 skin color association. The highly conserved region surrounding rs12350739 functions as an enhancer element regulating BNC2 transcription in human melanocytes, while the activity of this enhancer element depends on the allelic status of rs12350739. When the rs12350739-AA allele is present, the chromatin at the region surrounding rs12350739 is inaccessible and the enhancer element is only slightly active, resulting in low expression of BNC2, corresponding with light skin pigmentation. When the rs12350739-GG allele is present however, the chromatin at the region surrounding rs12350739 is more accessible and the enhancer is active, resulting in a higher expression of BNC2, corresponding with dark skin pigmentation. Overall, we demonstrate the identification of the functional DNA variant that explains the BNC2 skin color association signal, providing another important step towards further understanding human pigmentation genetics beyond statistical association. We thus deliver a clear example of how an intergenic non-coding DNA variant modulates the regulatory potential of the enhancer element it is located within, which in turn results in allele-dependent differential gene expression affecting variation in common human traits.
Collapse
Affiliation(s)
- Mijke Visser
- Department of Forensic Molecular Biology, Erasmus MC University Medical Centre Rotterdam, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Robert-Jan Palstra
- Department of Forensic Molecular Biology, Erasmus MC University Medical Centre Rotterdam, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Manfred Kayser
- Department of Forensic Molecular Biology, Erasmus MC University Medical Centre Rotterdam, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| |
Collapse
|
343
|
Abstract
Research into when and where modern humans originated and how they differ from, and interacted with, other now-extinct forms of human has so far been the realm of archaeologists and paleoanthropologists. However, over the past decade, molecular geneticists have begun to study genomes of extinct humans. Here, I discuss where we stand today with respect to understanding how modern humans came to differ from Neandertals and other human forms that existed until about 30,000 years ago.
Collapse
Affiliation(s)
- Svante Pääbo
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany.
| |
Collapse
|
344
|
Evolutionary genomics of Borrelia burgdorferi sensu lato: findings, hypotheses, and the rise of hybrids. INFECTION GENETICS AND EVOLUTION 2014; 27:576-93. [PMID: 24704760 DOI: 10.1016/j.meegid.2014.03.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/23/2014] [Accepted: 03/24/2014] [Indexed: 01/14/2023]
Abstract
Borrelia burgdorferi sensu lato (B. burgdorferi s.l.), the group of bacterial species represented by Lyme disease pathogens, has one of the most complex and variable genomic architectures among prokaryotes. Showing frequent recombination within and limited gene flow among geographic populations, the B. burgdorferi s.l. genomes provide an excellent window into the processes of bacterial evolution at both within- and between-population levels. Comparative analyses of B. burgdorferi s.l. genomes revealed a highly dynamic plasmid composition but a conservative gene repertoire. Gene duplication and loss as well as sequence variations at loci encoding surface-localized lipoproteins (e.g., the PF54 genes) are strongly associated with adaptive differences between species. There are a great many conserved intergenic spacer sequences that are candidates for cis-regulatory elements and non-coding RNAs. Recombination among coexisting strains occurs at a rate approximately three times the mutation rate. The coexistence of a large number of genomic groups within local B. burgdorferi s.l. populations may be driven by immune-mediated diversifying selection targeting major antigen loci as well as by adaptation to multiple host species. Questions remain regarding the ecological causes (e.g., climate change, host movements, or new adaptations) of the ongoing range expansion of B. burgdorferi s.l. and on the genomic variations associated with its ecological and clinical variability. Anticipating an explosive growth of the number of B. burgdorferi s.l. genomes sampled from both within and among species, we propose genome-based methods to test adaptive mechanisms and to identify molecular bases of phenotypic variations. Genome sequencing is also necessary for monitoring a likely increase of genetic admixture of previously isolated species and populations in North America and elsewhere.
Collapse
|
345
|
Stringer C. Why we are not all multiregionalists now. Trends Ecol Evol 2014; 29:248-51. [PMID: 24702983 DOI: 10.1016/j.tree.2014.03.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/01/2014] [Accepted: 03/04/2014] [Indexed: 11/16/2022]
Abstract
Recent revelations that human genomes contain DNA introgressed through interbreeding with archaic populations outside of Africa have led to reassessments of models for the origins of our species. The fact that small portions of the DNA of recent Homo sapiens derive from ancient populations in more than one region of the world makes our origins 'multiregional', but does that mean that the multiregional model of modern human origins has been proved correct? The extent of archaic assimilation in living humans remains modest, and fossil evidence outside of Africa shows little sign of the long-term morphological continuity through to recent humans expected from the multiregional model. Thus, rather than multiregionalism, a recent African origin (RAO) model for modern humans is still supported by the data.
Collapse
Affiliation(s)
- Chris Stringer
- Department of Earth Sciences, The Natural History Museum, London, SW7 5BD, UK.
| |
Collapse
|
346
|
|
347
|
Modern genes yield atlas of ancient inter-ethnic sex. Nature 2014. [DOI: 10.1038/nature.2014.14718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
348
|
|