301
|
Bhattacharya D, Qiu H, Price DC, Yoon HS. Why we need more algal genomes. JOURNAL OF PHYCOLOGY 2015; 51:1-5. [PMID: 26986254 DOI: 10.1111/jpy.12267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 11/10/2014] [Indexed: 06/05/2023]
Affiliation(s)
- Debashish Bhattacharya
- Department of Ecology, Evolution and Natural Resources and Institute of Marine and Coastal Science, Rutgers University, New Brunswick, New Jersey, 08901, USA
| | - Huan Qiu
- Department of Ecology, Evolution and Natural Resources and Institute of Marine and Coastal Science, Rutgers University, New Brunswick, New Jersey, 08901, USA
| | - Dana C Price
- Department of Ecology, Evolution and Natural Resources and Institute of Marine and Coastal Science, Rutgers University, New Brunswick, New Jersey, 08901, USA
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 440-746, Korea
| |
Collapse
|
302
|
Clingenpeel S, Clum A, Schwientek P, Rinke C, Woyke T. Reconstructing each cell's genome within complex microbial communities-dream or reality? Front Microbiol 2015; 5:771. [PMID: 25620966 PMCID: PMC4287102 DOI: 10.3389/fmicb.2014.00771] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/17/2014] [Indexed: 11/24/2022] Open
Abstract
As the vast majority of microorganisms have yet to be cultivated in a laboratory setting, access to their genetic makeup has largely been limited to cultivation-independent methods. These methods, namely metagenomics and more recently single-cell genomics, have become cornerstones for microbial ecology and environmental microbiology. One ultimate goal is the recovery of genome sequences from each cell within an environment to move toward a better understanding of community metabolic potential and to provide substrate for experimental work. As single-cell sequencing has the ability to decipher all sequence information contained in an individual cell, this method holds great promise in tackling such challenge. Methodological limitations and inherent biases however do exist, which will be discussed here based on environmental and benchmark data, to assess how far we are from reaching this goal.
Collapse
Affiliation(s)
| | - Alicia Clum
- DOE Joint Genome Institute Walnut Creek, CA, USA
| | | | | | - Tanja Woyke
- DOE Joint Genome Institute Walnut Creek, CA, USA
| |
Collapse
|
303
|
Kirkup BC. Bacterial Strain Diversity Within Wounds. Adv Wound Care (New Rochelle) 2015; 4:12-23. [PMID: 25566411 DOI: 10.1089/wound.2014.0560] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 06/23/2014] [Indexed: 12/17/2022] Open
Abstract
Significance: Rare bacterial taxa (taxa of low relative frequency) are numerous and ubiquitous in virtually any sample-including wound samples. In addition, even the high-frequency genera and species contain multiple strains. These strains, individually, are each only a small fraction of the total bacterial population. Against the view that wounds contain relatively few kinds of bacteria, this newly recognized diversity implies a relatively high rate of migration into the wound and the potential for diversification during infection. Understanding the biological and medical importance of these numerous taxa is an important new element of wound microbiology. Recent Advances: Only recently have these numerous strains been discovered; the technology to detect, identify, and characterize them is still in its infancy. Multiple strains of both gram-negative and gram-positive bacteria have been found in a single wound. In the few cases studied, the distribution of the bacteria suggests microhabitats and biological interactions. Critical Issues: The distribution of the strains, their phenotypic diversity, and their interactions are still largely uncharacterized. The technologies to investigate this level of genomic detail are still developing and have not been largely deployed to investigate wounds. Future Directions: As advanced metagenomics, single-cell genomics, and advanced microscopy develop, the study of wound microbiology will better address the complex interplay of numerous individually rare strains with both the host and each other.
Collapse
Affiliation(s)
- Benjamin C. Kirkup
- FE Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
304
|
Abstract
The biodiversity of phytoplankton is a core measurement of the state and activity of marine ecosystems. In the context of historical approaches, we review recent major advances in the technologies that have enabled deeper characterization of the biodiversity of phytoplankton. In particular, high-throughput sequencing of single loci/genes, genomes, and communities (metagenomics) has revealed exceptional phylogenetic and genomic diversity whose breadth is not fully constrained. Other molecular tools-such as fingerprinting, quantitative polymerase chain reaction, and fluorescence in situ hybridization-have provided additional insight into the dynamics of this diversity in the context of environmental variability. Techniques for characterizing the functional diversity of community structure through targeted or untargeted approaches based on RNA or protein have also greatly advanced. A wide range of techniques is now available for characterizing phytoplankton communities, and these tools will continue to advance through ongoing improvements in both technology and data interpretation.
Collapse
Affiliation(s)
- Zackary I Johnson
- Marine Laboratory (Nicholas School of the Environment) and Department of Biology, Duke University, Beaufort, North Carolina 28516;
| | | |
Collapse
|
305
|
Martin-Cuadrado AB, Garcia-Heredia I, Moltó AG, López-Úbeda R, Kimes N, López-García P, Moreira D, Rodriguez-Valera F. A new class of marine Euryarchaeota group II from the Mediterranean deep chlorophyll maximum. ISME JOURNAL 2014; 9:1619-34. [PMID: 25535935 DOI: 10.1038/ismej.2014.249] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 11/14/2014] [Accepted: 11/19/2014] [Indexed: 11/09/2022]
Abstract
We have analyzed metagenomic fosmid clones from the deep chlorophyll maximum (DCM), which, by genomic parameters, correspond to the 16S ribosomal RNA (rRNA)-defined marine Euryarchaeota group IIB (MGIIB). The fosmid collections associated with this group add up to 4 Mb and correspond to at least two species within this group. From the proposed essential genes contained in the collections, we infer that large sections of the conserved regions of the genomes of these microbes have been recovered. The genomes indicate a photoheterotrophic lifestyle, similar to that of the available genome of MGIIA (assembled from an estuarine metagenome in Puget Sound, Washington Pacific coast), with a proton-pumping rhodopsin of the same kind. Several genomic features support an aerobic metabolism with diversified substrate degradation capabilities that include xenobiotics and agar. On the other hand, these MGIIB representatives are non-motile and possess similar genome size to the MGIIA-assembled genome, but with a lower GC content. The large phylogenomic gap with other known archaea indicates that this is a new class of marine Euryarchaeota for which we suggest the name Thalassoarchaea. The analysis of recruitment from available metagenomes indicates that the representatives of group IIB described here are largely found at the DCM (ca. 50 m deep), in which they are abundant (up to 0.5% of the reads), and at the surface mostly during the winter mixing, which explains formerly described 16S rRNA distribution patterns. Their uneven representation in environmental samples that are close in space and time might indicate sporadic blooms.
Collapse
Affiliation(s)
- Ana-Belen Martin-Cuadrado
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
| | - Inmaculada Garcia-Heredia
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
| | - Aitor Gonzaga Moltó
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
| | - Rebeca López-Úbeda
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
| | - Nikole Kimes
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
| | - Purificación López-García
- Unité d'Ecologie, Systématique et Evolution, UMR CNRS 8079, Université Paris-Sud, Orsay Cedex, France
| | - David Moreira
- Unité d'Ecologie, Systématique et Evolution, UMR CNRS 8079, Université Paris-Sud, Orsay Cedex, France
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
| |
Collapse
|
306
|
Microbial taxonomy in the post-genomic era: rebuilding from scratch? Arch Microbiol 2014; 197:359-70. [PMID: 25533848 DOI: 10.1007/s00203-014-1071-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 12/04/2014] [Accepted: 12/05/2014] [Indexed: 12/20/2022]
Abstract
Microbial taxonomy should provide adequate descriptions of bacterial, archaeal, and eukaryotic microbial diversity in ecological, clinical, and industrial environments. Its cornerstone, the prokaryote species has been re-evaluated twice. It is time to revisit polyphasic taxonomy, its principles, and its practice, including its underlying pragmatic species concept. Ultimately, we will be able to realize an old dream of our predecessor taxonomists and build a genomic-based microbial taxonomy, using standardized and automated curation of high-quality complete genome sequences as the new gold standard.
Collapse
|
307
|
|
308
|
Abstract
Environmental bacteria play a central role in the Earth's elemental cycles and represent a mostly untapped reservoir for novel metabolic capacities and biocatalysts. Over the last 15 years, the author's laboratory has focused on three major switches in the breakdown of organic carbon defined by the abundance and recalcitrance of the substrates: carbohydrates and amino acids by aerobic heterotrophs, fermentation end products by sulphate reducers and anaerobic degradation of aromatic compounds and hydrocarbons by denitrifiers and sulphate reducers. As these bacteria are novel isolates mostly not accessibly by molecular genetics, genomics combined with differential proteomics was early on applied to obtain molecular-functional insights into degradation pathways, catabolic and regulatory networks, as well as mechanisms and strategies for adapting to changing environmental conditions. This review provides some background on research motivations and briefly summarizes insights into studied model organisms, e.g. "Aromatoleum aromaticum" EbN1, Desulfobacula toluolica Tol2 and Phaeobacter inhibens DSM 17395.
Collapse
Affiliation(s)
- R Rabus
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), University Oldenburg , Oldenburg , Germany
| |
Collapse
|
309
|
Sánchez D, Gomila M, Bennasar A, Lalucat J, García-Valdés E. Genome analysis of environmental and clinical P. aeruginosa isolates from sequence type-1146. PLoS One 2014; 9:e107754. [PMID: 25329302 PMCID: PMC4198096 DOI: 10.1371/journal.pone.0107754] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 08/16/2014] [Indexed: 11/18/2022] Open
Abstract
The genomes of Pseudomonas aeruginosa isolates of the new sequence type ST-1146, three environmental (P37, P47 and P49) and one clinical (SD9) isolates, with differences in their antibiotic susceptibility profiles have been sequenced and analysed. The genomes were mapped against P. aeruginosa PAO1-UW and UCBPP-PA14. The allelic profiles showed that the highest number of differences were in “Related to phage, transposon or plasmid” and “Secreted factors” categories. The clinical isolate showed a number of exclusive alleles greater than that for the environmental isolates. The phage Pf1 region in isolate SD9 accumulated the highest number of nucleotide substitutions. The ORF analysis of the four genomes assembled de novo indicated that the number of isolate-specific genes was higher in isolate SD9 (132 genes) than in isolates P37 (24 genes), P47 (16 genes) and P49 (21 genes). CRISPR elements were found in all isolates and SD9 showed differences in the spacer region. Genes related to bacteriophages F116 and H66 were found only in isolate SD9. Genome comparisons indicated that the isolates of ST-1146 are close related, and most genes implicated in pathogenicity are highly conserved, suggesting a genetic potential for infectivity in the environmental isolates similar to the clinical one. Phage-related genes are responsible of the main differences among the genomes of ST-1146 isolates. The role of bacteriophages has to be considered in the adaptation processes of isolates to the host and in microevolution studies.
Collapse
Affiliation(s)
- David Sánchez
- Microbiologia, Departament de Biologia, Edifici Guillem Colom, Universitat de les Illes Balears, Campus UIB, Palma de Mallorca, Spain
| | - Margarita Gomila
- Microbiologia, Departament de Biologia, Edifici Guillem Colom, Universitat de les Illes Balears, Campus UIB, Palma de Mallorca, Spain
| | - Antonio Bennasar
- Microbiologia, Departament de Biologia, Edifici Guillem Colom, Universitat de les Illes Balears, Campus UIB, Palma de Mallorca, Spain; Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS-UIB) Universitat de les Illes Balears, Campus UIB, Palma de Mallorca, Spain
| | - Jorge Lalucat
- Microbiologia, Departament de Biologia, Edifici Guillem Colom, Universitat de les Illes Balears, Campus UIB, Palma de Mallorca, Spain; Institut Mediterrani d'Estudis Avançats (IMEDEA, CSIC-UIB), Campus UIB, Palma de Mallorca, Spain
| | - Elena García-Valdés
- Microbiologia, Departament de Biologia, Edifici Guillem Colom, Universitat de les Illes Balears, Campus UIB, Palma de Mallorca, Spain; Institut Mediterrani d'Estudis Avançats (IMEDEA, CSIC-UIB), Campus UIB, Palma de Mallorca, Spain
| |
Collapse
|
310
|
Affiliation(s)
- Stephen Giovannoni
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA.
| | - Diana Nemergut
- Department of Biology, Duke University, Durham, NC 27708, USA. Institute of Arctic and Alpine Research (INSTAAR), University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
311
|
Biller SJ, Berube PM, Berta-Thompson JW, Kelly L, Roggensack SE, Awad L, Roache-Johnson KH, Ding H, Giovannoni SJ, Rocap G, Moore LR, Chisholm SW. Genomes of diverse isolates of the marine cyanobacterium Prochlorococcus. Sci Data 2014; 1:140034. [PMID: 25977791 PMCID: PMC4421930 DOI: 10.1038/sdata.2014.34] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 08/19/2014] [Indexed: 11/30/2022] Open
Abstract
The marine cyanobacterium Prochlorococcus is the numerically dominant photosynthetic organism in the oligotrophic oceans, and a model system in marine microbial ecology. Here we report 27 new whole genome sequences (2 complete and closed; 25 of draft quality) of cultured isolates, representing five major phylogenetic clades of Prochlorococcus. The sequenced strains were isolated from diverse regions of the oceans, facilitating studies of the drivers of microbial diversity—both in the lab and in the field. To improve the utility of these genomes for comparative genomics, we also define pre-computed clusters of orthologous groups of proteins (COGs), indicating how genes are distributed among these and other publicly available Prochlorococcus genomes. These data represent a significant expansion of Prochlorococcus reference genomes that are useful for numerous applications in microbial ecology, evolution and oceanography.
Collapse
Affiliation(s)
- Steven J Biller
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts, USA
| | - Paul M Berube
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts, USA
| | - Jessie W Berta-Thompson
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts, USA ; Microbiology Graduate Program, Massachusetts Institute of Technology , Cambridge, Massachusetts, USA
| | - Libusha Kelly
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts, USA
| | - Sara E Roggensack
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts, USA
| | - Lana Awad
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts, USA
| | | | - Huiming Ding
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts, USA ; Department of Biology, Massachusetts Institute of Technology , Cambridge, Massachusetts, USA
| | | | - Gabrielle Rocap
- School of Oceanography, Center for Environmental Genomics, University of Washington , Seattle, Washington, USA
| | - Lisa R Moore
- Department of Biological Sciences, University of Southern Maine , Portland, Maine, USA
| | - Sallie W Chisholm
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts, USA ; Department of Biology, Massachusetts Institute of Technology , Cambridge, Massachusetts, USA
| |
Collapse
|
312
|
Reductive genome evolution at both ends of the bacterial population size spectrum. Nat Rev Microbiol 2014; 12:841-50. [DOI: 10.1038/nrmicro3331] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
313
|
Rengefors K, Logares R, Laybourn-Parry J, Gast RJ. Evidence of concurrent local adaptation and high phenotypic plasticity in a polar microeukaryote. Environ Microbiol 2014; 17:1510-9. [PMID: 25041758 DOI: 10.1111/1462-2920.12571] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 07/10/2014] [Indexed: 11/29/2022]
Abstract
Here we investigated whether there is evidence of local adaptation in strains of an ancestrally marine dinoflagellate to the lacustrine environment they now inhabit (optimal genotypes) and/or if they have evolved phenotypic plasticity (a range of phenotypes). Eleven strains of Polarella glacialis were isolated and cultured from three different environments: the polar seas, a hyposaline and a hypersaline Antarctic lake. Local adaptation was tested by comparing growth rates of lacustrine and marine strains at their own and reciprocal site conditions. To determine phenotypic plasticity, we measured the reaction norm for salinity. We found evidence of both, limited local adaptation and higher phenotypic plasticity in lacustrine strains when compared with marine ancestors. At extreme high salinities, local lake strains outperformed other strains, and at extreme low salinities, strains from the hyposaline lake outperformed all other strains. The data suggest that lake populations may have evolved higher phenotypic plasticity in the lake habitats compared with the sea, presumably due to the high temporal variability in salinity in the lacustrine systems. Moreover, the interval of salinity tolerance differed between strains from the hyposaline and hypersaline lakes, indicating local adaptation promoted by different salinity.
Collapse
Affiliation(s)
- Karin Rengefors
- Department of Biology, Lund University, Lund, SE-22362, Sweden
| | | | | | | |
Collapse
|
314
|
The relative ages of eukaryotes and akaryotes. J Mol Evol 2014; 79:228-39. [PMID: 25179144 DOI: 10.1007/s00239-014-9643-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 08/18/2014] [Indexed: 12/22/2022]
Abstract
The Last Eukaryote Common Ancestor (LECA) appears to have the genetics required for meiosis, mitosis, nucleus and nuclear substructures, an exon/intron gene structure, spliceosomes, many centres of DNA replication, etc. (and including mitochondria). Most of these features are not generally explained by models for the origin of the Eukaryotic cell based on the fusion of an Archeon and a Bacterium. We find that the term 'prokaryote' is ambiguous and the non-phylogenetic term akaryote should be used in its place because we do not yet know the direction of evolution between eukaryotes and akaryotes. We use the term 'protoeukaryote' for the hypothetical stem group ancestral eukaryote that took up a bacterium as an endosymbiont that formed the mitochondrion. It is easier to make detailed models with a eukaryote to an akaryote transition, rather than vice versa. So we really are at a phylogenetic impasse in not being confident about the direction of change between eukaryotes and akaryotes.
Collapse
|
315
|
Abstract
MOTIVATION Single-cell DNA sequencing is necessary for examining genetic variation at the cellular level, which remains hidden in bulk sequencing experiments. But because they begin with such small amounts of starting material, the amount of information that is obtained from single-cell sequencing experiment is highly sensitive to the choice of protocol employed and variability in library preparation. In particular, the fraction of the genome represented in single-cell sequencing libraries exhibits extreme variability due to quantitative biases in amplification and loss of genetic material. RESULTS We propose a method to predict the genome coverage of a deep sequencing experiment using information from an initial shallow sequencing experiment mapped to a reference genome. The observed coverage statistics are used in a non-parametric empirical Bayes Poisson model to estimate the gain in coverage from deeper sequencing. This approach allows researchers to know statistical features of deep sequencing experiments without actually sequencing deeply, providing a basis for optimizing and comparing single-cell sequencing protocols or screening libraries. AVAILABILITY AND IMPLEMENTATION The method is available as part of the preseq software package. Source code is available at http://smithlabresearch.org/preseq. CONTACT andrewds@usc.edu SUPPLEMENTARY INFORMATION Supplementary material is available at Bioinformatics online.
Collapse
Affiliation(s)
- Timothy Daley
- Department of Mathematics and Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Andrew D Smith
- Department of Mathematics and Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
316
|
|
317
|
Agha R, Quesada A. Oligopeptides as biomarkers of cyanobacterial subpopulations. Toward an understanding of their biological role. Toxins (Basel) 2014; 6:1929-50. [PMID: 24960202 PMCID: PMC4073138 DOI: 10.3390/toxins6061929] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/09/2014] [Accepted: 06/16/2014] [Indexed: 11/25/2022] Open
Abstract
Cyanobacterial oligopeptides comprise a wide range of bioactive and/or toxic compounds. While current research is strongly focused on exploring new oligopeptide variants and their bioactive properties, the biological role of these compounds remains elusive. Oligopeptides production abilities show a remarkably patchy distribution among conspecific strains. This observation has prompted alternative approaches to unveil their adaptive value, based on the use of cellular oligopeptide compositions as biomarkers of intraspecific subpopulations or chemotypes in freshwater cyanobacteria. Studies addressing the diversity, distribution, and dynamics of chemotypes in natural systems have provided important insights into the structure and ecology of cyanobacterial populations and the adaptive value of oligopeptides. This review presents an overview of the fundamentals of this emerging approach and its most relevant findings, and discusses our current understanding of the role of oligopeptides in the ecology of cyanobacteria.
Collapse
Affiliation(s)
- Ramsy Agha
- Departamento de Biología, Universidad Autónoma de Madrid, C/Darwin, 2, Madrid 28049, Spain.
| | - Antonio Quesada
- Departamento de Biología, Universidad Autónoma de Madrid, C/Darwin, 2, Madrid 28049, Spain.
| |
Collapse
|
318
|
López-Pérez M, Gonzaga A, Ivanova EP, Rodriguez-Valera F. Genomes of Alteromonas australica, a world apart. BMC Genomics 2014; 15:483. [PMID: 24942065 PMCID: PMC4119200 DOI: 10.1186/1471-2164-15-483] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 06/13/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alteromonas is a genus of marine bacteria that is very easy to isolate and grow in the laboratory. There are genomes available of the species Alteromonas macleodii from different locations around the world and an Alteromonas sp. isolated from a sediment in Korea. We have analyzed the genomes of two strains classified by 16S rRNA (>99% similarity) as the recently described species Alteromonas australica, and isolated from opposite ends of the world; A. australica DE170 was isolated in the South Adriatic (Mediterranean) at 1000 m depth while A. australica H17T was isolated from a sea water sample collected in St Kilda Beach, Tasman Sea. RESULTS Although these two strains belong to a clearly different species from A. macleodii, the overall synteny is well preserved and the flexible genomic islands seem to code for equivalent functions and be located at similar positions. Actually the genomes of all the Alteromonas species known to date seem to preserve synteny quite well with the only exception of the sediment isolate SN2. Among the specific metabolic features found for the A. australica isolates there is the degradation of xylan and production of cellulose as extracellular polymeric substance by DE170 or the potential ethanol/methanol degradation by H17T. CONCLUSIONS The genomes of the two A. australica isolates are not more different than those of strains of A. macleodii isolated from the same sample. Actually the recruitment from metagenomes indicates that all the available genomes are found in most tropical-temperate marine samples analyzed and that they live in consortia of several species and multiple clones within each. Overall the hydrolytic activities of the Alteromonas genus as a whole are impressive and fit with its known capabilities to exploit sudden inputs of organic matter in their environment.
Collapse
Affiliation(s)
| | | | | | - Francisco Rodriguez-Valera
- División de Microbiología, Evolutionary Genomics Group, Universidad Miguel Hernández, Apartado 18, San Juan, 03550 Alicante, Spain.
| |
Collapse
|
319
|
Affiliation(s)
- Chris Bowler
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR8197, 75005 Paris, France
| | | |
Collapse
|
320
|
Seymour JR. A sea of microbes: the diversity and activity of marine microorganisms. MICROBIOLOGY AUSTRALIA 2014. [DOI: 10.1071/ma14060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|