301
|
Affiliation(s)
- Christine K. Payne
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
302
|
Rand LN, Ranville JF. Characteristics and Stability of Incidental Iron Oxide Nanoparticles during Remediation of a Mining-Impacted Stream. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:11214-11222. [PMID: 31448904 DOI: 10.1021/acs.est.9b03036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Acid mine drainage (AMD) produces nanoparticulate Fe oxides and sorbed toxic metals, such as Cu and Zn. As an indirect product of human activity, these Fe oxides can be classified as incidental nanoparticles (INPs) and their colloidal aggregates. Research in nanoparticle fate and transport has advanced with the development of single particle inductively coupled plasma-mass spectrometry (spICP-MS), but AMD INPs have received little attention. We examined the characteristics and abundance of Fe oxide INPs in an AMD-impacted stream over the first 6 months of remediation. Fe and Cu INP concentrations were approximately 107 and 105 particles mL-1, before and after treatment, respectively. Overall, ∼4 Cu-containing INPs were counted for every 100 Fe-containing INPs. We also studied surface chemistry changes during the treatment period using hematite, a model Fe INP, suspended in filtered field waters. Changes in zeta potential and INP size, measured by dynamic light scattering, support that the contaminated stream chemistry (low pH, high ionic strength) promoted rapid aggregation while improved water quality favored stability. However, the water chemistry and INP stability during snowmelt were additionally impacted by electrolyte dilution, the addition of dissolved organic matter, and physical scouring. By linking field measurements to laboratory experiments, this work explores the effects of surface chemistry on AMD-generated INP behavior before and during remediation in a hydrologically dynamic alpine stream. To our knowledge, this is the first investigation of remediation effects on AMD INPs and the first use of spICP-MS as a technique to measure them.
Collapse
Affiliation(s)
- Logan N Rand
- Department of Chemistry , Colorado School of Mines , 1500 Illinois St. , Golden , Colorado 80401 , United States
| | - James F Ranville
- Department of Chemistry , Colorado School of Mines , 1500 Illinois St. , Golden , Colorado 80401 , United States
| |
Collapse
|
303
|
Huang X, Chen Y, Walter E, Zong M, Wang Y, Zhang X, Qafoku O, Wang Z, Rosso KM. Facet-Specific Photocatalytic Degradation of Organics by Heterogeneous Fenton Chemistry on Hematite Nanoparticles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10197-10207. [PMID: 31397154 DOI: 10.1021/acs.est.9b02946] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Hematite nanoparticles are abundant in the photic zone of aquatic environments, where they play a prominent role in photocatalytic transformations of bound organics. Here, we examine the photocatalytic degradation of rhodamine B by visible light using two different structurally well-defined hematite nanoparticle morphologies. In addition to detailed solid characterization and aqueous kinetics measurements, we also exploit species-selective scavengers in electron paramagnetic resonance spectroscopy to sequester specific reaction channels and thereby assess their impact. The photodegradation rates for nanoplates dominated by {001} facets and nanocubes dominated by {012} facets were 0.13 and 0.7 h-1, respectively, and the turnover frequencies for the active sites on {001} and {012} were 7.89 × 10-3 and 3.07× 10-3 s-1, yielding apparent activation energies of 17.13 and 24.94 kcal/mol within the energetic span model, respectively. Facet-specific differences appear to be directly not linked with the simple aerial cation site density but instead with their extent of undercoordination. By establishing this linkage, the findings lay a foundation for predicting the photocatalytic degradation efficiency for the myriad of possible hematite nanoparticle morphologies and more broadly help unveil key reactions at the interface that may govern photocatalytic organic transformations in natural and engineered aquatic environments.
Collapse
Affiliation(s)
- Xiaopeng Huang
- Physical and Computational Sciences Directorate , Pacific Northwest National Laboratory , P.O. Box 999, Richland , Washington 99352 , United States
| | - Ying Chen
- Physical and Computational Sciences Directorate , Pacific Northwest National Laboratory , P.O. Box 999, Richland , Washington 99352 , United States
| | - Eric Walter
- Physical and Computational Sciences Directorate , Pacific Northwest National Laboratory , P.O. Box 999, Richland , Washington 99352 , United States
| | - Meirong Zong
- Physical and Computational Sciences Directorate , Pacific Northwest National Laboratory , P.O. Box 999, Richland , Washington 99352 , United States
| | - Yang Wang
- Physical and Computational Sciences Directorate , Pacific Northwest National Laboratory , P.O. Box 999, Richland , Washington 99352 , United States
| | - Xin Zhang
- Physical and Computational Sciences Directorate , Pacific Northwest National Laboratory , P.O. Box 999, Richland , Washington 99352 , United States
| | - Odeta Qafoku
- Physical and Computational Sciences Directorate , Pacific Northwest National Laboratory , P.O. Box 999, Richland , Washington 99352 , United States
| | - Zheming Wang
- Physical and Computational Sciences Directorate , Pacific Northwest National Laboratory , P.O. Box 999, Richland , Washington 99352 , United States
| | - Kevin M Rosso
- Physical and Computational Sciences Directorate , Pacific Northwest National Laboratory , P.O. Box 999, Richland , Washington 99352 , United States
| |
Collapse
|
304
|
Coman V, Oprea I, Leopold LF, Vodnar DC, Coman C. Soybean Interaction with Engineered Nanomaterials: A Literature Review of Recent Data. NANOMATERIALS 2019; 9:nano9091248. [PMID: 31484310 PMCID: PMC6780927 DOI: 10.3390/nano9091248] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/26/2019] [Accepted: 09/02/2019] [Indexed: 01/07/2023]
Abstract
With a continuous increase in the production and use in everyday life applications of engineered nanomaterials, concerns have appeared in the past decades related to their possible environmental toxicity and impact on edible plants (and therefore, upon human health). Soybean is one of the most commercially-important crop plants, and a perfect model for nanomaterials accumulation studies, due to its high biomass production and ease of cultivation. In this review, we aim to summarize the most recent research data concerning the impact of engineered nanomaterials on the soya bean, covering both inorganic (metal and metal-oxide nanoparticles) and organic (carbon-based) nanomaterials. The interactions between soybean plants and engineered nanomaterials are discussed in terms of positive and negative impacts on growth and production, metabolism and influences on the root-associated microbiota. Current data clearly suggests that under specific conditions, nanomaterials can negatively influence the development and metabolism of soybean plants. Moreover, in some cases, a possible risk of trophic transfer and transgenerational impact of engineered nanomaterials are suggested. Therefore, comprehensive risk-assessment studies should be carried out prior to any mass productions of potentially hazardous materials.
Collapse
Affiliation(s)
- Vasile Coman
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania.
| | - Ioana Oprea
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania.
| | - Loredana Florina Leopold
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania.
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania.
| | - Dan Cristian Vodnar
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania.
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania.
| | - Cristina Coman
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania.
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania.
| |
Collapse
|
305
|
Cao X, DeLoid GM, Bitounis D, De La Torre-Roche R, White JC, Zhang Z, Ho CG, Ng KW, Eitzer BD, Demokritou P. Co-exposure to the food additives SiO 2 (E551) or TiO 2 (E171) and the pesticide boscalid increases cytotoxicity and bioavailability of the pesticide in a tri-culture small intestinal epithelium model: Potential health implications. ENVIRONMENTAL SCIENCE. NANO 2019; 6:2786-2800. [PMID: 32133147 PMCID: PMC7055717 DOI: 10.1039/c9en00676a] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Many toxicity investigations have evaluated the potential health risks of ingested engineered nanomaterials (iENMs); however, few have addressed the potential combined effects of iENMs and other toxic compounds (e.g. pesticides) in food. To address this knowledge gap, we investigated the effects of two widely used, partly nanoscale, engineered particulate food additives, TiO2 (E171) and SiO2 (E551), on the cytotoxicity and cellular uptake and translocation of the pesticide boscalid. Fasting food model (phosphate buffer) containing iENM (1% w/w), boscalid (10 or 150 ppm), or both, was processed using a simulated in vitro oral-gastric-small intestinal digestion system. The resulting small intestinal digesta was applied to an in vitro tri-culture small intestinal epithelium model, and effects on cell layer integrity, viability, cytotoxicity and production of reactive oxygen species (ROS) were assessed. Boscalid uptake and translocation was also quantified by LC/MS. Cytotoxicity and ROS production in cells exposed to combined iENM and boscalid were greater than in cells exposed to either iENM or boscalid alone. More importantly, translocation of boscalid across the tri-culture cellular layer was increased by 20% and 30% in the presence of TiO2 and SiO2, respectively. One possible mechanism for this increase is diminished epithelial cell health, as indicated by the elevated oxidative stress and cytotoxicity observed in co-exposed cells. In addition, analysis of boscalid in digesta supernatants revealed 16% and 30% more boscalid in supernatants from samples containing TiO2 and SiO2, respectively, suggesting that displacement of boscalid from flocculated digestive proteins by iENMs may also contribute to the increased translocation.
Collapse
Affiliation(s)
- Xiaoqiong Cao
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Glen M. DeLoid
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Dimitrios Bitounis
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Roberto De La Torre-Roche
- Department of Analytical Chemistry, Connecticut Agricultural Experiment Station, New Haven, CT 06504, USA
| | - Jason C. White
- Department of Analytical Chemistry, Connecticut Agricultural Experiment Station, New Haven, CT 06504, USA
| | - Zhenyuan Zhang
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Chin Guan Ho
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798
| | - Kee Woei Ng
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798
- Environmental Chemistry and Materials Centre, Nanyang Environment & Water Research Institute, CleanTech One, Singapore 637141
| | - Brian D. Eitzer
- Department of Analytical Chemistry, Connecticut Agricultural Experiment Station, New Haven, CT 06504, USA
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798
| |
Collapse
|
306
|
Nyangiwe NN, Ouma CNM. Modelling the adsorption of natural organic matter on Ag (111) surface: Insights from dispersion corrected density functional theory calculations. J Mol Graph Model 2019; 92:313-319. [PMID: 31442937 DOI: 10.1016/j.jmgm.2019.08.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/01/2019] [Accepted: 08/15/2019] [Indexed: 11/15/2022]
Abstract
Understanding the nature of the interactions between natural organic matter (NOM) and engineered nanoparticles (ENPs) is of crucial importance in understanding the fate and behaviour of engineered nanoparticles in the environment. In the present study, dispersion-corrected density functional theory (DFT-D) has been used to elucidate the molecule-surface interactions of higher molecular weight (HMW) NOM ambiguously present in the aquatic systems, namely: humic acid (HA), fulvic acid (FA) and protein Cryptochrome (Cry) on Ag (111) surface. Investigations were done in the gas phase and to mimic real biological environment, water has been used as a solvent within the conductor-like screening model (COSMO) framework. The calculated adsorption energies for HA, FA and Cry on Ag (111) surface were -27.90 (-18.45) kcal/mol, -38.28 (-18.68) kcal/mol and -143.89 (-150.82) kcal/mol respectively in the gas (solvent) phase and the equilibrium distances between the surface and HA, FA and Cry molecules were 1.87 (2.18) Å, 2.31(2.31) Å and 1.91 (1.70) Å respectively in the gas (solvent) phase. In both gas and water phase Cry showed stronger adsorption which means it has a stronger interaction with Ag (111) surface compared to HA and FA. The results for adsorption energy, solvation energy, isosurface of charge deformation difference, total density of state and partial density of states indicated that indeed these chosen adsorbates do interact with the surface and are favourable on Ag (111) surface. In terms of charge transfer, one of many calculated descriptors in this study, electrophilicity (ω) concur that charge transfer will take place from the adsorbates to Ag (111) surface.
Collapse
Affiliation(s)
- N N Nyangiwe
- Natural Resources and the Environment, Council for Scientific and Industrial Research (CSIR), P O BOX 395, Pretoria, 0001, South Africa; University of Pretoria, Department of Chemical Engineering, Private Bag X 20, Hatfield, 0028, South Africa.
| | - C N M Ouma
- Natural Resources and the Environment, Council for Scientific and Industrial Research (CSIR), P O BOX 395, Pretoria, 0001, South Africa; HySA-Infrastructure, North-West University, Faculty of Engineering, Private Bag X6001, Potchefstroom, 2520, South Africa
| |
Collapse
|
307
|
Calderón-Garcidueñas L, González-Maciel A, Kulesza RJ, González-González LO, Reynoso-Robles R, Mukherjee PS, Torres-Jardón R. Air Pollution, Combustion and Friction Derived Nanoparticles, and Alzheimer’s Disease in Urban Children and Young Adults. J Alzheimers Dis 2019; 70:343-360. [DOI: 10.3233/jad-190331] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | | | - Randy J. Kulesza
- Department of Anatomy, Lake Erie College of Osteopathic Medicine, Erie, PA, USA
| | | | | | | | - Ricardo Torres-Jardón
- Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, UNAM, Mexico City, Mexico
| |
Collapse
|
308
|
Abstract
In the race to enhance agricultural productivity, irrigation will become more dependent on poorly characterized and virtually unmonitored sources of water. Increased use of irrigation water has led to impaired water and soil quality in many areas. Historically, soil salinization and reduced crop productivity have been the primary focus of irrigation water quality. Recently, there is increasing evidence for the occurrence of geogenic contaminants in water. The appearance of trace elements and an increase in the use of wastewater has highlighted the vulnerability and complexities of the composition of irrigation water and its role in ensuring proper crop growth, and long-term food quality. Analytical capabilities of measuring vanishingly small concentrations of biologically-active organic contaminants, including steroid hormones, plasticizers, pharmaceuticals, and personal care products, in a variety of irrigation water sources provide the means to evaluate uptake and occurrence in crops but do not resolve questions related to food safety or human health effects. Natural and synthetic nanoparticles are now known to occur in many water sources, potentially altering plant growth and food standard. The rapidly changing quality of irrigation water urgently needs closer attention to understand and predict long-term effects on soils and food crops in an increasingly fresh-water stressed world.
Collapse
|
309
|
Nanocrystalline Principal Slip Zones and Their Role in Controlling Crustal Fault Rheology. MINERALS 2019. [DOI: 10.3390/min9060328] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Principal slip zones (PSZs) are narrow (<10 cm) bands of localized shear deformation that occur in the cores of upper-crustal fault zones where they accommodate the bulk of fault displacement. Natural and experimentally-formed PSZs consistently show the presence of nanocrystallites in the <100 nm size range. Despite the presumed importance of such nanocrystalline (NC) fault rock in controlling fault mechanical behavior, their prevalence and potential role in controlling natural earthquake cycles remains insufficiently investigated. In this contribution, we summarize the physical properties of NC materials that may have a profound effect on fault rheology, and we review the structural characteristics of NC PSZs observed in natural faults and in experiments. Numerous literature reports show that such zones form in a wide range of faulted rock types, under a wide range of conditions pertaining to seismic and a-seismic upper-crustal fault slip, and frequently show an internal crystallographic preferred orientation (CPO) and partial amorphization, as well as forming glossy or “mirror-like” slip surfaces. Given the widespread occurrence of NC PSZs in upper-crustal faults, we suggest that they are of general significance. Specifically, the generally high rates of (diffusion) creep in NC fault rock may play a key role in controlling the depth limits to the seismogenic zone.
Collapse
|
310
|
Gu Z, Song W, Liu S, Li B, Plant LD, Meng XY. Potential blockade of the human voltage-dependent anion channel by MoS 2 nanoflakes. Phys Chem Chem Phys 2019; 21:9520-9530. [PMID: 31020281 DOI: 10.1039/c9cp00195f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Despite significant interest in molybdenum disulfide (MoS2) nanomaterials, particularly in biomedicine, their biological effects have been understudied. Here, we explored the effect of MoS2 nanoflakes on the ubiquitous mitochondrial porin voltage-dependent anion channel (VDAC1), using a combined computational and functional approach. All-atomic molecular dynamics simulations suggest that MoS2 nanoflakes make specific contact interactions with human VDAC1. We show that the initial contacts between hVDAC1 and the nanoflake are hydrophobic but are subsequently enhanced by a complex interplay of van der Waals (vdW), hydrophobic and electrostatic interactions in the equilibrium state. Moreover, the MoS2 nanoflake can insert into the lumen of the hVDAC1 pore. Free-energy calculations computed by the potential of mean force (PMF) verify that the blocked configuration of the MoS2-hVDAC1 complex is more energetically favorable than the non-blocked binding mode. Consistent with these predictions, we showed that MoS2 depolarizes the mitochondrial membrane potential (Ψm) and causes a decrease in the viability of mammalian tissue culture cells. These findings might shed new light on the potential biological effect of MoS2 nanomaterials.
Collapse
Affiliation(s)
- Zonglin Gu
- Institute of Quantitative Biology and Medicine, SRMP and RAD-X, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China.
| | | | | | | | | | | |
Collapse
|