301
|
Schröder N, Schaffrath A, Welter JA, Putzka T, Griep A, Ziegler P, Brandt E, Samer S, Heneka MT, Kaddatz H, Zhan J, Kipp E, Pufe T, Tauber SC, Kipp M, Brandenburg LO. Inhibition of formyl peptide receptors improves the outcome in a mouse model of Alzheimer disease. J Neuroinflammation 2020; 17:131. [PMID: 32331524 PMCID: PMC7181500 DOI: 10.1186/s12974-020-01816-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/16/2020] [Indexed: 12/11/2022] Open
Abstract
Background An important hallmark of Alzheimer’s disease (AD) is the increase of Aβ1-42 burden and its accumulation to senile plaques, leading the reactive gliosis and neurodegeneration. The modulation of glia cell function represents an attractive therapeutic strategy, but is currently limited by an incomplete understanding of its relevance for AD. The chemotactic G-protein coupled formyl peptide receptor (FPR), which is known to modulate Aβ1-42 uptake and signal transduction, might be one candidate molecule regulating glia function in AD. Here, we investigate whether the modulation of FPR exerts beneficial effects in an AD preclinical model. Methods To address this question, APP/PS1 double-transgenic AD mice were treated for 20 weeks with either the pro-inflammatory FPR agonist fMLF, the FPR1/2 antagonist Boc2 or the anti-inflammatory FPR2 agonist Ac2-26. Spatial learning and memory were evaluated using a Morris water maze test. Immunohistological staining, gene expression studies, and flow cytometry analyses were performed to study neuronal loss, gliosis, and Aß-load in the hippocampus and cortex, respectively. Results FPR antagonism by Boc2-treatment significantly improved spatial memory performance, reduced neuronal pathology, induced the expression of homeostatic growth factors, and ameliorated microglia, but not astrocyte, reactivity. Furthermore, the elevated levels of amyloid plaques in the hippocampus were reduced by Boc2-treatment, presumably by an induction of amyloid degradation. Conclusions We suggest that the modulation of FPR signaling cascades might be considered as a promising therapeutic approach for alleviating the cognitive deficits associated with early AD. Additional studies are now needed to address the downstream effectors as well as the safety profile of Boc2.
Collapse
Affiliation(s)
- Nicole Schröder
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, D-18057, Rostock, Germany.,Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Anja Schaffrath
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, D-18057, Rostock, Germany.,Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Josua A Welter
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, D-18057, Rostock, Germany.,Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Tim Putzka
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, D-18057, Rostock, Germany.,Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Angelika Griep
- Department of Neurodegenerative Diseases and Gerontopsychiatry, University of Bonn, Bonn, Germany
| | - Patrick Ziegler
- Institute for Occupational and Social Medicine, RWTH Aachen University, Aachen, Germany
| | - Elisa Brandt
- Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Sebastian Samer
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, D-18057, Rostock, Germany.,Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Michael T Heneka
- Department of Neurodegenerative Diseases and Gerontopsychiatry, University of Bonn, Bonn, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Hannes Kaddatz
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, D-18057, Rostock, Germany
| | - Jiangshan Zhan
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, D-18057, Rostock, Germany
| | - Eugenia Kipp
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, D-18057, Rostock, Germany.,Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Thomas Pufe
- Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Simone C Tauber
- Department of Neurology, RWTH University Hospital Aachen, Aachen, Germany
| | - Markus Kipp
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, D-18057, Rostock, Germany
| | - Lars-Ove Brandenburg
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, D-18057, Rostock, Germany. .,Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
302
|
Naganawa S, Ito R, Kato Y, Kawai H, Taoka T, Yoshida T, Maruyama K, Murata K, Körzdörfer G, Pfeuffer J, Nittka M, Sone M. Intracranial Distribution of Intravenously Administered Gadolinium-based Contrast Agent over a Period of 24 Hours: Evaluation with 3D-real IR Imaging and MR Fingerprinting. Magn Reson Med Sci 2020; 20:91-98. [PMID: 32295977 PMCID: PMC7952208 DOI: 10.2463/mrms.mp.2020-0030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PURPOSE To evaluate the feasibility for the detection of slight contrast effects after intravenous administration of single dose gadolinium-based contrast agent (IV-SD-GBCA), the time course of the GBCA distribution up to 24 h was examined in various fluid spaces and brain parenchyma using 3D-real IR imaging and MR fingerprinting (MRF). METHODS Twenty-four patients with a suspicion of endolymphatic hydrops were scanned at pre-administration and at 10 min, 4 and 24 h post-IV-SD-GBCA. 3D-real IR images and MRF at the level of the internal auditory canal were obtained. The signal intensity on the 3D-real IR image of the cerebrospinal fluid (CSF) in the cerebellopontine angle cistern (CPA), Sylvian fissure (Syl), lateral ventricle (LV), and cochlear perilymph (CPL) was measured. The T1 and T2 values of cerebellar gray (GM) and white matter (WM) were measured using MRF. Each averaged value at the various time points was compared using an analysis of variance. RESULTS The signal intensity on the 3D-real IR image in each CSF region peaked at 4 h, and was decreased significantly by 24 h (P< 0.05). All patients had a maximum signal intensity at 4 h in the CPA, and Syl. The mean CPL signal intensity peaked at 4 h and decreased significantly by 24 h (P < 0.05). All patients but two had a maximum signal intensity at 4 h. Regarding the T1 value in the cerebellar WM and GM, the T1 value at 10 min post-IV-GBCA was significantly decreased compared to the pre-contrast scan, but no significant difference was observed at the other time points. There was no significant change in T2 in the gray or white matter at any of the time points. CONCLUSION Time course of GBCA after IV-SD-GBCA could be evaluated by 3D-real IR imaging in CSF spaces and in the brain by MRF.
Collapse
Affiliation(s)
- Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine
| | - Rintaro Ito
- Department of Radiology, Nagoya University Graduate School of Medicine
| | - Yutaka Kato
- Department of Radiology, Nagoya University Graduate School of Medicine
| | - Hisashi Kawai
- Department of Radiology, Nagoya University Graduate School of Medicine
| | - Toshiaki Taoka
- Department of Radiology, Nagoya University Graduate School of Medicine
| | - Tadao Yoshida
- Department of Otorhinolaryngology, Nagoya University Graduate School of Medicine
| | | | | | | | | | | | - Michihiko Sone
- Department of Otorhinolaryngology, Nagoya University Graduate School of Medicine
| |
Collapse
|
303
|
Bhalerao A, Sivandzade F, Archie SR, Chowdhury EA, Noorani B, Cucullo L. In vitro modeling of the neurovascular unit: advances in the field. Fluids Barriers CNS 2020; 17:22. [PMID: 32178700 PMCID: PMC7077137 DOI: 10.1186/s12987-020-00183-7] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
The blood–brain barrier (BBB) is a fundamental component of the central nervous system. Its functional and structural integrity is vital in maintaining the homeostasis of the brain microenvironment. On the other hand, the BBB is also a major hindering obstacle for the delivery of effective therapies to treat disorders of the Central Nervous System (CNS). Over time, various model systems have been established to simulate the complexities of the BBB. The development of realistic in vitro BBB models that accurately mimic the physiological characteristics of the brain microcapillaries in situ is of fundamental importance not only in CNS drug discovery but also in translational research. Successful modeling of the Neurovascular Unit (NVU) would provide an invaluable tool that would aid in dissecting out the pathological factors, mechanisms of action, and corresponding targets prodromal to the onset of CNS disorders. The field of BBB in vitro modeling has seen many fundamental changes in the last few years with the introduction of novel tools and methods to improve existing models and enable new ones. The development of CNS organoids, organ-on-chip, spheroids, 3D printed microfluidics, and other innovative technologies have the potential to advance the field of BBB and NVU modeling. Therefore, in this review, summarize the advances and progress in the design and application of functional in vitro BBB platforms with a focus on rapidly advancing technologies.
Collapse
Affiliation(s)
- Aditya Bhalerao
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S. Coulter Street, Amarillo, TX, 79106, USA
| | - Farzane Sivandzade
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S. Coulter Street, Amarillo, TX, 79106, USA
| | - Sabrina Rahman Archie
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S. Coulter Street, Amarillo, TX, 79106, USA
| | - Ekram Ahmed Chowdhury
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S. Coulter Street, Amarillo, TX, 79106, USA
| | - Behnam Noorani
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S. Coulter Street, Amarillo, TX, 79106, USA
| | - Luca Cucullo
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S. Coulter Street, Amarillo, TX, 79106, USA. .,Center for Blood-Brain Barrier Research, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA.
| |
Collapse
|
304
|
Alzheimer's Disease Diagnosis Using Misfolding Proteins in Blood. Dement Neurocogn Disord 2020; 19:1-18. [PMID: 32174051 PMCID: PMC7105719 DOI: 10.12779/dnd.2020.19.1.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/02/2019] [Accepted: 12/09/2019] [Indexed: 01/06/2023] Open
Abstract
Alzheimer's disease (AD) is pathologically characterized by a long progressive phase of neuronal changes, including accumulation of extracellular amyloid-β (Aβ) and intracellular neurofibrillary tangles, before the onset of observable symptoms. Many efforts have been made to develop a blood-based diagnostic method for AD by incorporating Aβ and tau as plasma biomarkers. As blood tests have the advantages of being highly accessible and low cost, clinical implementation of AD blood tests would provide preventative screening to presymptomatic individuals, facilitating early identification of AD patients and, thus, treatment development in clinical research. However, the low concentration of AD biomarkers in the plasma has posed difficulties for accurate detection, hindering the development of a reliable blood test. In this review, we introduce three AD blood test technologies emerging in South Korea, which have distinctive methods of heightening detection sensitivity of specific plasma biomarkers. We discuss in detail the multimer detection system, the self-standard analysis of Aβ biomarkers quantified by interdigitated microelectrodes, and a biomarker ratio analysis comprising Aβ and tau.
Collapse
|
305
|
Hui L, Soliman ML, Geiger NH, Miller NM, Afghah Z, Lakpa KL, Chen X, Geiger JD. Acidifying Endolysosomes Prevented Low-Density Lipoprotein-Induced Amyloidogenesis. J Alzheimers Dis 2020; 67:393-410. [PMID: 30594929 DOI: 10.3233/jad-180941] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cholesterol dyshomeostasis has been linked to the pathogenesis of sporadic Alzheimer's disease (AD). In furthering the understanding of mechanisms by which increased levels of circulating cholesterol augments the risk of developing sporadic AD, others and we have reported that low-density lipoprotein (LDL) enters brain parenchyma by disrupting the blood-brain barrier and that endolysosome de-acidification plays a role in LDL-induced amyloidogenesis in neurons. Here, we tested the hypothesis that endolysosome de-acidification was central to amyloid-β (Aβ) generation and that acidifying endolysosomes protects against LDL-induced increases in Aβ levels in neurons. We demonstrated that LDL, but not HDL, de-acidified endolysosomes and increased intraneuronal and secreted levels of Aβ. ML-SA1, an agonist of endolysosome-resident TRPML1 channels, acidified endolysosomes, and TRPML1 knockdown attenuated ML-SA1-induced endolysosome acidification. ML-SA1 blocked LDL-induced increases in intraneuronal and secreted levels of Aβ as well as Aβ accumulation in endolysosomes, prevented BACE1 accumulation in endolysosomes, and decreased BACE1 activity levels. LDL downregulated TRPML1 protein levels, and TRPML1 knockdown worsens LDL-induced increases in Aβ. Our findings suggest that endolysosome acidification by activating TRPML1 may represent a protective strategy against sporadic AD.
Collapse
Affiliation(s)
- Liang Hui
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Mahmoud L Soliman
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Nicholas H Geiger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Nicole M Miller
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Zahra Afghah
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Koffi L Lakpa
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Xuesong Chen
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Jonathan D Geiger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| |
Collapse
|
306
|
Ulanova M, Poljak A, Wen W, Bongers A, Gloag L, Gooding J, Tilley R, Sachdev P, Braidy N. Nanoparticles as contrast agents for the diagnosis of Alzheimer’s disease: a systematic review. Nanomedicine (Lond) 2020; 15:725-743. [DOI: 10.2217/nnm-2019-0316] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Nanoparticle (NP)-based magnetic contrast agents have opened the potential for MRI to be used for early diagnosis of Alzheimer’s disease (AD). This article aims to review the current progress of research in this field. A comprehensive literature search was performed based on PubMed, Medline, EMBASE, PsychINFO and Scopus databases using the following terms: ‘Alzheimer’s disease’ AND ‘nanoparticles’ AND ‘Magnetic Resonance Imaging.’ 33 studies were included that described the development and utility of various NPs for AD imaging, including their coating, functionalization, MRI relaxivity, toxicity and bioavailability. NPs show immense promise for neuroimaging, due to superior relaxivity and biocompatibility compared with currently available imaging agents. Consistent reporting is imperative for further progress in this field.
Collapse
Affiliation(s)
- Marina Ulanova
- Centre for Healthy Brain Ageing, School of Psychiatry, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Anne Poljak
- Centre for Healthy Brain Ageing, School of Psychiatry, The University of New South Wales, Sydney, NSW, 2052, Australia
- Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW, 2052, Australia
- School of Medical Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Wei Wen
- Centre for Healthy Brain Ageing, School of Psychiatry, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Andre Bongers
- Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW, 2052, Australia
- Biological Resources Imaging Laboratory, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Lucy Gloag
- School of Chemistry, The University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Justin Gooding
- School of Chemistry, The University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW, 2052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Richard Tilley
- Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW, 2052, Australia
- School of Chemistry, The University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Perminder Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry, The University of New South Wales, Sydney, NSW, 2052, Australia
- Neuropsychiatric Institute, Euroa Centre, Prince of Wales Hospital, Sydney, NSW, 2052, Australia
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
307
|
Abstract
Although Alzheimer's disease (AD) was described over a century ago, there are no effective approaches to its prevention and treatment. Such a slow progress is explained, at least in part, by our incomplete understanding of the mechanisms underlying the pathogenesis of AD. Here, I champion a hypothesis whereby AD is initiated on a disruption of the blood-brain barrier (BBB) caused by either genetic or non-genetic risk factors. The BBB disruption leads to an autoimmune response against pyramidal neurons located in the allo- and neocortical structures involved in memory formation and storage. The response caused by the adaptive immune system is not strong enough to directly kill neurons but may be sufficient to make them selectively vulnerable to neurofibrillary pathology. This hypothesis is based on the recent data showing that memory formation is associated with epigenetic chromatin modifications and, therefore, may be accompanied by expression of memory-specific proteins recognized by the immune system as "non-self" antigens. The autoimmune hypothesis is testable, and I discuss potential ways for its experimental and clinical verification. If confirmed, this hypothesis can radically change therapeutic approaches to AD prevention and treatment.
Collapse
Affiliation(s)
- Yuri I Arshavsky
- BioCircuits Institute, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
308
|
Kao YC, Ho PC, Tu YK, Jou IM, Tsai KJ. Lipids and Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21041505. [PMID: 32098382 PMCID: PMC7073164 DOI: 10.3390/ijms21041505] [Citation(s) in RCA: 287] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 12/14/2022] Open
Abstract
Lipids, as the basic component of cell membranes, play an important role in human health as well as brain function. The brain is highly enriched in lipids, and disruption of lipid homeostasis is related to neurologic disorders as well as neurodegenerative diseases such as Alzheimer’s disease (AD). Aging is associated with changes in lipid composition. Alterations of fatty acids at the level of lipid rafts and cerebral lipid peroxidation were found in the early stage of AD. Genetic and environmental factors such as apolipoprotein and lipid transporter carrying status and dietary lipid content are associated with AD. Insight into the connection between lipids and AD is crucial to unraveling the metabolic aspects of this puzzling disease. Recent advances in lipid analytical methodology have led us to gain an in-depth understanding on lipids. As a result, lipidomics have becoming a hot topic of investigation in AD, in order to find biomarkers for disease prediction, diagnosis, and prevention, with the ultimate goal of discovering novel therapeutics.
Collapse
Affiliation(s)
- Yu-Chia Kao
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (Y.-C.K.); (P.-C.H.)
- Department of Pediatrics, E-DA Hospital, Kaohsiung 824, Taiwan
| | - Pei-Chuan Ho
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (Y.-C.K.); (P.-C.H.)
| | - Yuan-Kun Tu
- Department of Orthopedics, E-DA Hospital, Kaohsiung 824, Taiwan; (Y.-K.T.); (I.-M.J.)
| | - I-Ming Jou
- Department of Orthopedics, E-DA Hospital, Kaohsiung 824, Taiwan; (Y.-K.T.); (I.-M.J.)
| | - Kuen-Jer Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (Y.-C.K.); (P.-C.H.)
- Research Center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Correspondence: ; Tel.: +886-6-235-3535-4254; Fax: +886-6-275-8781
| |
Collapse
|
309
|
Abrahamson EE, Ikonomovic MD. Brain injury-induced dysfunction of the blood brain barrier as a risk for dementia. Exp Neurol 2020; 328:113257. [PMID: 32092298 DOI: 10.1016/j.expneurol.2020.113257] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/31/2020] [Accepted: 02/20/2020] [Indexed: 02/06/2023]
Abstract
The blood-brain barrier (BBB) is a complex and dynamic physiological interface between brain parenchyma and cerebral vasculature. It is composed of closely interacting cells and signaling molecules that regulate movement of solutes, ions, nutrients, macromolecules, and immune cells into the brain and removal of products of normal and abnormal brain cell metabolism. Dysfunction of multiple components of the BBB occurs in aging, inflammatory diseases, traumatic brain injury (TBI, severe or mild repetitive), and in chronic degenerative dementing disorders for which aging, inflammation, and TBI are considered risk factors. BBB permeability changes after TBI result in leakage of serum proteins, influx of immune cells, perivascular inflammation, as well as impairment of efflux transporter systems and accumulation of aggregation-prone molecules involved in hallmark pathologies of neurodegenerative diseases with dementia. In addition, cerebral vascular dysfunction with persistent alterations in cerebral blood flow and neurovascular coupling contribute to brain ischemia, neuronal degeneration, and synaptic dysfunction. While the idea of TBI as a risk factor for dementia is supported by many shared pathological features, it remains a hypothesis that needs further testing in experimental models and in human studies. The current review focusses on pathological mechanisms shared between TBI and neurodegenerative disorders characterized by accumulation of pathological protein aggregates, such as Alzheimer's disease and chronic traumatic encephalopathy. We discuss critical knowledge gaps in the field that need to be explored to clarify the relationship between TBI and risk for dementia and emphasize the need for longitudinal in vivo studies using imaging and biomarkers of BBB dysfunction in people with single or multiple TBI.
Collapse
Affiliation(s)
- Eric E Abrahamson
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, University of Pittsburgh, Pittsburgh, PA, United States; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Milos D Ikonomovic
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, University of Pittsburgh, Pittsburgh, PA, United States; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
310
|
Klohs J. An Integrated View on Vascular Dysfunction in Alzheimer's Disease. NEURODEGENER DIS 2020; 19:109-127. [PMID: 32062666 DOI: 10.1159/000505625] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/23/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Cerebrovascular disease is a common comorbidity in patients with Alzheimer's disease (AD). It is believed to contribute additively to the cognitive impairment and to lower the threshold for the development of dementia. However, accumulating evidence suggests that dysfunction of the cerebral vasculature and AD neuropathology interact in multiple ways. Vascular processes even proceed AD neuropathology, implicating a causal role in the etiology of AD. Thus, the review aims to provide an integrated view on vascular dysfunction in AD. SUMMARY In AD, the cerebral vasculature undergoes pronounced cellular, morphological and structural changes, which alters regulation of blood flow, vascular fluid dynamics and vessel integrity. Stiffening of central blood vessels lead to transmission of excessive pulsatile energy to the brain microvasculature, causing end-organ damage. Moreover, a dysregulated hemostasis and chronic vascular inflammation further impede vascular function, where its mediators interact synergistically. Changes of the cerebral vasculature are triggered and driven by systemic vascular abnormalities that are part of aging, and which can be accelerated and aggravated by cardiovascular diseases. Key Messages: In AD, the cerebral vasculature is the locus where multiple pathogenic processes converge and contribute to cognitive impairment. Understanding the molecular mechanism and pathophysiology of vascular dysfunction in AD and use of vascular blood-based and imaging biomarker in clinical studies may hold promise for future prevention and therapy of the disease.
Collapse
Affiliation(s)
- Jan Klohs
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland, .,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland,
| |
Collapse
|
311
|
Dickie BR, Parker GJM, Parkes LM. Measuring water exchange across the blood-brain barrier using MRI. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2020; 116:19-39. [PMID: 32130957 DOI: 10.1016/j.pnmrs.2019.09.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/04/2019] [Accepted: 09/09/2019] [Indexed: 05/11/2023]
Abstract
The blood-brain barrier (BBB) regulates the transfer of solutes and essential nutrients into the brain. Growing evidence supports BBB dysfunction in a range of acute and chronic brain diseases, justifying the need for novel research and clinical tools that can non-invasively detect, characterize, and quantify BBB dysfunction in-vivo. Many approaches already exist for measuring BBB dysfunction in man using positron emission tomography and magnetic resonance imaging (e.g. dynamic contrast-enhanced MRI measurements of gadolinium leakage). This review paper focusses on MRI measurements of water exchange across the BBB, which occurs through a wide range of pathways, and is likely to be a highly sensitive marker of BBB dysfunction. Key mathematical models and acquisition methods are discussed for the two main approaches: those that utilize contrast agents to enhance relaxation rate differences between the intravascular and extravascular compartments and so enhance the sensitivity of MRI signals to BBB water exchange, and those that utilize the dynamic properties of arterial spin labelling to first isolate signal from intravascular spins and then estimate the impact of water exchange on the evolving signal. Data from studies in healthy and pathological brain tissue are discussed, in addition to validation studies in rodents.
Collapse
Affiliation(s)
- Ben R Dickie
- Division of Neuroscience and Experimental Psychology, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom.
| | - Geoff J M Parker
- Bioxydyn Limited, Manchester M15 6SZ, United Kingdom; Centre for Medical Image Computing, Department of Computer Science and Department of Neuroinflammation, University College London, London, United Kingdom
| | - Laura M Parkes
- Division of Neuroscience and Experimental Psychology, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom
| |
Collapse
|
312
|
De D, Bhattacharjee P, Das H, Kumar KS, Biswas SC, Bhattacharyya D. Destabilization of β-amyloid aggregates by thrombin derived peptide: plausible role of thrombin in neuroprotection. FEBS J 2020; 287:2386-2413. [PMID: 31747135 DOI: 10.1111/febs.15149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 09/04/2019] [Accepted: 11/19/2019] [Indexed: 01/06/2023]
Abstract
β-amyloid (Aβ) aggregates involved in Alzheimer's disease (AD) are resistant to proteases but could be destabilized by small peptides designed to target specific hydrophobic regions of Aβ that take part in aggregate assembly. Since thrombin and AD are intricately connected, and elastase modulates thrombin activity, elastase-digested thrombin peptides were verified for intervention in the Aβ-aggregation pathway. Intact or elastase-digested thrombin destabilized Aβ fibril, as demonstrated by thioflavin T assay. Peptides were synthesized employing thrombin as a template, of which, a hexapeptide (T3) showed maximum destabilization at 1 µm. ExPASy peptide cutter software coupled with mass spectrometric analysis confirmed the generation of T3 peptide from elastase-digested thrombin. TEM micrographs revealed that 30-day incubation of preformed Aβ fibrils or monomers with T3 resulted in destabilization or inhibition, respectively, leading mostly to particles of 1.74 ± 0.17 nm, which roughly corresponded to Aβ monomer. Surface plasmon resonance employing CM5 chip coupled with Aβ40 mouse monoclonal antibody showed a drop in response when T3 was incubated with Aβ fibrils between 2 and 8 h. 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide and confocal microscopy demonstrated the ability of T3 to rescue neuroblastoma cells from Aβ oligomer-induced cytotoxic damage. Although no [Aβ-T3] adduct could be detected by mass spectrometry, an initial interaction appeared to facilitate the process of destabilization/inhibition of aggregation. T3 was comparable to standard β-sheet breaker peptides, LPFFD and KLVFF in terms of Aβ aggregate destabilization. High hydrophobicity values coupled with recognition and breaking elements make T3 a potential candidate for future therapeutic applications.
Collapse
Affiliation(s)
- Debashree De
- Division of Structural Biology and Bioinformatics, CSIR - Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| | - Payel Bhattacharjee
- Division of Structural Biology and Bioinformatics, CSIR - Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| | - Hrishita Das
- Division of Cell Biology and Physiology, CSIR - Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| | - Karri Suresh Kumar
- Central Instrument Facility, CSIR - Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| | - Subhas Chandra Biswas
- Division of Cell Biology and Physiology, CSIR - Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| | - Debasish Bhattacharyya
- Division of Structural Biology and Bioinformatics, CSIR - Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| |
Collapse
|
313
|
Rensma SP, van Sloten TT, Houben AJ, Köhler S, van Boxtel MP, Berendschot TT, Jansen JF, Verhey FR, Kroon AA, Koster A, Backes WH, Schaper N, Dinant GJ, Schalkwijk CG, Henry RM, Wolfs EM, van Heumen MJ, Schram MT, Stehouwer CD. Microvascular Dysfunction Is Associated With Worse Cognitive Performance. Hypertension 2020; 75:237-245. [DOI: 10.1161/hypertensionaha.119.13023] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Microvascular dysfunction may be associated with worse cognitive performance. Most previous studies did not adjust for important confounders, evaluated only individual measures of microvascular dysfunction, and showed inconsistent results. We evaluated the association between a comprehensive set of measures of microvascular dysfunction and cognitive performance in the population-based Maastricht Study. We used cross-sectional data including 3011 participants (age 59.5±8.2; 48.9% women; 26.5% type 2 diabetes mellitus [oversampled by design]). Measures of microvascular dysfunction included magnetic resonance imaging features of cerebral small vessel disease, plasma biomarkers of microvascular dysfunction, albuminuria, flicker light-induced retinal arteriolar and venular dilation response and heat-induced skin hyperemia. These measures were summarized into a microvascular dysfunction composite score. Cognitive domains assessed were memory, processing speed, and executive function. A cognitive function score was calculated as the sum of the scores on these 3 cognitive domains. The microvascular dysfunction score was associated with a worse cognitive function score (standardized β, −0.087 [95% CI, −0.127 to −0.047]), independent of age, education level, sex, type 2 diabetes mellitus, smoking, alcohol use, hypertension, total/HDL (high-density lipoprotein) cholesterol ratio, triglycerides, lipid-modifying medication, prior cardiovascular disease, depression and plasma biomarkers of low-grade inflammation. The fully adjusted β-coefficient of the association between the microvascular dysfunction score and the cognitive function score was equivalent to 2 (range, 1–3) years of aging for each SD higher microvascular dysfunction score. The microvascular dysfunction score was associated with worse memory and processing speed but not with worse executive function. The present study shows that microvascular dysfunction is associated with worse cognitive performance.
Collapse
Affiliation(s)
- Sytze P. Rensma
- From the CARIM School for Cardiovascular Diseases (S.P.R., T.T.v.S., A.J.H.M.H., A.A.K., N.S., R.M.A.H., M.T.S., C.D.A.S.), Maastricht University Medical Center+, Maastricht, Limburg, the Netherlands
- Department of Internal Medicine (S.P.R., T.T.v.S., A.J.H.M.H., A.A.K., N.S., C.G.S., R.M.A.H., E.M.L.W., M.J.A.v.H., M.T.S., C.D.A.S.), Maastricht University Medical Center+, Maastricht, Limburg, the Netherlands
| | - Thomas T. van Sloten
- From the CARIM School for Cardiovascular Diseases (S.P.R., T.T.v.S., A.J.H.M.H., A.A.K., N.S., R.M.A.H., M.T.S., C.D.A.S.), Maastricht University Medical Center+, Maastricht, Limburg, the Netherlands
- Department of Internal Medicine (S.P.R., T.T.v.S., A.J.H.M.H., A.A.K., N.S., C.G.S., R.M.A.H., E.M.L.W., M.J.A.v.H., M.T.S., C.D.A.S.), Maastricht University Medical Center+, Maastricht, Limburg, the Netherlands
| | - Alfons J.H.M. Houben
- From the CARIM School for Cardiovascular Diseases (S.P.R., T.T.v.S., A.J.H.M.H., A.A.K., N.S., R.M.A.H., M.T.S., C.D.A.S.), Maastricht University Medical Center+, Maastricht, Limburg, the Netherlands
- Department of Internal Medicine (S.P.R., T.T.v.S., A.J.H.M.H., A.A.K., N.S., C.G.S., R.M.A.H., E.M.L.W., M.J.A.v.H., M.T.S., C.D.A.S.), Maastricht University Medical Center+, Maastricht, Limburg, the Netherlands
| | - Sebastian Köhler
- MHeNs School for Mental Health and Neuroscience (S.K., M.P.J.v.B., J.F.A.J., F.R.J.V., W.H.B.), Maastricht University Medical Center+, Maastricht, Limburg, the Netherlands
| | - Martin P.J. van Boxtel
- MHeNs School for Mental Health and Neuroscience (S.K., M.P.J.v.B., J.F.A.J., F.R.J.V., W.H.B.), Maastricht University Medical Center+, Maastricht, Limburg, the Netherlands
- Department of Psychiatry and Neuropsychology (M.P.J.v.B., F.R.J.V.), Maastricht University Medical Center+, Maastricht, Limburg, the Netherlands
| | - Tos T.J.M. Berendschot
- Department of Ophthalmology (T.T.J.M.B.), Maastricht University Medical Center+, Maastricht, Limburg, the Netherlands
| | - Jacobus F.A. Jansen
- MHeNs School for Mental Health and Neuroscience (S.K., M.P.J.v.B., J.F.A.J., F.R.J.V., W.H.B.), Maastricht University Medical Center+, Maastricht, Limburg, the Netherlands
- Department of Radiology & Nuclear Medicine (J.F.A.J., W.H.B.), Maastricht University Medical Center+, Maastricht, Limburg, the Netherlands
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, North Brabant, the Netherlands (J.F.A.J.)
| | - Frans R.J. Verhey
- MHeNs School for Mental Health and Neuroscience (S.K., M.P.J.v.B., J.F.A.J., F.R.J.V., W.H.B.), Maastricht University Medical Center+, Maastricht, Limburg, the Netherlands
- Department of Psychiatry and Neuropsychology (M.P.J.v.B., F.R.J.V.), Maastricht University Medical Center+, Maastricht, Limburg, the Netherlands
| | - Abraham A. Kroon
- From the CARIM School for Cardiovascular Diseases (S.P.R., T.T.v.S., A.J.H.M.H., A.A.K., N.S., R.M.A.H., M.T.S., C.D.A.S.), Maastricht University Medical Center+, Maastricht, Limburg, the Netherlands
- Department of Internal Medicine (S.P.R., T.T.v.S., A.J.H.M.H., A.A.K., N.S., C.G.S., R.M.A.H., E.M.L.W., M.J.A.v.H., M.T.S., C.D.A.S.), Maastricht University Medical Center+, Maastricht, Limburg, the Netherlands
| | - Annemarie Koster
- Department of Social Medicine (A.K.), Maastricht University Medical Center+, Maastricht, Limburg, the Netherlands
- School for Public Health and Primary Care (CAPHRI) (A.K., N.S., G.-J.D.), Maastricht University Medical Center+, Maastricht, Limburg, the Netherlands
| | - Walter H. Backes
- MHeNs School for Mental Health and Neuroscience (S.K., M.P.J.v.B., J.F.A.J., F.R.J.V., W.H.B.), Maastricht University Medical Center+, Maastricht, Limburg, the Netherlands
- Department of Radiology & Nuclear Medicine (J.F.A.J., W.H.B.), Maastricht University Medical Center+, Maastricht, Limburg, the Netherlands
| | - Nicolaas Schaper
- From the CARIM School for Cardiovascular Diseases (S.P.R., T.T.v.S., A.J.H.M.H., A.A.K., N.S., R.M.A.H., M.T.S., C.D.A.S.), Maastricht University Medical Center+, Maastricht, Limburg, the Netherlands
- Department of Internal Medicine (S.P.R., T.T.v.S., A.J.H.M.H., A.A.K., N.S., C.G.S., R.M.A.H., E.M.L.W., M.J.A.v.H., M.T.S., C.D.A.S.), Maastricht University Medical Center+, Maastricht, Limburg, the Netherlands
- School for Public Health and Primary Care (CAPHRI) (A.K., N.S., G.-J.D.), Maastricht University Medical Center+, Maastricht, Limburg, the Netherlands
| | - Geert-Jan Dinant
- School for Public Health and Primary Care (CAPHRI) (A.K., N.S., G.-J.D.), Maastricht University Medical Center+, Maastricht, Limburg, the Netherlands
| | - Casper G. Schalkwijk
- Department of Internal Medicine (S.P.R., T.T.v.S., A.J.H.M.H., A.A.K., N.S., C.G.S., R.M.A.H., E.M.L.W., M.J.A.v.H., M.T.S., C.D.A.S.), Maastricht University Medical Center+, Maastricht, Limburg, the Netherlands
| | - Ronald M.A. Henry
- From the CARIM School for Cardiovascular Diseases (S.P.R., T.T.v.S., A.J.H.M.H., A.A.K., N.S., R.M.A.H., M.T.S., C.D.A.S.), Maastricht University Medical Center+, Maastricht, Limburg, the Netherlands
- Department of Internal Medicine (S.P.R., T.T.v.S., A.J.H.M.H., A.A.K., N.S., C.G.S., R.M.A.H., E.M.L.W., M.J.A.v.H., M.T.S., C.D.A.S.), Maastricht University Medical Center+, Maastricht, Limburg, the Netherlands
- The Netherlands Heart and Vascular Center (R.M.A.H., M.T.S.), Maastricht University Medical Center+, Maastricht, Limburg, the Netherlands
| | - Elze M.L. Wolfs
- Department of Internal Medicine (S.P.R., T.T.v.S., A.J.H.M.H., A.A.K., N.S., C.G.S., R.M.A.H., E.M.L.W., M.J.A.v.H., M.T.S., C.D.A.S.), Maastricht University Medical Center+, Maastricht, Limburg, the Netherlands
| | - Mike J.A. van Heumen
- Department of Internal Medicine (S.P.R., T.T.v.S., A.J.H.M.H., A.A.K., N.S., C.G.S., R.M.A.H., E.M.L.W., M.J.A.v.H., M.T.S., C.D.A.S.), Maastricht University Medical Center+, Maastricht, Limburg, the Netherlands
| | - Miranda T. Schram
- From the CARIM School for Cardiovascular Diseases (S.P.R., T.T.v.S., A.J.H.M.H., A.A.K., N.S., R.M.A.H., M.T.S., C.D.A.S.), Maastricht University Medical Center+, Maastricht, Limburg, the Netherlands
- Department of Internal Medicine (S.P.R., T.T.v.S., A.J.H.M.H., A.A.K., N.S., C.G.S., R.M.A.H., E.M.L.W., M.J.A.v.H., M.T.S., C.D.A.S.), Maastricht University Medical Center+, Maastricht, Limburg, the Netherlands
- The Netherlands Heart and Vascular Center (R.M.A.H., M.T.S.), Maastricht University Medical Center+, Maastricht, Limburg, the Netherlands
| | - Coen D.A. Stehouwer
- From the CARIM School for Cardiovascular Diseases (S.P.R., T.T.v.S., A.J.H.M.H., A.A.K., N.S., R.M.A.H., M.T.S., C.D.A.S.), Maastricht University Medical Center+, Maastricht, Limburg, the Netherlands
- Department of Internal Medicine (S.P.R., T.T.v.S., A.J.H.M.H., A.A.K., N.S., C.G.S., R.M.A.H., E.M.L.W., M.J.A.v.H., M.T.S., C.D.A.S.), Maastricht University Medical Center+, Maastricht, Limburg, the Netherlands
| |
Collapse
|
314
|
Moon WJ. Alzheimer Dementia and Microvascular Pathology: Blood-Brain Barrier Permeability Imaging. JOURNAL OF THE KOREAN SOCIETY OF RADIOLOGY 2020; 81:488-500. [PMID: 36238621 PMCID: PMC9431923 DOI: 10.3348/jksr.2020.81.3.488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/14/2020] [Accepted: 04/17/2020] [Indexed: 11/15/2022]
Affiliation(s)
- Won-Jin Moon
- Department of Radiology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| |
Collapse
|
315
|
Freeze WM, Jacobs HI, de Jong JJ, Verheggen IC, Gronenschild EH, Palm WM, Hoff EI, Wardlaw JM, Jansen JF, Verhey FR, Backes WH. White matter hyperintensities mediate the association between blood-brain barrier leakage and information processing speed. Neurobiol Aging 2020; 85:113-122. [DOI: 10.1016/j.neurobiolaging.2019.09.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/27/2019] [Accepted: 09/22/2019] [Indexed: 12/22/2022]
|
316
|
Sekhar GN, Fleckney AL, Boyanova ST, Rupawala H, Lo R, Wang H, Farag DB, Rahman KM, Broadstock M, Reeves S, Thomas SA. Region-specific blood-brain barrier transporter changes leads to increased sensitivity to amisulpride in Alzheimer's disease. Fluids Barriers CNS 2019; 16:38. [PMID: 31842924 PMCID: PMC6915870 DOI: 10.1186/s12987-019-0158-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/02/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Research into amisulpride use in Alzheimer's disease (AD) implicates blood-brain barrier (BBB) dysfunction in antipsychotic sensitivity. Research into BBB transporters has been mainly directed towards the ABC superfamily, however, solute carrier (SLC) function in AD has not been widely studied. This study tests the hypothesis that transporters for organic cations contribute to the BBB delivery of the antipsychotics (amisulpride and haloperidol) and is disrupted in AD. METHODS The accumulation of [3H]amisulpride (3.7-7.7 nM) and [3H]haloperidol (10 nM) in human (hCMEC/D3) and mouse (bEnd.3) brain endothelial cell lines was explored. Computational approaches examined molecular level interactions of both drugs with the SLC transporters [organic cation transporter 1 (OCT1), plasma membrane monoamine transporter (PMAT) and multi-drug and toxic compound extrusion proteins (MATE1)] and amisulpride with the ABC transporter (P-glycoprotein). The distribution of [3H]amisulpride in wildtype and 3×transgenic AD mice was examined using in situ brain perfusion experiments. Western blots determined transporter expression in mouse and human brain capillaries . RESULTS In vitro BBB and in silico transporter studies indicated that [3H]amisulpride and [3H]haloperidol were transported by the influx transporter, OCT1, and efflux transporters MATE1 and PMAT. Amisulpride did not have a strong interaction with OCTN1, OCTN2, P-gp, BCRP or MRP and could not be described as a substrate for these transporters. Amisulpride brain uptake was increased in AD mice compared to wildtype mice, but vascular space was unaffected. There were no measurable changes in the expression of MATE1, MATE2, PMAT OCT1, OCT2, OCT3, OCTN1, OCTN2 and P-gp in capillaries isolated from whole brain homogenates from the AD mice compared to wildtype mice. Although, PMAT and MATE1 expression was reduced in capillaries obtained from specific human brain regions (i.e. putamen and caudate) from AD cases (Braak stage V-VI) compared to age matched controls (Braak stage 0-II). CONCLUSIONS Together our research indicates that the increased sensitivity of individuals with Alzheimer's to amisulpride is related to previously unreported changes in function and expression of SLC transporters at the BBB (in particular PMAT and MATE1). Dose adjustments may be required for drugs that are substrates of these transporters when prescribing for individuals with AD.
Collapse
Affiliation(s)
- Gayathri Nair Sekhar
- Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, Waterloo, London, SE1 9NH, UK
| | - Alice L Fleckney
- Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, Waterloo, London, SE1 9NH, UK
| | - Sevda Tomova Boyanova
- Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, Waterloo, London, SE1 9NH, UK
| | - Huzefa Rupawala
- Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, Waterloo, London, SE1 9NH, UK
| | - Rachel Lo
- Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, Waterloo, London, SE1 9NH, UK
| | - Hao Wang
- Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, Waterloo, London, SE1 9NH, UK
| | - Doaa B Farag
- Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, Waterloo, London, SE1 9NH, UK
- Faculty of Pharmacy, Misr International University, Cairo, 11431, Egypt
| | - Khondaker Miraz Rahman
- Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, Waterloo, London, SE1 9NH, UK
| | - Martin Broadstock
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London, SE1 1UL, UK
- Maurice Wohl Clinical Neuroscience Institute, King's College London, 125 Coldharbour Lane, Camberwell, London, SE5 9N, UK
| | - Suzanne Reeves
- Division of Psychiatry, Faculty of Brain Sciences, University College London, 149 Tottenham Court Road, London, W1T 7NF, UK
| | - Sarah Ann Thomas
- Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, Waterloo, London, SE1 9NH, UK.
| |
Collapse
|
317
|
Laredo F, Plebanski J, Tedeschi A. Pericytes: Problems and Promises for CNS Repair. Front Cell Neurosci 2019; 13:546. [PMID: 31866833 PMCID: PMC6908836 DOI: 10.3389/fncel.2019.00546] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022] Open
Abstract
Microvascular complications are often associated with slow and progressive damage of various organs. Pericytes are multi-functional mural cells of the microcirculation that control blood flow, vascular permeability and homeostasis. Whereas accumulating evidence suggests that these cells are also implicated in a variety of diseases, pericytes represent promising targets that can be manipulated for therapeutic gain. Here, we review the role of pericytes in angiogenesis, blood-brain barrier (BBB) function, neuroinflammation, tissue fibrosis, axon regeneration failure, and neurodegeneration. In addition, we outline strategies altering pericyte behavior to point out problems and promises for axon regeneration and central nervous system (CNS) repair following injury or disease.
Collapse
Affiliation(s)
- Fabio Laredo
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH, United States.,Department of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Julia Plebanski
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Andrea Tedeschi
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH, United States.,Discovery Theme on Chronic Brain Injury, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
318
|
Senatorov VV, Friedman AR, Milikovsky DZ, Ofer J, Saar-Ashkenazy R, Charbash A, Jahan N, Chin G, Mihaly E, Lin JM, Ramsay HJ, Moghbel A, Preininger MK, Eddings CR, Harrison HV, Patel R, Shen Y, Ghanim H, Sheng H, Veksler R, Sudmant PH, Becker A, Hart B, Rogawski MA, Dillin A, Friedman A, Kaufer D. Blood-brain barrier dysfunction in aging induces hyperactivation of TGFβ signaling and chronic yet reversible neural dysfunction. Sci Transl Med 2019; 11:eaaw8283. [PMID: 31801886 DOI: 10.1126/scitranslmed.aaw8283] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 07/15/2019] [Accepted: 11/07/2019] [Indexed: 12/16/2022]
Abstract
Aging involves a decline in neural function that contributes to cognitive impairment and disease. However, the mechanisms underlying the transition from a young-and-healthy to aged-and-dysfunctional brain are not well understood. Here, we report breakdown of the vascular blood-brain barrier (BBB) in aging humans and rodents, which begins as early as middle age and progresses to the end of the life span. Gain-of-function and loss-of-function manipulations show that this BBB dysfunction triggers hyperactivation of transforming growth factor-β (TGFβ) signaling in astrocytes, which is necessary and sufficient to cause neural dysfunction and age-related pathology in rodents. Specifically, infusion of the serum protein albumin into the young rodent brain (mimicking BBB leakiness) induced astrocytic TGFβ signaling and an aged brain phenotype including aberrant electrocorticographic activity, vulnerability to seizures, and cognitive impairment. Furthermore, conditional genetic knockdown of astrocytic TGFβ receptors or pharmacological inhibition of TGFβ signaling reversed these symptomatic outcomes in aged mice. Last, we found that this same signaling pathway is activated in aging human subjects with BBB dysfunction. Our study identifies dysfunction in the neurovascular unit as one of the earliest triggers of neurological aging and demonstrates that the aging brain may retain considerable latent capacity, which can be revitalized by therapeutic inhibition of TGFβ signaling.
Collapse
Affiliation(s)
- Vladimir V Senatorov
- Helen Wills Neuroscience Institute and Berkeley Stem Cell Center, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Aaron R Friedman
- Helen Wills Neuroscience Institute and Berkeley Stem Cell Center, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Dan Z Milikovsky
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Jonathan Ofer
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Rotem Saar-Ashkenazy
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Adiel Charbash
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Naznin Jahan
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Gregory Chin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Eszter Mihaly
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jessica M Lin
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Harrison J Ramsay
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ariana Moghbel
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Marcela K Preininger
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Chelsy R Eddings
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Helen V Harrison
- School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Rishi Patel
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Yizhuo Shen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Hana Ghanim
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Huanjie Sheng
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ronel Veksler
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Peter H Sudmant
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Albert Becker
- Section for Translational Epilepsy Research, Department of Neuropathology, University of Bonn Medical Center, Bonn, Germany
| | - Barry Hart
- Innovation Pathways, Palo Alto, CA 94301, USA
| | - Michael A Rogawski
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Andrew Dillin
- Glenn Center for Aging Research, Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Alon Friedman
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- Department of Medical Neuroscience and Brain Repair Center, Dalhousie University, Halifax, NS B3H4R2, Canada
| | - Daniela Kaufer
- Helen Wills Neuroscience Institute and Berkeley Stem Cell Center, University of California, Berkeley, Berkeley, CA 94720, USA.
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Canadian Institute for Advanced Research, Toronto, ON M5G1M1, Canada
| |
Collapse
|
319
|
Román G, Jackson R, Reis J, Román A, Toledo J, Toledo E. Extra-virgin olive oil for potential prevention of Alzheimer disease. Rev Neurol (Paris) 2019; 175:705-723. [DOI: 10.1016/j.neurol.2019.07.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 02/07/2023]
|
320
|
Liu Y, Zhong X, Shen J, Jiao L, Tong J, Zhao W, Du K, Gong S, Liu M, Wei M. Elevated serum TC and LDL-C levels in Alzheimer's disease and mild cognitive impairment: A meta-analysis study. Brain Res 2019; 1727:146554. [PMID: 31765631 DOI: 10.1016/j.brainres.2019.146554] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 11/29/2022]
Abstract
Serum lipid levels such as triglyceride and cholesterol has been reported to play an important role in the pathophysiological process of Alzheimer disease (AD) and mild cognitive impairment (MCI). However, it still remains controversial in different studies. Here, we performed a meta-analysis to assess the importance of serum levels of total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) in AD and MCI patients. PubMed, China National Knowledge Infrastructure (CNKI) system database were used to identify 17 studies (10 AD-only + 4 MCI-only + 3 shared AD/MCI), including 2333 cases and 3615 healthy controls (HC). We found that compared with HC, both the serum TC levels [SMD = 0.58; 95%CI (0.25, 0.90); P = 0.001) and the serum LDL-C levels [SMD = 0.7780; 95%CI (0.3940, 1.1521); P = 0.000] were higher in cognitive impairment population (including AD and MCI) than those in HC, respectively. Furthermore, we analyzed the serum TC and LDL-C levels in AD and MCI patients. We found that the serum TC levels [SMD = 0.76; 95% CI (0.13, 1.40); P = 0.019]1 and the LDL-C levels [SMD = 1.40; 95% CI (0.70, 2.10; P = 0.000] were increased in AD patients. In the MCI patients, the serum TC levels [SMD = 0.30; 95%CI (0.01, 0.59); P = 0.041] had a significantly upward trend, while the LDL-C levels had no significant change, compared with HC subjects. However, there is no significant changes in HDL-C and TG levels in AD or MCI patients. Therefore, our results suggested that the elevated TC and LDL-C levels may be a potential risk factor for cognitive impairment.
Collapse
Affiliation(s)
- Yang Liu
- School of Pharmacy, Department of Pharmacology, China Medical University, Shenyang, Liaoning, China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Shenyang, Liaoning, China
| | - Xin Zhong
- School of Pharmacy, Department of Pharmacology, China Medical University, Shenyang, Liaoning, China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Shenyang, Liaoning, China
| | - Jiajia Shen
- School of Pharmacy, Department of Pharmacology, China Medical University, Shenyang, Liaoning, China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Shenyang, Liaoning, China
| | - Linchi Jiao
- School of Pharmacy, Department of Pharmacology, China Medical University, Shenyang, Liaoning, China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Shenyang, Liaoning, China
| | - Junhui Tong
- School of Pharmacy, Department of Pharmacology, China Medical University, Shenyang, Liaoning, China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Shenyang, Liaoning, China
| | - Wenxia Zhao
- School of Pharmacy, Department of Pharmacology, China Medical University, Shenyang, Liaoning, China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Shenyang, Liaoning, China
| | - Ke Du
- School of Pharmacy, Department of Pharmacology, China Medical University, Shenyang, Liaoning, China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Shenyang, Liaoning, China
| | - Shiqiang Gong
- School of Pharmacy, Department of Pharmacology, China Medical University, Shenyang, Liaoning, China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Shenyang, Liaoning, China
| | - Mingyan Liu
- School of Pharmacy, Department of Pharmacology, China Medical University, Shenyang, Liaoning, China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Shenyang, Liaoning, China.
| | - Minjie Wei
- School of Pharmacy, Department of Pharmacology, China Medical University, Shenyang, Liaoning, China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Shenyang, Liaoning, China
| |
Collapse
|
321
|
Boese AC, Hamblin MH, Lee JP. Neural stem cell therapy for neurovascular injury in Alzheimer's disease. Exp Neurol 2019; 324:113112. [PMID: 31730762 DOI: 10.1016/j.expneurol.2019.113112] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/02/2019] [Accepted: 11/11/2019] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD), the most common form of dementia, is characterized by progressive neurodegeneration leading to severe cognitive decline and eventual death. AD pathophysiology is complex, but neurotoxic accumulation of amyloid-β (Aβ) and hyperphosphorylation of Tau are believed to be main drivers of neurodegeneration in AD. The formation and deposition of Aβ plaques occurs in the brain parenchyma as well as in the cerebral vasculature. Thus, proper blood-brain barrier (BBB) and cerebrovascular functioning are crucial for clearance of Aβ from the brain, and neurovascular dysfunction may be a critical component of AD development. Further, neuroinflammation and dysfunction of angiogenesis, neurogenesis, and neurorestorative capabilities play a role in AD pathophysiology. Currently, there is no effective treatment to prevent or restore loss of brain tissue and cognitive decline in patients with AD. Based on multifactorial and complex pathophysiological cascades in multiple Alzheimer's disease stages, effective AD therapies need to focus on targeting early AD pathology and preserving cerebrovascular function. Neural stem cells (NSCs) participate extensively in mammalian brain homeostasis and repair and exhibit pleiotropic intrinsic properties that likely make them attractive candidates for the treatment of AD. In the review, we summarize the current advances in knowledge regarding neurovascular aspects of AD-related neurodegeneration and discuss multiple actions of NSCs from preclinical studies of AD to evaluate their potential for future clinical treatment of AD.
Collapse
Affiliation(s)
- Austin C Boese
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Milton H Hamblin
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jean-Pyo Lee
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA 70112, USA; Tulane Brain Institute, Tulane University, New Orleans, LA 70112, USA.
| |
Collapse
|
322
|
Mustapha M, Nassir CMNCM, Aminuddin N, Safri AA, Ghazali MM. Cerebral Small Vessel Disease (CSVD) - Lessons From the Animal Models. Front Physiol 2019; 10:1317. [PMID: 31708793 PMCID: PMC6822570 DOI: 10.3389/fphys.2019.01317] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 09/30/2019] [Indexed: 12/28/2022] Open
Abstract
Cerebral small vessel disease (CSVD) refers to a spectrum of clinical and imaging findings resulting from pathological processes of various etiologies affecting cerebral arterioles, perforating arteries, capillaries, and venules. Unlike large vessels, it is a challenge to visualize small vessels in vivo, hence the difficulty to directly monitor the natural progression of the disease. CSVD might progress for many years during the early stage of the disease as it remains asymptomatic. Prevalent among elderly individuals, CSVD has been alarmingly reported as an important precursor of full-blown stroke and vascular dementia. Growing evidence has also shown a significant association between CSVD's radiological manifestation with dementia and Alzheimer's disease (AD) pathology. Although it remains contentious as to whether CSVD is a cause or sequelae of AD, it is not far-fetched to posit that effective therapeutic measures of CSVD would mitigate the overall burden of dementia. Nevertheless, the unifying theory on the pathomechanism of the disease remains elusive, hence the lack of effective therapeutic approaches. Thus, this chapter consolidates the contemporary insights from numerous experimental animal models of CSVD, to date: from the available experimental animal models of CSVD and its translational research value; the pathomechanical aspects of the disease; relevant aspects on systems biology; opportunities for early disease biomarkers; and finally, converging approaches for future therapeutic directions of CSVD.
Collapse
Affiliation(s)
- Muzaimi Mustapha
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | | | - Niferiti Aminuddin
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
- Department of Basic Medical Sciences, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Malaysia
| | - Amanina Ahmad Safri
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Mazira Mohamad Ghazali
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| |
Collapse
|
323
|
Park JS, Lim E, Choi SH, Sohn CH, Lee J, Park J. Model-Based High-Definition Dynamic Contrast Enhanced MRI for Concurrent Estimation of Perfusion and Microvascular Permeability. Med Image Anal 2019; 59:101566. [PMID: 31639623 DOI: 10.1016/j.media.2019.101566] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 09/20/2019] [Accepted: 09/26/2019] [Indexed: 01/18/2023]
Abstract
This work introduces a model-based, high-definition dynamic contrast enhanced (DCE) MRI for concurrent estimation of perfusion and microvascular permeability over the whole brain. A time series of reference-subtracted signals is decomposed into one component that reflects main contrast dynamics and the other one that includes residual contrast agents (CA) and background signals. The former is described by linear superposition of a finite number of basic vectors trained from an augmented set of data that consists of tracer-kinetic model driven signal vectors and patient-specific measured ones. Contrast dynamics is estimated by solving a constrained optimization problem that incorporates the linearized signal decomposition into the measurement model of DCE MRI and then combining the main component with the background-suppressed, residual CA signals. To the best of our knowledge, this is the first work that prospectively enables rapid temporal sampling with 1.5 s (3 ∼ 4 times higher than clinical routines) while simultaneously achieving high isotropic spatial resolution with 1.0 mm3 (4 ∼ 6 times higher than routines), enhancing estimation of both patient-specific inputs and outputs for quantification of microvascular functions. Simulations and experiments are performed to demonstrate the effectiveness of the proposed method in patients with brain cancer.
Collapse
Affiliation(s)
- Joon Sik Park
- Department of Biomedical Engineering, Sungkyunkwan University, 2066, Seobu-Ro, Jangan-Gu, Suwon, Republic of Korea
| | - Eunji Lim
- Department of Biomedical Engineering, Sungkyunkwan University, 2066, Seobu-Ro, Jangan-Gu, Suwon, Republic of Korea
| | - Seung-Hong Choi
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Chul-Ho Sohn
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Joonyeol Lee
- Department of Biomedical Engineering, Sungkyunkwan University, 2066, Seobu-Ro, Jangan-Gu, Suwon, Republic of Korea; Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea
| | - Jaeseok Park
- Department of Biomedical Engineering, Sungkyunkwan University, 2066, Seobu-Ro, Jangan-Gu, Suwon, Republic of Korea; Biomedical Institute for Convergence, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
324
|
Srivastava A, Srivastava P, Verma R. Role of bone marrow-derived macrophages (BMDMs) in neurovascular interactions during stroke. Neurochem Int 2019; 129:104480. [DOI: 10.1016/j.neuint.2019.104480] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/24/2019] [Accepted: 05/27/2019] [Indexed: 12/14/2022]
|
325
|
Loera-Valencia R, Cedazo-Minguez A, Kenigsberg PA, Page G, Duarte AI, Giusti P, Zusso M, Robert P, Frisoni GB, Cattaneo A, Zille M, Boltze J, Cartier N, Buee L, Johansson G, Winblad B. Current and emerging avenues for Alzheimer's disease drug targets. J Intern Med 2019; 286:398-437. [PMID: 31286586 DOI: 10.1111/joim.12959] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD), the most frequent cause of dementia, is escalating as a global epidemic, and so far, there is neither cure nor treatment to alter its progression. The most important feature of the disease is neuronal death and loss of cognitive functions, caused probably from several pathological processes in the brain. The main neuropathological features of AD are widely described as amyloid beta (Aβ) plaques and neurofibrillary tangles of the aggregated protein tau, which contribute to the disease. Nevertheless, AD brains suffer from a variety of alterations in function, such as energy metabolism, inflammation and synaptic activity. The latest decades have seen an explosion of genes and molecules that can be employed as targets aiming to improve brain physiology, which can result in preventive strategies for AD. Moreover, therapeutics using these targets can help AD brains to sustain function during the development of AD pathology. Here, we review broadly recent information for potential targets that can modify AD through diverse pharmacological and nonpharmacological approaches including gene therapy. We propose that AD could be tackled not only using combination therapies including Aβ and tau, but also considering insulin and cholesterol metabolism, vascular function, synaptic plasticity, epigenetics, neurovascular junction and blood-brain barrier targets that have been studied recently. We also make a case for the role of gut microbiota in AD. Our hope is to promote the continuing research of diverse targets affecting AD and promote diverse targeting as a near-future strategy.
Collapse
Affiliation(s)
- R Loera-Valencia
- Division of Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - A Cedazo-Minguez
- Division of Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | | | - G Page
- Neurovascular Unit and Cognitive impairments - EA3808, University of Poitiers, Poitiers, France
| | - A I Duarte
- CNC- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - P Giusti
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Padova, Italy
| | - M Zusso
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Padova, Italy
| | - P Robert
- CoBTeK - lab, CHU Nice University Côte d'Azur, Nice, France
| | - G B Frisoni
- University Hospitals and University of Geneva, Geneva, Switzerland
| | - A Cattaneo
- University Hospitals and University of Geneva, Geneva, Switzerland
| | - M Zille
- Institute of Experimental and Clinical Pharmacology and Toxicology, Lübeck, Germany
| | - J Boltze
- School of Life Sciences, The University of Warwick, Coventry, UK
| | - N Cartier
- Preclinical research platform, INSERM U1169/MIRCen Commissariat à l'énergie atomique, Fontenay aux Roses, France.,Université Paris-Sud, Orsay, France
| | - L Buee
- Alzheimer & Tauopathies, LabEx DISTALZ, CHU-Lille, Inserm, Univ. Lille, Lille, France
| | - G Johansson
- Division of Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - B Winblad
- Division of Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden.,Theme Aging, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
326
|
Nakajima S, Gotoh M, Fukasawa K, Murakami-Murofushi K, Kunugi H. Oleic acid is a potent inducer for lipid droplet accumulation through its esterification to glycerol by diacylglycerol acyltransferase in primary cortical astrocytes. Brain Res 2019; 1725:146484. [PMID: 31562840 DOI: 10.1016/j.brainres.2019.146484] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 02/09/2023]
Abstract
Astrocytes exhibit an important role in neural lipid metabolism for the regulation of energy balance to supply fatty acids (FAs) and ketone bodies to other neural cells. Lipid droplets (LDs) consisting of neutral- and phospho-lipids increase in the brains of patients with neurodegenerative diseases, such as Alzheimer's disease and multiple sclerosis. However, the role of LDs and its lipid source remains largely unexplored. Here, we found that oleic acid (OA) was a potent inducer of astrocytic LD accumulation among various FAs. Lipidomic analysis using liquid chromatography equipped with tandem mass spectrometry revealed that the cellular triacylglycerol and phospholipid compositions in astrocytes during LD accumulation reflected the condition of extracellular FAs. Furthermore, the inhibition of diacylglycerol acyltransferase blocked OA-induced LD accumulation and caused lipotoxicity-induced cell death in astrocytes. The present study demonstrated that the formation of LDs, caused due to the increased extracellular OA, facilitated survival against lipotoxic condition.
Collapse
Affiliation(s)
- Shingo Nakajima
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan; Ochadai Academic Production, Ochanomizu University, Tokyo, Japan.
| | - Mari Gotoh
- Institute for Human Life Innovation, Ochanomizu University, Tokyo, Japan
| | - Keiko Fukasawa
- Ochadai Academic Production, Ochanomizu University, Tokyo, Japan
| | | | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| |
Collapse
|
327
|
Taoka T, Naganawa S. Glymphatic imaging using MRI. J Magn Reson Imaging 2019; 51:11-24. [PMID: 31423710 DOI: 10.1002/jmri.26892] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 01/17/2023] Open
Abstract
In recent years, the existence of a mass transport system in the brain via cerebrospinal fluid (CSF) or interstitial fluid (ISF) has been suggested by many studies. The glymphatic system is hypothesized to be a waste clearance system of the CSF through the perivascular and interstitial spaces in the brain. Tracer studies have primarily been used to visualize or evaluate the waste clearance system in the brain, and evidence for this system has accumulated. The initial study that identified the glymphatic system was an in vivo tracer study in mice. In that study, fluorescent tracers were injected into the cisterna magna and visualized by two-photon microscopy. MRI has also been used to evaluate glymphatic function primarily with gadolinium-based contrast agents (GBCAs) as tracers. A number of GBCA studies evaluating glymphatic function have been conducted using either intrathecal or intravenous injections. Stable isotopes, such as 17 O-labeled water, may also be used as tracers since they can be detected by MRI. In addition to tracer studies, several other approaches have been used to evaluate ISF dynamics within the brain, including diffusion imaging. Phase contrast evaluation is a powerful method for visualizing flow within the CSF space. In order to evaluate the movement of water within tissue, diffusion-weighted MRI represents another promising technique, and several studies have utilized diffusion techniques for the evaluation of the glymphatic system. This review will discuss the findings of these diffusion studies. Level of Evidence: 5 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2019. J. Magn. Reson. Imaging 2020;51:11-24.
Collapse
Affiliation(s)
- Toshiaki Taoka
- Department of Radiology, Nagoya University, Nagoya, Japan
| | | |
Collapse
|
328
|
Sandsmark DK, Bashir A, Wellington CL, Diaz-Arrastia R. Cerebral Microvascular Injury: A Potentially Treatable Endophenotype of Traumatic Brain Injury-Induced Neurodegeneration. Neuron 2019; 103:367-379. [PMID: 31394062 PMCID: PMC6688649 DOI: 10.1016/j.neuron.2019.06.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/10/2019] [Accepted: 06/03/2019] [Indexed: 02/08/2023]
Abstract
Traumatic brain injury (TBI) is one the most common human afflictions, contributing to long-term disability in survivors. Emerging data indicate that functional improvement or deterioration can occur years after TBI. In this regard, TBI is recognized as risk factor for late-life neurodegenerative disorders. TBI encompasses a heterogeneous disease process in which diverse injury subtypes and multiple molecular mechanisms overlap. To develop precision medicine approaches where specific pathobiological processes are targeted by mechanistically appropriate therapies, techniques to identify and measure these subtypes are needed. Traumatic microvascular injury is a common but relatively understudied TBI endophenotype. In this review, we describe evidence of microvascular dysfunction in human and animal TBI, explore the role of vascular dysfunction in neurodegenerative disease, and discuss potential opportunities for vascular-directed therapies in ameliorating TBI-related neurodegeneration. We discuss the therapeutic potential of vascular-directed therapies in TBI and the use and limitations of preclinical models to explore these therapies.
Collapse
Affiliation(s)
| | - Asma Bashir
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada; Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
| | - Cheryl L Wellington
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
329
|
Bogorad MI, DeStefano JG, Linville RM, Wong AD, Searson PC. Cerebrovascular plasticity: Processes that lead to changes in the architecture of brain microvessels. J Cereb Blood Flow Metab 2019; 39:1413-1432. [PMID: 31208241 PMCID: PMC6681538 DOI: 10.1177/0271678x19855875] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The metabolic demands of the brain are met by oxygen and glucose, supplied by a complex hierarchical network of microvessels (arterioles, capillaries, and venules). Transient changes in neural activity are accommodated by local dilation of arterioles or capillaries to increase cerebral blood flow and hence nutrient availability. Transport and communication between the circulation and the brain is regulated by the brain microvascular endothelial cells that form the blood-brain barrier. Under homeostatic conditions, there is very little turnover in brain microvascular endothelial cells, and the cerebrovascular architecture is largely static. However, changes in the brain microenvironment, due to environmental factors, disease, or trauma, can result in additive or subtractive changes in cerebrovascular architecture. Additions occur by angiogenesis or vasculogenesis, whereas subtractions occur by vascular pruning, injury, or endothelial cell death. Here we review the various processes that lead to changes in the cerebrovascular architecture, including sustained changes in the brain microenvironment, development and aging, and injury, disease, and repair.
Collapse
Affiliation(s)
- Max I Bogorad
- 1 Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA.,2 Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jackson G DeStefano
- 1 Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA.,2 Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Raleigh M Linville
- 1 Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA.,3 Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Andrew D Wong
- 1 Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA.,2 Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Peter C Searson
- 1 Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA.,2 Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA.,3 Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
330
|
Kim YS, Kim M, Choi SH, You SH, Yoo RE, Kang KM, Yun TJ, Lee ST, Moon J, Shin YW. Altered Vascular Permeability in Migraine-associated Brain Regions: Evaluation with Dynamic Contrast-enhanced MRI. Radiology 2019; 292:713-720. [PMID: 31264949 DOI: 10.1148/radiol.2019182566] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background Recent studies showed the possible association between inflammation-induced blood-brain barrier (BBB) structural changes followed by greater permeability of the BBB and chronic pain. Thus, measurement of BBB breakdown would be a valuable aid in the diagnosis in migraine. Dynamic contrast material-enhanced (DCE) MRI can determine perfusion and permeability properties related to the BBB. Purpose To evaluate the relationship between permeability of the BBB in migraine-associated brain regions by using DCE MRI. Materials and Methods In this prospective study, from September 2016 to December 2017, 56 study participants underwent DCE MRI after gadobutrol administration and were classified into migraine (n = 35) and healthy control (n = 21) groups. Automatic volumetric segmentation was performed on the pre-contrast-enhanced T1-weighted images by using FreeSurfer, and migraine-associated brain region masks were extracted by using the software NordicICE. The corresponding maps for pharmacokinetic parameters Ktrans (the volume transfer constant) and Vp (the fractional plasma volume) were coregistered with the region-of-interest masks, and their mean values of corresponding total volume of interest were calculated. For comparison analyses, the Mann-Whitney tests were used. Receiver operating characteristic curve analysis and Spearman rank correlation tests were used to identify correlations between clinical characteristics and the aforementioned perfusion parameters. Results Mean age was younger in the migraine group (mean ± standard deviation, 57 years ± 12) than in the healthy control group (mean, 71 years ± 8) (P < .001). In the migraine group, the mean value of Vp in the left amygdala (median, 0.27 mL/100 g) was lower than that in the healthy control group (median, 0.39 mL/100 g) (P = .04). The mean value of Vp in the left amygdala was correlated with the intensity of headache attack in participants with migraine (correlation coefficient, -0.34; P = .04). Conclusion Lower fractional plasma volume in the left amygdala was observed in participants with migraine than in healthy participants. © RSNA, 2019 Online supplemental material is available for this article. See also the editorial by Carroll and Ginat in this issue.
Collapse
Affiliation(s)
- Yeon Soo Kim
- From the Departments of Radiology (Y.S.K., S.H.C., R.E.Y., K.M.K., T.J.Y.), Neurology (M.K., S.T.L., J.M., Y.W.S.), and Neurosurgery (J.M.), Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea; Department of Radiology (Y.S.K., S.H.C., R.E.Y., K.M.K., T.J.Y.), Neuroscience Research Institute (M.K.), and Protein Metabolism Research Center (M.K.), Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea (S.H.C.); and Department of Radiology, Korea University Anam Hospital, Seoul, Republic of Korea (S.H.Y.)
| | - Manho Kim
- From the Departments of Radiology (Y.S.K., S.H.C., R.E.Y., K.M.K., T.J.Y.), Neurology (M.K., S.T.L., J.M., Y.W.S.), and Neurosurgery (J.M.), Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea; Department of Radiology (Y.S.K., S.H.C., R.E.Y., K.M.K., T.J.Y.), Neuroscience Research Institute (M.K.), and Protein Metabolism Research Center (M.K.), Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea (S.H.C.); and Department of Radiology, Korea University Anam Hospital, Seoul, Republic of Korea (S.H.Y.)
| | - Seung Hong Choi
- From the Departments of Radiology (Y.S.K., S.H.C., R.E.Y., K.M.K., T.J.Y.), Neurology (M.K., S.T.L., J.M., Y.W.S.), and Neurosurgery (J.M.), Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea; Department of Radiology (Y.S.K., S.H.C., R.E.Y., K.M.K., T.J.Y.), Neuroscience Research Institute (M.K.), and Protein Metabolism Research Center (M.K.), Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea (S.H.C.); and Department of Radiology, Korea University Anam Hospital, Seoul, Republic of Korea (S.H.Y.)
| | - Sung-Hye You
- From the Departments of Radiology (Y.S.K., S.H.C., R.E.Y., K.M.K., T.J.Y.), Neurology (M.K., S.T.L., J.M., Y.W.S.), and Neurosurgery (J.M.), Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea; Department of Radiology (Y.S.K., S.H.C., R.E.Y., K.M.K., T.J.Y.), Neuroscience Research Institute (M.K.), and Protein Metabolism Research Center (M.K.), Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea (S.H.C.); and Department of Radiology, Korea University Anam Hospital, Seoul, Republic of Korea (S.H.Y.)
| | - Roh-Eul Yoo
- From the Departments of Radiology (Y.S.K., S.H.C., R.E.Y., K.M.K., T.J.Y.), Neurology (M.K., S.T.L., J.M., Y.W.S.), and Neurosurgery (J.M.), Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea; Department of Radiology (Y.S.K., S.H.C., R.E.Y., K.M.K., T.J.Y.), Neuroscience Research Institute (M.K.), and Protein Metabolism Research Center (M.K.), Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea (S.H.C.); and Department of Radiology, Korea University Anam Hospital, Seoul, Republic of Korea (S.H.Y.)
| | - Koung Mi Kang
- From the Departments of Radiology (Y.S.K., S.H.C., R.E.Y., K.M.K., T.J.Y.), Neurology (M.K., S.T.L., J.M., Y.W.S.), and Neurosurgery (J.M.), Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea; Department of Radiology (Y.S.K., S.H.C., R.E.Y., K.M.K., T.J.Y.), Neuroscience Research Institute (M.K.), and Protein Metabolism Research Center (M.K.), Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea (S.H.C.); and Department of Radiology, Korea University Anam Hospital, Seoul, Republic of Korea (S.H.Y.)
| | - Tae Jin Yun
- From the Departments of Radiology (Y.S.K., S.H.C., R.E.Y., K.M.K., T.J.Y.), Neurology (M.K., S.T.L., J.M., Y.W.S.), and Neurosurgery (J.M.), Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea; Department of Radiology (Y.S.K., S.H.C., R.E.Y., K.M.K., T.J.Y.), Neuroscience Research Institute (M.K.), and Protein Metabolism Research Center (M.K.), Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea (S.H.C.); and Department of Radiology, Korea University Anam Hospital, Seoul, Republic of Korea (S.H.Y.)
| | - Soon-Tae Lee
- From the Departments of Radiology (Y.S.K., S.H.C., R.E.Y., K.M.K., T.J.Y.), Neurology (M.K., S.T.L., J.M., Y.W.S.), and Neurosurgery (J.M.), Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea; Department of Radiology (Y.S.K., S.H.C., R.E.Y., K.M.K., T.J.Y.), Neuroscience Research Institute (M.K.), and Protein Metabolism Research Center (M.K.), Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea (S.H.C.); and Department of Radiology, Korea University Anam Hospital, Seoul, Republic of Korea (S.H.Y.)
| | - Jangsup Moon
- From the Departments of Radiology (Y.S.K., S.H.C., R.E.Y., K.M.K., T.J.Y.), Neurology (M.K., S.T.L., J.M., Y.W.S.), and Neurosurgery (J.M.), Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea; Department of Radiology (Y.S.K., S.H.C., R.E.Y., K.M.K., T.J.Y.), Neuroscience Research Institute (M.K.), and Protein Metabolism Research Center (M.K.), Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea (S.H.C.); and Department of Radiology, Korea University Anam Hospital, Seoul, Republic of Korea (S.H.Y.)
| | - Yong-Won Shin
- From the Departments of Radiology (Y.S.K., S.H.C., R.E.Y., K.M.K., T.J.Y.), Neurology (M.K., S.T.L., J.M., Y.W.S.), and Neurosurgery (J.M.), Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea; Department of Radiology (Y.S.K., S.H.C., R.E.Y., K.M.K., T.J.Y.), Neuroscience Research Institute (M.K.), and Protein Metabolism Research Center (M.K.), Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea (S.H.C.); and Department of Radiology, Korea University Anam Hospital, Seoul, Republic of Korea (S.H.Y.)
| |
Collapse
|
331
|
Oksanen M, Lehtonen S, Jaronen M, Goldsteins G, Hämäläinen RH, Koistinaho J. Astrocyte alterations in neurodegenerative pathologies and their modeling in human induced pluripotent stem cell platforms. Cell Mol Life Sci 2019; 76:2739-2760. [PMID: 31016348 PMCID: PMC6588647 DOI: 10.1007/s00018-019-03111-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 04/06/2019] [Accepted: 04/16/2019] [Indexed: 12/12/2022]
Abstract
Astrocytes are the most abundant cell type in the brain. They were long considered only as passive support for neuronal cells. However, recent data have revealed many active roles for these cells both in maintenance of the normal physiological homeostasis in the brain as well as in neurodegeneration and disease. Moreover, human astrocytes have been found to be much more complex than their rodent counterparts, and to date, astrocytes are known to actively participate in a multitude of processes such as neurotransmitter uptake and recycling, gliotransmitter release, neuroenergetics, inflammation, modulation of synaptic activity, ionic balance, maintenance of the blood-brain barrier, and many other crucial functions of the brain. This review focuses on the role of astrocytes in human neurodegenerative disease and the potential of the novel stem cell-based platforms in modeling astrocytic functions in health and in disease.
Collapse
Affiliation(s)
- Minna Oksanen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Sarka Lehtonen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, PO. Box 63, 00290, Helsinki, Finland
| | - Merja Jaronen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Gundars Goldsteins
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Riikka H Hämäläinen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Jari Koistinaho
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland.
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, PO. Box 63, 00290, Helsinki, Finland.
| |
Collapse
|
332
|
Abdul Razzak R, Florence GJ, Gunn-Moore FJ. Approaches to CNS Drug Delivery with a Focus on Transporter-Mediated Transcytosis. Int J Mol Sci 2019; 20:E3108. [PMID: 31242683 PMCID: PMC6627589 DOI: 10.3390/ijms20123108] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/15/2019] [Accepted: 06/16/2019] [Indexed: 12/13/2022] Open
Abstract
Drug delivery to the central nervous system (CNS) conferred by brain barriers is a major obstacle in the development of effective neurotherapeutics. In this review, a classification of current approaches of clinical or investigational importance for the delivery of therapeutics to the CNS is presented. This classification includes the use of formulations administered systemically that can elicit transcytosis-mediated transport by interacting with transporters expressed by transvascular endothelial cells. Neurotherapeutics can also be delivered to the CNS by means of surgical intervention using specialized catheters or implantable reservoirs. Strategies for delivering drugs to the CNS have evolved tremendously during the last two decades, yet, some factors can affect the quality of data generated in preclinical investigation, which can hamper the extension of the applications of these strategies into clinically useful tools. Here, we disclose some of these factors and propose some solutions that may prove valuable at bridging the gap between preclinical findings and clinical trials.
Collapse
Affiliation(s)
- Rana Abdul Razzak
- Medical and Biological Sciences Building, School of Biology, University of St Andrews, St Andrews KY16 9TF, UK.
- Biomedical Science Research Centre, Schools of Chemistry and Biology, University of St Andrews, St Andrews KY16 9TF, UK.
| | - Gordon J Florence
- Biomedical Science Research Centre, Schools of Chemistry and Biology, University of St Andrews, St Andrews KY16 9TF, UK.
| | - Frank J Gunn-Moore
- Medical and Biological Sciences Building, School of Biology, University of St Andrews, St Andrews KY16 9TF, UK.
- Biomedical Science Research Centre, Schools of Chemistry and Biology, University of St Andrews, St Andrews KY16 9TF, UK.
| |
Collapse
|
333
|
Goodall EF, Leach V, Wang C, Cooper-Knock J, Heath PR, Baker D, Drew DR, Saffrey MJ, Simpson JE, Romero IA, Wharton SB. Age-Associated mRNA and miRNA Expression Changes in the Blood-Brain Barrier. Int J Mol Sci 2019; 20:ijms20123097. [PMID: 31242592 PMCID: PMC6627814 DOI: 10.3390/ijms20123097] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 06/21/2019] [Accepted: 06/22/2019] [Indexed: 02/04/2023] Open
Abstract
Functional and structural age-associated changes in the blood-brain barrier (BBB) may affect the neurovascular unit and contribute to the onset and progression of age-associated neurodegenerative pathologies, including Alzheimer’s disease. The current study interrogated the RNA profile of the BBB in an ageing human autopsy brain cohort and an ageing mouse model using combined laser capture microdissection and expression profiling. Only 12 overlapping genes were altered in the same direction in the BBB of both ageing human and mouse cohorts. These included genes with roles in regulating vascular tone, tight junction protein expression and cell adhesion, all processes prone to dysregulation with advancing age. Integrated mRNA and miRNA network and pathway enrichment analysis of the datasets identified 15 overlapping miRNAs that showed altered expression. In addition to targeting genes related to DNA binding and/or autophagy, many of the miRNAs identified play a role in age-relevant processes, including BBB dysfunction and regulating the neuroinflammatory response. Future studies have the potential to develop targeted therapeutic approaches against these candidates to prevent vascular dysfunction in the ageing brain.
Collapse
Affiliation(s)
- Emily F Goodall
- Sheffield Institute for Translational Neuroscience, 385a Glossop Road, University of Sheffield, Sheffield S10 2HQ, UK.
| | - Vicki Leach
- Sheffield Institute for Translational Neuroscience, 385a Glossop Road, University of Sheffield, Sheffield S10 2HQ, UK.
| | - Chunfang Wang
- School of Life Science, Health and Chemical Sciences, Faculty of Science, Technology Engineering and Mathematics, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK.
| | - Johnathan Cooper-Knock
- Sheffield Institute for Translational Neuroscience, 385a Glossop Road, University of Sheffield, Sheffield S10 2HQ, UK.
| | - Paul R Heath
- Sheffield Institute for Translational Neuroscience, 385a Glossop Road, University of Sheffield, Sheffield S10 2HQ, UK.
| | - David Baker
- Sheffield Institute for Translational Neuroscience, 385a Glossop Road, University of Sheffield, Sheffield S10 2HQ, UK.
| | - David R Drew
- Sheffield Institute for Translational Neuroscience, 385a Glossop Road, University of Sheffield, Sheffield S10 2HQ, UK.
| | - M Jill Saffrey
- School of Life Science, Health and Chemical Sciences, Faculty of Science, Technology Engineering and Mathematics, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK.
| | - Julie E Simpson
- Sheffield Institute for Translational Neuroscience, 385a Glossop Road, University of Sheffield, Sheffield S10 2HQ, UK.
| | - Ignacio A Romero
- School of Life Science, Health and Chemical Sciences, Faculty of Science, Technology Engineering and Mathematics, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK.
| | - Stephen B Wharton
- Sheffield Institute for Translational Neuroscience, 385a Glossop Road, University of Sheffield, Sheffield S10 2HQ, UK.
| |
Collapse
|
334
|
Castelli V, Benedetti E, Antonosante A, Catanesi M, Pitari G, Ippoliti R, Cimini A, d'Angelo M. Neuronal Cells Rearrangement During Aging and Neurodegenerative Disease: Metabolism, Oxidative Stress and Organelles Dynamic. Front Mol Neurosci 2019; 12:132. [PMID: 31191244 PMCID: PMC6546816 DOI: 10.3389/fnmol.2019.00132] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/07/2019] [Indexed: 12/22/2022] Open
Abstract
Brain cells normally respond adaptively to oxidative stress or bioenergetic challenges, resulting from ongoing activity in neuronal circuits. During aging and in neurodegenerative disorders, these mechanisms are compromised. In fact, neurons show unique age-related changes in functions and metabolism, resulting in greater susceptibility to insults and disease. Aging affects the nervous system as well as other organs. More precisely, as the nervous system ages, neuron metabolism may change, inducing glucose hypometabolism, impaired transport of critical substrates underlying metabolism, alterations in calcium signaling, and mitochondrial dysfunction. Moreover, in neuronal aging, an accumulation of impaired and aggregated proteins in the cytoplasm and in mitochondria is observed, as the result of oxidative stress: reduced antioxidant defenses and/or increase of reactive oxygen species (ROS). These changes lead to greater vulnerability of neurons in various regions of the brain and increased susceptibility to several diseases. Specifically, the first part of the review article will focus on the major neuronal cells’ rearrangements during aging in response to changes in metabolism and oxidative stress, while the second part will cover the neurodegenerative disease areas in detail.
Collapse
Affiliation(s)
- Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Abruzzo, Italy
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Abruzzo, Italy
| | - Andrea Antonosante
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Abruzzo, Italy
| | - Mariano Catanesi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Abruzzo, Italy
| | - Giuseppina Pitari
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Abruzzo, Italy
| | - Rodolfo Ippoliti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Abruzzo, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Abruzzo, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Temple University, Philadelphia, PA, United States
| | - Michele d'Angelo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Abruzzo, Italy
| |
Collapse
|
335
|
Govindpani K, McNamara LG, Smith NR, Vinnakota C, Waldvogel HJ, Faull RL, Kwakowsky A. Vascular Dysfunction in Alzheimer's Disease: A Prelude to the Pathological Process or a Consequence of It? J Clin Med 2019; 8:E651. [PMID: 31083442 PMCID: PMC6571853 DOI: 10.3390/jcm8050651] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/29/2019] [Accepted: 05/06/2019] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia. Despite decades of research following several theoretical and clinical lines, all existing treatments for the disorder are purely symptomatic. AD research has traditionally been focused on neuronal and glial dysfunction. Although there is a wealth of evidence pointing to a significant vascular component in the disease, this angle has been relatively poorly explored. In this review, we consider the various aspects of vascular dysfunction in AD, which has a significant impact on brain metabolism and homeostasis and the clearance of β-amyloid and other toxic metabolites. This may potentially precede the onset of the hallmark pathophysiological and cognitive symptoms of the disease. Pathological changes in vessel haemodynamics, angiogenesis, vascular cell function, vascular coverage, blood-brain barrier permeability and immune cell migration may be related to amyloid toxicity, oxidative stress and apolipoprotein E (APOE) genotype. These vascular deficits may in turn contribute to parenchymal amyloid deposition, neurotoxicity, glial activation and metabolic dysfunction in multiple cell types. A vicious feedback cycle ensues, with progressively worsening neuronal and vascular pathology through the course of the disease. Thus, a better appreciation for the importance of vascular dysfunction in AD may open new avenues for research and therapy.
Collapse
Affiliation(s)
- Karan Govindpani
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Laura G McNamara
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Nicholas R Smith
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Chitra Vinnakota
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Henry J Waldvogel
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Richard Lm Faull
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Andrea Kwakowsky
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
336
|
Lauranzano E, Campo E, Rasile M, Molteni R, Pizzocri M, Passoni L, Bello L, Pozzi D, Pardi R, Matteoli M, Ruiz-Moreno A. A Microfluidic Human Model of Blood-Brain Barrier Employing Primary Human Astrocytes. ACTA ACUST UNITED AC 2019; 3:e1800335. [PMID: 32648668 DOI: 10.1002/adbi.201800335] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/20/2019] [Indexed: 12/19/2022]
Abstract
The neurovascular unit (NVU) is the most important biological barrier between vascular districts and central nervous system (CNS) parenchyma, which maintains brain homeostasis, protects the CNS from pathogens penetration, and mediates neuroimmune communication. T lymphocytes migration across the blood-brain barrier is heavily affected in different brain diseases, representing a major target for novel drug development. In vitro models of NVU could represent a primary tool to investigate the molecular events occurring at this interface. To move toward the establishment of personalized therapies, a patient-related NVU-model is set, incorporating human primary astrocytes integrated into a microfluidic platform. The model is morphologically and functionally characterized, proving to be an advantageous tool to investigate human T lymphocytes transmigration and thus the efficacy of potential novel drugs affecting this process.
Collapse
Affiliation(s)
- Eliana Lauranzano
- Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089, Rozzano, MI, Italy
| | - Elena Campo
- Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089, Rozzano, MI, Italy
| | - Marco Rasile
- Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089, Rozzano, MI, Italy.,Department of Biomedical Science, Laboratory of Pharmacology and Brain Pathology, Humanitas University, Via Rita Levi Montalcini 4, 20090, Pieve Emanuele, MI, Italy
| | - Raffaella Molteni
- Division of Immunology, Transplantation and Infectious Diseases, Leukocyte Biology Unit, San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy
| | - Marco Pizzocri
- Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089, Rozzano, MI, Italy
| | - Lorena Passoni
- Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089, Rozzano, MI, Italy
| | - Lorenzo Bello
- Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089, Rozzano, MI, Italy.,Department of Oncology and Hematology, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
| | - Davide Pozzi
- Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089, Rozzano, MI, Italy.,Department of Biomedical Science, Laboratory of Pharmacology and Brain Pathology, Humanitas University, Via Rita Levi Montalcini 4, 20090, Pieve Emanuele, MI, Italy
| | - Ruggero Pardi
- Division of Immunology, Transplantation and Infectious Diseases, Leukocyte Biology Unit, San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy.,School of Medicine, Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy
| | - Michela Matteoli
- Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089, Rozzano, MI, Italy.,Department of Biomedical Science, Laboratory of Pharmacology and Brain Pathology, Humanitas University, Via Rita Levi Montalcini 4, 20090, Pieve Emanuele, MI, Italy
| | - Ana Ruiz-Moreno
- Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089, Rozzano, MI, Italy
| |
Collapse
|
337
|
Thrippleton MJ, Backes WH, Sourbron S, Ingrisch M, van Osch MJP, Dichgans M, Fazekas F, Ropele S, Frayne R, van Oostenbrugge RJ, Smith EE, Wardlaw JM. Quantifying blood-brain barrier leakage in small vessel disease: Review and consensus recommendations. Alzheimers Dement 2019; 15:840-858. [PMID: 31031101 PMCID: PMC6565805 DOI: 10.1016/j.jalz.2019.01.013] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/22/2018] [Accepted: 01/18/2019] [Indexed: 12/12/2022]
Abstract
Cerebral small vessel disease (cSVD) comprises pathological processes of the small vessels in the brain that may manifest clinically as stroke, cognitive impairment, dementia, or gait disturbance. It is generally accepted that endothelial dysfunction, including blood-brain barrier (BBB) failure, is pivotal in the pathophysiology. Recent years have seen increasing use of imaging, primarily dynamic contrast-enhanced magnetic resonance imaging, to assess BBB leakage, but there is considerable variability in the approaches and findings reported in the literature. Although dynamic contrast-enhanced magnetic resonance imaging is well established, challenges emerge in cSVD because of the subtle nature of BBB impairment. The purpose of this work, authored by members of the HARNESS Initiative, is to provide an in-depth review and position statement on magnetic resonance imaging measurement of subtle BBB leakage in clinical research studies, with aspects requiring further research identified. We further aim to provide information and consensus recommendations for new investigators wishing to study BBB failure in cSVD and dementia.
Collapse
Affiliation(s)
- Michael J Thrippleton
- Centre for Clinical Brain Science, University of Edinburgh, Edinburgh, UK; Dementia Research Institute, University of Edinburgh, Edinburgh, UK; Edinburgh Imaging, University of Edinburgh, Edinburgh, UK.
| | - Walter H Backes
- Department of Radiology & Nuclear Medicine, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Steven Sourbron
- Leeds Imaging Biomarkers group, Department of Biomedical Imaging Sciences, University of Leeds, Leeds, UK
| | - Michael Ingrisch
- Department of Radiology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
| | - Matthias J P van Osch
- Department of Radiology, C. J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, The Netherlands
| | - Martin Dichgans
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilians-University München & Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Franz Fazekas
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Stefan Ropele
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Richard Frayne
- Department of Radiology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Seaman Family MR Research Centre, Foothills Medical Centre, Calgary, Alberta, Canada
| | - Robert J van Oostenbrugge
- Department of Neurology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Eric E Smith
- Department of Radiology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Joanna M Wardlaw
- Centre for Clinical Brain Science, University of Edinburgh, Edinburgh, UK; Dementia Research Institute, University of Edinburgh, Edinburgh, UK; Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
338
|
White matter microstructural abnormalities and default network degeneration are associated with early memory deficit in Alzheimer's disease continuum. Sci Rep 2019; 9:4749. [PMID: 30894627 PMCID: PMC6426923 DOI: 10.1038/s41598-019-41363-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 03/07/2019] [Indexed: 02/08/2023] Open
Abstract
Instead of assuming a constant relationship between brain abnormalities and memory impairment, we aimed to examine the stage-dependent contributions of multimodal brain structural and functional deterioration to memory impairment in the Alzheimer’s disease (AD) continuum. We assessed grey matter volume, white matter (WM) microstructural measures (free-water (FW) and FW-corrected fractional anisotropy), and functional connectivity of the default mode network (DMN) in 54 amnestic mild cognitive impairment (aMCI) and 46 AD. We employed a novel sparse varying coefficient model to investigate how the associations between abnormal brain measures and memory impairment varied throughout disease continuum. We found lower functional connectivity in the DMN was related to worse memory across AD continuum. Higher widespread white matter FW and lower fractional anisotropy in the fornix showed a stronger association with memory impairment in the early aMCI stage; such WM-memory associations then decreased with increased dementia severity. Notably, the effect of the DMN atrophy occurred in early aMCI stage, while the effect of the medial temporal atrophy occurred in the AD stage. Our study provided evidence to support the hypothetical progression models underlying memory dysfunction in AD cascade and underscored the importance of FW increases and DMN degeneration in early stage of memory deficit.
Collapse
|
339
|
Wong SM, Jansen JFA, Zhang CE, Hoff EI, Staals J, van Oostenbrugge RJ, Backes WH. Blood-brain barrier impairment and hypoperfusion are linked in cerebral small vessel disease. Neurology 2019; 92:e1669-e1677. [PMID: 30867275 DOI: 10.1212/wnl.0000000000007263] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 11/28/2018] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE To investigate the link between blood-brain-barrier (BBB) permeability and cerebral blood flow (CBF) and the relation with white matter hyperintensities (WMH) in cerebral small vessel disease (cSVD). METHODS Twenty-seven patients with cSVD received dynamic susceptibility contrast and dynamic contrast-enhanced MRI to determine CBF and BBB permeability (expressed as leakage rate and volume), respectively. Structural MRI were segmented into normal-appearing white matter (NAWM) and WMH, for which a perilesional zone was defined. In these regions, we investigated the BBB permeability, CBF, and their relation using Pearson correlation r. RESULTS We found a decrease in CBF of 2.2 mL/min/100 g (p < 0.01) and an increase in leakage volume of 0.7% (p < 0.01) per mm closer to the WMH in the perilesional zones. Lower CBF values correlated with higher leakage measures in the NAWM and WMH (-0.53 < r < -0.40, p < 0.05). This relation was also observed in the perilesional zones, which became stronger in the proximity of WMH (p = 0.03). CONCLUSION BBB impairment and hypoperfusion appear in the WMH and NAWM, which increase in the proximity of the WMH, and are linked. Both BBB and CBF are regulated in the neurovascular unit (NVU) and the observed link might be due to the physiologic regulation mechanism of the NVU. This link may suggest an early overall deterioration of this unit.
Collapse
Affiliation(s)
- Sau May Wong
- From the Departments of Radiology and Nuclear Medicine (S.M.W., J.F.A.J., W.H.B.), Neurology (C.E.Z., J.S., R.J.v.O.), School for Mental Health and Neuroscience (MHeNs) (S.M.W., J.F.A.J., C.E.Z., R.J.v.O., W.H.B.), and Cardiovascular Research Institute Maastricht (CARIM) (C.E.Z., J.S., R.J.v.O.), Maastricht University Medical Centre; and the Department of Neurology (E.I.H.), Zuyderland Medical Centre, Heerlen, the Netherlands
| | - Jacobus F A Jansen
- From the Departments of Radiology and Nuclear Medicine (S.M.W., J.F.A.J., W.H.B.), Neurology (C.E.Z., J.S., R.J.v.O.), School for Mental Health and Neuroscience (MHeNs) (S.M.W., J.F.A.J., C.E.Z., R.J.v.O., W.H.B.), and Cardiovascular Research Institute Maastricht (CARIM) (C.E.Z., J.S., R.J.v.O.), Maastricht University Medical Centre; and the Department of Neurology (E.I.H.), Zuyderland Medical Centre, Heerlen, the Netherlands
| | - C Eleana Zhang
- From the Departments of Radiology and Nuclear Medicine (S.M.W., J.F.A.J., W.H.B.), Neurology (C.E.Z., J.S., R.J.v.O.), School for Mental Health and Neuroscience (MHeNs) (S.M.W., J.F.A.J., C.E.Z., R.J.v.O., W.H.B.), and Cardiovascular Research Institute Maastricht (CARIM) (C.E.Z., J.S., R.J.v.O.), Maastricht University Medical Centre; and the Department of Neurology (E.I.H.), Zuyderland Medical Centre, Heerlen, the Netherlands
| | - Erik I Hoff
- From the Departments of Radiology and Nuclear Medicine (S.M.W., J.F.A.J., W.H.B.), Neurology (C.E.Z., J.S., R.J.v.O.), School for Mental Health and Neuroscience (MHeNs) (S.M.W., J.F.A.J., C.E.Z., R.J.v.O., W.H.B.), and Cardiovascular Research Institute Maastricht (CARIM) (C.E.Z., J.S., R.J.v.O.), Maastricht University Medical Centre; and the Department of Neurology (E.I.H.), Zuyderland Medical Centre, Heerlen, the Netherlands
| | - Julie Staals
- From the Departments of Radiology and Nuclear Medicine (S.M.W., J.F.A.J., W.H.B.), Neurology (C.E.Z., J.S., R.J.v.O.), School for Mental Health and Neuroscience (MHeNs) (S.M.W., J.F.A.J., C.E.Z., R.J.v.O., W.H.B.), and Cardiovascular Research Institute Maastricht (CARIM) (C.E.Z., J.S., R.J.v.O.), Maastricht University Medical Centre; and the Department of Neurology (E.I.H.), Zuyderland Medical Centre, Heerlen, the Netherlands
| | - Robert J van Oostenbrugge
- From the Departments of Radiology and Nuclear Medicine (S.M.W., J.F.A.J., W.H.B.), Neurology (C.E.Z., J.S., R.J.v.O.), School for Mental Health and Neuroscience (MHeNs) (S.M.W., J.F.A.J., C.E.Z., R.J.v.O., W.H.B.), and Cardiovascular Research Institute Maastricht (CARIM) (C.E.Z., J.S., R.J.v.O.), Maastricht University Medical Centre; and the Department of Neurology (E.I.H.), Zuyderland Medical Centre, Heerlen, the Netherlands
| | - Walter H Backes
- From the Departments of Radiology and Nuclear Medicine (S.M.W., J.F.A.J., W.H.B.), Neurology (C.E.Z., J.S., R.J.v.O.), School for Mental Health and Neuroscience (MHeNs) (S.M.W., J.F.A.J., C.E.Z., R.J.v.O., W.H.B.), and Cardiovascular Research Institute Maastricht (CARIM) (C.E.Z., J.S., R.J.v.O.), Maastricht University Medical Centre; and the Department of Neurology (E.I.H.), Zuyderland Medical Centre, Heerlen, the Netherlands.
| |
Collapse
|
340
|
Colín-Castelán D, Zaina S. Associations between atherosclerosis and neurological diseases, beyond ischemia-induced cerebral damage. Rev Endocr Metab Disord 2019; 20:15-25. [PMID: 30891682 DOI: 10.1007/s11154-019-09486-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neurodegeneration is traditionally viewed as a consequence of peptide accumulation in the brain, stroke and/or cerebral ischemia. Nonetheless, a number of scattered observations suggest that neurological disease and atherosclerosis may be linked by more complex mechanisms. Understanding the intricate link between atherosclerosis and neurological conditions may have a significant impact on the quality of life of the growing ageing population and of high cardiovascular risk groups in general. Epidemiological data support the notion that neurological dysfunction and atherosclerosis coexist long before any evident clinical complications of cardiovascular disease appear and may be causally linked. Baffling, often overlooked, molecular data suggest that nervous tissue-specific gene expression is relaxed specifically in the atheromatous vascular wall, and/or that a systemic dysregulation of genes involved in nervous system biology dictates a concomitant progression of neurological disease and atherosclerosis. Further epidemiological and experimental work is needed to clarify the details and clinical relevance of those complex links.
Collapse
Affiliation(s)
- Dannia Colín-Castelán
- Department of Medical Sciences, Division of Health Sciences, Campus León, University of Guanajuato, León, Guanajuato, Mexico.
| | - Silvio Zaina
- Department of Medical Sciences, Division of Health Sciences, Campus León, University of Guanajuato, León, Guanajuato, Mexico
| |
Collapse
|
341
|
Lahiri S, Regis GC, Koronyo Y, Fuchs DT, Sheyn J, Kim EH, Mastali M, Van Eyk JE, Rajput PS, Lyden PD, Black KL, Ely EW, D Jones H, Koronyo-Hamaoui M. Acute neuropathological consequences of short-term mechanical ventilation in wild-type and Alzheimer's disease mice. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2019; 23:63. [PMID: 30795776 PMCID: PMC6387486 DOI: 10.1186/s13054-019-2356-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 02/10/2019] [Indexed: 12/18/2022]
Abstract
Background Mechanical ventilation is strongly associated with cognitive decline after critical illness. This finding is particularly evident among older individuals who have pre-existing cognitive impairment, most commonly characterized by varying degrees of cerebral amyloid-β accumulation, neuroinflammation, and blood-brain barrier dysfunction. We sought to test the hypothesis that short-term mechanical ventilation contributes to the neuropathology of cognitive impairment by (i) increasing cerebral amyloid-β accumulation in mice with pre-existing Alzheimer’s disease pathology, (ii) increasing neurologic and systemic inflammation in wild-type mice and mice with pre-existing Alzheimer’s disease pathology, and (iii) increasing hippocampal blood-brain barrier permeability in wild-type mice and mice with pre-existing Alzheimer’s disease pathology. Methods We subjected double transgenic Alzheimer’s disease (APP/PSEN1) and wild-type mice to mechanical ventilation for 4 h and compared to non-mechanically ventilated Alzheimer’s disease model and wild-type mice. Cerebral soluble/insoluble amyloid-β1–40/amyloid-β1–42 and neurological and systemic markers of inflammation were quantified. Hippocampal blood-brain barrier permeability was quantified using a novel methodology that enabled assessment of small and large molecule permeability across the blood-brain barrier. Results Mechanical ventilation resulted in (i) a significant increase in cerebral soluble amyloid-β1–40 (p = 0.007) and (ii) significant increases in neuroinflammatory cytokines in both wild-type and Alzheimer’s disease mice which, in most cases, were not reflected in the plasma. There were (i) direct correlations between polymorphonuclear cells in the bronchoalveolar fluid and cerebral soluble amyloid-β1–40 (p = 0.0033), and several Alzheimer’s disease-relevant neuroinflammatory biomarkers including cerebral TNF-α and IL-6; (iii) significant decreases in blood-brain barrier permeability in mechanically ventilated Alzheimer’s disease mice and a trend towards increased blood-brain barrier permeability in mechanically ventilated wild-type mice. Conclusions These results provide the first evidence that short-term mechanical ventilation independently promotes the neuropathology of Alzheimer’s disease in subjects with and without pre-existing cerebral Alzheimer’s disease pathology. Future studies are needed to further clarify the specific mechanisms by which this occurs and to develop neuroprotective mechanical ventilation strategies that mitigate the risk of cognitive decline after critical illness. Electronic supplementary material The online version of this article (10.1186/s13054-019-2356-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shouri Lahiri
- Department of Neurology, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., AHSP Building, Suite A6600, A8103, Los Angeles, CA, 90048, USA. .,Department of Neurosurgery, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., AHSP Building, Suite A6600, A8103, Los Angeles, CA, 90048, USA. .,Department of Biomedical Sciences, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., AHSP Building, Suite A6600, A8103, Los Angeles, CA, 90048, USA.
| | - Giovanna C Regis
- Department of Neurosurgery, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., AHSP Building, Suite A6600, A8103, Los Angeles, CA, 90048, USA
| | - Yosef Koronyo
- Department of Neurosurgery, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., AHSP Building, Suite A6600, A8103, Los Angeles, CA, 90048, USA
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., AHSP Building, Suite A6600, A8103, Los Angeles, CA, 90048, USA
| | - Julia Sheyn
- Department of Neurosurgery, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., AHSP Building, Suite A6600, A8103, Los Angeles, CA, 90048, USA
| | - Elizabeth H Kim
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., AHSP Building, Suite A6600, A8103, Los Angeles, CA, 90048, USA
| | - Mitra Mastali
- Biostatistics and Informatics Core, Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Jennifer E Van Eyk
- Biostatistics and Informatics Core, Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Padmesh S Rajput
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Patrick D Lyden
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Keith L Black
- Department of Neurosurgery, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., AHSP Building, Suite A6600, A8103, Los Angeles, CA, 90048, USA
| | - E Wesley Ely
- Department of Pulmonary and Critical Care Medicine, Veteran's Affairs Tennessee Valley Geriatric Research Education and Clinical Center, Vanderbilt University School of Medicine, Nashville, USA
| | - Heather D Jones
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., AHSP Building, Suite A6600, A8103, Los Angeles, CA, 90048, USA. .,Department of Biomedical Sciences, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., AHSP Building, Suite A6600, A8103, Los Angeles, CA, 90048, USA.
| |
Collapse
|
342
|
|
343
|
Michael J, Marschallinger J, Aigner L. The leukotriene signaling pathway: a druggable target in Alzheimer’s disease. Drug Discov Today 2019; 24:505-516. [DOI: 10.1016/j.drudis.2018.09.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/17/2018] [Accepted: 09/12/2018] [Indexed: 12/29/2022]
|
344
|
Dual Roles of Astrocyte-Derived Factors in Regulation of Blood-Brain Barrier Function after Brain Damage. Int J Mol Sci 2019; 20:ijms20030571. [PMID: 30699952 PMCID: PMC6387062 DOI: 10.3390/ijms20030571] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 01/23/2019] [Accepted: 01/27/2019] [Indexed: 12/13/2022] Open
Abstract
The blood-brain barrier (BBB) is a major functional barrier in the central nervous system (CNS), and inhibits the extravasation of intravascular contents and transports various essential nutrients between the blood and the brain. After brain damage by traumatic brain injury, cerebral ischemia and several other CNS disorders, the functions of the BBB are disrupted, resulting in severe secondary damage including brain edema and inflammatory injury. Therefore, BBB protection and recovery are considered novel therapeutic strategies for reducing brain damage. Emerging evidence suggests key roles of astrocyte-derived factors in BBB disruption and recovery after brain damage. The astrocyte-derived vascular permeability factors include vascular endothelial growth factors, matrix metalloproteinases, nitric oxide, glutamate and endothelin-1, which enhance BBB permeability leading to BBB disruption. By contrast, the astrocyte-derived protective factors include angiopoietin-1, sonic hedgehog, glial-derived neurotrophic factor, retinoic acid and insulin-like growth factor-1 and apolipoprotein E which attenuate BBB permeability resulting in recovery of BBB function. In this review, the roles of these astrocyte-derived factors in BBB function are summarized, and their significance as therapeutic targets for BBB protection and recovery after brain damage are discussed.
Collapse
|
345
|
Zanotti-Fregonara P, Veronese M, Pascual B, Rostomily RC, Turkheimer F, Masdeu JC. The validity of 18F-GE180 as a TSPO imaging agent. Eur J Nucl Med Mol Imaging 2019; 46:1205-1207. [PMID: 30656358 DOI: 10.1007/s00259-019-4268-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/07/2019] [Indexed: 01/23/2023]
Affiliation(s)
- Paolo Zanotti-Fregonara
- Nantz National Alzheimer Center and Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA.
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, London, UK
| | - Belen Pascual
- Nantz National Alzheimer Center and Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Robert C Rostomily
- Department of Neurosurgery, Houston Methodist Hospital and Research Institute, Houston, TX, USA
| | - Federico Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, London, UK
| | - Joseph C Masdeu
- Nantz National Alzheimer Center and Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| |
Collapse
|
346
|
Nation DA, Sweeney MD, Montagne A, Sagare AP, D'Orazio LM, Pachicano M, Sepehrband F, Nelson AR, Buennagel DP, Harrington MG, Benzinger TLS, Fagan AM, Ringman JM, Schneider LS, Morris JC, Chui HC, Law M, Toga AW, Zlokovic BV. Blood-brain barrier breakdown is an early biomarker of human cognitive dysfunction. Nat Med 2019; 25:270-276. [PMID: 30643288 PMCID: PMC6367058 DOI: 10.1038/s41591-018-0297-y] [Citation(s) in RCA: 1069] [Impact Index Per Article: 178.2] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 11/07/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Daniel A Nation
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Melanie D Sweeney
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Axel Montagne
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Abhay P Sagare
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Lina M D'Orazio
- Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Maricarmen Pachicano
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Farshid Sepehrband
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Amy R Nelson
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | | | - Tammie L S Benzinger
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA.,The Hope Center for Neurodegenerative Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Anne M Fagan
- The Hope Center for Neurodegenerative Disorders, Washington University School of Medicine, St. Louis, MO, USA.,Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.,The Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - John M Ringman
- Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Lon S Schneider
- Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Department of Psychiatry and Behavioral Sciences, University of Southern California, Los Angeles, CA, USA
| | - John C Morris
- The Hope Center for Neurodegenerative Disorders, Washington University School of Medicine, St. Louis, MO, USA.,Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Helena C Chui
- Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Meng Law
- Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Arthur W Toga
- Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Berislav V Zlokovic
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA. .,Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
347
|
Sweeney MD, Montagne A, Sagare AP, Nation DA, Schneider LS, Chui HC, Harrington MG, Pa J, Law M, Wang DJJ, Jacobs RE, Doubal FN, Ramirez J, Black SE, Nedergaard M, Benveniste H, Dichgans M, Iadecola C, Love S, Bath PM, Markus HS, Al-Shahi Salman R, Allan SM, Quinn TJ, Kalaria RN, Werring DJ, Carare RO, Touyz RM, Williams SCR, Moskowitz MA, Katusic ZS, Lutz SE, Lazarov O, Minshall RD, Rehman J, Davis TP, Wellington CL, González HM, Yuan C, Lockhart SN, Hughes TM, Chen CLH, Sachdev P, O'Brien JT, Skoog I, Pantoni L, Gustafson DR, Biessels GJ, Wallin A, Smith EE, Mok V, Wong A, Passmore P, Barkof F, Muller M, Breteler MMB, Román GC, Hamel E, Seshadri S, Gottesman RF, van Buchem MA, Arvanitakis Z, Schneider JA, Drewes LR, Hachinski V, Finch CE, Toga AW, Wardlaw JM, Zlokovic BV. Vascular dysfunction-The disregarded partner of Alzheimer's disease. Alzheimers Dement 2019; 15:158-167. [PMID: 30642436 PMCID: PMC6338083 DOI: 10.1016/j.jalz.2018.07.222] [Citation(s) in RCA: 497] [Impact Index Per Article: 82.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 07/31/2018] [Indexed: 12/30/2022]
Abstract
Increasing evidence recognizes Alzheimer's disease (AD) as a multifactorial and heterogeneous disease with multiple contributors to its pathophysiology, including vascular dysfunction. The recently updated AD Research Framework put forth by the National Institute on Aging-Alzheimer's Association describes a biomarker-based pathologic definition of AD focused on amyloid, tau, and neuronal injury. In response to this article, here we first discussed evidence that vascular dysfunction is an important early event in AD pathophysiology. Next, we examined various imaging sequences that could be easily implemented to evaluate different types of vascular dysfunction associated with, and/or contributing to, AD pathophysiology, including changes in blood-brain barrier integrity and cerebral blood flow. Vascular imaging biomarkers of small vessel disease of the brain, which is responsible for >50% of dementia worldwide, including AD, are already established, well characterized, and easy to recognize. We suggest that these vascular biomarkers should be incorporated into the AD Research Framework to gain a better understanding of AD pathophysiology and aid in treatment efforts.
Collapse
Affiliation(s)
- Melanie D Sweeney
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Axel Montagne
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Abhay P Sagare
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Daniel A Nation
- Department of Psychology, University of Southern California, Los Angeles, CA, USA; Alzheimer's Disease Research Center, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| | - Lon S Schneider
- Alzheimer's Disease Research Center, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA; Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Helena C Chui
- Alzheimer's Disease Research Center, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA; Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Judy Pa
- Laboratory of Neuro Imaging (LONI), Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Meng Law
- Alzheimer's Disease Research Center, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA; Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Danny J J Wang
- Laboratory of Neuro Imaging (LONI), Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Russell E Jacobs
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Fergus N Doubal
- Neuroimaging Sciences and Brain Research Imaging Center, Division of Neuroimaging Sciences, Center for Clinical Brain Sciences, UK Dementia Research Institute at the University of Edinburgh, UK
| | - Joel Ramirez
- LC Campbell Cognitive Neurology Research Unit, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada; Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada; Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Sandra E Black
- Department of Medicine (Neurology), Hurvitz Brain Sciences Program, Canadian Partnership for Stroke Recovery, and LC Campbell Cognitive Neurology Research Unit, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto Dementia Research Alliance, University of Toronto, Toronto, Canada
| | - Maiken Nedergaard
- Section for Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Division of Glia Disease and Therapeutics, Center for Translational Neuromedicine, University of Rochester Medical School, Rochester, NY, USA
| | - Helene Benveniste
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, USA
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), Ludwing-Maximilians-University Munich, Munich, Germany
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Seth Love
- Institute of Clinical Neurosciences, University of Bristol, School of Medicine, Level 2 Learning and Research, Southmead Hospital, Bristol, UK
| | - Philip M Bath
- Stroke Trials Unit, Division of Clinical Neuroscience, University of Nottingham, City Hospital Campus, Nottingham, UK; Stroke, Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, UK
| | - Hugh S Markus
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Rustam Al-Shahi Salman
- Neuroimaging Sciences and Brain Research Imaging Center, Division of Neuroimaging Sciences, Center for Clinical Brain Sciences, UK Dementia Research Institute at the University of Edinburgh, UK
| | - Stuart M Allan
- Faculty of Biology, Medicine and Health, Division of Neuroscience and Experimental Psychology, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Terence J Quinn
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Rajesh N Kalaria
- Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - David J Werring
- Stroke Research Centre, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, UK
| | - Roxana O Carare
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Rhian M Touyz
- British Heart Foundation, Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK
| | - Steve C R Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Michael A Moskowitz
- Stroke and Neurovascular Regulation Laboratory, Departments of Radiology and Neurology Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Zvonimir S Katusic
- Department of Anesthesiology and Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Sarah E Lutz
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Orly Lazarov
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Richard D Minshall
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL, USA; Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, USA
| | - Jalees Rehman
- Department of Pharmacology, The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL, USA; Department of Medicine, The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL, USA
| | - Thomas P Davis
- Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | - Cheryl L Wellington
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hector M González
- Department of Neurosciences, University of California, San Diego, CA, USA
| | - Chun Yuan
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Samuel N Lockhart
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA; Alzheimer's Disease Research Center, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Timothy M Hughes
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA; Alzheimer's Disease Research Center, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Christopher L H Chen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Memory Aging and Cognition Centre, National University Health System, Singapore; Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Memory Aging and Cognition Centre, National University Health System, Singapore
| | - Perminder Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales Australia, Sydney, Australia
| | - John T O'Brien
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Ingmar Skoog
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Leonardo Pantoni
- "L. Sacco" Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Deborah R Gustafson
- Department of Neurology, State University of New York-Downstate Medical Center, Brooklyn, NY, USA
| | - Geert Jan Biessels
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Anders Wallin
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenberg, Sweden
| | - Eric E Smith
- Hotchkiss Brain Institute, University of Calgary, Alberta, Canada
| | - Vincent Mok
- Department of Medicine and Therapeutics, Therese Pei Fong Chow Research Centre for Prevention of Dementia, The Chinese University of Hong Kong, Hong Kong SAR, China; Gerald Choa Neuroscience Centre, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Adrian Wong
- Department of Medicine and Therapeutics, Therese Pei Fong Chow Research Centre for Prevention of Dementia, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Peter Passmore
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Frederick Barkof
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands; Institutes of Neurology and Healthcare Engineering, University College London, London, UK
| | - Majon Muller
- Section of Geriatrics, Department of Internal Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Monique M B Breteler
- Department of Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Institute for Medical Biometry, Informatics and Epidemiology (IMBIE), Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Gustavo C Román
- Department of Neurology, Methodist Neurological Institute, Houston, TX, USA
| | - Edith Hamel
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Sudha Seshadri
- The Framingham Heart Study, Framingham, MA, USA; Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Rebecca F Gottesman
- Departments of Neurology and Epidemiology, Johns Hopkins University, Baltimore, MD, USA
| | - Mark A van Buchem
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Zoe Arvanitakis
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA; Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Julie A Schneider
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA; Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Lester R Drewes
- Laboratory of Cerebral Vascular Biology, Department of Biomedical Sciences, University of Minnesota Medical School Duluth, Duluth, MN, USA
| | - Vladimir Hachinski
- Division of Neurology, Department of Clinical Neurological Sciences, Western University, London, Ontario, Canada
| | - Caleb E Finch
- Leonard Davis School of Gerontology, Dornsife College, University of Southern California, Los Angeles, CA, USA
| | - Arthur W Toga
- Alzheimer's Disease Research Center, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA; Laboratory of Neuro Imaging (LONI), Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Joanna M Wardlaw
- Neuroimaging Sciences and Brain Research Imaging Center, Division of Neuroimaging Sciences, Center for Clinical Brain Sciences, UK Dementia Research Institute at the University of Edinburgh, UK
| | - Berislav V Zlokovic
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Alzheimer's Disease Research Center, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
348
|
Sweeney MD, Zhao Z, Montagne A, Nelson AR, Zlokovic BV. Blood-Brain Barrier: From Physiology to Disease and Back. Physiol Rev 2019; 99:21-78. [PMID: 30280653 PMCID: PMC6335099 DOI: 10.1152/physrev.00050.2017] [Citation(s) in RCA: 1370] [Impact Index Per Article: 228.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 04/17/2018] [Accepted: 04/17/2018] [Indexed: 12/12/2022] Open
Abstract
The blood-brain barrier (BBB) prevents neurotoxic plasma components, blood cells, and pathogens from entering the brain. At the same time, the BBB regulates transport of molecules into and out of the central nervous system (CNS), which maintains tightly controlled chemical composition of the neuronal milieu that is required for proper neuronal functioning. In this review, we first examine molecular and cellular mechanisms underlying the establishment of the BBB. Then, we focus on BBB transport physiology, endothelial and pericyte transporters, and perivascular and paravascular transport. Next, we discuss rare human monogenic neurological disorders with the primary genetic defect in BBB-associated cells demonstrating the link between BBB breakdown and neurodegeneration. Then, we review the effects of genes underlying inheritance and/or increased susceptibility for Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease, and amyotrophic lateral sclerosis (ALS) on BBB in relation to other pathologies and neurological deficits. We next examine how BBB dysfunction relates to neurological deficits and other pathologies in the majority of sporadic AD, PD, and ALS cases, multiple sclerosis, other neurodegenerative disorders, and acute CNS disorders such as stroke, traumatic brain injury, spinal cord injury, and epilepsy. Lastly, we discuss BBB-based therapeutic opportunities. We conclude with lessons learned and future directions, with emphasis on technological advances to investigate the BBB functions in the living human brain, and at the molecular and cellular level, and address key unanswered questions.
Collapse
Affiliation(s)
- Melanie D Sweeney
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California , Los Angeles, California ; and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California , Los Angeles, California
| | - Zhen Zhao
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California , Los Angeles, California ; and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California , Los Angeles, California
| | - Axel Montagne
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California , Los Angeles, California ; and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California , Los Angeles, California
| | - Amy R Nelson
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California , Los Angeles, California ; and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California , Los Angeles, California
| | - Berislav V Zlokovic
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California , Los Angeles, California ; and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California , Los Angeles, California
| |
Collapse
|
349
|
microRNA diagnostic panel for Alzheimer's disease and epigenetic trade-off between neurodegeneration and cancer. Ageing Res Rev 2019; 49:125-143. [PMID: 30391753 DOI: 10.1016/j.arr.2018.10.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/01/2018] [Accepted: 10/19/2018] [Indexed: 12/20/2022]
Abstract
microRNAs (miRNAs) have been extensively studied as potential biomarkers for Alzheimer's disease (AD). Their profiles have been analyzed in blood, cerebrospinal fluid (CSF) and brain tissue. However, due to the high variability between the reported data, stemming from the lack of methodological standardization and the heterogeneity of AD, the most promising miRNA biomarker candidates have not been selected. Our literature review shows that out of 137 miRNAs found to be altered in AD blood, 36 have been replicated in at least one independent study, and out of 166 miRNAs reported as differential in AD CSF, 13 have been repeatedly found. Only 3 miRNAs have been consistently reported as altered in three analyzed specimens: blood, CSF and the brain (hsa-miR-146a, hsa-miR-125b, hsa-miR-135a). Nonetheless, all 36 repeatedly differential miRNAs in AD blood are promising as components of the diagnostic panel. Given their predicted functions, such miRNA panel may report multiple pathways contributing to AD pathology, enabling the design of personalized therapies. In addition, the analysis revealed that the miRNAs dysregulated in AD overlap highly with miRNAs implicated in cancer. However, the directions of the miRNA changes are usually opposite in cancer and AD, indicative of an epigenetic trade-off between the two diseases.
Collapse
|
350
|
Shigemoto-Mogami Y, Hoshikawa K, Sato K. Activated Microglia Disrupt the Blood-Brain Barrier and Induce Chemokines and Cytokines in a Rat in vitro Model. Front Cell Neurosci 2018; 12:494. [PMID: 30618641 PMCID: PMC6300509 DOI: 10.3389/fncel.2018.00494] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 11/30/2018] [Indexed: 12/25/2022] Open
Abstract
Severe neuroinflammation is associated with blood brain barrier (BBB) disruption in CNS diseases. Although microglial activation and the subsequent changes in cytokine/chemokine (C/C) concentrations are thought to be key steps in the development of neuroinflammation, little data are available concerning the interaction of microglia with BBB cells. In this study, we investigated this interaction by adding LPS-activated microglia (LPS-MG) to the abluminal side of a BBB model composed of endothelial cells (EC), pericytes (Peri) and astrocytes (Ast). We then examined the abluminal concentrations of 27 C/Cs and the interactions between the LPS-MG and BBB cells. LPS-MG caused collapse of the BBB, revealed by decreases in the trans-endothelial electrical resistance (TEER) and by changes in the expression levels of tight junction (TJ) proteins. Under these conditions, 19 C/Cs were markedly increased on the abluminal side. Unexpectedly, although LPS-MG alone released 10 of the 19 C/Cs, their concentrations were much lower than those detected on the abluminal side of the BBB model supplemented with LPS-MG. Co-culture of LPS-MG with Ast caused marked increases in 12 of the 19 C/Cs, while co-culture of LPS-MG with EC and Peri resulted in a significant increase in only 1 of the 19 C/Cs (fractalkine). These results suggest that C/C dynamics in this system are not only caused by activated microglia but also are due to the interaction between activated microglia and astrocytes.
Collapse
Affiliation(s)
- Yukari Shigemoto-Mogami
- Laboratory of Neuropharmacology, Division of Pharmacology, National Institute of Health Sciences, Kawasaki-ku, Japan.,Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Kazue Hoshikawa
- Laboratory of Neuropharmacology, Division of Pharmacology, National Institute of Health Sciences, Kawasaki-ku, Japan
| | - Kaoru Sato
- Laboratory of Neuropharmacology, Division of Pharmacology, National Institute of Health Sciences, Kawasaki-ku, Japan
| |
Collapse
|